Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.160
      1 /*	$NetBSD: kern_sig.c,v 1.160 2003/09/25 21:59:18 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.160 2003/09/25 21:59:18 christos Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd.h"
     45 #include "opt_compat_netbsd32.h"
     46 
     47 #define	SIGPROP		/* include signal properties table */
     48 #include <sys/param.h>
     49 #include <sys/signalvar.h>
     50 #include <sys/resourcevar.h>
     51 #include <sys/namei.h>
     52 #include <sys/vnode.h>
     53 #include <sys/proc.h>
     54 #include <sys/systm.h>
     55 #include <sys/timeb.h>
     56 #include <sys/times.h>
     57 #include <sys/buf.h>
     58 #include <sys/acct.h>
     59 #include <sys/file.h>
     60 #include <sys/kernel.h>
     61 #include <sys/wait.h>
     62 #include <sys/ktrace.h>
     63 #include <sys/syslog.h>
     64 #include <sys/stat.h>
     65 #include <sys/core.h>
     66 #include <sys/filedesc.h>
     67 #include <sys/malloc.h>
     68 #include <sys/pool.h>
     69 #include <sys/ucontext.h>
     70 #include <sys/sa.h>
     71 #include <sys/savar.h>
     72 #include <sys/exec.h>
     73 
     74 #include <sys/mount.h>
     75 #include <sys/syscallargs.h>
     76 
     77 #include <machine/cpu.h>
     78 
     79 #include <sys/user.h>		/* for coredump */
     80 
     81 #include <uvm/uvm_extern.h>
     82 
     83 static void	child_psignal(struct proc *, int);
     84 static void	proc_stop(struct proc *);
     85 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     86 static void	ksiginfo_exithook(struct proc *, void *);
     87 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
     88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
     89 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
     90 
     91 sigset_t	contsigmask, stopsigmask, sigcantmask;
     92 
     93 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     94 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     95 struct pool	ksiginfo_pool;	/* memory pool for ksiginfo structures */
     96 
     97 /*
     98  * Can process p, with pcred pc, send the signal signum to process q?
     99  */
    100 #define	CANSIGNAL(p, pc, q, signum) \
    101 	((pc)->pc_ucred->cr_uid == 0 || \
    102 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
    103 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    104 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    105 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    106 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    107 
    108 /*
    109  * Remove and return the first ksiginfo element that matches our requested
    110  * signal, or return NULL if one not found.
    111  */
    112 static ksiginfo_t *
    113 ksiginfo_get(struct proc *p, int signo)
    114 {
    115 	ksiginfo_t *ksi;
    116 
    117 	simple_lock(&p->p_sigctx.ps_silock);
    118 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    119 		if (ksi->ksi_signo == signo) {
    120 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    121 			simple_unlock(&p->p_sigctx.ps_silock);
    122 			return ksi;
    123 		}
    124 	}
    125 	simple_unlock(&p->p_sigctx.ps_silock);
    126 	return NULL;
    127 }
    128 
    129 /*
    130  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    131  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    132  * they already existed in the queue and we add new entries for RT signals,
    133  * or for non RT signals with non-existing entries.
    134  */
    135 static void
    136 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
    137 {
    138 	ksiginfo_t *kp;
    139 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    140 
    141 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    142 		return;
    143 
    144 	simple_lock(&p->p_sigctx.ps_silock);
    145 #ifdef notyet	/* XXX: QUEUING */
    146 	if (ksi->ksi_signo < SIGRTMIN)
    147 #endif
    148 	{
    149 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    150 			if (kp->ksi_signo == ksi->ksi_signo) {
    151 				CIRCLEQ_ENTRY(ksiginfo) sv;
    152 				(void)memcpy(&sv, &kp->ksi_list, sizeof(sv));
    153 				*kp = *ksi;
    154 				(void)memcpy(&kp->ksi_list, &sv, sizeof(sv));
    155 				simple_unlock(&p->p_sigctx.ps_silock);
    156 				return;
    157 			}
    158 		}
    159 	}
    160 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
    161 	if (kp == NULL) {
    162 #ifdef DIAGNOSTIC
    163 		printf("Out of memory allocating siginfo for pid %d\n",
    164 		    p->p_pid);
    165 #endif
    166 		return;
    167 	}
    168 	*kp = *ksi;
    169 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    170 	simple_unlock(&p->p_sigctx.ps_silock);
    171 }
    172 
    173 /*
    174  * free all pending ksiginfo on exit
    175  */
    176 static void
    177 ksiginfo_exithook(struct proc *p, void *v)
    178 {
    179 
    180 	simple_lock(&p->p_sigctx.ps_silock);
    181 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    182 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    183 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    184 		pool_put(&ksiginfo_pool, ksi);
    185 	}
    186 	simple_unlock(&p->p_sigctx.ps_silock);
    187 }
    188 
    189 /*
    190  * Initialize signal-related data structures.
    191  */
    192 void
    193 signal_init(void)
    194 {
    195 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    196 	    &pool_allocator_nointr);
    197 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    198 	    &pool_allocator_nointr);
    199 	pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    200 	    NULL);
    201 	exithook_establish(ksiginfo_exithook, NULL);
    202 	exechook_establish(ksiginfo_exithook, NULL);
    203 }
    204 
    205 /*
    206  * Create an initial sigctx structure, using the same signal state
    207  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    208  * copy it from parent.
    209  */
    210 void
    211 sigactsinit(struct proc *np, struct proc *pp, int share)
    212 {
    213 	struct sigacts *ps;
    214 
    215 	if (share) {
    216 		np->p_sigacts = pp->p_sigacts;
    217 		pp->p_sigacts->sa_refcnt++;
    218 	} else {
    219 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    220 		if (pp)
    221 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    222 		else
    223 			memset(ps, '\0', sizeof(struct sigacts));
    224 		ps->sa_refcnt = 1;
    225 		np->p_sigacts = ps;
    226 	}
    227 }
    228 
    229 /*
    230  * Make this process not share its sigctx, maintaining all
    231  * signal state.
    232  */
    233 void
    234 sigactsunshare(struct proc *p)
    235 {
    236 	struct sigacts *oldps;
    237 
    238 	if (p->p_sigacts->sa_refcnt == 1)
    239 		return;
    240 
    241 	oldps = p->p_sigacts;
    242 	sigactsinit(p, NULL, 0);
    243 
    244 	if (--oldps->sa_refcnt == 0)
    245 		pool_put(&sigacts_pool, oldps);
    246 }
    247 
    248 /*
    249  * Release a sigctx structure.
    250  */
    251 void
    252 sigactsfree(struct proc *p)
    253 {
    254 	struct sigacts *ps;
    255 
    256 	ps = p->p_sigacts;
    257 	if (--ps->sa_refcnt > 0)
    258 		return;
    259 
    260 	pool_put(&sigacts_pool, ps);
    261 }
    262 
    263 int
    264 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    265 	struct sigaction *osa, void *tramp, int vers)
    266 {
    267 	struct sigacts	*ps;
    268 	int		prop;
    269 
    270 	ps = p->p_sigacts;
    271 	if (signum <= 0 || signum >= NSIG)
    272 		return (EINVAL);
    273 
    274 	/*
    275 	 * Trampoline ABI version 0 is reserved for the legacy
    276 	 * kernel-provided on-stack trampoline.  Conversely, if
    277 	 * we are using a non-0 ABI version, we must have a
    278 	 * trampoline.
    279 	 */
    280 	if ((vers != 0 && tramp == NULL) ||
    281 	    (vers == 0 && tramp != NULL))
    282 		return (EINVAL);
    283 
    284 	if (osa)
    285 		*osa = SIGACTION_PS(ps, signum);
    286 
    287 	if (nsa) {
    288 		if (nsa->sa_flags & ~SA_ALLBITS)
    289 			return (EINVAL);
    290 
    291 #ifndef __HAVE_SIGINFO
    292 		if (nsa->sa_flags & SA_SIGINFO)
    293 			return (EINVAL);
    294 #endif
    295 
    296 		prop = sigprop[signum];
    297 		if (prop & SA_CANTMASK)
    298 			return (EINVAL);
    299 
    300 		(void) splsched();	/* XXXSMP */
    301 		SIGACTION_PS(ps, signum) = *nsa;
    302 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    303 		ps->sa_sigdesc[signum].sd_vers = vers;
    304 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    305 		if ((prop & SA_NORESET) != 0)
    306 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    307 		if (signum == SIGCHLD) {
    308 			if (nsa->sa_flags & SA_NOCLDSTOP)
    309 				p->p_flag |= P_NOCLDSTOP;
    310 			else
    311 				p->p_flag &= ~P_NOCLDSTOP;
    312 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    313 				/*
    314 				 * Paranoia: since SA_NOCLDWAIT is implemented
    315 				 * by reparenting the dying child to PID 1 (and
    316 				 * trust it to reap the zombie), PID 1 itself
    317 				 * is forbidden to set SA_NOCLDWAIT.
    318 				 */
    319 				if (p->p_pid == 1)
    320 					p->p_flag &= ~P_NOCLDWAIT;
    321 				else
    322 					p->p_flag |= P_NOCLDWAIT;
    323 			} else
    324 				p->p_flag &= ~P_NOCLDWAIT;
    325 		}
    326 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    327 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    328 		else
    329 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    330 		/*
    331 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    332 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    333 		 * to ignore. However, don't put SIGCONT in
    334 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    335 	 	 */
    336 		if (nsa->sa_handler == SIG_IGN ||
    337 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    338 						/* never to be seen again */
    339 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    340 			if (signum != SIGCONT) {
    341 						/* easier in psignal */
    342 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    343 			}
    344 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    345 		} else {
    346 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    347 			if (nsa->sa_handler == SIG_DFL)
    348 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    349 			else
    350 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    351 		}
    352 		(void) spl0();
    353 	}
    354 
    355 	return (0);
    356 }
    357 
    358 #ifdef COMPAT_16
    359 /* ARGSUSED */
    360 int
    361 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    362 {
    363 	struct compat_16_sys___sigaction14_args /* {
    364 		syscallarg(int)				signum;
    365 		syscallarg(const struct sigaction *)	nsa;
    366 		syscallarg(struct sigaction *)		osa;
    367 	} */ *uap = v;
    368 	struct proc		*p;
    369 	struct sigaction	nsa, osa;
    370 	int			error;
    371 
    372 	if (SCARG(uap, nsa)) {
    373 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    374 		if (error)
    375 			return (error);
    376 	}
    377 	p = l->l_proc;
    378 	error = sigaction1(p, SCARG(uap, signum),
    379 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    380 	    NULL, 0);
    381 	if (error)
    382 		return (error);
    383 	if (SCARG(uap, osa)) {
    384 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    385 		if (error)
    386 			return (error);
    387 	}
    388 	return (0);
    389 }
    390 #endif
    391 
    392 /* ARGSUSED */
    393 int
    394 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    395 {
    396 	struct sys___sigaction_sigtramp_args /* {
    397 		syscallarg(int)				signum;
    398 		syscallarg(const struct sigaction *)	nsa;
    399 		syscallarg(struct sigaction *)		osa;
    400 		syscallarg(void *)			tramp;
    401 		syscallarg(int)				vers;
    402 	} */ *uap = v;
    403 	struct proc *p = l->l_proc;
    404 	struct sigaction nsa, osa;
    405 	int error;
    406 
    407 	if (SCARG(uap, nsa)) {
    408 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    409 		if (error)
    410 			return (error);
    411 	}
    412 	error = sigaction1(p, SCARG(uap, signum),
    413 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    414 	    SCARG(uap, tramp), SCARG(uap, vers));
    415 	if (error)
    416 		return (error);
    417 	if (SCARG(uap, osa)) {
    418 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    419 		if (error)
    420 			return (error);
    421 	}
    422 	return (0);
    423 }
    424 
    425 /*
    426  * Initialize signal state for process 0;
    427  * set to ignore signals that are ignored by default and disable the signal
    428  * stack.
    429  */
    430 void
    431 siginit(struct proc *p)
    432 {
    433 	struct sigacts	*ps;
    434 	int		signum, prop;
    435 
    436 	ps = p->p_sigacts;
    437 	sigemptyset(&contsigmask);
    438 	sigemptyset(&stopsigmask);
    439 	sigemptyset(&sigcantmask);
    440 	for (signum = 1; signum < NSIG; signum++) {
    441 		prop = sigprop[signum];
    442 		if (prop & SA_CONT)
    443 			sigaddset(&contsigmask, signum);
    444 		if (prop & SA_STOP)
    445 			sigaddset(&stopsigmask, signum);
    446 		if (prop & SA_CANTMASK)
    447 			sigaddset(&sigcantmask, signum);
    448 		if (prop & SA_IGNORE && signum != SIGCONT)
    449 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    450 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    451 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    452 	}
    453 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    454 	p->p_sigctx.ps_sigwaited = 0;
    455 	p->p_flag &= ~P_NOCLDSTOP;
    456 
    457 	/*
    458 	 * Reset stack state to the user stack.
    459 	 */
    460 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    461 	p->p_sigctx.ps_sigstk.ss_size = 0;
    462 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    463 
    464 	/* One reference. */
    465 	ps->sa_refcnt = 1;
    466 }
    467 
    468 /*
    469  * Reset signals for an exec of the specified process.
    470  */
    471 void
    472 execsigs(struct proc *p)
    473 {
    474 	struct sigacts	*ps;
    475 	int		signum, prop;
    476 
    477 	sigactsunshare(p);
    478 
    479 	ps = p->p_sigacts;
    480 
    481 	/*
    482 	 * Reset caught signals.  Held signals remain held
    483 	 * through p_sigctx.ps_sigmask (unless they were caught,
    484 	 * and are now ignored by default).
    485 	 */
    486 	for (signum = 1; signum < NSIG; signum++) {
    487 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    488 			prop = sigprop[signum];
    489 			if (prop & SA_IGNORE) {
    490 				if ((prop & SA_CONT) == 0)
    491 					sigaddset(&p->p_sigctx.ps_sigignore,
    492 					    signum);
    493 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    494 			}
    495 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    496 		}
    497 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    498 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    499 	}
    500 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    501 	p->p_sigctx.ps_sigwaited = 0;
    502 	p->p_flag &= ~P_NOCLDSTOP;
    503 
    504 	/*
    505 	 * Reset stack state to the user stack.
    506 	 */
    507 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    508 	p->p_sigctx.ps_sigstk.ss_size = 0;
    509 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    510 }
    511 
    512 int
    513 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    514 {
    515 
    516 	if (oss)
    517 		*oss = p->p_sigctx.ps_sigmask;
    518 
    519 	if (nss) {
    520 		(void)splsched();	/* XXXSMP */
    521 		switch (how) {
    522 		case SIG_BLOCK:
    523 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    524 			break;
    525 		case SIG_UNBLOCK:
    526 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    527 			CHECKSIGS(p);
    528 			break;
    529 		case SIG_SETMASK:
    530 			p->p_sigctx.ps_sigmask = *nss;
    531 			CHECKSIGS(p);
    532 			break;
    533 		default:
    534 			(void)spl0();	/* XXXSMP */
    535 			return (EINVAL);
    536 		}
    537 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    538 		(void)spl0();		/* XXXSMP */
    539 	}
    540 
    541 	return (0);
    542 }
    543 
    544 /*
    545  * Manipulate signal mask.
    546  * Note that we receive new mask, not pointer,
    547  * and return old mask as return value;
    548  * the library stub does the rest.
    549  */
    550 int
    551 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    552 {
    553 	struct sys___sigprocmask14_args /* {
    554 		syscallarg(int)			how;
    555 		syscallarg(const sigset_t *)	set;
    556 		syscallarg(sigset_t *)		oset;
    557 	} */ *uap = v;
    558 	struct proc	*p;
    559 	sigset_t	nss, oss;
    560 	int		error;
    561 
    562 	if (SCARG(uap, set)) {
    563 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    564 		if (error)
    565 			return (error);
    566 	}
    567 	p = l->l_proc;
    568 	error = sigprocmask1(p, SCARG(uap, how),
    569 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    570 	if (error)
    571 		return (error);
    572 	if (SCARG(uap, oset)) {
    573 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    574 		if (error)
    575 			return (error);
    576 	}
    577 	return (0);
    578 }
    579 
    580 void
    581 sigpending1(struct proc *p, sigset_t *ss)
    582 {
    583 
    584 	*ss = p->p_sigctx.ps_siglist;
    585 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    586 }
    587 
    588 /* ARGSUSED */
    589 int
    590 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    591 {
    592 	struct sys___sigpending14_args /* {
    593 		syscallarg(sigset_t *)	set;
    594 	} */ *uap = v;
    595 	struct proc	*p;
    596 	sigset_t	ss;
    597 
    598 	p = l->l_proc;
    599 	sigpending1(p, &ss);
    600 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    601 }
    602 
    603 int
    604 sigsuspend1(struct proc *p, const sigset_t *ss)
    605 {
    606 	struct sigacts *ps;
    607 
    608 	ps = p->p_sigacts;
    609 	if (ss) {
    610 		/*
    611 		 * When returning from sigpause, we want
    612 		 * the old mask to be restored after the
    613 		 * signal handler has finished.  Thus, we
    614 		 * save it here and mark the sigctx structure
    615 		 * to indicate this.
    616 		 */
    617 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    618 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    619 		(void) splsched();	/* XXXSMP */
    620 		p->p_sigctx.ps_sigmask = *ss;
    621 		CHECKSIGS(p);
    622 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    623 		(void) spl0();		/* XXXSMP */
    624 	}
    625 
    626 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    627 		/* void */;
    628 
    629 	/* always return EINTR rather than ERESTART... */
    630 	return (EINTR);
    631 }
    632 
    633 /*
    634  * Suspend process until signal, providing mask to be set
    635  * in the meantime.  Note nonstandard calling convention:
    636  * libc stub passes mask, not pointer, to save a copyin.
    637  */
    638 /* ARGSUSED */
    639 int
    640 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    641 {
    642 	struct sys___sigsuspend14_args /* {
    643 		syscallarg(const sigset_t *)	set;
    644 	} */ *uap = v;
    645 	struct proc	*p;
    646 	sigset_t	ss;
    647 	int		error;
    648 
    649 	if (SCARG(uap, set)) {
    650 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    651 		if (error)
    652 			return (error);
    653 	}
    654 
    655 	p = l->l_proc;
    656 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    657 }
    658 
    659 int
    660 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    661 	struct sigaltstack *oss)
    662 {
    663 
    664 	if (oss)
    665 		*oss = p->p_sigctx.ps_sigstk;
    666 
    667 	if (nss) {
    668 		if (nss->ss_flags & ~SS_ALLBITS)
    669 			return (EINVAL);
    670 
    671 		if (nss->ss_flags & SS_DISABLE) {
    672 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    673 				return (EINVAL);
    674 		} else {
    675 			if (nss->ss_size < MINSIGSTKSZ)
    676 				return (ENOMEM);
    677 		}
    678 		p->p_sigctx.ps_sigstk = *nss;
    679 	}
    680 
    681 	return (0);
    682 }
    683 
    684 /* ARGSUSED */
    685 int
    686 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    687 {
    688 	struct sys___sigaltstack14_args /* {
    689 		syscallarg(const struct sigaltstack *)	nss;
    690 		syscallarg(struct sigaltstack *)	oss;
    691 	} */ *uap = v;
    692 	struct proc		*p;
    693 	struct sigaltstack	nss, oss;
    694 	int			error;
    695 
    696 	if (SCARG(uap, nss)) {
    697 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    698 		if (error)
    699 			return (error);
    700 	}
    701 	p = l->l_proc;
    702 	error = sigaltstack1(p,
    703 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    704 	if (error)
    705 		return (error);
    706 	if (SCARG(uap, oss)) {
    707 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    708 		if (error)
    709 			return (error);
    710 	}
    711 	return (0);
    712 }
    713 
    714 /* ARGSUSED */
    715 int
    716 sys_kill(struct lwp *l, void *v, register_t *retval)
    717 {
    718 	struct sys_kill_args /* {
    719 		syscallarg(int)	pid;
    720 		syscallarg(int)	signum;
    721 	} */ *uap = v;
    722 	struct proc	*cp, *p;
    723 	struct pcred	*pc;
    724 	ksiginfo_t	ksi;
    725 
    726 	cp = l->l_proc;
    727 	pc = cp->p_cred;
    728 	if ((u_int)SCARG(uap, signum) >= NSIG)
    729 		return (EINVAL);
    730 	memset(&ksi, 0, sizeof(ksi));
    731 	ksi.ksi_signo = SCARG(uap, signum);
    732 	ksi.ksi_code = SI_USER;
    733 	ksi.ksi_pid = cp->p_pid;
    734 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    735 	if (SCARG(uap, pid) > 0) {
    736 		/* kill single process */
    737 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    738 			return (ESRCH);
    739 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    740 			return (EPERM);
    741 		if (SCARG(uap, signum))
    742 			kpsignal2(p, &ksi, 1);
    743 		return (0);
    744 	}
    745 	switch (SCARG(uap, pid)) {
    746 	case -1:		/* broadcast signal */
    747 		return (killpg1(cp, &ksi, 0, 1));
    748 	case 0:			/* signal own process group */
    749 		return (killpg1(cp, &ksi, 0, 0));
    750 	default:		/* negative explicit process group */
    751 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    752 	}
    753 	/* NOTREACHED */
    754 }
    755 
    756 /*
    757  * Common code for kill process group/broadcast kill.
    758  * cp is calling process.
    759  */
    760 int
    761 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    762 {
    763 	struct proc	*p;
    764 	struct pcred	*pc;
    765 	struct pgrp	*pgrp;
    766 	int		nfound;
    767 	int		signum = ksi->ksi_signo;
    768 
    769 	pc = cp->p_cred;
    770 	nfound = 0;
    771 	if (all) {
    772 		/*
    773 		 * broadcast
    774 		 */
    775 		proclist_lock_read();
    776 		LIST_FOREACH(p, &allproc, p_list) {
    777 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    778 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    779 				continue;
    780 			nfound++;
    781 			if (signum)
    782 				kpsignal2(p, ksi, 1);
    783 		}
    784 		proclist_unlock_read();
    785 	} else {
    786 		if (pgid == 0)
    787 			/*
    788 			 * zero pgid means send to my process group.
    789 			 */
    790 			pgrp = cp->p_pgrp;
    791 		else {
    792 			pgrp = pgfind(pgid);
    793 			if (pgrp == NULL)
    794 				return (ESRCH);
    795 		}
    796 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    797 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    798 			    !CANSIGNAL(cp, pc, p, signum))
    799 				continue;
    800 			nfound++;
    801 			if (signum && P_ZOMBIE(p) == 0)
    802 				kpsignal2(p, ksi, 1);
    803 		}
    804 	}
    805 	return (nfound ? 0 : ESRCH);
    806 }
    807 
    808 /*
    809  * Send a signal to a process group.
    810  */
    811 void
    812 gsignal(int pgid, int signum)
    813 {
    814 	ksiginfo_t ksi;
    815 	memset(&ksi, 0, sizeof(ksi));
    816 	ksi.ksi_signo = signum;
    817 	kgsignal(pgid, &ksi, NULL);
    818 }
    819 
    820 void
    821 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    822 {
    823 	struct pgrp *pgrp;
    824 
    825 	if (pgid && (pgrp = pgfind(pgid)))
    826 		kpgsignal(pgrp, ksi, data, 0);
    827 }
    828 
    829 /*
    830  * Send a signal to a process group. If checktty is 1,
    831  * limit to members which have a controlling terminal.
    832  */
    833 void
    834 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    835 {
    836 	ksiginfo_t ksi;
    837 	memset(&ksi, 0, sizeof(ksi));
    838 	ksi.ksi_signo = sig;
    839 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    840 }
    841 
    842 void
    843 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    844 {
    845 	struct proc *p;
    846 
    847 	if (pgrp)
    848 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    849 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    850 				kpsignal(p, ksi, data);
    851 }
    852 
    853 /*
    854  * Send a signal caused by a trap to the current process.
    855  * If it will be caught immediately, deliver it with correct code.
    856  * Otherwise, post it normally.
    857  */
    858 #ifndef __HAVE_SIGINFO
    859 void _trapsignal(struct lwp *, const ksiginfo_t *);
    860 void
    861 trapsignal(struct lwp *l, int signum, u_long code)
    862 {
    863 #define trapsignal _trapsignal
    864 	ksiginfo_t ksi;
    865 	memset(&ksi, 0, sizeof(ksi));
    866 	ksi.ksi_signo = signum;
    867 	ksi.ksi_trap = (int)code;
    868 	trapsignal(l, &ksi);
    869 }
    870 #endif
    871 
    872 void
    873 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    874 {
    875 	struct proc	*p;
    876 	struct sigacts	*ps;
    877 	int signum = ksi->ksi_signo;
    878 
    879 	p = l->l_proc;
    880 	ps = p->p_sigacts;
    881 	if ((p->p_flag & P_TRACED) == 0 &&
    882 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    883 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    884 		p->p_stats->p_ru.ru_nsignals++;
    885 #ifdef KTRACE
    886 		if (KTRPOINT(p, KTR_PSIG))
    887 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    888 			    &p->p_sigctx.ps_sigmask, ksi);
    889 #endif
    890 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    891 		(void) splsched();	/* XXXSMP */
    892 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    893 		    &p->p_sigctx.ps_sigmask);
    894 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    895 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    896 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    897 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    898 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    899 		}
    900 		(void) spl0();		/* XXXSMP */
    901 	} else {
    902 		p->p_sigctx.ps_lwp = l->l_lid;
    903 		/* XXX for core dump/debugger */
    904 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    905 		p->p_sigctx.ps_code = ksi->ksi_trap;
    906 		kpsignal2(p, ksi, 1);
    907 	}
    908 }
    909 
    910 /*
    911  * Fill in signal information and signal the parent for a child status change.
    912  */
    913 static void
    914 child_psignal(struct proc *p, int dolock)
    915 {
    916 	ksiginfo_t ksi;
    917 
    918 	(void)memset(&ksi, 0, sizeof(ksi));
    919 	ksi.ksi_signo = SIGCHLD;
    920 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    921 	ksi.ksi_pid = p->p_pid;
    922 	ksi.ksi_uid = p->p_ucred->cr_uid;
    923 	ksi.ksi_status = p->p_xstat;
    924 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    925 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    926 	kpsignal2(p->p_pptr, &ksi, dolock);
    927 }
    928 
    929 /*
    930  * Send the signal to the process.  If the signal has an action, the action
    931  * is usually performed by the target process rather than the caller; we add
    932  * the signal to the set of pending signals for the process.
    933  *
    934  * Exceptions:
    935  *   o When a stop signal is sent to a sleeping process that takes the
    936  *     default action, the process is stopped without awakening it.
    937  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    938  *     regardless of the signal action (eg, blocked or ignored).
    939  *
    940  * Other ignored signals are discarded immediately.
    941  *
    942  * XXXSMP: Invoked as psignal() or sched_psignal().
    943  */
    944 void
    945 psignal1(struct proc *p, int signum, int dolock)
    946 {
    947     ksiginfo_t ksi;
    948     memset(&ksi, 0, sizeof(ksi));
    949     ksi.ksi_signo = signum;
    950     kpsignal2(p, &ksi, dolock);
    951 }
    952 
    953 void
    954 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
    955 {
    956 	if (data) {
    957 		size_t fd;
    958 		struct filedesc *fdp = p->p_fd;
    959 		ksi->ksi_fd = -1;
    960 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    961 			struct file *fp = fdp->fd_ofiles[fd];
    962 			/* XXX: lock? */
    963 			if (fp && fp->f_data == data) {
    964 				ksi->ksi_fd = fd;
    965 				break;
    966 			}
    967 		}
    968 	}
    969 	kpsignal2(p, ksi, dolock);
    970 }
    971 
    972 static void
    973 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
    974 {
    975 	struct lwp *l, *suspended;
    976 	int	s = 0, prop, allsusp;
    977 	sig_t	action;
    978 	int	signum = ksi->ksi_signo;
    979 
    980 #ifdef DIAGNOSTIC
    981 	if (signum <= 0 || signum >= NSIG)
    982 		panic("psignal signal number %d", signum);
    983 
    984 	/* XXXSMP: works, but icky */
    985 	if (dolock)
    986 		SCHED_ASSERT_UNLOCKED();
    987 	else
    988 		SCHED_ASSERT_LOCKED();
    989 #endif
    990 
    991 
    992 	/*
    993 	 * Notify any interested parties in the signal.
    994 	 */
    995 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
    996 
    997 	prop = sigprop[signum];
    998 
    999 	/*
   1000 	 * If proc is traced, always give parent a chance.
   1001 	 */
   1002 	if (p->p_flag & P_TRACED)
   1003 		action = SIG_DFL;
   1004 	else {
   1005 		/*
   1006 		 * If the signal is being ignored,
   1007 		 * then we forget about it immediately.
   1008 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1009 		 * and if it is set to SIG_IGN,
   1010 		 * action will be SIG_DFL here.)
   1011 		 */
   1012 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1013 			return;
   1014 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1015 			action = SIG_HOLD;
   1016 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1017 			action = SIG_CATCH;
   1018 		else {
   1019 			action = SIG_DFL;
   1020 
   1021 			if (prop & SA_KILL && p->p_nice > NZERO)
   1022 				p->p_nice = NZERO;
   1023 
   1024 			/*
   1025 			 * If sending a tty stop signal to a member of an
   1026 			 * orphaned process group, discard the signal here if
   1027 			 * the action is default; don't stop the process below
   1028 			 * if sleeping, and don't clear any pending SIGCONT.
   1029 			 */
   1030 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1031 				return;
   1032 		}
   1033 	}
   1034 
   1035 	if (prop & SA_CONT)
   1036 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1037 
   1038 	if (prop & SA_STOP)
   1039 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1040 
   1041 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1042 
   1043 	/* CHECKSIGS() is "inlined" here. */
   1044 	p->p_sigctx.ps_sigcheck = 1;
   1045 
   1046 	/*
   1047 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1048 	 * please!), check if anything waits on it. If yes, clear the
   1049 	 * pending signal from siglist set, save it to ps_sigwaited,
   1050 	 * clear sigwait list, and wakeup any sigwaiters.
   1051 	 * The signal won't be processed further here.
   1052 	 */
   1053 	if ((prop & SA_CANTMASK) == 0
   1054 	    && p->p_sigctx.ps_sigwaited < 0
   1055 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)
   1056 	    && p->p_stat != SSTOP) {
   1057 		if (action == SIG_CATCH)
   1058 			ksiginfo_put(p, ksi);
   1059 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1060 		p->p_sigctx.ps_sigwaited = signum;
   1061 		sigemptyset(&p->p_sigctx.ps_sigwait);
   1062 		if (dolock)
   1063 			wakeup_one(&p->p_sigctx.ps_sigwait);
   1064 		else
   1065 			sched_wakeup(&p->p_sigctx.ps_sigwait);
   1066 		return;
   1067 	}
   1068 
   1069 	/*
   1070 	 * Defer further processing for signals which are held,
   1071 	 * except that stopped processes must be continued by SIGCONT.
   1072 	 */
   1073 	if (action == SIG_HOLD &&
   1074 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1075 		ksiginfo_put(p, ksi);
   1076 		return;
   1077 	}
   1078 	/* XXXSMP: works, but icky */
   1079 	if (dolock)
   1080 		SCHED_LOCK(s);
   1081 
   1082 	/* XXXUPSXXX LWPs might go to sleep without passing signal handling */
   1083 	if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
   1084 	    && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
   1085 		/*
   1086 		 * At least one LWP is running or on a run queue.
   1087 		 * The signal will be noticed when one of them returns
   1088 		 * to userspace.
   1089 		 */
   1090 		signotify(p);
   1091 		/*
   1092 		 * The signal will be noticed very soon.
   1093 		 */
   1094 		goto out;
   1095 	} else {
   1096 		/* Process is sleeping or stopped */
   1097 		if (p->p_flag & P_SA) {
   1098 			struct lwp *l2 = p->p_sa->sa_vp;
   1099 			l = NULL;
   1100 			allsusp = 1;
   1101 
   1102 			if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
   1103 				l = l2;
   1104 			else if (l2->l_stat == LSSUSPENDED)
   1105 				suspended = l2;
   1106 			else if ((l2->l_stat != LSZOMB) &&
   1107 				 (l2->l_stat != LSDEAD))
   1108 				allsusp = 0;
   1109 		} else {
   1110 			/*
   1111 			 * Find out if any of the sleeps are interruptable,
   1112 			 * and if all the live LWPs remaining are suspended.
   1113 			 */
   1114 			allsusp = 1;
   1115 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1116 				if (l->l_stat == LSSLEEP &&
   1117 				    l->l_flag & L_SINTR)
   1118 					break;
   1119 				if (l->l_stat == LSSUSPENDED)
   1120 					suspended = l;
   1121 				else if ((l->l_stat != LSZOMB) &&
   1122 				         (l->l_stat != LSDEAD))
   1123 					allsusp = 0;
   1124 			}
   1125 		}
   1126 		if (p->p_stat == SACTIVE) {
   1127 
   1128 
   1129 			if (l != NULL && (p->p_flag & P_TRACED))
   1130 				goto run;
   1131 
   1132 			/*
   1133 			 * If SIGCONT is default (or ignored) and process is
   1134 			 * asleep, we are finished; the process should not
   1135 			 * be awakened.
   1136 			 */
   1137 			if ((prop & SA_CONT) && action == SIG_DFL) {
   1138 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1139 				goto done;
   1140 			}
   1141 
   1142 			/*
   1143 			 * When a sleeping process receives a stop
   1144 			 * signal, process immediately if possible.
   1145 			 */
   1146 			if ((prop & SA_STOP) && action == SIG_DFL) {
   1147 				/*
   1148 				 * If a child holding parent blocked,
   1149 				 * stopping could cause deadlock.
   1150 				 */
   1151 				if (p->p_flag & P_PPWAIT) {
   1152 					goto out;
   1153 				}
   1154 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1155 				p->p_xstat = signum;
   1156 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1157 					/*
   1158 					 * XXXSMP: recursive call; don't lock
   1159 					 * the second time around.
   1160 					 */
   1161 					child_psignal(p, 0);
   1162 				}
   1163 				proc_stop(p);	/* XXXSMP: recurse? */
   1164 				goto done;
   1165 			}
   1166 
   1167 			if (l == NULL) {
   1168 				/*
   1169 				 * Special case: SIGKILL of a process
   1170 				 * which is entirely composed of
   1171 				 * suspended LWPs should succeed. We
   1172 				 * make this happen by unsuspending one of
   1173 				 * them.
   1174 				 */
   1175 				if (allsusp && (signum == SIGKILL))
   1176 					lwp_continue(suspended);
   1177 				goto done;
   1178 			}
   1179 			/*
   1180 			 * All other (caught or default) signals
   1181 			 * cause the process to run.
   1182 			 */
   1183 			goto runfast;
   1184 			/*NOTREACHED*/
   1185 		} else if (p->p_stat == SSTOP) {
   1186 			/* Process is stopped */
   1187 			/*
   1188 			 * If traced process is already stopped,
   1189 			 * then no further action is necessary.
   1190 			 */
   1191 			if (p->p_flag & P_TRACED)
   1192 				goto done;
   1193 
   1194 			/*
   1195 			 * Kill signal always sets processes running,
   1196 			 * if possible.
   1197 			 */
   1198 			if (signum == SIGKILL) {
   1199 				l = proc_unstop(p);
   1200 				if (l)
   1201 					goto runfast;
   1202 				goto done;
   1203 			}
   1204 
   1205 			if (prop & SA_CONT) {
   1206 				/*
   1207 				 * If SIGCONT is default (or ignored),
   1208 				 * we continue the process but don't
   1209 				 * leave the signal in ps_siglist, as
   1210 				 * it has no further action.  If
   1211 				 * SIGCONT is held, we continue the
   1212 				 * process and leave the signal in
   1213 				 * ps_siglist.  If the process catches
   1214 				 * SIGCONT, let it handle the signal
   1215 				 * itself.  If it isn't waiting on an
   1216 				 * event, then it goes back to run
   1217 				 * state.  Otherwise, process goes
   1218 				 * back to sleep state.
   1219 				 */
   1220 				if (action == SIG_DFL)
   1221 					sigdelset(&p->p_sigctx.ps_siglist,
   1222 					signum);
   1223 				l = proc_unstop(p);
   1224 				if (l && (action == SIG_CATCH))
   1225 					goto runfast;
   1226 				goto out;
   1227 			}
   1228 
   1229 			if (prop & SA_STOP) {
   1230 				/*
   1231 				 * Already stopped, don't need to stop again.
   1232 				 * (If we did the shell could get confused.)
   1233 				 */
   1234 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1235 				goto done;
   1236 			}
   1237 
   1238 			/*
   1239 			 * If a lwp is sleeping interruptibly, then
   1240 			 * wake it up; it will run until the kernel
   1241 			 * boundary, where it will stop in issignal(),
   1242 			 * since p->p_stat is still SSTOP. When the
   1243 			 * process is continued, it will be made
   1244 			 * runnable and can look at the signal.
   1245 			 */
   1246 			if (l)
   1247 				goto run;
   1248 			goto out;
   1249 		} else {
   1250 			/* Else what? */
   1251 			panic("psignal: Invalid process state %d.",
   1252 				p->p_stat);
   1253 		}
   1254 	}
   1255 	/*NOTREACHED*/
   1256 
   1257  runfast:
   1258 	if (action == SIG_CATCH) {
   1259 		ksiginfo_put(p, ksi);
   1260 		action = SIG_HOLD;
   1261 	}
   1262 	/*
   1263 	 * Raise priority to at least PUSER.
   1264 	 */
   1265 	if (l->l_priority > PUSER)
   1266 		l->l_priority = PUSER;
   1267  run:
   1268 	if (action == SIG_CATCH) {
   1269 		ksiginfo_put(p, ksi);
   1270 		action = SIG_HOLD;
   1271 	}
   1272 
   1273 	setrunnable(l);		/* XXXSMP: recurse? */
   1274  out:
   1275 	if (action == SIG_CATCH)
   1276 		ksiginfo_put(p, ksi);
   1277  done:
   1278 	/* XXXSMP: works, but icky */
   1279 	if (dolock)
   1280 		SCHED_UNLOCK(s);
   1281 }
   1282 
   1283 void
   1284 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1285 {
   1286 	struct proc *p = l->l_proc;
   1287 	struct lwp *le, *li;
   1288 	siginfo_t *si;
   1289 	int f;
   1290 
   1291 	if (p->p_flag & P_SA) {
   1292 
   1293 		/* XXXUPSXXX What if not on sa_vp ? */
   1294 
   1295 		f = l->l_flag & L_SA;
   1296 		l->l_flag &= ~L_SA;
   1297 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1298 		si->_info = *ksi;
   1299 		le = li = NULL;
   1300 		if (ksi->ksi_trap)
   1301 			le = l;
   1302 		else
   1303 			li = l;
   1304 
   1305 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1306 			    sizeof(siginfo_t), si);
   1307 		l->l_flag |= f;
   1308 		return;
   1309 	}
   1310 
   1311 #ifdef __HAVE_SIGINFO
   1312 	(*p->p_emul->e_sendsig)(ksi, mask);
   1313 #else
   1314 	(*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, ksi->ksi_trap);
   1315 #endif
   1316 }
   1317 
   1318 static __inline int firstsig(const sigset_t *);
   1319 
   1320 static __inline int
   1321 firstsig(const sigset_t *ss)
   1322 {
   1323 	int sig;
   1324 
   1325 	sig = ffs(ss->__bits[0]);
   1326 	if (sig != 0)
   1327 		return (sig);
   1328 #if NSIG > 33
   1329 	sig = ffs(ss->__bits[1]);
   1330 	if (sig != 0)
   1331 		return (sig + 32);
   1332 #endif
   1333 #if NSIG > 65
   1334 	sig = ffs(ss->__bits[2]);
   1335 	if (sig != 0)
   1336 		return (sig + 64);
   1337 #endif
   1338 #if NSIG > 97
   1339 	sig = ffs(ss->__bits[3]);
   1340 	if (sig != 0)
   1341 		return (sig + 96);
   1342 #endif
   1343 	return (0);
   1344 }
   1345 
   1346 /*
   1347  * If the current process has received a signal (should be caught or cause
   1348  * termination, should interrupt current syscall), return the signal number.
   1349  * Stop signals with default action are processed immediately, then cleared;
   1350  * they aren't returned.  This is checked after each entry to the system for
   1351  * a syscall or trap (though this can usually be done without calling issignal
   1352  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1353  * sequence is
   1354  *
   1355  *	while (signum = CURSIG(curlwp))
   1356  *		postsig(signum);
   1357  */
   1358 int
   1359 issignal(struct lwp *l)
   1360 {
   1361 	struct proc	*p = l->l_proc;
   1362 	int		s = 0, signum, prop;
   1363 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1364 	sigset_t	ss;
   1365 
   1366 	if (l->l_flag & L_SA) {
   1367 		struct sadata *sa = p->p_sa;
   1368 
   1369 		/* Bail out if we do not own the virtual processor */
   1370 		if (sa->sa_vp != l)
   1371 			return 0;
   1372 	}
   1373 
   1374 	if (p->p_stat == SSTOP) {
   1375 		/*
   1376 		 * The process is stopped/stopping. Stop ourselves now that
   1377 		 * we're on the kernel/userspace boundary.
   1378 		 */
   1379 		if (dolock)
   1380 			SCHED_LOCK(s);
   1381 		l->l_stat = LSSTOP;
   1382 		p->p_nrlwps--;
   1383 		if (p->p_flag & P_TRACED)
   1384 			goto sigtraceswitch;
   1385 		else
   1386 			goto sigswitch;
   1387 	}
   1388 	for (;;) {
   1389 		sigpending1(p, &ss);
   1390 		if (p->p_flag & P_PPWAIT)
   1391 			sigminusset(&stopsigmask, &ss);
   1392 		signum = firstsig(&ss);
   1393 		if (signum == 0) {		 	/* no signal to send */
   1394 			p->p_sigctx.ps_sigcheck = 0;
   1395 			if (locked && dolock)
   1396 				SCHED_LOCK(s);
   1397 			return (0);
   1398 		}
   1399 							/* take the signal! */
   1400 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1401 
   1402 		/*
   1403 		 * We should see pending but ignored signals
   1404 		 * only if P_TRACED was on when they were posted.
   1405 		 */
   1406 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1407 		    (p->p_flag & P_TRACED) == 0)
   1408 			continue;
   1409 
   1410 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1411 			/*
   1412 			 * If traced, always stop, and stay
   1413 			 * stopped until released by the debugger.
   1414 			 */
   1415 			p->p_xstat = signum;
   1416 			if ((p->p_flag & P_FSTRACE) == 0)
   1417 				child_psignal(p, dolock);
   1418 			if (dolock)
   1419 				SCHED_LOCK(s);
   1420 			proc_stop(p);
   1421 		sigtraceswitch:
   1422 			mi_switch(l, NULL);
   1423 			SCHED_ASSERT_UNLOCKED();
   1424 			if (dolock)
   1425 				splx(s);
   1426 			else
   1427 				dolock = 1;
   1428 
   1429 			/*
   1430 			 * If we are no longer being traced, or the parent
   1431 			 * didn't give us a signal, look for more signals.
   1432 			 */
   1433 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1434 				continue;
   1435 
   1436 			/*
   1437 			 * If the new signal is being masked, look for other
   1438 			 * signals.
   1439 			 */
   1440 			signum = p->p_xstat;
   1441 			p->p_xstat = 0;
   1442 			/*
   1443 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1444 			 * in setrunnable().
   1445 			 */
   1446 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1447 				continue;
   1448 							/* take the signal! */
   1449 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1450 		}
   1451 
   1452 		prop = sigprop[signum];
   1453 
   1454 		/*
   1455 		 * Decide whether the signal should be returned.
   1456 		 * Return the signal's number, or fall through
   1457 		 * to clear it from the pending mask.
   1458 		 */
   1459 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1460 
   1461 		case (long)SIG_DFL:
   1462 			/*
   1463 			 * Don't take default actions on system processes.
   1464 			 */
   1465 			if (p->p_pid <= 1) {
   1466 #ifdef DIAGNOSTIC
   1467 				/*
   1468 				 * Are you sure you want to ignore SIGSEGV
   1469 				 * in init? XXX
   1470 				 */
   1471 				printf("Process (pid %d) got signal %d\n",
   1472 				    p->p_pid, signum);
   1473 #endif
   1474 				break;		/* == ignore */
   1475 			}
   1476 			/*
   1477 			 * If there is a pending stop signal to process
   1478 			 * with default action, stop here,
   1479 			 * then clear the signal.  However,
   1480 			 * if process is member of an orphaned
   1481 			 * process group, ignore tty stop signals.
   1482 			 */
   1483 			if (prop & SA_STOP) {
   1484 				if (p->p_flag & P_TRACED ||
   1485 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1486 				    prop & SA_TTYSTOP))
   1487 					break;	/* == ignore */
   1488 				p->p_xstat = signum;
   1489 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1490 					child_psignal(p, dolock);
   1491 				if (dolock)
   1492 					SCHED_LOCK(s);
   1493 				proc_stop(p);
   1494 			sigswitch:
   1495 				mi_switch(l, NULL);
   1496 				SCHED_ASSERT_UNLOCKED();
   1497 				if (dolock)
   1498 					splx(s);
   1499 				else
   1500 					dolock = 1;
   1501 				break;
   1502 			} else if (prop & SA_IGNORE) {
   1503 				/*
   1504 				 * Except for SIGCONT, shouldn't get here.
   1505 				 * Default action is to ignore; drop it.
   1506 				 */
   1507 				break;		/* == ignore */
   1508 			} else
   1509 				goto keep;
   1510 			/*NOTREACHED*/
   1511 
   1512 		case (long)SIG_IGN:
   1513 			/*
   1514 			 * Masking above should prevent us ever trying
   1515 			 * to take action on an ignored signal other
   1516 			 * than SIGCONT, unless process is traced.
   1517 			 */
   1518 #ifdef DEBUG_ISSIGNAL
   1519 			if ((prop & SA_CONT) == 0 &&
   1520 			    (p->p_flag & P_TRACED) == 0)
   1521 				printf("issignal\n");
   1522 #endif
   1523 			break;		/* == ignore */
   1524 
   1525 		default:
   1526 			/*
   1527 			 * This signal has an action, let
   1528 			 * postsig() process it.
   1529 			 */
   1530 			goto keep;
   1531 		}
   1532 	}
   1533 	/* NOTREACHED */
   1534 
   1535  keep:
   1536 						/* leave the signal for later */
   1537 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1538 	CHECKSIGS(p);
   1539 	if (locked && dolock)
   1540 		SCHED_LOCK(s);
   1541 	return (signum);
   1542 }
   1543 
   1544 /*
   1545  * Put the argument process into the stopped state and notify the parent
   1546  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1547  * on the run queue.
   1548  */
   1549 static void
   1550 proc_stop(struct proc *p)
   1551 {
   1552 	struct lwp *l;
   1553 
   1554 	SCHED_ASSERT_LOCKED();
   1555 
   1556 	/* XXX lock process LWP state */
   1557 	p->p_stat = SSTOP;
   1558 	p->p_flag &= ~P_WAITED;
   1559 
   1560 	/*
   1561 	 * Put as many LWP's as possible in stopped state.
   1562 	 * Sleeping ones will notice the stopped state as they try to
   1563 	 * return to userspace.
   1564 	 */
   1565 
   1566 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1567 		if ((l->l_stat == LSONPROC) && (l == curlwp)) {
   1568 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1569 			 * is curlwp and hence is about to be mi_switched
   1570 			 * away; the only callers of proc_stop() are:
   1571 			 * - psignal
   1572 			 * - issignal()
   1573 			 * For the former, proc_stop() is only called when
   1574 			 * no processes are running, so we don't worry.
   1575 			 * For the latter, proc_stop() is called right
   1576 			 * before mi_switch().
   1577 			 */
   1578 			l->l_stat = LSSTOP;
   1579 			p->p_nrlwps--;
   1580 		}
   1581 		 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
   1582 			setrunnable(l);
   1583 		}
   1584 
   1585 /* !!!UPS!!! FIX ME */
   1586 #if 0
   1587 else if (l->l_stat == LSRUN) {
   1588 			/* Remove LWP from the run queue */
   1589 			remrunqueue(l);
   1590 			l->l_stat = LSSTOP;
   1591 			p->p_nrlwps--;
   1592 		} else if ((l->l_stat == LSSLEEP) ||
   1593 		    (l->l_stat == LSSUSPENDED) ||
   1594 		    (l->l_stat == LSZOMB) ||
   1595 		    (l->l_stat == LSDEAD)) {
   1596 			/*
   1597 			 * Don't do anything; let sleeping LWPs
   1598 			 * discover the stopped state of the process
   1599 			 * on their way out of the kernel; otherwise,
   1600 			 * things like NFS threads that sleep with
   1601 			 * locks will block the rest of the system
   1602 			 * from getting any work done.
   1603 			 *
   1604 			 * Suspended/dead/zombie LWPs aren't going
   1605 			 * anywhere, so we don't need to touch them.
   1606 			 */
   1607 		}
   1608 #ifdef DIAGNOSTIC
   1609 		else {
   1610 			panic("proc_stop: process %d lwp %d "
   1611 			      "in unstoppable state %d.\n",
   1612 			    p->p_pid, l->l_lid, l->l_stat);
   1613 		}
   1614 #endif
   1615 #endif
   1616 	}
   1617 	/* XXX unlock process LWP state */
   1618 
   1619 	sched_wakeup((caddr_t)p->p_pptr);
   1620 }
   1621 
   1622 /*
   1623  * Given a process in state SSTOP, set the state back to SACTIVE and
   1624  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1625  *
   1626  * If no LWPs ended up runnable (and therefore able to take a signal),
   1627  * return a LWP that is sleeping interruptably. The caller can wake
   1628  * that LWP up to take a signal.
   1629  */
   1630 struct lwp *
   1631 proc_unstop(struct proc *p)
   1632 {
   1633 	struct lwp *l, *lr = NULL;
   1634 	int cantake = 0;
   1635 
   1636 	SCHED_ASSERT_LOCKED();
   1637 
   1638 	/*
   1639 	 * Our caller wants to be informed if there are only sleeping
   1640 	 * and interruptable LWPs left after we have run so that it
   1641 	 * can invoke setrunnable() if required - return one of the
   1642 	 * interruptable LWPs if this is the case.
   1643 	 */
   1644 
   1645 	p->p_stat = SACTIVE;
   1646 	if (p->p_flag & P_SA) {
   1647 		/*
   1648 		 * Preferentially select the idle LWP as the interruptable
   1649 		 * LWP to return if it exists.
   1650 		 */
   1651 		lr = p->p_sa->sa_idle;
   1652 		if (lr != NULL)
   1653 			cantake = 1;
   1654 	}
   1655 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1656 		if (l->l_stat == LSRUN) {
   1657 			lr = NULL;
   1658 			cantake = 1;
   1659 		}
   1660 		if (l->l_stat != LSSTOP)
   1661 			continue;
   1662 
   1663 		if (l->l_wchan != NULL) {
   1664 			l->l_stat = LSSLEEP;
   1665 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1666 				lr = l;
   1667 				cantake = 1;
   1668 			}
   1669 		} else {
   1670 			setrunnable(l);
   1671 			lr = NULL;
   1672 			cantake = 1;
   1673 		}
   1674 	}
   1675 
   1676 	return lr;
   1677 }
   1678 
   1679 /*
   1680  * Take the action for the specified signal
   1681  * from the current set of pending signals.
   1682  */
   1683 void
   1684 postsig(int signum)
   1685 {
   1686 	struct lwp *l;
   1687 	struct proc	*p;
   1688 	struct sigacts	*ps;
   1689 	sig_t		action;
   1690 	sigset_t	*returnmask;
   1691 
   1692 	l = curlwp;
   1693 	p = l->l_proc;
   1694 	ps = p->p_sigacts;
   1695 #ifdef DIAGNOSTIC
   1696 	if (signum == 0)
   1697 		panic("postsig");
   1698 #endif
   1699 
   1700 	KERNEL_PROC_LOCK(l);
   1701 
   1702 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1703 	action = SIGACTION_PS(ps, signum).sa_handler;
   1704 	if (action == SIG_DFL) {
   1705 #ifdef KTRACE
   1706 		if (KTRPOINT(p, KTR_PSIG))
   1707 			ktrpsig(p, signum, action,
   1708 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1709 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1710 			    NULL);
   1711 #endif
   1712 		/*
   1713 		 * Default action, where the default is to kill
   1714 		 * the process.  (Other cases were ignored above.)
   1715 		 */
   1716 		sigexit(l, signum);
   1717 		/* NOTREACHED */
   1718 	} else {
   1719 		ksiginfo_t *ksi;
   1720 		/*
   1721 		 * If we get here, the signal must be caught.
   1722 		 */
   1723 #ifdef DIAGNOSTIC
   1724 		if (action == SIG_IGN ||
   1725 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1726 			panic("postsig action");
   1727 #endif
   1728 		/*
   1729 		 * Set the new mask value and also defer further
   1730 		 * occurrences of this signal.
   1731 		 *
   1732 		 * Special case: user has done a sigpause.  Here the
   1733 		 * current mask is not of interest, but rather the
   1734 		 * mask from before the sigpause is what we want
   1735 		 * restored after the signal processing is completed.
   1736 		 */
   1737 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1738 			returnmask = &p->p_sigctx.ps_oldmask;
   1739 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1740 		} else
   1741 			returnmask = &p->p_sigctx.ps_sigmask;
   1742 		p->p_stats->p_ru.ru_nsignals++;
   1743 		ksi = ksiginfo_get(p, signum);
   1744 #ifdef KTRACE
   1745 		if (KTRPOINT(p, KTR_PSIG))
   1746 			ktrpsig(p, signum, action,
   1747 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1748 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1749 			    ksi);
   1750 #endif
   1751 		if (ksi == NULL) {
   1752 			ksiginfo_t ksi1;
   1753 			/*
   1754 			 * we did not save any siginfo for this, either
   1755 			 * because the signal was not caught, or because the
   1756 			 * user did not request SA_SIGINFO
   1757 			 */
   1758 			(void)memset(&ksi1, 0, sizeof(ksi1));
   1759 			ksi1.ksi_signo = signum;
   1760 			kpsendsig(l, &ksi1, returnmask);
   1761 		} else {
   1762 			kpsendsig(l, ksi, returnmask);
   1763 			pool_put(&ksiginfo_pool, ksi);
   1764 		}
   1765 		p->p_sigctx.ps_lwp = 0;
   1766 		p->p_sigctx.ps_code = 0;
   1767 		p->p_sigctx.ps_signo = 0;
   1768 		(void) splsched();	/* XXXSMP */
   1769 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1770 		    &p->p_sigctx.ps_sigmask);
   1771 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1772 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1773 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1774 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1775 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1776 		}
   1777 		(void) spl0();		/* XXXSMP */
   1778 	}
   1779 
   1780 	KERNEL_PROC_UNLOCK(l);
   1781 }
   1782 
   1783 /*
   1784  * Kill the current process for stated reason.
   1785  */
   1786 void
   1787 killproc(struct proc *p, const char *why)
   1788 {
   1789 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1790 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1791 	psignal(p, SIGKILL);
   1792 }
   1793 
   1794 /*
   1795  * Force the current process to exit with the specified signal, dumping core
   1796  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1797  * allowing unrecoverable failures to terminate the process without changing
   1798  * signal state.  Mark the accounting record with the signal termination.
   1799  * If dumping core, save the signal number for the debugger.  Calls exit and
   1800  * does not return.
   1801  */
   1802 
   1803 #if defined(DEBUG)
   1804 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1805 #else
   1806 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1807 #endif
   1808 
   1809 static	const char logcoredump[] =
   1810 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1811 static	const char lognocoredump[] =
   1812 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1813 
   1814 /* Wrapper function for use in p_userret */
   1815 static void
   1816 lwp_coredump_hook(struct lwp *l, void *arg)
   1817 {
   1818 	int s;
   1819 
   1820 	/*
   1821 	 * Suspend ourselves, so that the kernel stack and therefore
   1822 	 * the userland registers saved in the trapframe are around
   1823 	 * for coredump() to write them out.
   1824 	 */
   1825 	KERNEL_PROC_LOCK(l);
   1826 	l->l_flag &= ~L_DETACHED;
   1827 	SCHED_LOCK(s);
   1828 	l->l_stat = LSSUSPENDED;
   1829 	l->l_proc->p_nrlwps--;
   1830 	/* XXX NJWLWP check if this makes sense here: */
   1831 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1832 	mi_switch(l, NULL);
   1833 	SCHED_ASSERT_UNLOCKED();
   1834 	splx(s);
   1835 
   1836 	lwp_exit(l);
   1837 }
   1838 
   1839 void
   1840 sigexit(struct lwp *l, int signum)
   1841 {
   1842 	struct proc	*p;
   1843 #if 0
   1844 	struct lwp	*l2;
   1845 #endif
   1846 	int		error, exitsig;
   1847 
   1848 	p = l->l_proc;
   1849 
   1850 	/*
   1851 	 * Don't permit coredump() or exit1() multiple times
   1852 	 * in the same process.
   1853 	 */
   1854 	if (p->p_flag & P_WEXIT) {
   1855 		KERNEL_PROC_UNLOCK(l);
   1856 		(*p->p_userret)(l, p->p_userret_arg);
   1857 	}
   1858 	p->p_flag |= P_WEXIT;
   1859 	/* We don't want to switch away from exiting. */
   1860 	/* XXX multiprocessor: stop LWPs on other processors. */
   1861 #if 0
   1862 	if (p->p_flag & P_SA) {
   1863 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1864 		    l2->l_flag &= ~L_SA;
   1865 		p->p_flag &= ~P_SA;
   1866 	}
   1867 #endif
   1868 
   1869 	/* Make other LWPs stick around long enough to be dumped */
   1870 	p->p_userret = lwp_coredump_hook;
   1871 	p->p_userret_arg = NULL;
   1872 
   1873 	exitsig = signum;
   1874 	p->p_acflag |= AXSIG;
   1875 	if (sigprop[signum] & SA_CORE) {
   1876 		p->p_sigctx.ps_signo = signum;
   1877 		if ((error = coredump(l)) == 0)
   1878 			exitsig |= WCOREFLAG;
   1879 
   1880 		if (kern_logsigexit) {
   1881 			/* XXX What if we ever have really large UIDs? */
   1882 			int uid = p->p_cred && p->p_ucred ?
   1883 				(int) p->p_ucred->cr_uid : -1;
   1884 
   1885 			if (error)
   1886 				log(LOG_INFO, lognocoredump, p->p_pid,
   1887 				    p->p_comm, uid, signum, error);
   1888 			else
   1889 				log(LOG_INFO, logcoredump, p->p_pid,
   1890 				    p->p_comm, uid, signum);
   1891 		}
   1892 
   1893 	}
   1894 
   1895 	exit1(l, W_EXITCODE(0, exitsig));
   1896 	/* NOTREACHED */
   1897 }
   1898 
   1899 /*
   1900  * Dump core, into a file named "progname.core" or "core" (depending on the
   1901  * value of shortcorename), unless the process was setuid/setgid.
   1902  */
   1903 int
   1904 coredump(struct lwp *l)
   1905 {
   1906 	struct vnode		*vp;
   1907 	struct proc		*p;
   1908 	struct vmspace		*vm;
   1909 	struct ucred		*cred;
   1910 	struct nameidata	nd;
   1911 	struct vattr		vattr;
   1912 	int			error, error1;
   1913 	char			name[MAXPATHLEN];
   1914 
   1915 	p = l->l_proc;
   1916 	vm = p->p_vmspace;
   1917 	cred = p->p_cred->pc_ucred;
   1918 
   1919 	/*
   1920 	 * Make sure the process has not set-id, to prevent data leaks.
   1921 	 */
   1922 	if (p->p_flag & P_SUGID)
   1923 		return (EPERM);
   1924 
   1925 	/*
   1926 	 * Refuse to core if the data + stack + user size is larger than
   1927 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   1928 	 * data.
   1929 	 */
   1930 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   1931 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   1932 		return (EFBIG);		/* better error code? */
   1933 
   1934 	/*
   1935 	 * The core dump will go in the current working directory.  Make
   1936 	 * sure that the directory is still there and that the mount flags
   1937 	 * allow us to write core dumps there.
   1938 	 */
   1939 	vp = p->p_cwdi->cwdi_cdir;
   1940 	if (vp->v_mount == NULL ||
   1941 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   1942 		return (EPERM);
   1943 
   1944 	error = build_corename(p, name);
   1945 	if (error)
   1946 		return error;
   1947 
   1948 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   1949 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   1950 	if (error)
   1951 		return (error);
   1952 	vp = nd.ni_vp;
   1953 
   1954 	/* Don't dump to non-regular files or files with links. */
   1955 	if (vp->v_type != VREG ||
   1956 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   1957 		error = EINVAL;
   1958 		goto out;
   1959 	}
   1960 	VATTR_NULL(&vattr);
   1961 	vattr.va_size = 0;
   1962 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   1963 	VOP_SETATTR(vp, &vattr, cred, p);
   1964 	p->p_acflag |= ACORE;
   1965 
   1966 	/* Now dump the actual core file. */
   1967 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   1968  out:
   1969 	VOP_UNLOCK(vp, 0);
   1970 	error1 = vn_close(vp, FWRITE, cred, p);
   1971 	if (error == 0)
   1972 		error = error1;
   1973 	return (error);
   1974 }
   1975 
   1976 /*
   1977  * Nonexistent system call-- signal process (may want to handle it).
   1978  * Flag error in case process won't see signal immediately (blocked or ignored).
   1979  */
   1980 /* ARGSUSED */
   1981 int
   1982 sys_nosys(struct lwp *l, void *v, register_t *retval)
   1983 {
   1984 	struct proc 	*p;
   1985 
   1986 	p = l->l_proc;
   1987 	psignal(p, SIGSYS);
   1988 	return (ENOSYS);
   1989 }
   1990 
   1991 static int
   1992 build_corename(struct proc *p, char dst[MAXPATHLEN])
   1993 {
   1994 	const char	*s;
   1995 	char		*d, *end;
   1996 	int		i;
   1997 
   1998 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   1999 	    *s != '\0'; s++) {
   2000 		if (*s == '%') {
   2001 			switch (*(s + 1)) {
   2002 			case 'n':
   2003 				i = snprintf(d, end - d, "%s", p->p_comm);
   2004 				break;
   2005 			case 'p':
   2006 				i = snprintf(d, end - d, "%d", p->p_pid);
   2007 				break;
   2008 			case 'u':
   2009 				i = snprintf(d, end - d, "%.*s",
   2010 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2011 				    p->p_pgrp->pg_session->s_login);
   2012 				break;
   2013 			case 't':
   2014 				i = snprintf(d, end - d, "%ld",
   2015 				    p->p_stats->p_start.tv_sec);
   2016 				break;
   2017 			default:
   2018 				goto copy;
   2019 			}
   2020 			d += i;
   2021 			s++;
   2022 		} else {
   2023  copy:			*d = *s;
   2024 			d++;
   2025 		}
   2026 		if (d >= end)
   2027 			return (ENAMETOOLONG);
   2028 	}
   2029 	*d = '\0';
   2030 	return 0;
   2031 }
   2032 
   2033 void
   2034 getucontext(struct lwp *l, ucontext_t *ucp)
   2035 {
   2036 	struct proc	*p;
   2037 
   2038 	p = l->l_proc;
   2039 
   2040 	ucp->uc_flags = 0;
   2041 	ucp->uc_link = l->l_ctxlink;
   2042 
   2043 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2044 	ucp->uc_flags |= _UC_SIGMASK;
   2045 
   2046 	/*
   2047 	 * The (unsupplied) definition of the `current execution stack'
   2048 	 * in the System V Interface Definition appears to allow returning
   2049 	 * the main context stack.
   2050 	 */
   2051 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2052 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2053 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2054 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2055 	} else {
   2056 		/* Simply copy alternate signal execution stack. */
   2057 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2058 	}
   2059 	ucp->uc_flags |= _UC_STACK;
   2060 
   2061 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2062 }
   2063 
   2064 /* ARGSUSED */
   2065 int
   2066 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2067 {
   2068 	struct sys_getcontext_args /* {
   2069 		syscallarg(struct __ucontext *) ucp;
   2070 	} */ *uap = v;
   2071 	ucontext_t uc;
   2072 
   2073 	getucontext(l, &uc);
   2074 
   2075 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2076 }
   2077 
   2078 int
   2079 setucontext(struct lwp *l, const ucontext_t *ucp)
   2080 {
   2081 	struct proc	*p;
   2082 	int		error;
   2083 
   2084 	p = l->l_proc;
   2085 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2086 		return (error);
   2087 	l->l_ctxlink = ucp->uc_link;
   2088 	/*
   2089 	 * We might want to take care of the stack portion here but currently
   2090 	 * don't; see the comment in getucontext().
   2091 	 */
   2092 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2093 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2094 
   2095 	return 0;
   2096 }
   2097 
   2098 /* ARGSUSED */
   2099 int
   2100 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2101 {
   2102 	struct sys_setcontext_args /* {
   2103 		syscallarg(const ucontext_t *) ucp;
   2104 	} */ *uap = v;
   2105 	ucontext_t uc;
   2106 	int error;
   2107 
   2108 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2109 		exit1(l, W_EXITCODE(0, 0));
   2110 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2111 	    (error = setucontext(l, &uc)) != 0)
   2112 		return (error);
   2113 
   2114 	return (EJUSTRETURN);
   2115 }
   2116 
   2117 /*
   2118  * sigtimedwait(2) system call, used also for implementation
   2119  * of sigwaitinfo() and sigwait().
   2120  *
   2121  * This only handles single LWP in signal wait. libpthread provides
   2122  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2123  *
   2124  * XXX no support for queued signals, si_code is always SI_USER.
   2125  */
   2126 int
   2127 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2128 {
   2129 	struct sys___sigtimedwait_args /* {
   2130 		syscallarg(const sigset_t *) set;
   2131 		syscallarg(siginfo_t *) info;
   2132 		syscallarg(struct timespec *) timeout;
   2133 	} */ *uap = v;
   2134 	sigset_t waitset, twaitset;
   2135 	struct proc *p = l->l_proc;
   2136 	int error, signum, s;
   2137 	int timo = 0;
   2138 	struct timeval tvstart;
   2139 	struct timespec ts;
   2140 
   2141 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
   2142 		return (error);
   2143 
   2144 	/*
   2145 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2146 	 * ignore SA_CANTMASK signals in waitset, we do this
   2147 	 * only for the below siglist check.
   2148 	 */
   2149 	sigminusset(&sigcantmask, &waitset);
   2150 
   2151 	/*
   2152 	 * First scan siglist and check if there is signal from
   2153 	 * our waitset already pending.
   2154 	 */
   2155 	twaitset = waitset;
   2156 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2157 	if ((signum = firstsig(&twaitset))) {
   2158 		/* found pending signal */
   2159 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2160 		goto sig;
   2161 	}
   2162 
   2163 	/*
   2164 	 * Calculate timeout, if it was specified.
   2165 	 */
   2166 	if (SCARG(uap, timeout)) {
   2167 		uint64_t ms;
   2168 
   2169 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   2170 			return (error);
   2171 
   2172 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2173 		timo = mstohz(ms);
   2174 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2175 			timo = 1;
   2176 		if (timo <= 0)
   2177 			return (EAGAIN);
   2178 
   2179 		/*
   2180 		 * Remember current mono_time, it would be used in
   2181 		 * ECANCELED/ERESTART case.
   2182 		 */
   2183 		s = splclock();
   2184 		tvstart = mono_time;
   2185 		splx(s);
   2186 	}
   2187 
   2188 	/*
   2189 	 * Setup ps_sigwait list.
   2190 	 */
   2191 	p->p_sigctx.ps_sigwaited = -1;
   2192 	p->p_sigctx.ps_sigwait = waitset;
   2193 
   2194 	/*
   2195 	 * Wait for signal to arrive. We can either be woken up or
   2196 	 * time out.
   2197 	 */
   2198 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2199 
   2200 	/*
   2201 	 * Check if a signal from our wait set has arrived, or if it
   2202 	 * was mere wakeup.
   2203 	 */
   2204 	if (!error) {
   2205 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
   2206 			/* wakeup via _lwp_wakeup() */
   2207 			error = ECANCELED;
   2208 		}
   2209 	}
   2210 
   2211 	/*
   2212 	 * On error, clear sigwait indication. psignal1() sets it
   2213 	 * in !error case.
   2214 	 */
   2215 	if (error) {
   2216 		p->p_sigctx.ps_sigwaited = 0;
   2217 
   2218 		/*
   2219 		 * If the sleep was interrupted (either by signal or wakeup),
   2220 		 * update the timeout and copyout new value back.
   2221 		 * It would be used when the syscall would be restarted
   2222 		 * or called again.
   2223 		 */
   2224 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2225 			struct timeval tvnow, tvtimo;
   2226 			int err;
   2227 
   2228 			s = splclock();
   2229 			tvnow = mono_time;
   2230 			splx(s);
   2231 
   2232 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2233 
   2234 			/* compute how much time has passed since start */
   2235 			timersub(&tvnow, &tvstart, &tvnow);
   2236 			/* substract passed time from timeout */
   2237 			timersub(&tvtimo, &tvnow, &tvtimo);
   2238 
   2239 			if (tvtimo.tv_sec < 0)
   2240 				return (EAGAIN);
   2241 
   2242 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2243 
   2244 			/* copy updated timeout to userland */
   2245 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
   2246 				return (err);
   2247 		}
   2248 
   2249 		return (error);
   2250 	}
   2251 
   2252 	/*
   2253 	 * If a signal from the wait set arrived, copy it to userland.
   2254 	 * XXX no queued signals for now
   2255 	 */
   2256 	if (signum > 0) {
   2257 		siginfo_t si;
   2258 
   2259  sig:
   2260 		memset(&si, 0, sizeof(si));
   2261 		si.si_signo = signum;
   2262 		si.si_code = SI_USER;
   2263 
   2264 		error = copyout(&si, SCARG(uap, info), sizeof(si));
   2265 		if (error)
   2266 			return (error);
   2267 	}
   2268 
   2269 	return (0);
   2270 }
   2271 
   2272 /*
   2273  * Returns true if signal is ignored or masked for passed process.
   2274  */
   2275 int
   2276 sigismasked(struct proc *p, int sig)
   2277 {
   2278 
   2279 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2280 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2281 }
   2282 
   2283 static int
   2284 filt_sigattach(struct knote *kn)
   2285 {
   2286 	struct proc *p = curproc;
   2287 
   2288 	kn->kn_ptr.p_proc = p;
   2289 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2290 
   2291 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2292 
   2293 	return (0);
   2294 }
   2295 
   2296 static void
   2297 filt_sigdetach(struct knote *kn)
   2298 {
   2299 	struct proc *p = kn->kn_ptr.p_proc;
   2300 
   2301 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2302 }
   2303 
   2304 /*
   2305  * signal knotes are shared with proc knotes, so we apply a mask to
   2306  * the hint in order to differentiate them from process hints.  This
   2307  * could be avoided by using a signal-specific knote list, but probably
   2308  * isn't worth the trouble.
   2309  */
   2310 static int
   2311 filt_signal(struct knote *kn, long hint)
   2312 {
   2313 
   2314 	if (hint & NOTE_SIGNAL) {
   2315 		hint &= ~NOTE_SIGNAL;
   2316 
   2317 		if (kn->kn_id == hint)
   2318 			kn->kn_data++;
   2319 	}
   2320 	return (kn->kn_data != 0);
   2321 }
   2322 
   2323 const struct filterops sig_filtops = {
   2324 	0, filt_sigattach, filt_sigdetach, filt_signal
   2325 };
   2326