kern_sig.c revision 1.161 1 /* $NetBSD: kern_sig.c,v 1.161 2003/09/26 22:14:19 matt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.161 2003/09/26 22:14:19 matt Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm_extern.h>
82
83 static void child_psignal(struct proc *, int);
84 static void proc_stop(struct proc *);
85 static int build_corename(struct proc *, char [MAXPATHLEN]);
86 static void ksiginfo_exithook(struct proc *, void *);
87 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94 struct pool siginfo_pool; /* memory pool for siginfo structures */
95 struct pool ksiginfo_pool; /* memory pool for ksiginfo structures */
96
97 /*
98 * Can process p, with pcred pc, send the signal signum to process q?
99 */
100 #define CANSIGNAL(p, pc, q, signum) \
101 ((pc)->pc_ucred->cr_uid == 0 || \
102 (pc)->p_ruid == (q)->p_cred->p_ruid || \
103 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
104 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
105 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
106 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
107
108 /*
109 * Remove and return the first ksiginfo element that matches our requested
110 * signal, or return NULL if one not found.
111 */
112 static ksiginfo_t *
113 ksiginfo_get(struct proc *p, int signo)
114 {
115 ksiginfo_t *ksi;
116
117 simple_lock(&p->p_sigctx.ps_silock);
118 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
119 if (ksi->ksi_signo == signo) {
120 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
121 simple_unlock(&p->p_sigctx.ps_silock);
122 return ksi;
123 }
124 }
125 simple_unlock(&p->p_sigctx.ps_silock);
126 return NULL;
127 }
128
129 /*
130 * Append a new ksiginfo element to the list of pending ksiginfo's, if
131 * we need to (SA_SIGINFO was requested). We replace non RT signals if
132 * they already existed in the queue and we add new entries for RT signals,
133 * or for non RT signals with non-existing entries.
134 */
135 static void
136 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
137 {
138 ksiginfo_t *kp;
139 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
140
141 if ((sa->sa_flags & SA_SIGINFO) == 0)
142 return;
143
144 simple_lock(&p->p_sigctx.ps_silock);
145 #ifdef notyet /* XXX: QUEUING */
146 if (ksi->ksi_signo < SIGRTMIN)
147 #endif
148 {
149 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
150 if (kp->ksi_signo == ksi->ksi_signo) {
151 CIRCLEQ_ENTRY(ksiginfo) sv;
152 (void)memcpy(&sv, &kp->ksi_list, sizeof(sv));
153 *kp = *ksi;
154 (void)memcpy(&kp->ksi_list, &sv, sizeof(sv));
155 simple_unlock(&p->p_sigctx.ps_silock);
156 return;
157 }
158 }
159 }
160 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
161 if (kp == NULL) {
162 #ifdef DIAGNOSTIC
163 printf("Out of memory allocating siginfo for pid %d\n",
164 p->p_pid);
165 #endif
166 return;
167 }
168 *kp = *ksi;
169 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
170 simple_unlock(&p->p_sigctx.ps_silock);
171 }
172
173 /*
174 * free all pending ksiginfo on exit
175 */
176 static void
177 ksiginfo_exithook(struct proc *p, void *v)
178 {
179
180 simple_lock(&p->p_sigctx.ps_silock);
181 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
182 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
183 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
184 pool_put(&ksiginfo_pool, ksi);
185 }
186 simple_unlock(&p->p_sigctx.ps_silock);
187 }
188
189 /*
190 * Initialize signal-related data structures.
191 */
192 void
193 signal_init(void)
194 {
195 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
196 &pool_allocator_nointr);
197 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
198 &pool_allocator_nointr);
199 pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
200 NULL);
201 exithook_establish(ksiginfo_exithook, NULL);
202 exechook_establish(ksiginfo_exithook, NULL);
203 }
204
205 /*
206 * Create an initial sigctx structure, using the same signal state
207 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
208 * copy it from parent.
209 */
210 void
211 sigactsinit(struct proc *np, struct proc *pp, int share)
212 {
213 struct sigacts *ps;
214
215 if (share) {
216 np->p_sigacts = pp->p_sigacts;
217 pp->p_sigacts->sa_refcnt++;
218 } else {
219 ps = pool_get(&sigacts_pool, PR_WAITOK);
220 if (pp)
221 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
222 else
223 memset(ps, '\0', sizeof(struct sigacts));
224 ps->sa_refcnt = 1;
225 np->p_sigacts = ps;
226 }
227 }
228
229 /*
230 * Make this process not share its sigctx, maintaining all
231 * signal state.
232 */
233 void
234 sigactsunshare(struct proc *p)
235 {
236 struct sigacts *oldps;
237
238 if (p->p_sigacts->sa_refcnt == 1)
239 return;
240
241 oldps = p->p_sigacts;
242 sigactsinit(p, NULL, 0);
243
244 if (--oldps->sa_refcnt == 0)
245 pool_put(&sigacts_pool, oldps);
246 }
247
248 /*
249 * Release a sigctx structure.
250 */
251 void
252 sigactsfree(struct proc *p)
253 {
254 struct sigacts *ps;
255
256 ps = p->p_sigacts;
257 if (--ps->sa_refcnt > 0)
258 return;
259
260 pool_put(&sigacts_pool, ps);
261 }
262
263 int
264 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
265 struct sigaction *osa, void *tramp, int vers)
266 {
267 struct sigacts *ps;
268 int prop;
269
270 ps = p->p_sigacts;
271 if (signum <= 0 || signum >= NSIG)
272 return (EINVAL);
273
274 /*
275 * Trampoline ABI version 0 is reserved for the legacy
276 * kernel-provided on-stack trampoline. Conversely, if
277 * we are using a non-0 ABI version, we must have a
278 * trampoline.
279 */
280 if ((vers != 0 && tramp == NULL) ||
281 #ifdef SIGTRAMP_VALID
282 !SIGTRAMP_VALID(vers) ||
283 #endif
284 (vers == 0 && tramp != NULL))
285 return (EINVAL);
286
287 if (osa)
288 *osa = SIGACTION_PS(ps, signum);
289
290 if (nsa) {
291 if (nsa->sa_flags & ~SA_ALLBITS)
292 return (EINVAL);
293
294 #ifndef __HAVE_SIGINFO
295 if (nsa->sa_flags & SA_SIGINFO)
296 return (EINVAL);
297 #endif
298
299 prop = sigprop[signum];
300 if (prop & SA_CANTMASK)
301 return (EINVAL);
302
303 (void) splsched(); /* XXXSMP */
304 SIGACTION_PS(ps, signum) = *nsa;
305 ps->sa_sigdesc[signum].sd_tramp = tramp;
306 ps->sa_sigdesc[signum].sd_vers = vers;
307 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
308 if ((prop & SA_NORESET) != 0)
309 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
310 if (signum == SIGCHLD) {
311 if (nsa->sa_flags & SA_NOCLDSTOP)
312 p->p_flag |= P_NOCLDSTOP;
313 else
314 p->p_flag &= ~P_NOCLDSTOP;
315 if (nsa->sa_flags & SA_NOCLDWAIT) {
316 /*
317 * Paranoia: since SA_NOCLDWAIT is implemented
318 * by reparenting the dying child to PID 1 (and
319 * trust it to reap the zombie), PID 1 itself
320 * is forbidden to set SA_NOCLDWAIT.
321 */
322 if (p->p_pid == 1)
323 p->p_flag &= ~P_NOCLDWAIT;
324 else
325 p->p_flag |= P_NOCLDWAIT;
326 } else
327 p->p_flag &= ~P_NOCLDWAIT;
328 }
329 if ((nsa->sa_flags & SA_NODEFER) == 0)
330 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
331 else
332 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
333 /*
334 * Set bit in p_sigctx.ps_sigignore for signals that are set to
335 * SIG_IGN, and for signals set to SIG_DFL where the default is
336 * to ignore. However, don't put SIGCONT in
337 * p_sigctx.ps_sigignore, as we have to restart the process.
338 */
339 if (nsa->sa_handler == SIG_IGN ||
340 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
341 /* never to be seen again */
342 sigdelset(&p->p_sigctx.ps_siglist, signum);
343 if (signum != SIGCONT) {
344 /* easier in psignal */
345 sigaddset(&p->p_sigctx.ps_sigignore, signum);
346 }
347 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
348 } else {
349 sigdelset(&p->p_sigctx.ps_sigignore, signum);
350 if (nsa->sa_handler == SIG_DFL)
351 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
352 else
353 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
354 }
355 (void) spl0();
356 }
357
358 return (0);
359 }
360
361 #ifdef COMPAT_16
362 /* ARGSUSED */
363 int
364 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
365 {
366 struct compat_16_sys___sigaction14_args /* {
367 syscallarg(int) signum;
368 syscallarg(const struct sigaction *) nsa;
369 syscallarg(struct sigaction *) osa;
370 } */ *uap = v;
371 struct proc *p;
372 struct sigaction nsa, osa;
373 int error;
374
375 if (SCARG(uap, nsa)) {
376 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
377 if (error)
378 return (error);
379 }
380 p = l->l_proc;
381 error = sigaction1(p, SCARG(uap, signum),
382 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
383 NULL, 0);
384 if (error)
385 return (error);
386 if (SCARG(uap, osa)) {
387 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
388 if (error)
389 return (error);
390 }
391 return (0);
392 }
393 #endif
394
395 /* ARGSUSED */
396 int
397 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
398 {
399 struct sys___sigaction_sigtramp_args /* {
400 syscallarg(int) signum;
401 syscallarg(const struct sigaction *) nsa;
402 syscallarg(struct sigaction *) osa;
403 syscallarg(void *) tramp;
404 syscallarg(int) vers;
405 } */ *uap = v;
406 struct proc *p = l->l_proc;
407 struct sigaction nsa, osa;
408 int error;
409
410 if (SCARG(uap, nsa)) {
411 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
412 if (error)
413 return (error);
414 }
415 error = sigaction1(p, SCARG(uap, signum),
416 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
417 SCARG(uap, tramp), SCARG(uap, vers));
418 if (error)
419 return (error);
420 if (SCARG(uap, osa)) {
421 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
422 if (error)
423 return (error);
424 }
425 return (0);
426 }
427
428 /*
429 * Initialize signal state for process 0;
430 * set to ignore signals that are ignored by default and disable the signal
431 * stack.
432 */
433 void
434 siginit(struct proc *p)
435 {
436 struct sigacts *ps;
437 int signum, prop;
438
439 ps = p->p_sigacts;
440 sigemptyset(&contsigmask);
441 sigemptyset(&stopsigmask);
442 sigemptyset(&sigcantmask);
443 for (signum = 1; signum < NSIG; signum++) {
444 prop = sigprop[signum];
445 if (prop & SA_CONT)
446 sigaddset(&contsigmask, signum);
447 if (prop & SA_STOP)
448 sigaddset(&stopsigmask, signum);
449 if (prop & SA_CANTMASK)
450 sigaddset(&sigcantmask, signum);
451 if (prop & SA_IGNORE && signum != SIGCONT)
452 sigaddset(&p->p_sigctx.ps_sigignore, signum);
453 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
454 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
455 }
456 sigemptyset(&p->p_sigctx.ps_sigcatch);
457 p->p_sigctx.ps_sigwaited = 0;
458 p->p_flag &= ~P_NOCLDSTOP;
459
460 /*
461 * Reset stack state to the user stack.
462 */
463 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
464 p->p_sigctx.ps_sigstk.ss_size = 0;
465 p->p_sigctx.ps_sigstk.ss_sp = 0;
466
467 /* One reference. */
468 ps->sa_refcnt = 1;
469 }
470
471 /*
472 * Reset signals for an exec of the specified process.
473 */
474 void
475 execsigs(struct proc *p)
476 {
477 struct sigacts *ps;
478 int signum, prop;
479
480 sigactsunshare(p);
481
482 ps = p->p_sigacts;
483
484 /*
485 * Reset caught signals. Held signals remain held
486 * through p_sigctx.ps_sigmask (unless they were caught,
487 * and are now ignored by default).
488 */
489 for (signum = 1; signum < NSIG; signum++) {
490 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
491 prop = sigprop[signum];
492 if (prop & SA_IGNORE) {
493 if ((prop & SA_CONT) == 0)
494 sigaddset(&p->p_sigctx.ps_sigignore,
495 signum);
496 sigdelset(&p->p_sigctx.ps_siglist, signum);
497 }
498 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
499 }
500 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
501 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
502 }
503 sigemptyset(&p->p_sigctx.ps_sigcatch);
504 p->p_sigctx.ps_sigwaited = 0;
505 p->p_flag &= ~P_NOCLDSTOP;
506
507 /*
508 * Reset stack state to the user stack.
509 */
510 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
511 p->p_sigctx.ps_sigstk.ss_size = 0;
512 p->p_sigctx.ps_sigstk.ss_sp = 0;
513 }
514
515 int
516 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
517 {
518
519 if (oss)
520 *oss = p->p_sigctx.ps_sigmask;
521
522 if (nss) {
523 (void)splsched(); /* XXXSMP */
524 switch (how) {
525 case SIG_BLOCK:
526 sigplusset(nss, &p->p_sigctx.ps_sigmask);
527 break;
528 case SIG_UNBLOCK:
529 sigminusset(nss, &p->p_sigctx.ps_sigmask);
530 CHECKSIGS(p);
531 break;
532 case SIG_SETMASK:
533 p->p_sigctx.ps_sigmask = *nss;
534 CHECKSIGS(p);
535 break;
536 default:
537 (void)spl0(); /* XXXSMP */
538 return (EINVAL);
539 }
540 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
541 (void)spl0(); /* XXXSMP */
542 }
543
544 return (0);
545 }
546
547 /*
548 * Manipulate signal mask.
549 * Note that we receive new mask, not pointer,
550 * and return old mask as return value;
551 * the library stub does the rest.
552 */
553 int
554 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
555 {
556 struct sys___sigprocmask14_args /* {
557 syscallarg(int) how;
558 syscallarg(const sigset_t *) set;
559 syscallarg(sigset_t *) oset;
560 } */ *uap = v;
561 struct proc *p;
562 sigset_t nss, oss;
563 int error;
564
565 if (SCARG(uap, set)) {
566 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
567 if (error)
568 return (error);
569 }
570 p = l->l_proc;
571 error = sigprocmask1(p, SCARG(uap, how),
572 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
573 if (error)
574 return (error);
575 if (SCARG(uap, oset)) {
576 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
577 if (error)
578 return (error);
579 }
580 return (0);
581 }
582
583 void
584 sigpending1(struct proc *p, sigset_t *ss)
585 {
586
587 *ss = p->p_sigctx.ps_siglist;
588 sigminusset(&p->p_sigctx.ps_sigmask, ss);
589 }
590
591 /* ARGSUSED */
592 int
593 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
594 {
595 struct sys___sigpending14_args /* {
596 syscallarg(sigset_t *) set;
597 } */ *uap = v;
598 struct proc *p;
599 sigset_t ss;
600
601 p = l->l_proc;
602 sigpending1(p, &ss);
603 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
604 }
605
606 int
607 sigsuspend1(struct proc *p, const sigset_t *ss)
608 {
609 struct sigacts *ps;
610
611 ps = p->p_sigacts;
612 if (ss) {
613 /*
614 * When returning from sigpause, we want
615 * the old mask to be restored after the
616 * signal handler has finished. Thus, we
617 * save it here and mark the sigctx structure
618 * to indicate this.
619 */
620 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
621 p->p_sigctx.ps_flags |= SAS_OLDMASK;
622 (void) splsched(); /* XXXSMP */
623 p->p_sigctx.ps_sigmask = *ss;
624 CHECKSIGS(p);
625 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
626 (void) spl0(); /* XXXSMP */
627 }
628
629 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
630 /* void */;
631
632 /* always return EINTR rather than ERESTART... */
633 return (EINTR);
634 }
635
636 /*
637 * Suspend process until signal, providing mask to be set
638 * in the meantime. Note nonstandard calling convention:
639 * libc stub passes mask, not pointer, to save a copyin.
640 */
641 /* ARGSUSED */
642 int
643 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
644 {
645 struct sys___sigsuspend14_args /* {
646 syscallarg(const sigset_t *) set;
647 } */ *uap = v;
648 struct proc *p;
649 sigset_t ss;
650 int error;
651
652 if (SCARG(uap, set)) {
653 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
654 if (error)
655 return (error);
656 }
657
658 p = l->l_proc;
659 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
660 }
661
662 int
663 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
664 struct sigaltstack *oss)
665 {
666
667 if (oss)
668 *oss = p->p_sigctx.ps_sigstk;
669
670 if (nss) {
671 if (nss->ss_flags & ~SS_ALLBITS)
672 return (EINVAL);
673
674 if (nss->ss_flags & SS_DISABLE) {
675 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
676 return (EINVAL);
677 } else {
678 if (nss->ss_size < MINSIGSTKSZ)
679 return (ENOMEM);
680 }
681 p->p_sigctx.ps_sigstk = *nss;
682 }
683
684 return (0);
685 }
686
687 /* ARGSUSED */
688 int
689 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
690 {
691 struct sys___sigaltstack14_args /* {
692 syscallarg(const struct sigaltstack *) nss;
693 syscallarg(struct sigaltstack *) oss;
694 } */ *uap = v;
695 struct proc *p;
696 struct sigaltstack nss, oss;
697 int error;
698
699 if (SCARG(uap, nss)) {
700 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
701 if (error)
702 return (error);
703 }
704 p = l->l_proc;
705 error = sigaltstack1(p,
706 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
707 if (error)
708 return (error);
709 if (SCARG(uap, oss)) {
710 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
711 if (error)
712 return (error);
713 }
714 return (0);
715 }
716
717 /* ARGSUSED */
718 int
719 sys_kill(struct lwp *l, void *v, register_t *retval)
720 {
721 struct sys_kill_args /* {
722 syscallarg(int) pid;
723 syscallarg(int) signum;
724 } */ *uap = v;
725 struct proc *cp, *p;
726 struct pcred *pc;
727 ksiginfo_t ksi;
728
729 cp = l->l_proc;
730 pc = cp->p_cred;
731 if ((u_int)SCARG(uap, signum) >= NSIG)
732 return (EINVAL);
733 memset(&ksi, 0, sizeof(ksi));
734 ksi.ksi_signo = SCARG(uap, signum);
735 ksi.ksi_code = SI_USER;
736 ksi.ksi_pid = cp->p_pid;
737 ksi.ksi_uid = cp->p_ucred->cr_uid;
738 if (SCARG(uap, pid) > 0) {
739 /* kill single process */
740 if ((p = pfind(SCARG(uap, pid))) == NULL)
741 return (ESRCH);
742 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
743 return (EPERM);
744 if (SCARG(uap, signum))
745 kpsignal2(p, &ksi, 1);
746 return (0);
747 }
748 switch (SCARG(uap, pid)) {
749 case -1: /* broadcast signal */
750 return (killpg1(cp, &ksi, 0, 1));
751 case 0: /* signal own process group */
752 return (killpg1(cp, &ksi, 0, 0));
753 default: /* negative explicit process group */
754 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
755 }
756 /* NOTREACHED */
757 }
758
759 /*
760 * Common code for kill process group/broadcast kill.
761 * cp is calling process.
762 */
763 int
764 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
765 {
766 struct proc *p;
767 struct pcred *pc;
768 struct pgrp *pgrp;
769 int nfound;
770 int signum = ksi->ksi_signo;
771
772 pc = cp->p_cred;
773 nfound = 0;
774 if (all) {
775 /*
776 * broadcast
777 */
778 proclist_lock_read();
779 LIST_FOREACH(p, &allproc, p_list) {
780 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
781 p == cp || !CANSIGNAL(cp, pc, p, signum))
782 continue;
783 nfound++;
784 if (signum)
785 kpsignal2(p, ksi, 1);
786 }
787 proclist_unlock_read();
788 } else {
789 if (pgid == 0)
790 /*
791 * zero pgid means send to my process group.
792 */
793 pgrp = cp->p_pgrp;
794 else {
795 pgrp = pgfind(pgid);
796 if (pgrp == NULL)
797 return (ESRCH);
798 }
799 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
800 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
801 !CANSIGNAL(cp, pc, p, signum))
802 continue;
803 nfound++;
804 if (signum && P_ZOMBIE(p) == 0)
805 kpsignal2(p, ksi, 1);
806 }
807 }
808 return (nfound ? 0 : ESRCH);
809 }
810
811 /*
812 * Send a signal to a process group.
813 */
814 void
815 gsignal(int pgid, int signum)
816 {
817 ksiginfo_t ksi;
818 memset(&ksi, 0, sizeof(ksi));
819 ksi.ksi_signo = signum;
820 kgsignal(pgid, &ksi, NULL);
821 }
822
823 void
824 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
825 {
826 struct pgrp *pgrp;
827
828 if (pgid && (pgrp = pgfind(pgid)))
829 kpgsignal(pgrp, ksi, data, 0);
830 }
831
832 /*
833 * Send a signal to a process group. If checktty is 1,
834 * limit to members which have a controlling terminal.
835 */
836 void
837 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
838 {
839 ksiginfo_t ksi;
840 memset(&ksi, 0, sizeof(ksi));
841 ksi.ksi_signo = sig;
842 kpgsignal(pgrp, &ksi, NULL, checkctty);
843 }
844
845 void
846 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
847 {
848 struct proc *p;
849
850 if (pgrp)
851 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
852 if (checkctty == 0 || p->p_flag & P_CONTROLT)
853 kpsignal(p, ksi, data);
854 }
855
856 /*
857 * Send a signal caused by a trap to the current process.
858 * If it will be caught immediately, deliver it with correct code.
859 * Otherwise, post it normally.
860 */
861 #ifndef __HAVE_SIGINFO
862 void _trapsignal(struct lwp *, const ksiginfo_t *);
863 void
864 trapsignal(struct lwp *l, int signum, u_long code)
865 {
866 #define trapsignal _trapsignal
867 ksiginfo_t ksi;
868 memset(&ksi, 0, sizeof(ksi));
869 ksi.ksi_signo = signum;
870 ksi.ksi_trap = (int)code;
871 trapsignal(l, &ksi);
872 }
873 #endif
874
875 void
876 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
877 {
878 struct proc *p;
879 struct sigacts *ps;
880 int signum = ksi->ksi_signo;
881
882 p = l->l_proc;
883 ps = p->p_sigacts;
884 if ((p->p_flag & P_TRACED) == 0 &&
885 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
886 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
887 p->p_stats->p_ru.ru_nsignals++;
888 #ifdef KTRACE
889 if (KTRPOINT(p, KTR_PSIG))
890 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
891 &p->p_sigctx.ps_sigmask, ksi);
892 #endif
893 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
894 (void) splsched(); /* XXXSMP */
895 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
896 &p->p_sigctx.ps_sigmask);
897 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
898 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
899 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
900 sigaddset(&p->p_sigctx.ps_sigignore, signum);
901 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
902 }
903 (void) spl0(); /* XXXSMP */
904 } else {
905 p->p_sigctx.ps_lwp = l->l_lid;
906 /* XXX for core dump/debugger */
907 p->p_sigctx.ps_signo = ksi->ksi_signo;
908 p->p_sigctx.ps_code = ksi->ksi_trap;
909 kpsignal2(p, ksi, 1);
910 }
911 }
912
913 /*
914 * Fill in signal information and signal the parent for a child status change.
915 */
916 static void
917 child_psignal(struct proc *p, int dolock)
918 {
919 ksiginfo_t ksi;
920
921 (void)memset(&ksi, 0, sizeof(ksi));
922 ksi.ksi_signo = SIGCHLD;
923 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
924 ksi.ksi_pid = p->p_pid;
925 ksi.ksi_uid = p->p_ucred->cr_uid;
926 ksi.ksi_status = p->p_xstat;
927 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
928 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
929 kpsignal2(p->p_pptr, &ksi, dolock);
930 }
931
932 /*
933 * Send the signal to the process. If the signal has an action, the action
934 * is usually performed by the target process rather than the caller; we add
935 * the signal to the set of pending signals for the process.
936 *
937 * Exceptions:
938 * o When a stop signal is sent to a sleeping process that takes the
939 * default action, the process is stopped without awakening it.
940 * o SIGCONT restarts stopped processes (or puts them back to sleep)
941 * regardless of the signal action (eg, blocked or ignored).
942 *
943 * Other ignored signals are discarded immediately.
944 *
945 * XXXSMP: Invoked as psignal() or sched_psignal().
946 */
947 void
948 psignal1(struct proc *p, int signum, int dolock)
949 {
950 ksiginfo_t ksi;
951 memset(&ksi, 0, sizeof(ksi));
952 ksi.ksi_signo = signum;
953 kpsignal2(p, &ksi, dolock);
954 }
955
956 void
957 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
958 {
959 if (data) {
960 size_t fd;
961 struct filedesc *fdp = p->p_fd;
962 ksi->ksi_fd = -1;
963 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
964 struct file *fp = fdp->fd_ofiles[fd];
965 /* XXX: lock? */
966 if (fp && fp->f_data == data) {
967 ksi->ksi_fd = fd;
968 break;
969 }
970 }
971 }
972 kpsignal2(p, ksi, dolock);
973 }
974
975 static void
976 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
977 {
978 struct lwp *l, *suspended;
979 int s = 0, prop, allsusp;
980 sig_t action;
981 int signum = ksi->ksi_signo;
982
983 #ifdef DIAGNOSTIC
984 if (signum <= 0 || signum >= NSIG)
985 panic("psignal signal number %d", signum);
986
987 /* XXXSMP: works, but icky */
988 if (dolock)
989 SCHED_ASSERT_UNLOCKED();
990 else
991 SCHED_ASSERT_LOCKED();
992 #endif
993
994
995 /*
996 * Notify any interested parties in the signal.
997 */
998 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
999
1000 prop = sigprop[signum];
1001
1002 /*
1003 * If proc is traced, always give parent a chance.
1004 */
1005 if (p->p_flag & P_TRACED)
1006 action = SIG_DFL;
1007 else {
1008 /*
1009 * If the signal is being ignored,
1010 * then we forget about it immediately.
1011 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1012 * and if it is set to SIG_IGN,
1013 * action will be SIG_DFL here.)
1014 */
1015 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1016 return;
1017 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1018 action = SIG_HOLD;
1019 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1020 action = SIG_CATCH;
1021 else {
1022 action = SIG_DFL;
1023
1024 if (prop & SA_KILL && p->p_nice > NZERO)
1025 p->p_nice = NZERO;
1026
1027 /*
1028 * If sending a tty stop signal to a member of an
1029 * orphaned process group, discard the signal here if
1030 * the action is default; don't stop the process below
1031 * if sleeping, and don't clear any pending SIGCONT.
1032 */
1033 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1034 return;
1035 }
1036 }
1037
1038 if (prop & SA_CONT)
1039 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1040
1041 if (prop & SA_STOP)
1042 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1043
1044 sigaddset(&p->p_sigctx.ps_siglist, signum);
1045
1046 /* CHECKSIGS() is "inlined" here. */
1047 p->p_sigctx.ps_sigcheck = 1;
1048
1049 /*
1050 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1051 * please!), check if anything waits on it. If yes, clear the
1052 * pending signal from siglist set, save it to ps_sigwaited,
1053 * clear sigwait list, and wakeup any sigwaiters.
1054 * The signal won't be processed further here.
1055 */
1056 if ((prop & SA_CANTMASK) == 0
1057 && p->p_sigctx.ps_sigwaited < 0
1058 && sigismember(&p->p_sigctx.ps_sigwait, signum)
1059 && p->p_stat != SSTOP) {
1060 if (action == SIG_CATCH)
1061 ksiginfo_put(p, ksi);
1062 sigdelset(&p->p_sigctx.ps_siglist, signum);
1063 p->p_sigctx.ps_sigwaited = signum;
1064 sigemptyset(&p->p_sigctx.ps_sigwait);
1065 if (dolock)
1066 wakeup_one(&p->p_sigctx.ps_sigwait);
1067 else
1068 sched_wakeup(&p->p_sigctx.ps_sigwait);
1069 return;
1070 }
1071
1072 /*
1073 * Defer further processing for signals which are held,
1074 * except that stopped processes must be continued by SIGCONT.
1075 */
1076 if (action == SIG_HOLD &&
1077 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1078 ksiginfo_put(p, ksi);
1079 return;
1080 }
1081 /* XXXSMP: works, but icky */
1082 if (dolock)
1083 SCHED_LOCK(s);
1084
1085 /* XXXUPSXXX LWPs might go to sleep without passing signal handling */
1086 if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
1087 && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
1088 /*
1089 * At least one LWP is running or on a run queue.
1090 * The signal will be noticed when one of them returns
1091 * to userspace.
1092 */
1093 signotify(p);
1094 /*
1095 * The signal will be noticed very soon.
1096 */
1097 goto out;
1098 } else {
1099 /* Process is sleeping or stopped */
1100 if (p->p_flag & P_SA) {
1101 struct lwp *l2 = p->p_sa->sa_vp;
1102 l = NULL;
1103 allsusp = 1;
1104
1105 if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
1106 l = l2;
1107 else if (l2->l_stat == LSSUSPENDED)
1108 suspended = l2;
1109 else if ((l2->l_stat != LSZOMB) &&
1110 (l2->l_stat != LSDEAD))
1111 allsusp = 0;
1112 } else {
1113 /*
1114 * Find out if any of the sleeps are interruptable,
1115 * and if all the live LWPs remaining are suspended.
1116 */
1117 allsusp = 1;
1118 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1119 if (l->l_stat == LSSLEEP &&
1120 l->l_flag & L_SINTR)
1121 break;
1122 if (l->l_stat == LSSUSPENDED)
1123 suspended = l;
1124 else if ((l->l_stat != LSZOMB) &&
1125 (l->l_stat != LSDEAD))
1126 allsusp = 0;
1127 }
1128 }
1129 if (p->p_stat == SACTIVE) {
1130
1131
1132 if (l != NULL && (p->p_flag & P_TRACED))
1133 goto run;
1134
1135 /*
1136 * If SIGCONT is default (or ignored) and process is
1137 * asleep, we are finished; the process should not
1138 * be awakened.
1139 */
1140 if ((prop & SA_CONT) && action == SIG_DFL) {
1141 sigdelset(&p->p_sigctx.ps_siglist, signum);
1142 goto done;
1143 }
1144
1145 /*
1146 * When a sleeping process receives a stop
1147 * signal, process immediately if possible.
1148 */
1149 if ((prop & SA_STOP) && action == SIG_DFL) {
1150 /*
1151 * If a child holding parent blocked,
1152 * stopping could cause deadlock.
1153 */
1154 if (p->p_flag & P_PPWAIT) {
1155 goto out;
1156 }
1157 sigdelset(&p->p_sigctx.ps_siglist, signum);
1158 p->p_xstat = signum;
1159 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1160 /*
1161 * XXXSMP: recursive call; don't lock
1162 * the second time around.
1163 */
1164 child_psignal(p, 0);
1165 }
1166 proc_stop(p); /* XXXSMP: recurse? */
1167 goto done;
1168 }
1169
1170 if (l == NULL) {
1171 /*
1172 * Special case: SIGKILL of a process
1173 * which is entirely composed of
1174 * suspended LWPs should succeed. We
1175 * make this happen by unsuspending one of
1176 * them.
1177 */
1178 if (allsusp && (signum == SIGKILL))
1179 lwp_continue(suspended);
1180 goto done;
1181 }
1182 /*
1183 * All other (caught or default) signals
1184 * cause the process to run.
1185 */
1186 goto runfast;
1187 /*NOTREACHED*/
1188 } else if (p->p_stat == SSTOP) {
1189 /* Process is stopped */
1190 /*
1191 * If traced process is already stopped,
1192 * then no further action is necessary.
1193 */
1194 if (p->p_flag & P_TRACED)
1195 goto done;
1196
1197 /*
1198 * Kill signal always sets processes running,
1199 * if possible.
1200 */
1201 if (signum == SIGKILL) {
1202 l = proc_unstop(p);
1203 if (l)
1204 goto runfast;
1205 goto done;
1206 }
1207
1208 if (prop & SA_CONT) {
1209 /*
1210 * If SIGCONT is default (or ignored),
1211 * we continue the process but don't
1212 * leave the signal in ps_siglist, as
1213 * it has no further action. If
1214 * SIGCONT is held, we continue the
1215 * process and leave the signal in
1216 * ps_siglist. If the process catches
1217 * SIGCONT, let it handle the signal
1218 * itself. If it isn't waiting on an
1219 * event, then it goes back to run
1220 * state. Otherwise, process goes
1221 * back to sleep state.
1222 */
1223 if (action == SIG_DFL)
1224 sigdelset(&p->p_sigctx.ps_siglist,
1225 signum);
1226 l = proc_unstop(p);
1227 if (l && (action == SIG_CATCH))
1228 goto runfast;
1229 goto out;
1230 }
1231
1232 if (prop & SA_STOP) {
1233 /*
1234 * Already stopped, don't need to stop again.
1235 * (If we did the shell could get confused.)
1236 */
1237 sigdelset(&p->p_sigctx.ps_siglist, signum);
1238 goto done;
1239 }
1240
1241 /*
1242 * If a lwp is sleeping interruptibly, then
1243 * wake it up; it will run until the kernel
1244 * boundary, where it will stop in issignal(),
1245 * since p->p_stat is still SSTOP. When the
1246 * process is continued, it will be made
1247 * runnable and can look at the signal.
1248 */
1249 if (l)
1250 goto run;
1251 goto out;
1252 } else {
1253 /* Else what? */
1254 panic("psignal: Invalid process state %d.",
1255 p->p_stat);
1256 }
1257 }
1258 /*NOTREACHED*/
1259
1260 runfast:
1261 if (action == SIG_CATCH) {
1262 ksiginfo_put(p, ksi);
1263 action = SIG_HOLD;
1264 }
1265 /*
1266 * Raise priority to at least PUSER.
1267 */
1268 if (l->l_priority > PUSER)
1269 l->l_priority = PUSER;
1270 run:
1271 if (action == SIG_CATCH) {
1272 ksiginfo_put(p, ksi);
1273 action = SIG_HOLD;
1274 }
1275
1276 setrunnable(l); /* XXXSMP: recurse? */
1277 out:
1278 if (action == SIG_CATCH)
1279 ksiginfo_put(p, ksi);
1280 done:
1281 /* XXXSMP: works, but icky */
1282 if (dolock)
1283 SCHED_UNLOCK(s);
1284 }
1285
1286 void
1287 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1288 {
1289 struct proc *p = l->l_proc;
1290 struct lwp *le, *li;
1291 siginfo_t *si;
1292 int f;
1293
1294 if (p->p_flag & P_SA) {
1295
1296 /* XXXUPSXXX What if not on sa_vp ? */
1297
1298 f = l->l_flag & L_SA;
1299 l->l_flag &= ~L_SA;
1300 si = pool_get(&siginfo_pool, PR_WAITOK);
1301 si->_info = *ksi;
1302 le = li = NULL;
1303 if (ksi->ksi_trap)
1304 le = l;
1305 else
1306 li = l;
1307
1308 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1309 sizeof(siginfo_t), si);
1310 l->l_flag |= f;
1311 return;
1312 }
1313
1314 #ifdef __HAVE_SIGINFO
1315 (*p->p_emul->e_sendsig)(ksi, mask);
1316 #else
1317 (*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, ksi->ksi_trap);
1318 #endif
1319 }
1320
1321 static __inline int firstsig(const sigset_t *);
1322
1323 static __inline int
1324 firstsig(const sigset_t *ss)
1325 {
1326 int sig;
1327
1328 sig = ffs(ss->__bits[0]);
1329 if (sig != 0)
1330 return (sig);
1331 #if NSIG > 33
1332 sig = ffs(ss->__bits[1]);
1333 if (sig != 0)
1334 return (sig + 32);
1335 #endif
1336 #if NSIG > 65
1337 sig = ffs(ss->__bits[2]);
1338 if (sig != 0)
1339 return (sig + 64);
1340 #endif
1341 #if NSIG > 97
1342 sig = ffs(ss->__bits[3]);
1343 if (sig != 0)
1344 return (sig + 96);
1345 #endif
1346 return (0);
1347 }
1348
1349 /*
1350 * If the current process has received a signal (should be caught or cause
1351 * termination, should interrupt current syscall), return the signal number.
1352 * Stop signals with default action are processed immediately, then cleared;
1353 * they aren't returned. This is checked after each entry to the system for
1354 * a syscall or trap (though this can usually be done without calling issignal
1355 * by checking the pending signal masks in the CURSIG macro.) The normal call
1356 * sequence is
1357 *
1358 * while (signum = CURSIG(curlwp))
1359 * postsig(signum);
1360 */
1361 int
1362 issignal(struct lwp *l)
1363 {
1364 struct proc *p = l->l_proc;
1365 int s = 0, signum, prop;
1366 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1367 sigset_t ss;
1368
1369 if (l->l_flag & L_SA) {
1370 struct sadata *sa = p->p_sa;
1371
1372 /* Bail out if we do not own the virtual processor */
1373 if (sa->sa_vp != l)
1374 return 0;
1375 }
1376
1377 if (p->p_stat == SSTOP) {
1378 /*
1379 * The process is stopped/stopping. Stop ourselves now that
1380 * we're on the kernel/userspace boundary.
1381 */
1382 if (dolock)
1383 SCHED_LOCK(s);
1384 l->l_stat = LSSTOP;
1385 p->p_nrlwps--;
1386 if (p->p_flag & P_TRACED)
1387 goto sigtraceswitch;
1388 else
1389 goto sigswitch;
1390 }
1391 for (;;) {
1392 sigpending1(p, &ss);
1393 if (p->p_flag & P_PPWAIT)
1394 sigminusset(&stopsigmask, &ss);
1395 signum = firstsig(&ss);
1396 if (signum == 0) { /* no signal to send */
1397 p->p_sigctx.ps_sigcheck = 0;
1398 if (locked && dolock)
1399 SCHED_LOCK(s);
1400 return (0);
1401 }
1402 /* take the signal! */
1403 sigdelset(&p->p_sigctx.ps_siglist, signum);
1404
1405 /*
1406 * We should see pending but ignored signals
1407 * only if P_TRACED was on when they were posted.
1408 */
1409 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1410 (p->p_flag & P_TRACED) == 0)
1411 continue;
1412
1413 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1414 /*
1415 * If traced, always stop, and stay
1416 * stopped until released by the debugger.
1417 */
1418 p->p_xstat = signum;
1419 if ((p->p_flag & P_FSTRACE) == 0)
1420 child_psignal(p, dolock);
1421 if (dolock)
1422 SCHED_LOCK(s);
1423 proc_stop(p);
1424 sigtraceswitch:
1425 mi_switch(l, NULL);
1426 SCHED_ASSERT_UNLOCKED();
1427 if (dolock)
1428 splx(s);
1429 else
1430 dolock = 1;
1431
1432 /*
1433 * If we are no longer being traced, or the parent
1434 * didn't give us a signal, look for more signals.
1435 */
1436 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1437 continue;
1438
1439 /*
1440 * If the new signal is being masked, look for other
1441 * signals.
1442 */
1443 signum = p->p_xstat;
1444 p->p_xstat = 0;
1445 /*
1446 * `p->p_sigctx.ps_siglist |= mask' is done
1447 * in setrunnable().
1448 */
1449 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1450 continue;
1451 /* take the signal! */
1452 sigdelset(&p->p_sigctx.ps_siglist, signum);
1453 }
1454
1455 prop = sigprop[signum];
1456
1457 /*
1458 * Decide whether the signal should be returned.
1459 * Return the signal's number, or fall through
1460 * to clear it from the pending mask.
1461 */
1462 switch ((long)SIGACTION(p, signum).sa_handler) {
1463
1464 case (long)SIG_DFL:
1465 /*
1466 * Don't take default actions on system processes.
1467 */
1468 if (p->p_pid <= 1) {
1469 #ifdef DIAGNOSTIC
1470 /*
1471 * Are you sure you want to ignore SIGSEGV
1472 * in init? XXX
1473 */
1474 printf("Process (pid %d) got signal %d\n",
1475 p->p_pid, signum);
1476 #endif
1477 break; /* == ignore */
1478 }
1479 /*
1480 * If there is a pending stop signal to process
1481 * with default action, stop here,
1482 * then clear the signal. However,
1483 * if process is member of an orphaned
1484 * process group, ignore tty stop signals.
1485 */
1486 if (prop & SA_STOP) {
1487 if (p->p_flag & P_TRACED ||
1488 (p->p_pgrp->pg_jobc == 0 &&
1489 prop & SA_TTYSTOP))
1490 break; /* == ignore */
1491 p->p_xstat = signum;
1492 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1493 child_psignal(p, dolock);
1494 if (dolock)
1495 SCHED_LOCK(s);
1496 proc_stop(p);
1497 sigswitch:
1498 mi_switch(l, NULL);
1499 SCHED_ASSERT_UNLOCKED();
1500 if (dolock)
1501 splx(s);
1502 else
1503 dolock = 1;
1504 break;
1505 } else if (prop & SA_IGNORE) {
1506 /*
1507 * Except for SIGCONT, shouldn't get here.
1508 * Default action is to ignore; drop it.
1509 */
1510 break; /* == ignore */
1511 } else
1512 goto keep;
1513 /*NOTREACHED*/
1514
1515 case (long)SIG_IGN:
1516 /*
1517 * Masking above should prevent us ever trying
1518 * to take action on an ignored signal other
1519 * than SIGCONT, unless process is traced.
1520 */
1521 #ifdef DEBUG_ISSIGNAL
1522 if ((prop & SA_CONT) == 0 &&
1523 (p->p_flag & P_TRACED) == 0)
1524 printf("issignal\n");
1525 #endif
1526 break; /* == ignore */
1527
1528 default:
1529 /*
1530 * This signal has an action, let
1531 * postsig() process it.
1532 */
1533 goto keep;
1534 }
1535 }
1536 /* NOTREACHED */
1537
1538 keep:
1539 /* leave the signal for later */
1540 sigaddset(&p->p_sigctx.ps_siglist, signum);
1541 CHECKSIGS(p);
1542 if (locked && dolock)
1543 SCHED_LOCK(s);
1544 return (signum);
1545 }
1546
1547 /*
1548 * Put the argument process into the stopped state and notify the parent
1549 * via wakeup. Signals are handled elsewhere. The process must not be
1550 * on the run queue.
1551 */
1552 static void
1553 proc_stop(struct proc *p)
1554 {
1555 struct lwp *l;
1556
1557 SCHED_ASSERT_LOCKED();
1558
1559 /* XXX lock process LWP state */
1560 p->p_stat = SSTOP;
1561 p->p_flag &= ~P_WAITED;
1562
1563 /*
1564 * Put as many LWP's as possible in stopped state.
1565 * Sleeping ones will notice the stopped state as they try to
1566 * return to userspace.
1567 */
1568
1569 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1570 if ((l->l_stat == LSONPROC) && (l == curlwp)) {
1571 /* XXX SMP this assumes that a LWP that is LSONPROC
1572 * is curlwp and hence is about to be mi_switched
1573 * away; the only callers of proc_stop() are:
1574 * - psignal
1575 * - issignal()
1576 * For the former, proc_stop() is only called when
1577 * no processes are running, so we don't worry.
1578 * For the latter, proc_stop() is called right
1579 * before mi_switch().
1580 */
1581 l->l_stat = LSSTOP;
1582 p->p_nrlwps--;
1583 }
1584 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
1585 setrunnable(l);
1586 }
1587
1588 /* !!!UPS!!! FIX ME */
1589 #if 0
1590 else if (l->l_stat == LSRUN) {
1591 /* Remove LWP from the run queue */
1592 remrunqueue(l);
1593 l->l_stat = LSSTOP;
1594 p->p_nrlwps--;
1595 } else if ((l->l_stat == LSSLEEP) ||
1596 (l->l_stat == LSSUSPENDED) ||
1597 (l->l_stat == LSZOMB) ||
1598 (l->l_stat == LSDEAD)) {
1599 /*
1600 * Don't do anything; let sleeping LWPs
1601 * discover the stopped state of the process
1602 * on their way out of the kernel; otherwise,
1603 * things like NFS threads that sleep with
1604 * locks will block the rest of the system
1605 * from getting any work done.
1606 *
1607 * Suspended/dead/zombie LWPs aren't going
1608 * anywhere, so we don't need to touch them.
1609 */
1610 }
1611 #ifdef DIAGNOSTIC
1612 else {
1613 panic("proc_stop: process %d lwp %d "
1614 "in unstoppable state %d.\n",
1615 p->p_pid, l->l_lid, l->l_stat);
1616 }
1617 #endif
1618 #endif
1619 }
1620 /* XXX unlock process LWP state */
1621
1622 sched_wakeup((caddr_t)p->p_pptr);
1623 }
1624
1625 /*
1626 * Given a process in state SSTOP, set the state back to SACTIVE and
1627 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1628 *
1629 * If no LWPs ended up runnable (and therefore able to take a signal),
1630 * return a LWP that is sleeping interruptably. The caller can wake
1631 * that LWP up to take a signal.
1632 */
1633 struct lwp *
1634 proc_unstop(struct proc *p)
1635 {
1636 struct lwp *l, *lr = NULL;
1637 int cantake = 0;
1638
1639 SCHED_ASSERT_LOCKED();
1640
1641 /*
1642 * Our caller wants to be informed if there are only sleeping
1643 * and interruptable LWPs left after we have run so that it
1644 * can invoke setrunnable() if required - return one of the
1645 * interruptable LWPs if this is the case.
1646 */
1647
1648 p->p_stat = SACTIVE;
1649 if (p->p_flag & P_SA) {
1650 /*
1651 * Preferentially select the idle LWP as the interruptable
1652 * LWP to return if it exists.
1653 */
1654 lr = p->p_sa->sa_idle;
1655 if (lr != NULL)
1656 cantake = 1;
1657 }
1658 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1659 if (l->l_stat == LSRUN) {
1660 lr = NULL;
1661 cantake = 1;
1662 }
1663 if (l->l_stat != LSSTOP)
1664 continue;
1665
1666 if (l->l_wchan != NULL) {
1667 l->l_stat = LSSLEEP;
1668 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1669 lr = l;
1670 cantake = 1;
1671 }
1672 } else {
1673 setrunnable(l);
1674 lr = NULL;
1675 cantake = 1;
1676 }
1677 }
1678
1679 return lr;
1680 }
1681
1682 /*
1683 * Take the action for the specified signal
1684 * from the current set of pending signals.
1685 */
1686 void
1687 postsig(int signum)
1688 {
1689 struct lwp *l;
1690 struct proc *p;
1691 struct sigacts *ps;
1692 sig_t action;
1693 sigset_t *returnmask;
1694
1695 l = curlwp;
1696 p = l->l_proc;
1697 ps = p->p_sigacts;
1698 #ifdef DIAGNOSTIC
1699 if (signum == 0)
1700 panic("postsig");
1701 #endif
1702
1703 KERNEL_PROC_LOCK(l);
1704
1705 sigdelset(&p->p_sigctx.ps_siglist, signum);
1706 action = SIGACTION_PS(ps, signum).sa_handler;
1707 if (action == SIG_DFL) {
1708 #ifdef KTRACE
1709 if (KTRPOINT(p, KTR_PSIG))
1710 ktrpsig(p, signum, action,
1711 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1712 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1713 NULL);
1714 #endif
1715 /*
1716 * Default action, where the default is to kill
1717 * the process. (Other cases were ignored above.)
1718 */
1719 sigexit(l, signum);
1720 /* NOTREACHED */
1721 } else {
1722 ksiginfo_t *ksi;
1723 /*
1724 * If we get here, the signal must be caught.
1725 */
1726 #ifdef DIAGNOSTIC
1727 if (action == SIG_IGN ||
1728 sigismember(&p->p_sigctx.ps_sigmask, signum))
1729 panic("postsig action");
1730 #endif
1731 /*
1732 * Set the new mask value and also defer further
1733 * occurrences of this signal.
1734 *
1735 * Special case: user has done a sigpause. Here the
1736 * current mask is not of interest, but rather the
1737 * mask from before the sigpause is what we want
1738 * restored after the signal processing is completed.
1739 */
1740 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1741 returnmask = &p->p_sigctx.ps_oldmask;
1742 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1743 } else
1744 returnmask = &p->p_sigctx.ps_sigmask;
1745 p->p_stats->p_ru.ru_nsignals++;
1746 ksi = ksiginfo_get(p, signum);
1747 #ifdef KTRACE
1748 if (KTRPOINT(p, KTR_PSIG))
1749 ktrpsig(p, signum, action,
1750 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1751 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1752 ksi);
1753 #endif
1754 if (ksi == NULL) {
1755 ksiginfo_t ksi1;
1756 /*
1757 * we did not save any siginfo for this, either
1758 * because the signal was not caught, or because the
1759 * user did not request SA_SIGINFO
1760 */
1761 (void)memset(&ksi1, 0, sizeof(ksi1));
1762 ksi1.ksi_signo = signum;
1763 kpsendsig(l, &ksi1, returnmask);
1764 } else {
1765 kpsendsig(l, ksi, returnmask);
1766 pool_put(&ksiginfo_pool, ksi);
1767 }
1768 p->p_sigctx.ps_lwp = 0;
1769 p->p_sigctx.ps_code = 0;
1770 p->p_sigctx.ps_signo = 0;
1771 (void) splsched(); /* XXXSMP */
1772 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1773 &p->p_sigctx.ps_sigmask);
1774 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1775 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1776 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1777 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1778 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1779 }
1780 (void) spl0(); /* XXXSMP */
1781 }
1782
1783 KERNEL_PROC_UNLOCK(l);
1784 }
1785
1786 /*
1787 * Kill the current process for stated reason.
1788 */
1789 void
1790 killproc(struct proc *p, const char *why)
1791 {
1792 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1793 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1794 psignal(p, SIGKILL);
1795 }
1796
1797 /*
1798 * Force the current process to exit with the specified signal, dumping core
1799 * if appropriate. We bypass the normal tests for masked and caught signals,
1800 * allowing unrecoverable failures to terminate the process without changing
1801 * signal state. Mark the accounting record with the signal termination.
1802 * If dumping core, save the signal number for the debugger. Calls exit and
1803 * does not return.
1804 */
1805
1806 #if defined(DEBUG)
1807 int kern_logsigexit = 1; /* not static to make public for sysctl */
1808 #else
1809 int kern_logsigexit = 0; /* not static to make public for sysctl */
1810 #endif
1811
1812 static const char logcoredump[] =
1813 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1814 static const char lognocoredump[] =
1815 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1816
1817 /* Wrapper function for use in p_userret */
1818 static void
1819 lwp_coredump_hook(struct lwp *l, void *arg)
1820 {
1821 int s;
1822
1823 /*
1824 * Suspend ourselves, so that the kernel stack and therefore
1825 * the userland registers saved in the trapframe are around
1826 * for coredump() to write them out.
1827 */
1828 KERNEL_PROC_LOCK(l);
1829 l->l_flag &= ~L_DETACHED;
1830 SCHED_LOCK(s);
1831 l->l_stat = LSSUSPENDED;
1832 l->l_proc->p_nrlwps--;
1833 /* XXX NJWLWP check if this makes sense here: */
1834 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1835 mi_switch(l, NULL);
1836 SCHED_ASSERT_UNLOCKED();
1837 splx(s);
1838
1839 lwp_exit(l);
1840 }
1841
1842 void
1843 sigexit(struct lwp *l, int signum)
1844 {
1845 struct proc *p;
1846 #if 0
1847 struct lwp *l2;
1848 #endif
1849 int error, exitsig;
1850
1851 p = l->l_proc;
1852
1853 /*
1854 * Don't permit coredump() or exit1() multiple times
1855 * in the same process.
1856 */
1857 if (p->p_flag & P_WEXIT) {
1858 KERNEL_PROC_UNLOCK(l);
1859 (*p->p_userret)(l, p->p_userret_arg);
1860 }
1861 p->p_flag |= P_WEXIT;
1862 /* We don't want to switch away from exiting. */
1863 /* XXX multiprocessor: stop LWPs on other processors. */
1864 #if 0
1865 if (p->p_flag & P_SA) {
1866 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1867 l2->l_flag &= ~L_SA;
1868 p->p_flag &= ~P_SA;
1869 }
1870 #endif
1871
1872 /* Make other LWPs stick around long enough to be dumped */
1873 p->p_userret = lwp_coredump_hook;
1874 p->p_userret_arg = NULL;
1875
1876 exitsig = signum;
1877 p->p_acflag |= AXSIG;
1878 if (sigprop[signum] & SA_CORE) {
1879 p->p_sigctx.ps_signo = signum;
1880 if ((error = coredump(l)) == 0)
1881 exitsig |= WCOREFLAG;
1882
1883 if (kern_logsigexit) {
1884 /* XXX What if we ever have really large UIDs? */
1885 int uid = p->p_cred && p->p_ucred ?
1886 (int) p->p_ucred->cr_uid : -1;
1887
1888 if (error)
1889 log(LOG_INFO, lognocoredump, p->p_pid,
1890 p->p_comm, uid, signum, error);
1891 else
1892 log(LOG_INFO, logcoredump, p->p_pid,
1893 p->p_comm, uid, signum);
1894 }
1895
1896 }
1897
1898 exit1(l, W_EXITCODE(0, exitsig));
1899 /* NOTREACHED */
1900 }
1901
1902 /*
1903 * Dump core, into a file named "progname.core" or "core" (depending on the
1904 * value of shortcorename), unless the process was setuid/setgid.
1905 */
1906 int
1907 coredump(struct lwp *l)
1908 {
1909 struct vnode *vp;
1910 struct proc *p;
1911 struct vmspace *vm;
1912 struct ucred *cred;
1913 struct nameidata nd;
1914 struct vattr vattr;
1915 int error, error1;
1916 char name[MAXPATHLEN];
1917
1918 p = l->l_proc;
1919 vm = p->p_vmspace;
1920 cred = p->p_cred->pc_ucred;
1921
1922 /*
1923 * Make sure the process has not set-id, to prevent data leaks.
1924 */
1925 if (p->p_flag & P_SUGID)
1926 return (EPERM);
1927
1928 /*
1929 * Refuse to core if the data + stack + user size is larger than
1930 * the core dump limit. XXX THIS IS WRONG, because of mapped
1931 * data.
1932 */
1933 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1934 p->p_rlimit[RLIMIT_CORE].rlim_cur)
1935 return (EFBIG); /* better error code? */
1936
1937 /*
1938 * The core dump will go in the current working directory. Make
1939 * sure that the directory is still there and that the mount flags
1940 * allow us to write core dumps there.
1941 */
1942 vp = p->p_cwdi->cwdi_cdir;
1943 if (vp->v_mount == NULL ||
1944 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1945 return (EPERM);
1946
1947 error = build_corename(p, name);
1948 if (error)
1949 return error;
1950
1951 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1952 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1953 if (error)
1954 return (error);
1955 vp = nd.ni_vp;
1956
1957 /* Don't dump to non-regular files or files with links. */
1958 if (vp->v_type != VREG ||
1959 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
1960 error = EINVAL;
1961 goto out;
1962 }
1963 VATTR_NULL(&vattr);
1964 vattr.va_size = 0;
1965 VOP_LEASE(vp, p, cred, LEASE_WRITE);
1966 VOP_SETATTR(vp, &vattr, cred, p);
1967 p->p_acflag |= ACORE;
1968
1969 /* Now dump the actual core file. */
1970 error = (*p->p_execsw->es_coredump)(l, vp, cred);
1971 out:
1972 VOP_UNLOCK(vp, 0);
1973 error1 = vn_close(vp, FWRITE, cred, p);
1974 if (error == 0)
1975 error = error1;
1976 return (error);
1977 }
1978
1979 /*
1980 * Nonexistent system call-- signal process (may want to handle it).
1981 * Flag error in case process won't see signal immediately (blocked or ignored).
1982 */
1983 /* ARGSUSED */
1984 int
1985 sys_nosys(struct lwp *l, void *v, register_t *retval)
1986 {
1987 struct proc *p;
1988
1989 p = l->l_proc;
1990 psignal(p, SIGSYS);
1991 return (ENOSYS);
1992 }
1993
1994 static int
1995 build_corename(struct proc *p, char dst[MAXPATHLEN])
1996 {
1997 const char *s;
1998 char *d, *end;
1999 int i;
2000
2001 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
2002 *s != '\0'; s++) {
2003 if (*s == '%') {
2004 switch (*(s + 1)) {
2005 case 'n':
2006 i = snprintf(d, end - d, "%s", p->p_comm);
2007 break;
2008 case 'p':
2009 i = snprintf(d, end - d, "%d", p->p_pid);
2010 break;
2011 case 'u':
2012 i = snprintf(d, end - d, "%.*s",
2013 (int)sizeof p->p_pgrp->pg_session->s_login,
2014 p->p_pgrp->pg_session->s_login);
2015 break;
2016 case 't':
2017 i = snprintf(d, end - d, "%ld",
2018 p->p_stats->p_start.tv_sec);
2019 break;
2020 default:
2021 goto copy;
2022 }
2023 d += i;
2024 s++;
2025 } else {
2026 copy: *d = *s;
2027 d++;
2028 }
2029 if (d >= end)
2030 return (ENAMETOOLONG);
2031 }
2032 *d = '\0';
2033 return 0;
2034 }
2035
2036 void
2037 getucontext(struct lwp *l, ucontext_t *ucp)
2038 {
2039 struct proc *p;
2040
2041 p = l->l_proc;
2042
2043 ucp->uc_flags = 0;
2044 ucp->uc_link = l->l_ctxlink;
2045
2046 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2047 ucp->uc_flags |= _UC_SIGMASK;
2048
2049 /*
2050 * The (unsupplied) definition of the `current execution stack'
2051 * in the System V Interface Definition appears to allow returning
2052 * the main context stack.
2053 */
2054 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2055 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2056 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2057 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2058 } else {
2059 /* Simply copy alternate signal execution stack. */
2060 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2061 }
2062 ucp->uc_flags |= _UC_STACK;
2063
2064 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2065 }
2066
2067 /* ARGSUSED */
2068 int
2069 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2070 {
2071 struct sys_getcontext_args /* {
2072 syscallarg(struct __ucontext *) ucp;
2073 } */ *uap = v;
2074 ucontext_t uc;
2075
2076 getucontext(l, &uc);
2077
2078 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2079 }
2080
2081 int
2082 setucontext(struct lwp *l, const ucontext_t *ucp)
2083 {
2084 struct proc *p;
2085 int error;
2086
2087 p = l->l_proc;
2088 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2089 return (error);
2090 l->l_ctxlink = ucp->uc_link;
2091 /*
2092 * We might want to take care of the stack portion here but currently
2093 * don't; see the comment in getucontext().
2094 */
2095 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2096 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2097
2098 return 0;
2099 }
2100
2101 /* ARGSUSED */
2102 int
2103 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2104 {
2105 struct sys_setcontext_args /* {
2106 syscallarg(const ucontext_t *) ucp;
2107 } */ *uap = v;
2108 ucontext_t uc;
2109 int error;
2110
2111 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2112 exit1(l, W_EXITCODE(0, 0));
2113 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2114 (error = setucontext(l, &uc)) != 0)
2115 return (error);
2116
2117 return (EJUSTRETURN);
2118 }
2119
2120 /*
2121 * sigtimedwait(2) system call, used also for implementation
2122 * of sigwaitinfo() and sigwait().
2123 *
2124 * This only handles single LWP in signal wait. libpthread provides
2125 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2126 *
2127 * XXX no support for queued signals, si_code is always SI_USER.
2128 */
2129 int
2130 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2131 {
2132 struct sys___sigtimedwait_args /* {
2133 syscallarg(const sigset_t *) set;
2134 syscallarg(siginfo_t *) info;
2135 syscallarg(struct timespec *) timeout;
2136 } */ *uap = v;
2137 sigset_t waitset, twaitset;
2138 struct proc *p = l->l_proc;
2139 int error, signum, s;
2140 int timo = 0;
2141 struct timeval tvstart;
2142 struct timespec ts;
2143
2144 if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
2145 return (error);
2146
2147 /*
2148 * Silently ignore SA_CANTMASK signals. psignal1() would
2149 * ignore SA_CANTMASK signals in waitset, we do this
2150 * only for the below siglist check.
2151 */
2152 sigminusset(&sigcantmask, &waitset);
2153
2154 /*
2155 * First scan siglist and check if there is signal from
2156 * our waitset already pending.
2157 */
2158 twaitset = waitset;
2159 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2160 if ((signum = firstsig(&twaitset))) {
2161 /* found pending signal */
2162 sigdelset(&p->p_sigctx.ps_siglist, signum);
2163 goto sig;
2164 }
2165
2166 /*
2167 * Calculate timeout, if it was specified.
2168 */
2169 if (SCARG(uap, timeout)) {
2170 uint64_t ms;
2171
2172 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2173 return (error);
2174
2175 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2176 timo = mstohz(ms);
2177 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2178 timo = 1;
2179 if (timo <= 0)
2180 return (EAGAIN);
2181
2182 /*
2183 * Remember current mono_time, it would be used in
2184 * ECANCELED/ERESTART case.
2185 */
2186 s = splclock();
2187 tvstart = mono_time;
2188 splx(s);
2189 }
2190
2191 /*
2192 * Setup ps_sigwait list.
2193 */
2194 p->p_sigctx.ps_sigwaited = -1;
2195 p->p_sigctx.ps_sigwait = waitset;
2196
2197 /*
2198 * Wait for signal to arrive. We can either be woken up or
2199 * time out.
2200 */
2201 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2202
2203 /*
2204 * Check if a signal from our wait set has arrived, or if it
2205 * was mere wakeup.
2206 */
2207 if (!error) {
2208 if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
2209 /* wakeup via _lwp_wakeup() */
2210 error = ECANCELED;
2211 }
2212 }
2213
2214 /*
2215 * On error, clear sigwait indication. psignal1() sets it
2216 * in !error case.
2217 */
2218 if (error) {
2219 p->p_sigctx.ps_sigwaited = 0;
2220
2221 /*
2222 * If the sleep was interrupted (either by signal or wakeup),
2223 * update the timeout and copyout new value back.
2224 * It would be used when the syscall would be restarted
2225 * or called again.
2226 */
2227 if (timo && (error == ERESTART || error == ECANCELED)) {
2228 struct timeval tvnow, tvtimo;
2229 int err;
2230
2231 s = splclock();
2232 tvnow = mono_time;
2233 splx(s);
2234
2235 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2236
2237 /* compute how much time has passed since start */
2238 timersub(&tvnow, &tvstart, &tvnow);
2239 /* substract passed time from timeout */
2240 timersub(&tvtimo, &tvnow, &tvtimo);
2241
2242 if (tvtimo.tv_sec < 0)
2243 return (EAGAIN);
2244
2245 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2246
2247 /* copy updated timeout to userland */
2248 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
2249 return (err);
2250 }
2251
2252 return (error);
2253 }
2254
2255 /*
2256 * If a signal from the wait set arrived, copy it to userland.
2257 * XXX no queued signals for now
2258 */
2259 if (signum > 0) {
2260 siginfo_t si;
2261
2262 sig:
2263 memset(&si, 0, sizeof(si));
2264 si.si_signo = signum;
2265 si.si_code = SI_USER;
2266
2267 error = copyout(&si, SCARG(uap, info), sizeof(si));
2268 if (error)
2269 return (error);
2270 }
2271
2272 return (0);
2273 }
2274
2275 /*
2276 * Returns true if signal is ignored or masked for passed process.
2277 */
2278 int
2279 sigismasked(struct proc *p, int sig)
2280 {
2281
2282 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2283 sigismember(&p->p_sigctx.ps_sigmask, sig));
2284 }
2285
2286 static int
2287 filt_sigattach(struct knote *kn)
2288 {
2289 struct proc *p = curproc;
2290
2291 kn->kn_ptr.p_proc = p;
2292 kn->kn_flags |= EV_CLEAR; /* automatically set */
2293
2294 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2295
2296 return (0);
2297 }
2298
2299 static void
2300 filt_sigdetach(struct knote *kn)
2301 {
2302 struct proc *p = kn->kn_ptr.p_proc;
2303
2304 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2305 }
2306
2307 /*
2308 * signal knotes are shared with proc knotes, so we apply a mask to
2309 * the hint in order to differentiate them from process hints. This
2310 * could be avoided by using a signal-specific knote list, but probably
2311 * isn't worth the trouble.
2312 */
2313 static int
2314 filt_signal(struct knote *kn, long hint)
2315 {
2316
2317 if (hint & NOTE_SIGNAL) {
2318 hint &= ~NOTE_SIGNAL;
2319
2320 if (kn->kn_id == hint)
2321 kn->kn_data++;
2322 }
2323 return (kn->kn_data != 0);
2324 }
2325
2326 const struct filterops sig_filtops = {
2327 0, filt_sigattach, filt_sigdetach, filt_signal
2328 };
2329