kern_sig.c revision 1.165 1 /* $NetBSD: kern_sig.c,v 1.165 2003/10/07 00:23:17 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.165 2003/10/07 00:23:17 thorpej Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm_extern.h>
82
83 static void child_psignal(struct proc *, int);
84 static void proc_stop(struct proc *);
85 static int build_corename(struct proc *, char [MAXPATHLEN]);
86 static void ksiginfo_exithook(struct proc *, void *);
87 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94 struct pool siginfo_pool; /* memory pool for siginfo structures */
95 struct pool ksiginfo_pool; /* memory pool for ksiginfo structures */
96
97 /*
98 * Can process p, with pcred pc, send the signal signum to process q?
99 */
100 #define CANSIGNAL(p, pc, q, signum) \
101 ((pc)->pc_ucred->cr_uid == 0 || \
102 (pc)->p_ruid == (q)->p_cred->p_ruid || \
103 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
104 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
105 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
106 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
107
108 /*
109 * Remove and return the first ksiginfo element that matches our requested
110 * signal, or return NULL if one not found.
111 */
112 static ksiginfo_t *
113 ksiginfo_get(struct proc *p, int signo)
114 {
115 ksiginfo_t *ksi;
116
117 simple_lock(&p->p_sigctx.ps_silock);
118 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
119 if (ksi->ksi_signo == signo) {
120 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
121 simple_unlock(&p->p_sigctx.ps_silock);
122 return ksi;
123 }
124 }
125 simple_unlock(&p->p_sigctx.ps_silock);
126 return NULL;
127 }
128
129 /*
130 * Append a new ksiginfo element to the list of pending ksiginfo's, if
131 * we need to (SA_SIGINFO was requested). We replace non RT signals if
132 * they already existed in the queue and we add new entries for RT signals,
133 * or for non RT signals with non-existing entries.
134 */
135 static void
136 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
137 {
138 ksiginfo_t *kp;
139 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
140
141 if ((sa->sa_flags & SA_SIGINFO) == 0)
142 return;
143
144 simple_lock(&p->p_sigctx.ps_silock);
145 #ifdef notyet /* XXX: QUEUING */
146 if (ksi->ksi_signo < SIGRTMIN)
147 #endif
148 {
149 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
150 if (kp->ksi_signo == ksi->ksi_signo) {
151 CIRCLEQ_ENTRY(ksiginfo) sv;
152 (void)memcpy(&sv, &kp->ksi_list, sizeof(sv));
153 *kp = *ksi;
154 (void)memcpy(&kp->ksi_list, &sv, sizeof(sv));
155 simple_unlock(&p->p_sigctx.ps_silock);
156 return;
157 }
158 }
159 }
160 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
161 if (kp == NULL) {
162 #ifdef DIAGNOSTIC
163 printf("Out of memory allocating siginfo for pid %d\n",
164 p->p_pid);
165 #endif
166 return;
167 }
168 *kp = *ksi;
169 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
170 simple_unlock(&p->p_sigctx.ps_silock);
171 }
172
173 /*
174 * free all pending ksiginfo on exit
175 */
176 static void
177 ksiginfo_exithook(struct proc *p, void *v)
178 {
179
180 simple_lock(&p->p_sigctx.ps_silock);
181 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
182 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
183 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
184 pool_put(&ksiginfo_pool, ksi);
185 }
186 simple_unlock(&p->p_sigctx.ps_silock);
187 }
188
189 /*
190 * Initialize signal-related data structures.
191 */
192 void
193 signal_init(void)
194 {
195 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
196 &pool_allocator_nointr);
197 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
198 &pool_allocator_nointr);
199 pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
200 NULL);
201 exithook_establish(ksiginfo_exithook, NULL);
202 exechook_establish(ksiginfo_exithook, NULL);
203 }
204
205 /*
206 * Create an initial sigctx structure, using the same signal state
207 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
208 * copy it from parent.
209 */
210 void
211 sigactsinit(struct proc *np, struct proc *pp, int share)
212 {
213 struct sigacts *ps;
214
215 if (share) {
216 np->p_sigacts = pp->p_sigacts;
217 pp->p_sigacts->sa_refcnt++;
218 } else {
219 ps = pool_get(&sigacts_pool, PR_WAITOK);
220 if (pp)
221 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
222 else
223 memset(ps, '\0', sizeof(struct sigacts));
224 ps->sa_refcnt = 1;
225 np->p_sigacts = ps;
226 }
227 }
228
229 /*
230 * Make this process not share its sigctx, maintaining all
231 * signal state.
232 */
233 void
234 sigactsunshare(struct proc *p)
235 {
236 struct sigacts *oldps;
237
238 if (p->p_sigacts->sa_refcnt == 1)
239 return;
240
241 oldps = p->p_sigacts;
242 sigactsinit(p, NULL, 0);
243
244 if (--oldps->sa_refcnt == 0)
245 pool_put(&sigacts_pool, oldps);
246 }
247
248 /*
249 * Release a sigctx structure.
250 */
251 void
252 sigactsfree(struct proc *p)
253 {
254 struct sigacts *ps;
255
256 ps = p->p_sigacts;
257 if (--ps->sa_refcnt > 0)
258 return;
259
260 pool_put(&sigacts_pool, ps);
261 }
262
263 int
264 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
265 struct sigaction *osa, const void *tramp, int vers)
266 {
267 struct sigacts *ps;
268 int prop;
269
270 ps = p->p_sigacts;
271 if (signum <= 0 || signum >= NSIG)
272 return (EINVAL);
273
274 /*
275 * Trampoline ABI version 0 is reserved for the legacy
276 * kernel-provided on-stack trampoline. Conversely, if we are
277 * using a non-0 ABI version, we must have a trampoline. Only
278 * validate the vers if a new sigaction was supplied. Emulations
279 * use legacy kernel trampolines with version 0, alternatively
280 * check for that too.
281 */
282 if ((vers != 0 && tramp == NULL) ||
283 #ifdef SIGTRAMP_VALID
284 (nsa != NULL &&
285 ((vers == 0) ?
286 (p->p_emul->e_sigcode == NULL) :
287 !SIGTRAMP_VALID(vers))) ||
288 #endif
289 (vers == 0 && tramp != NULL))
290 return (EINVAL);
291
292 if (osa)
293 *osa = SIGACTION_PS(ps, signum);
294
295 if (nsa) {
296 if (nsa->sa_flags & ~SA_ALLBITS)
297 return (EINVAL);
298
299 #ifndef __HAVE_SIGINFO
300 if (nsa->sa_flags & SA_SIGINFO)
301 return (EINVAL);
302 #endif
303
304 prop = sigprop[signum];
305 if (prop & SA_CANTMASK)
306 return (EINVAL);
307
308 (void) splsched(); /* XXXSMP */
309 SIGACTION_PS(ps, signum) = *nsa;
310 ps->sa_sigdesc[signum].sd_tramp = tramp;
311 ps->sa_sigdesc[signum].sd_vers = vers;
312 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
313 if ((prop & SA_NORESET) != 0)
314 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
315 if (signum == SIGCHLD) {
316 if (nsa->sa_flags & SA_NOCLDSTOP)
317 p->p_flag |= P_NOCLDSTOP;
318 else
319 p->p_flag &= ~P_NOCLDSTOP;
320 if (nsa->sa_flags & SA_NOCLDWAIT) {
321 /*
322 * Paranoia: since SA_NOCLDWAIT is implemented
323 * by reparenting the dying child to PID 1 (and
324 * trust it to reap the zombie), PID 1 itself
325 * is forbidden to set SA_NOCLDWAIT.
326 */
327 if (p->p_pid == 1)
328 p->p_flag &= ~P_NOCLDWAIT;
329 else
330 p->p_flag |= P_NOCLDWAIT;
331 } else
332 p->p_flag &= ~P_NOCLDWAIT;
333 }
334 if ((nsa->sa_flags & SA_NODEFER) == 0)
335 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
336 else
337 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
338 /*
339 * Set bit in p_sigctx.ps_sigignore for signals that are set to
340 * SIG_IGN, and for signals set to SIG_DFL where the default is
341 * to ignore. However, don't put SIGCONT in
342 * p_sigctx.ps_sigignore, as we have to restart the process.
343 */
344 if (nsa->sa_handler == SIG_IGN ||
345 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
346 /* never to be seen again */
347 sigdelset(&p->p_sigctx.ps_siglist, signum);
348 if (signum != SIGCONT) {
349 /* easier in psignal */
350 sigaddset(&p->p_sigctx.ps_sigignore, signum);
351 }
352 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
353 } else {
354 sigdelset(&p->p_sigctx.ps_sigignore, signum);
355 if (nsa->sa_handler == SIG_DFL)
356 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
357 else
358 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
359 }
360 (void) spl0();
361 }
362
363 return (0);
364 }
365
366 #ifdef COMPAT_16
367 /* ARGSUSED */
368 int
369 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
370 {
371 struct compat_16_sys___sigaction14_args /* {
372 syscallarg(int) signum;
373 syscallarg(const struct sigaction *) nsa;
374 syscallarg(struct sigaction *) osa;
375 } */ *uap = v;
376 struct proc *p;
377 struct sigaction nsa, osa;
378 int error;
379
380 if (SCARG(uap, nsa)) {
381 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
382 if (error)
383 return (error);
384 }
385 p = l->l_proc;
386 error = sigaction1(p, SCARG(uap, signum),
387 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
388 NULL, 0);
389 if (error)
390 return (error);
391 if (SCARG(uap, osa)) {
392 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
393 if (error)
394 return (error);
395 }
396 return (0);
397 }
398 #endif
399
400 /* ARGSUSED */
401 int
402 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
403 {
404 struct sys___sigaction_sigtramp_args /* {
405 syscallarg(int) signum;
406 syscallarg(const struct sigaction *) nsa;
407 syscallarg(struct sigaction *) osa;
408 syscallarg(void *) tramp;
409 syscallarg(int) vers;
410 } */ *uap = v;
411 struct proc *p = l->l_proc;
412 struct sigaction nsa, osa;
413 int error;
414
415 if (SCARG(uap, nsa)) {
416 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
417 if (error)
418 return (error);
419 }
420 error = sigaction1(p, SCARG(uap, signum),
421 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
422 SCARG(uap, tramp), SCARG(uap, vers));
423 if (error)
424 return (error);
425 if (SCARG(uap, osa)) {
426 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
427 if (error)
428 return (error);
429 }
430 return (0);
431 }
432
433 /*
434 * Initialize signal state for process 0;
435 * set to ignore signals that are ignored by default and disable the signal
436 * stack.
437 */
438 void
439 siginit(struct proc *p)
440 {
441 struct sigacts *ps;
442 int signum, prop;
443
444 ps = p->p_sigacts;
445 sigemptyset(&contsigmask);
446 sigemptyset(&stopsigmask);
447 sigemptyset(&sigcantmask);
448 for (signum = 1; signum < NSIG; signum++) {
449 prop = sigprop[signum];
450 if (prop & SA_CONT)
451 sigaddset(&contsigmask, signum);
452 if (prop & SA_STOP)
453 sigaddset(&stopsigmask, signum);
454 if (prop & SA_CANTMASK)
455 sigaddset(&sigcantmask, signum);
456 if (prop & SA_IGNORE && signum != SIGCONT)
457 sigaddset(&p->p_sigctx.ps_sigignore, signum);
458 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
459 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
460 }
461 sigemptyset(&p->p_sigctx.ps_sigcatch);
462 p->p_sigctx.ps_sigwaited = 0;
463 p->p_flag &= ~P_NOCLDSTOP;
464
465 /*
466 * Reset stack state to the user stack.
467 */
468 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
469 p->p_sigctx.ps_sigstk.ss_size = 0;
470 p->p_sigctx.ps_sigstk.ss_sp = 0;
471
472 /* One reference. */
473 ps->sa_refcnt = 1;
474 }
475
476 /*
477 * Reset signals for an exec of the specified process.
478 */
479 void
480 execsigs(struct proc *p)
481 {
482 struct sigacts *ps;
483 int signum, prop;
484
485 sigactsunshare(p);
486
487 ps = p->p_sigacts;
488
489 /*
490 * Reset caught signals. Held signals remain held
491 * through p_sigctx.ps_sigmask (unless they were caught,
492 * and are now ignored by default).
493 */
494 for (signum = 1; signum < NSIG; signum++) {
495 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
496 prop = sigprop[signum];
497 if (prop & SA_IGNORE) {
498 if ((prop & SA_CONT) == 0)
499 sigaddset(&p->p_sigctx.ps_sigignore,
500 signum);
501 sigdelset(&p->p_sigctx.ps_siglist, signum);
502 }
503 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
504 }
505 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
506 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
507 }
508 sigemptyset(&p->p_sigctx.ps_sigcatch);
509 p->p_sigctx.ps_sigwaited = 0;
510 p->p_flag &= ~P_NOCLDSTOP;
511
512 /*
513 * Reset stack state to the user stack.
514 */
515 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
516 p->p_sigctx.ps_sigstk.ss_size = 0;
517 p->p_sigctx.ps_sigstk.ss_sp = 0;
518 }
519
520 int
521 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
522 {
523
524 if (oss)
525 *oss = p->p_sigctx.ps_sigmask;
526
527 if (nss) {
528 (void)splsched(); /* XXXSMP */
529 switch (how) {
530 case SIG_BLOCK:
531 sigplusset(nss, &p->p_sigctx.ps_sigmask);
532 break;
533 case SIG_UNBLOCK:
534 sigminusset(nss, &p->p_sigctx.ps_sigmask);
535 CHECKSIGS(p);
536 break;
537 case SIG_SETMASK:
538 p->p_sigctx.ps_sigmask = *nss;
539 CHECKSIGS(p);
540 break;
541 default:
542 (void)spl0(); /* XXXSMP */
543 return (EINVAL);
544 }
545 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
546 (void)spl0(); /* XXXSMP */
547 }
548
549 return (0);
550 }
551
552 /*
553 * Manipulate signal mask.
554 * Note that we receive new mask, not pointer,
555 * and return old mask as return value;
556 * the library stub does the rest.
557 */
558 int
559 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
560 {
561 struct sys___sigprocmask14_args /* {
562 syscallarg(int) how;
563 syscallarg(const sigset_t *) set;
564 syscallarg(sigset_t *) oset;
565 } */ *uap = v;
566 struct proc *p;
567 sigset_t nss, oss;
568 int error;
569
570 if (SCARG(uap, set)) {
571 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
572 if (error)
573 return (error);
574 }
575 p = l->l_proc;
576 error = sigprocmask1(p, SCARG(uap, how),
577 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
578 if (error)
579 return (error);
580 if (SCARG(uap, oset)) {
581 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
582 if (error)
583 return (error);
584 }
585 return (0);
586 }
587
588 void
589 sigpending1(struct proc *p, sigset_t *ss)
590 {
591
592 *ss = p->p_sigctx.ps_siglist;
593 sigminusset(&p->p_sigctx.ps_sigmask, ss);
594 }
595
596 /* ARGSUSED */
597 int
598 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
599 {
600 struct sys___sigpending14_args /* {
601 syscallarg(sigset_t *) set;
602 } */ *uap = v;
603 struct proc *p;
604 sigset_t ss;
605
606 p = l->l_proc;
607 sigpending1(p, &ss);
608 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
609 }
610
611 int
612 sigsuspend1(struct proc *p, const sigset_t *ss)
613 {
614 struct sigacts *ps;
615
616 ps = p->p_sigacts;
617 if (ss) {
618 /*
619 * When returning from sigpause, we want
620 * the old mask to be restored after the
621 * signal handler has finished. Thus, we
622 * save it here and mark the sigctx structure
623 * to indicate this.
624 */
625 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
626 p->p_sigctx.ps_flags |= SAS_OLDMASK;
627 (void) splsched(); /* XXXSMP */
628 p->p_sigctx.ps_sigmask = *ss;
629 CHECKSIGS(p);
630 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
631 (void) spl0(); /* XXXSMP */
632 }
633
634 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
635 /* void */;
636
637 /* always return EINTR rather than ERESTART... */
638 return (EINTR);
639 }
640
641 /*
642 * Suspend process until signal, providing mask to be set
643 * in the meantime. Note nonstandard calling convention:
644 * libc stub passes mask, not pointer, to save a copyin.
645 */
646 /* ARGSUSED */
647 int
648 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
649 {
650 struct sys___sigsuspend14_args /* {
651 syscallarg(const sigset_t *) set;
652 } */ *uap = v;
653 struct proc *p;
654 sigset_t ss;
655 int error;
656
657 if (SCARG(uap, set)) {
658 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
659 if (error)
660 return (error);
661 }
662
663 p = l->l_proc;
664 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
665 }
666
667 int
668 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
669 struct sigaltstack *oss)
670 {
671
672 if (oss)
673 *oss = p->p_sigctx.ps_sigstk;
674
675 if (nss) {
676 if (nss->ss_flags & ~SS_ALLBITS)
677 return (EINVAL);
678
679 if (nss->ss_flags & SS_DISABLE) {
680 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
681 return (EINVAL);
682 } else {
683 if (nss->ss_size < MINSIGSTKSZ)
684 return (ENOMEM);
685 }
686 p->p_sigctx.ps_sigstk = *nss;
687 }
688
689 return (0);
690 }
691
692 /* ARGSUSED */
693 int
694 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
695 {
696 struct sys___sigaltstack14_args /* {
697 syscallarg(const struct sigaltstack *) nss;
698 syscallarg(struct sigaltstack *) oss;
699 } */ *uap = v;
700 struct proc *p;
701 struct sigaltstack nss, oss;
702 int error;
703
704 if (SCARG(uap, nss)) {
705 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
706 if (error)
707 return (error);
708 }
709 p = l->l_proc;
710 error = sigaltstack1(p,
711 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
712 if (error)
713 return (error);
714 if (SCARG(uap, oss)) {
715 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
716 if (error)
717 return (error);
718 }
719 return (0);
720 }
721
722 /* ARGSUSED */
723 int
724 sys_kill(struct lwp *l, void *v, register_t *retval)
725 {
726 struct sys_kill_args /* {
727 syscallarg(int) pid;
728 syscallarg(int) signum;
729 } */ *uap = v;
730 struct proc *cp, *p;
731 struct pcred *pc;
732 ksiginfo_t ksi;
733
734 cp = l->l_proc;
735 pc = cp->p_cred;
736 if ((u_int)SCARG(uap, signum) >= NSIG)
737 return (EINVAL);
738 memset(&ksi, 0, sizeof(ksi));
739 ksi.ksi_signo = SCARG(uap, signum);
740 ksi.ksi_code = SI_USER;
741 ksi.ksi_pid = cp->p_pid;
742 ksi.ksi_uid = cp->p_ucred->cr_uid;
743 if (SCARG(uap, pid) > 0) {
744 /* kill single process */
745 if ((p = pfind(SCARG(uap, pid))) == NULL)
746 return (ESRCH);
747 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
748 return (EPERM);
749 if (SCARG(uap, signum))
750 kpsignal2(p, &ksi, 1);
751 return (0);
752 }
753 switch (SCARG(uap, pid)) {
754 case -1: /* broadcast signal */
755 return (killpg1(cp, &ksi, 0, 1));
756 case 0: /* signal own process group */
757 return (killpg1(cp, &ksi, 0, 0));
758 default: /* negative explicit process group */
759 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
760 }
761 /* NOTREACHED */
762 }
763
764 /*
765 * Common code for kill process group/broadcast kill.
766 * cp is calling process.
767 */
768 int
769 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
770 {
771 struct proc *p;
772 struct pcred *pc;
773 struct pgrp *pgrp;
774 int nfound;
775 int signum = ksi->ksi_signo;
776
777 pc = cp->p_cred;
778 nfound = 0;
779 if (all) {
780 /*
781 * broadcast
782 */
783 proclist_lock_read();
784 LIST_FOREACH(p, &allproc, p_list) {
785 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
786 p == cp || !CANSIGNAL(cp, pc, p, signum))
787 continue;
788 nfound++;
789 if (signum)
790 kpsignal2(p, ksi, 1);
791 }
792 proclist_unlock_read();
793 } else {
794 if (pgid == 0)
795 /*
796 * zero pgid means send to my process group.
797 */
798 pgrp = cp->p_pgrp;
799 else {
800 pgrp = pgfind(pgid);
801 if (pgrp == NULL)
802 return (ESRCH);
803 }
804 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
805 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
806 !CANSIGNAL(cp, pc, p, signum))
807 continue;
808 nfound++;
809 if (signum && P_ZOMBIE(p) == 0)
810 kpsignal2(p, ksi, 1);
811 }
812 }
813 return (nfound ? 0 : ESRCH);
814 }
815
816 /*
817 * Send a signal to a process group.
818 */
819 void
820 gsignal(int pgid, int signum)
821 {
822 ksiginfo_t ksi;
823 memset(&ksi, 0, sizeof(ksi));
824 ksi.ksi_signo = signum;
825 kgsignal(pgid, &ksi, NULL);
826 }
827
828 void
829 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
830 {
831 struct pgrp *pgrp;
832
833 if (pgid && (pgrp = pgfind(pgid)))
834 kpgsignal(pgrp, ksi, data, 0);
835 }
836
837 /*
838 * Send a signal to a process group. If checktty is 1,
839 * limit to members which have a controlling terminal.
840 */
841 void
842 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
843 {
844 ksiginfo_t ksi;
845 memset(&ksi, 0, sizeof(ksi));
846 ksi.ksi_signo = sig;
847 kpgsignal(pgrp, &ksi, NULL, checkctty);
848 }
849
850 void
851 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
852 {
853 struct proc *p;
854
855 if (pgrp)
856 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
857 if (checkctty == 0 || p->p_flag & P_CONTROLT)
858 kpsignal(p, ksi, data);
859 }
860
861 /*
862 * Send a signal caused by a trap to the current process.
863 * If it will be caught immediately, deliver it with correct code.
864 * Otherwise, post it normally.
865 */
866 #ifndef __HAVE_SIGINFO
867 void _trapsignal(struct lwp *, const ksiginfo_t *);
868 void
869 trapsignal(struct lwp *l, int signum, u_long code)
870 {
871 #define trapsignal _trapsignal
872 ksiginfo_t ksi;
873 memset(&ksi, 0, sizeof(ksi));
874 ksi.ksi_signo = signum;
875 ksi.ksi_trap = (int)code;
876 trapsignal(l, &ksi);
877 }
878 #endif
879
880 void
881 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
882 {
883 struct proc *p;
884 struct sigacts *ps;
885 int signum = ksi->ksi_signo;
886
887 p = l->l_proc;
888 ps = p->p_sigacts;
889 if ((p->p_flag & P_TRACED) == 0 &&
890 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
891 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
892 p->p_stats->p_ru.ru_nsignals++;
893 #ifdef KTRACE
894 if (KTRPOINT(p, KTR_PSIG))
895 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
896 &p->p_sigctx.ps_sigmask, ksi);
897 #endif
898 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
899 (void) splsched(); /* XXXSMP */
900 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
901 &p->p_sigctx.ps_sigmask);
902 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
903 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
904 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
905 sigaddset(&p->p_sigctx.ps_sigignore, signum);
906 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
907 }
908 (void) spl0(); /* XXXSMP */
909 } else {
910 p->p_sigctx.ps_lwp = l->l_lid;
911 /* XXX for core dump/debugger */
912 p->p_sigctx.ps_signo = ksi->ksi_signo;
913 p->p_sigctx.ps_code = ksi->ksi_trap;
914 kpsignal2(p, ksi, 1);
915 }
916 }
917
918 /*
919 * Fill in signal information and signal the parent for a child status change.
920 */
921 static void
922 child_psignal(struct proc *p, int dolock)
923 {
924 ksiginfo_t ksi;
925
926 (void)memset(&ksi, 0, sizeof(ksi));
927 ksi.ksi_signo = SIGCHLD;
928 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
929 ksi.ksi_pid = p->p_pid;
930 ksi.ksi_uid = p->p_ucred->cr_uid;
931 ksi.ksi_status = p->p_xstat;
932 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
933 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
934 kpsignal2(p->p_pptr, &ksi, dolock);
935 }
936
937 /*
938 * Send the signal to the process. If the signal has an action, the action
939 * is usually performed by the target process rather than the caller; we add
940 * the signal to the set of pending signals for the process.
941 *
942 * Exceptions:
943 * o When a stop signal is sent to a sleeping process that takes the
944 * default action, the process is stopped without awakening it.
945 * o SIGCONT restarts stopped processes (or puts them back to sleep)
946 * regardless of the signal action (eg, blocked or ignored).
947 *
948 * Other ignored signals are discarded immediately.
949 *
950 * XXXSMP: Invoked as psignal() or sched_psignal().
951 */
952 void
953 psignal1(struct proc *p, int signum, int dolock)
954 {
955 ksiginfo_t ksi;
956
957 memset(&ksi, 0, sizeof(ksi));
958 ksi.ksi_signo = signum;
959 kpsignal2(p, &ksi, dolock);
960 }
961
962 void
963 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
964 {
965
966 if ((p->p_flag & P_WEXIT) == 0 && data) {
967 size_t fd;
968 struct filedesc *fdp = p->p_fd;
969
970 ksi->ksi_fd = -1;
971 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
972 struct file *fp = fdp->fd_ofiles[fd];
973 /* XXX: lock? */
974 if (fp && fp->f_data == data) {
975 ksi->ksi_fd = fd;
976 break;
977 }
978 }
979 }
980 kpsignal2(p, ksi, dolock);
981 }
982
983 static void
984 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
985 {
986 struct lwp *l, *suspended;
987 int s = 0, prop, allsusp;
988 sig_t action;
989 int signum = ksi->ksi_signo;
990
991 #ifdef DIAGNOSTIC
992 if (signum <= 0 || signum >= NSIG)
993 panic("psignal signal number %d", signum);
994
995 /* XXXSMP: works, but icky */
996 if (dolock)
997 SCHED_ASSERT_UNLOCKED();
998 else
999 SCHED_ASSERT_LOCKED();
1000 #endif
1001
1002
1003 /*
1004 * Notify any interested parties in the signal.
1005 */
1006 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1007
1008 prop = sigprop[signum];
1009
1010 /*
1011 * If proc is traced, always give parent a chance.
1012 */
1013 if (p->p_flag & P_TRACED)
1014 action = SIG_DFL;
1015 else {
1016 /*
1017 * If the signal is being ignored,
1018 * then we forget about it immediately.
1019 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1020 * and if it is set to SIG_IGN,
1021 * action will be SIG_DFL here.)
1022 */
1023 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1024 return;
1025 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1026 action = SIG_HOLD;
1027 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1028 action = SIG_CATCH;
1029 else {
1030 action = SIG_DFL;
1031
1032 if (prop & SA_KILL && p->p_nice > NZERO)
1033 p->p_nice = NZERO;
1034
1035 /*
1036 * If sending a tty stop signal to a member of an
1037 * orphaned process group, discard the signal here if
1038 * the action is default; don't stop the process below
1039 * if sleeping, and don't clear any pending SIGCONT.
1040 */
1041 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1042 return;
1043 }
1044 }
1045
1046 if (prop & SA_CONT)
1047 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1048
1049 if (prop & SA_STOP)
1050 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1051
1052 sigaddset(&p->p_sigctx.ps_siglist, signum);
1053
1054 /* CHECKSIGS() is "inlined" here. */
1055 p->p_sigctx.ps_sigcheck = 1;
1056
1057 /*
1058 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1059 * please!), check if anything waits on it. If yes, clear the
1060 * pending signal from siglist set, save it to ps_sigwaited,
1061 * clear sigwait list, and wakeup any sigwaiters.
1062 * The signal won't be processed further here.
1063 */
1064 if ((prop & SA_CANTMASK) == 0
1065 && p->p_sigctx.ps_sigwaited < 0
1066 && sigismember(&p->p_sigctx.ps_sigwait, signum)
1067 && p->p_stat != SSTOP) {
1068 if (action == SIG_CATCH)
1069 ksiginfo_put(p, ksi);
1070 sigdelset(&p->p_sigctx.ps_siglist, signum);
1071 p->p_sigctx.ps_sigwaited = signum;
1072 sigemptyset(&p->p_sigctx.ps_sigwait);
1073 if (dolock)
1074 wakeup_one(&p->p_sigctx.ps_sigwait);
1075 else
1076 sched_wakeup(&p->p_sigctx.ps_sigwait);
1077 return;
1078 }
1079
1080 /*
1081 * Defer further processing for signals which are held,
1082 * except that stopped processes must be continued by SIGCONT.
1083 */
1084 if (action == SIG_HOLD &&
1085 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1086 ksiginfo_put(p, ksi);
1087 return;
1088 }
1089 /* XXXSMP: works, but icky */
1090 if (dolock)
1091 SCHED_LOCK(s);
1092
1093 /* XXXUPSXXX LWPs might go to sleep without passing signal handling */
1094 if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
1095 && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
1096 /*
1097 * At least one LWP is running or on a run queue.
1098 * The signal will be noticed when one of them returns
1099 * to userspace.
1100 */
1101 signotify(p);
1102 /*
1103 * The signal will be noticed very soon.
1104 */
1105 goto out;
1106 } else {
1107 /* Process is sleeping or stopped */
1108 if (p->p_flag & P_SA) {
1109 struct lwp *l2 = p->p_sa->sa_vp;
1110 l = NULL;
1111 allsusp = 1;
1112
1113 if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
1114 l = l2;
1115 else if (l2->l_stat == LSSUSPENDED)
1116 suspended = l2;
1117 else if ((l2->l_stat != LSZOMB) &&
1118 (l2->l_stat != LSDEAD))
1119 allsusp = 0;
1120 } else {
1121 /*
1122 * Find out if any of the sleeps are interruptable,
1123 * and if all the live LWPs remaining are suspended.
1124 */
1125 allsusp = 1;
1126 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1127 if (l->l_stat == LSSLEEP &&
1128 l->l_flag & L_SINTR)
1129 break;
1130 if (l->l_stat == LSSUSPENDED)
1131 suspended = l;
1132 else if ((l->l_stat != LSZOMB) &&
1133 (l->l_stat != LSDEAD))
1134 allsusp = 0;
1135 }
1136 }
1137 if (p->p_stat == SACTIVE) {
1138
1139
1140 if (l != NULL && (p->p_flag & P_TRACED))
1141 goto run;
1142
1143 /*
1144 * If SIGCONT is default (or ignored) and process is
1145 * asleep, we are finished; the process should not
1146 * be awakened.
1147 */
1148 if ((prop & SA_CONT) && action == SIG_DFL) {
1149 sigdelset(&p->p_sigctx.ps_siglist, signum);
1150 goto done;
1151 }
1152
1153 /*
1154 * When a sleeping process receives a stop
1155 * signal, process immediately if possible.
1156 */
1157 if ((prop & SA_STOP) && action == SIG_DFL) {
1158 /*
1159 * If a child holding parent blocked,
1160 * stopping could cause deadlock.
1161 */
1162 if (p->p_flag & P_PPWAIT) {
1163 goto out;
1164 }
1165 sigdelset(&p->p_sigctx.ps_siglist, signum);
1166 p->p_xstat = signum;
1167 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1168 /*
1169 * XXXSMP: recursive call; don't lock
1170 * the second time around.
1171 */
1172 child_psignal(p, 0);
1173 }
1174 proc_stop(p); /* XXXSMP: recurse? */
1175 goto done;
1176 }
1177
1178 if (l == NULL) {
1179 /*
1180 * Special case: SIGKILL of a process
1181 * which is entirely composed of
1182 * suspended LWPs should succeed. We
1183 * make this happen by unsuspending one of
1184 * them.
1185 */
1186 if (allsusp && (signum == SIGKILL))
1187 lwp_continue(suspended);
1188 goto done;
1189 }
1190 /*
1191 * All other (caught or default) signals
1192 * cause the process to run.
1193 */
1194 goto runfast;
1195 /*NOTREACHED*/
1196 } else if (p->p_stat == SSTOP) {
1197 /* Process is stopped */
1198 /*
1199 * If traced process is already stopped,
1200 * then no further action is necessary.
1201 */
1202 if (p->p_flag & P_TRACED)
1203 goto done;
1204
1205 /*
1206 * Kill signal always sets processes running,
1207 * if possible.
1208 */
1209 if (signum == SIGKILL) {
1210 l = proc_unstop(p);
1211 if (l)
1212 goto runfast;
1213 goto done;
1214 }
1215
1216 if (prop & SA_CONT) {
1217 /*
1218 * If SIGCONT is default (or ignored),
1219 * we continue the process but don't
1220 * leave the signal in ps_siglist, as
1221 * it has no further action. If
1222 * SIGCONT is held, we continue the
1223 * process and leave the signal in
1224 * ps_siglist. If the process catches
1225 * SIGCONT, let it handle the signal
1226 * itself. If it isn't waiting on an
1227 * event, then it goes back to run
1228 * state. Otherwise, process goes
1229 * back to sleep state.
1230 */
1231 if (action == SIG_DFL)
1232 sigdelset(&p->p_sigctx.ps_siglist,
1233 signum);
1234 l = proc_unstop(p);
1235 if (l && (action == SIG_CATCH))
1236 goto runfast;
1237 goto out;
1238 }
1239
1240 if (prop & SA_STOP) {
1241 /*
1242 * Already stopped, don't need to stop again.
1243 * (If we did the shell could get confused.)
1244 */
1245 sigdelset(&p->p_sigctx.ps_siglist, signum);
1246 goto done;
1247 }
1248
1249 /*
1250 * If a lwp is sleeping interruptibly, then
1251 * wake it up; it will run until the kernel
1252 * boundary, where it will stop in issignal(),
1253 * since p->p_stat is still SSTOP. When the
1254 * process is continued, it will be made
1255 * runnable and can look at the signal.
1256 */
1257 if (l)
1258 goto run;
1259 goto out;
1260 } else {
1261 /* Else what? */
1262 panic("psignal: Invalid process state %d.",
1263 p->p_stat);
1264 }
1265 }
1266 /*NOTREACHED*/
1267
1268 runfast:
1269 if (action == SIG_CATCH) {
1270 ksiginfo_put(p, ksi);
1271 action = SIG_HOLD;
1272 }
1273 /*
1274 * Raise priority to at least PUSER.
1275 */
1276 if (l->l_priority > PUSER)
1277 l->l_priority = PUSER;
1278 run:
1279 if (action == SIG_CATCH) {
1280 ksiginfo_put(p, ksi);
1281 action = SIG_HOLD;
1282 }
1283
1284 setrunnable(l); /* XXXSMP: recurse? */
1285 out:
1286 if (action == SIG_CATCH)
1287 ksiginfo_put(p, ksi);
1288 done:
1289 /* XXXSMP: works, but icky */
1290 if (dolock)
1291 SCHED_UNLOCK(s);
1292 }
1293
1294 void
1295 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1296 {
1297 struct proc *p = l->l_proc;
1298 struct lwp *le, *li;
1299 siginfo_t *si;
1300 int f;
1301
1302 if (p->p_flag & P_SA) {
1303
1304 /* XXXUPSXXX What if not on sa_vp ? */
1305
1306 f = l->l_flag & L_SA;
1307 l->l_flag &= ~L_SA;
1308 si = pool_get(&siginfo_pool, PR_WAITOK);
1309 si->_info = *ksi;
1310 le = li = NULL;
1311 if (ksi->ksi_trap)
1312 le = l;
1313 else
1314 li = l;
1315
1316 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1317 sizeof(siginfo_t), si);
1318 l->l_flag |= f;
1319 return;
1320 }
1321
1322 #ifdef __HAVE_SIGINFO
1323 (*p->p_emul->e_sendsig)(ksi, mask);
1324 #else
1325 (*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, ksi->ksi_trap);
1326 #endif
1327 }
1328
1329 static __inline int firstsig(const sigset_t *);
1330
1331 static __inline int
1332 firstsig(const sigset_t *ss)
1333 {
1334 int sig;
1335
1336 sig = ffs(ss->__bits[0]);
1337 if (sig != 0)
1338 return (sig);
1339 #if NSIG > 33
1340 sig = ffs(ss->__bits[1]);
1341 if (sig != 0)
1342 return (sig + 32);
1343 #endif
1344 #if NSIG > 65
1345 sig = ffs(ss->__bits[2]);
1346 if (sig != 0)
1347 return (sig + 64);
1348 #endif
1349 #if NSIG > 97
1350 sig = ffs(ss->__bits[3]);
1351 if (sig != 0)
1352 return (sig + 96);
1353 #endif
1354 return (0);
1355 }
1356
1357 /*
1358 * If the current process has received a signal (should be caught or cause
1359 * termination, should interrupt current syscall), return the signal number.
1360 * Stop signals with default action are processed immediately, then cleared;
1361 * they aren't returned. This is checked after each entry to the system for
1362 * a syscall or trap (though this can usually be done without calling issignal
1363 * by checking the pending signal masks in the CURSIG macro.) The normal call
1364 * sequence is
1365 *
1366 * while (signum = CURSIG(curlwp))
1367 * postsig(signum);
1368 */
1369 int
1370 issignal(struct lwp *l)
1371 {
1372 struct proc *p = l->l_proc;
1373 int s = 0, signum, prop;
1374 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1375 sigset_t ss;
1376
1377 if (l->l_flag & L_SA) {
1378 struct sadata *sa = p->p_sa;
1379
1380 /* Bail out if we do not own the virtual processor */
1381 if (sa->sa_vp != l)
1382 return 0;
1383 }
1384
1385 if (p->p_stat == SSTOP) {
1386 /*
1387 * The process is stopped/stopping. Stop ourselves now that
1388 * we're on the kernel/userspace boundary.
1389 */
1390 if (dolock)
1391 SCHED_LOCK(s);
1392 l->l_stat = LSSTOP;
1393 p->p_nrlwps--;
1394 if (p->p_flag & P_TRACED)
1395 goto sigtraceswitch;
1396 else
1397 goto sigswitch;
1398 }
1399 for (;;) {
1400 sigpending1(p, &ss);
1401 if (p->p_flag & P_PPWAIT)
1402 sigminusset(&stopsigmask, &ss);
1403 signum = firstsig(&ss);
1404 if (signum == 0) { /* no signal to send */
1405 p->p_sigctx.ps_sigcheck = 0;
1406 if (locked && dolock)
1407 SCHED_LOCK(s);
1408 return (0);
1409 }
1410 /* take the signal! */
1411 sigdelset(&p->p_sigctx.ps_siglist, signum);
1412
1413 /*
1414 * We should see pending but ignored signals
1415 * only if P_TRACED was on when they were posted.
1416 */
1417 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1418 (p->p_flag & P_TRACED) == 0)
1419 continue;
1420
1421 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1422 /*
1423 * If traced, always stop, and stay
1424 * stopped until released by the debugger.
1425 */
1426 p->p_xstat = signum;
1427 if ((p->p_flag & P_FSTRACE) == 0)
1428 child_psignal(p, dolock);
1429 if (dolock)
1430 SCHED_LOCK(s);
1431 proc_stop(p);
1432 sigtraceswitch:
1433 mi_switch(l, NULL);
1434 SCHED_ASSERT_UNLOCKED();
1435 if (dolock)
1436 splx(s);
1437 else
1438 dolock = 1;
1439
1440 /*
1441 * If we are no longer being traced, or the parent
1442 * didn't give us a signal, look for more signals.
1443 */
1444 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1445 continue;
1446
1447 /*
1448 * If the new signal is being masked, look for other
1449 * signals.
1450 */
1451 signum = p->p_xstat;
1452 p->p_xstat = 0;
1453 /*
1454 * `p->p_sigctx.ps_siglist |= mask' is done
1455 * in setrunnable().
1456 */
1457 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1458 continue;
1459 /* take the signal! */
1460 sigdelset(&p->p_sigctx.ps_siglist, signum);
1461 }
1462
1463 prop = sigprop[signum];
1464
1465 /*
1466 * Decide whether the signal should be returned.
1467 * Return the signal's number, or fall through
1468 * to clear it from the pending mask.
1469 */
1470 switch ((long)SIGACTION(p, signum).sa_handler) {
1471
1472 case (long)SIG_DFL:
1473 /*
1474 * Don't take default actions on system processes.
1475 */
1476 if (p->p_pid <= 1) {
1477 #ifdef DIAGNOSTIC
1478 /*
1479 * Are you sure you want to ignore SIGSEGV
1480 * in init? XXX
1481 */
1482 printf("Process (pid %d) got signal %d\n",
1483 p->p_pid, signum);
1484 #endif
1485 break; /* == ignore */
1486 }
1487 /*
1488 * If there is a pending stop signal to process
1489 * with default action, stop here,
1490 * then clear the signal. However,
1491 * if process is member of an orphaned
1492 * process group, ignore tty stop signals.
1493 */
1494 if (prop & SA_STOP) {
1495 if (p->p_flag & P_TRACED ||
1496 (p->p_pgrp->pg_jobc == 0 &&
1497 prop & SA_TTYSTOP))
1498 break; /* == ignore */
1499 p->p_xstat = signum;
1500 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1501 child_psignal(p, dolock);
1502 if (dolock)
1503 SCHED_LOCK(s);
1504 proc_stop(p);
1505 sigswitch:
1506 mi_switch(l, NULL);
1507 SCHED_ASSERT_UNLOCKED();
1508 if (dolock)
1509 splx(s);
1510 else
1511 dolock = 1;
1512 break;
1513 } else if (prop & SA_IGNORE) {
1514 /*
1515 * Except for SIGCONT, shouldn't get here.
1516 * Default action is to ignore; drop it.
1517 */
1518 break; /* == ignore */
1519 } else
1520 goto keep;
1521 /*NOTREACHED*/
1522
1523 case (long)SIG_IGN:
1524 /*
1525 * Masking above should prevent us ever trying
1526 * to take action on an ignored signal other
1527 * than SIGCONT, unless process is traced.
1528 */
1529 #ifdef DEBUG_ISSIGNAL
1530 if ((prop & SA_CONT) == 0 &&
1531 (p->p_flag & P_TRACED) == 0)
1532 printf("issignal\n");
1533 #endif
1534 break; /* == ignore */
1535
1536 default:
1537 /*
1538 * This signal has an action, let
1539 * postsig() process it.
1540 */
1541 goto keep;
1542 }
1543 }
1544 /* NOTREACHED */
1545
1546 keep:
1547 /* leave the signal for later */
1548 sigaddset(&p->p_sigctx.ps_siglist, signum);
1549 CHECKSIGS(p);
1550 if (locked && dolock)
1551 SCHED_LOCK(s);
1552 return (signum);
1553 }
1554
1555 /*
1556 * Put the argument process into the stopped state and notify the parent
1557 * via wakeup. Signals are handled elsewhere. The process must not be
1558 * on the run queue.
1559 */
1560 static void
1561 proc_stop(struct proc *p)
1562 {
1563 struct lwp *l;
1564
1565 SCHED_ASSERT_LOCKED();
1566
1567 /* XXX lock process LWP state */
1568 p->p_stat = SSTOP;
1569 p->p_flag &= ~P_WAITED;
1570
1571 /*
1572 * Put as many LWP's as possible in stopped state.
1573 * Sleeping ones will notice the stopped state as they try to
1574 * return to userspace.
1575 */
1576
1577 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1578 if ((l->l_stat == LSONPROC) && (l == curlwp)) {
1579 /* XXX SMP this assumes that a LWP that is LSONPROC
1580 * is curlwp and hence is about to be mi_switched
1581 * away; the only callers of proc_stop() are:
1582 * - psignal
1583 * - issignal()
1584 * For the former, proc_stop() is only called when
1585 * no processes are running, so we don't worry.
1586 * For the latter, proc_stop() is called right
1587 * before mi_switch().
1588 */
1589 l->l_stat = LSSTOP;
1590 p->p_nrlwps--;
1591 }
1592 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
1593 setrunnable(l);
1594 }
1595
1596 /* !!!UPS!!! FIX ME */
1597 #if 0
1598 else if (l->l_stat == LSRUN) {
1599 /* Remove LWP from the run queue */
1600 remrunqueue(l);
1601 l->l_stat = LSSTOP;
1602 p->p_nrlwps--;
1603 } else if ((l->l_stat == LSSLEEP) ||
1604 (l->l_stat == LSSUSPENDED) ||
1605 (l->l_stat == LSZOMB) ||
1606 (l->l_stat == LSDEAD)) {
1607 /*
1608 * Don't do anything; let sleeping LWPs
1609 * discover the stopped state of the process
1610 * on their way out of the kernel; otherwise,
1611 * things like NFS threads that sleep with
1612 * locks will block the rest of the system
1613 * from getting any work done.
1614 *
1615 * Suspended/dead/zombie LWPs aren't going
1616 * anywhere, so we don't need to touch them.
1617 */
1618 }
1619 #ifdef DIAGNOSTIC
1620 else {
1621 panic("proc_stop: process %d lwp %d "
1622 "in unstoppable state %d.\n",
1623 p->p_pid, l->l_lid, l->l_stat);
1624 }
1625 #endif
1626 #endif
1627 }
1628 /* XXX unlock process LWP state */
1629
1630 sched_wakeup((caddr_t)p->p_pptr);
1631 }
1632
1633 /*
1634 * Given a process in state SSTOP, set the state back to SACTIVE and
1635 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1636 *
1637 * If no LWPs ended up runnable (and therefore able to take a signal),
1638 * return a LWP that is sleeping interruptably. The caller can wake
1639 * that LWP up to take a signal.
1640 */
1641 struct lwp *
1642 proc_unstop(struct proc *p)
1643 {
1644 struct lwp *l, *lr = NULL;
1645 int cantake = 0;
1646
1647 SCHED_ASSERT_LOCKED();
1648
1649 /*
1650 * Our caller wants to be informed if there are only sleeping
1651 * and interruptable LWPs left after we have run so that it
1652 * can invoke setrunnable() if required - return one of the
1653 * interruptable LWPs if this is the case.
1654 */
1655
1656 p->p_stat = SACTIVE;
1657 if (p->p_flag & P_SA) {
1658 /*
1659 * Preferentially select the idle LWP as the interruptable
1660 * LWP to return if it exists.
1661 */
1662 lr = p->p_sa->sa_idle;
1663 if (lr != NULL)
1664 cantake = 1;
1665 }
1666 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1667 if (l->l_stat == LSRUN) {
1668 lr = NULL;
1669 cantake = 1;
1670 }
1671 if (l->l_stat != LSSTOP)
1672 continue;
1673
1674 if (l->l_wchan != NULL) {
1675 l->l_stat = LSSLEEP;
1676 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1677 lr = l;
1678 cantake = 1;
1679 }
1680 } else {
1681 setrunnable(l);
1682 lr = NULL;
1683 cantake = 1;
1684 }
1685 }
1686
1687 return lr;
1688 }
1689
1690 /*
1691 * Take the action for the specified signal
1692 * from the current set of pending signals.
1693 */
1694 void
1695 postsig(int signum)
1696 {
1697 struct lwp *l;
1698 struct proc *p;
1699 struct sigacts *ps;
1700 sig_t action;
1701 sigset_t *returnmask;
1702
1703 l = curlwp;
1704 p = l->l_proc;
1705 ps = p->p_sigacts;
1706 #ifdef DIAGNOSTIC
1707 if (signum == 0)
1708 panic("postsig");
1709 #endif
1710
1711 KERNEL_PROC_LOCK(l);
1712
1713 sigdelset(&p->p_sigctx.ps_siglist, signum);
1714 action = SIGACTION_PS(ps, signum).sa_handler;
1715 if (action == SIG_DFL) {
1716 #ifdef KTRACE
1717 if (KTRPOINT(p, KTR_PSIG))
1718 ktrpsig(p, signum, action,
1719 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1720 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1721 NULL);
1722 #endif
1723 /*
1724 * Default action, where the default is to kill
1725 * the process. (Other cases were ignored above.)
1726 */
1727 sigexit(l, signum);
1728 /* NOTREACHED */
1729 } else {
1730 ksiginfo_t *ksi;
1731 /*
1732 * If we get here, the signal must be caught.
1733 */
1734 #ifdef DIAGNOSTIC
1735 if (action == SIG_IGN ||
1736 sigismember(&p->p_sigctx.ps_sigmask, signum))
1737 panic("postsig action");
1738 #endif
1739 /*
1740 * Set the new mask value and also defer further
1741 * occurrences of this signal.
1742 *
1743 * Special case: user has done a sigpause. Here the
1744 * current mask is not of interest, but rather the
1745 * mask from before the sigpause is what we want
1746 * restored after the signal processing is completed.
1747 */
1748 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1749 returnmask = &p->p_sigctx.ps_oldmask;
1750 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1751 } else
1752 returnmask = &p->p_sigctx.ps_sigmask;
1753 p->p_stats->p_ru.ru_nsignals++;
1754 ksi = ksiginfo_get(p, signum);
1755 #ifdef KTRACE
1756 if (KTRPOINT(p, KTR_PSIG))
1757 ktrpsig(p, signum, action,
1758 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1759 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1760 ksi);
1761 #endif
1762 if (ksi == NULL) {
1763 ksiginfo_t ksi1;
1764 /*
1765 * we did not save any siginfo for this, either
1766 * because the signal was not caught, or because the
1767 * user did not request SA_SIGINFO
1768 */
1769 (void)memset(&ksi1, 0, sizeof(ksi1));
1770 ksi1.ksi_signo = signum;
1771 kpsendsig(l, &ksi1, returnmask);
1772 } else {
1773 kpsendsig(l, ksi, returnmask);
1774 pool_put(&ksiginfo_pool, ksi);
1775 }
1776 p->p_sigctx.ps_lwp = 0;
1777 p->p_sigctx.ps_code = 0;
1778 p->p_sigctx.ps_signo = 0;
1779 (void) splsched(); /* XXXSMP */
1780 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1781 &p->p_sigctx.ps_sigmask);
1782 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1783 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1784 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1785 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1786 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1787 }
1788 (void) spl0(); /* XXXSMP */
1789 }
1790
1791 KERNEL_PROC_UNLOCK(l);
1792 }
1793
1794 /*
1795 * Kill the current process for stated reason.
1796 */
1797 void
1798 killproc(struct proc *p, const char *why)
1799 {
1800 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1801 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1802 psignal(p, SIGKILL);
1803 }
1804
1805 /*
1806 * Force the current process to exit with the specified signal, dumping core
1807 * if appropriate. We bypass the normal tests for masked and caught signals,
1808 * allowing unrecoverable failures to terminate the process without changing
1809 * signal state. Mark the accounting record with the signal termination.
1810 * If dumping core, save the signal number for the debugger. Calls exit and
1811 * does not return.
1812 */
1813
1814 #if defined(DEBUG)
1815 int kern_logsigexit = 1; /* not static to make public for sysctl */
1816 #else
1817 int kern_logsigexit = 0; /* not static to make public for sysctl */
1818 #endif
1819
1820 static const char logcoredump[] =
1821 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1822 static const char lognocoredump[] =
1823 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1824
1825 /* Wrapper function for use in p_userret */
1826 static void
1827 lwp_coredump_hook(struct lwp *l, void *arg)
1828 {
1829 int s;
1830
1831 /*
1832 * Suspend ourselves, so that the kernel stack and therefore
1833 * the userland registers saved in the trapframe are around
1834 * for coredump() to write them out.
1835 */
1836 KERNEL_PROC_LOCK(l);
1837 l->l_flag &= ~L_DETACHED;
1838 SCHED_LOCK(s);
1839 l->l_stat = LSSUSPENDED;
1840 l->l_proc->p_nrlwps--;
1841 /* XXX NJWLWP check if this makes sense here: */
1842 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1843 mi_switch(l, NULL);
1844 SCHED_ASSERT_UNLOCKED();
1845 splx(s);
1846
1847 lwp_exit(l);
1848 }
1849
1850 void
1851 sigexit(struct lwp *l, int signum)
1852 {
1853 struct proc *p;
1854 #if 0
1855 struct lwp *l2;
1856 #endif
1857 int error, exitsig;
1858
1859 p = l->l_proc;
1860
1861 /*
1862 * Don't permit coredump() or exit1() multiple times
1863 * in the same process.
1864 */
1865 if (p->p_flag & P_WEXIT) {
1866 KERNEL_PROC_UNLOCK(l);
1867 (*p->p_userret)(l, p->p_userret_arg);
1868 }
1869 p->p_flag |= P_WEXIT;
1870 /* We don't want to switch away from exiting. */
1871 /* XXX multiprocessor: stop LWPs on other processors. */
1872 #if 0
1873 if (p->p_flag & P_SA) {
1874 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1875 l2->l_flag &= ~L_SA;
1876 p->p_flag &= ~P_SA;
1877 }
1878 #endif
1879
1880 /* Make other LWPs stick around long enough to be dumped */
1881 p->p_userret = lwp_coredump_hook;
1882 p->p_userret_arg = NULL;
1883
1884 exitsig = signum;
1885 p->p_acflag |= AXSIG;
1886 if (sigprop[signum] & SA_CORE) {
1887 p->p_sigctx.ps_signo = signum;
1888 if ((error = coredump(l)) == 0)
1889 exitsig |= WCOREFLAG;
1890
1891 if (kern_logsigexit) {
1892 /* XXX What if we ever have really large UIDs? */
1893 int uid = p->p_cred && p->p_ucred ?
1894 (int) p->p_ucred->cr_uid : -1;
1895
1896 if (error)
1897 log(LOG_INFO, lognocoredump, p->p_pid,
1898 p->p_comm, uid, signum, error);
1899 else
1900 log(LOG_INFO, logcoredump, p->p_pid,
1901 p->p_comm, uid, signum);
1902 }
1903
1904 }
1905
1906 exit1(l, W_EXITCODE(0, exitsig));
1907 /* NOTREACHED */
1908 }
1909
1910 /*
1911 * Dump core, into a file named "progname.core" or "core" (depending on the
1912 * value of shortcorename), unless the process was setuid/setgid.
1913 */
1914 int
1915 coredump(struct lwp *l)
1916 {
1917 struct vnode *vp;
1918 struct proc *p;
1919 struct vmspace *vm;
1920 struct ucred *cred;
1921 struct nameidata nd;
1922 struct vattr vattr;
1923 int error, error1;
1924 char name[MAXPATHLEN];
1925
1926 p = l->l_proc;
1927 vm = p->p_vmspace;
1928 cred = p->p_cred->pc_ucred;
1929
1930 /*
1931 * Make sure the process has not set-id, to prevent data leaks.
1932 */
1933 if (p->p_flag & P_SUGID)
1934 return (EPERM);
1935
1936 /*
1937 * Refuse to core if the data + stack + user size is larger than
1938 * the core dump limit. XXX THIS IS WRONG, because of mapped
1939 * data.
1940 */
1941 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
1942 p->p_rlimit[RLIMIT_CORE].rlim_cur)
1943 return (EFBIG); /* better error code? */
1944
1945 /*
1946 * The core dump will go in the current working directory. Make
1947 * sure that the directory is still there and that the mount flags
1948 * allow us to write core dumps there.
1949 */
1950 vp = p->p_cwdi->cwdi_cdir;
1951 if (vp->v_mount == NULL ||
1952 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
1953 return (EPERM);
1954
1955 error = build_corename(p, name);
1956 if (error)
1957 return error;
1958
1959 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1960 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
1961 if (error)
1962 return (error);
1963 vp = nd.ni_vp;
1964
1965 /* Don't dump to non-regular files or files with links. */
1966 if (vp->v_type != VREG ||
1967 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
1968 error = EINVAL;
1969 goto out;
1970 }
1971 VATTR_NULL(&vattr);
1972 vattr.va_size = 0;
1973 VOP_LEASE(vp, p, cred, LEASE_WRITE);
1974 VOP_SETATTR(vp, &vattr, cred, p);
1975 p->p_acflag |= ACORE;
1976
1977 /* Now dump the actual core file. */
1978 error = (*p->p_execsw->es_coredump)(l, vp, cred);
1979 out:
1980 VOP_UNLOCK(vp, 0);
1981 error1 = vn_close(vp, FWRITE, cred, p);
1982 if (error == 0)
1983 error = error1;
1984 return (error);
1985 }
1986
1987 /*
1988 * Nonexistent system call-- signal process (may want to handle it).
1989 * Flag error in case process won't see signal immediately (blocked or ignored).
1990 */
1991 /* ARGSUSED */
1992 int
1993 sys_nosys(struct lwp *l, void *v, register_t *retval)
1994 {
1995 struct proc *p;
1996
1997 p = l->l_proc;
1998 psignal(p, SIGSYS);
1999 return (ENOSYS);
2000 }
2001
2002 static int
2003 build_corename(struct proc *p, char dst[MAXPATHLEN])
2004 {
2005 const char *s;
2006 char *d, *end;
2007 int i;
2008
2009 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
2010 *s != '\0'; s++) {
2011 if (*s == '%') {
2012 switch (*(s + 1)) {
2013 case 'n':
2014 i = snprintf(d, end - d, "%s", p->p_comm);
2015 break;
2016 case 'p':
2017 i = snprintf(d, end - d, "%d", p->p_pid);
2018 break;
2019 case 'u':
2020 i = snprintf(d, end - d, "%.*s",
2021 (int)sizeof p->p_pgrp->pg_session->s_login,
2022 p->p_pgrp->pg_session->s_login);
2023 break;
2024 case 't':
2025 i = snprintf(d, end - d, "%ld",
2026 p->p_stats->p_start.tv_sec);
2027 break;
2028 default:
2029 goto copy;
2030 }
2031 d += i;
2032 s++;
2033 } else {
2034 copy: *d = *s;
2035 d++;
2036 }
2037 if (d >= end)
2038 return (ENAMETOOLONG);
2039 }
2040 *d = '\0';
2041 return 0;
2042 }
2043
2044 void
2045 getucontext(struct lwp *l, ucontext_t *ucp)
2046 {
2047 struct proc *p;
2048
2049 p = l->l_proc;
2050
2051 ucp->uc_flags = 0;
2052 ucp->uc_link = l->l_ctxlink;
2053
2054 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2055 ucp->uc_flags |= _UC_SIGMASK;
2056
2057 /*
2058 * The (unsupplied) definition of the `current execution stack'
2059 * in the System V Interface Definition appears to allow returning
2060 * the main context stack.
2061 */
2062 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2063 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2064 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2065 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2066 } else {
2067 /* Simply copy alternate signal execution stack. */
2068 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2069 }
2070 ucp->uc_flags |= _UC_STACK;
2071
2072 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2073 }
2074
2075 /* ARGSUSED */
2076 int
2077 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2078 {
2079 struct sys_getcontext_args /* {
2080 syscallarg(struct __ucontext *) ucp;
2081 } */ *uap = v;
2082 ucontext_t uc;
2083
2084 getucontext(l, &uc);
2085
2086 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2087 }
2088
2089 int
2090 setucontext(struct lwp *l, const ucontext_t *ucp)
2091 {
2092 struct proc *p;
2093 int error;
2094
2095 p = l->l_proc;
2096 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2097 return (error);
2098 l->l_ctxlink = ucp->uc_link;
2099 /*
2100 * We might want to take care of the stack portion here but currently
2101 * don't; see the comment in getucontext().
2102 */
2103 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2104 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2105
2106 return 0;
2107 }
2108
2109 /* ARGSUSED */
2110 int
2111 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2112 {
2113 struct sys_setcontext_args /* {
2114 syscallarg(const ucontext_t *) ucp;
2115 } */ *uap = v;
2116 ucontext_t uc;
2117 int error;
2118
2119 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2120 exit1(l, W_EXITCODE(0, 0));
2121 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2122 (error = setucontext(l, &uc)) != 0)
2123 return (error);
2124
2125 return (EJUSTRETURN);
2126 }
2127
2128 /*
2129 * sigtimedwait(2) system call, used also for implementation
2130 * of sigwaitinfo() and sigwait().
2131 *
2132 * This only handles single LWP in signal wait. libpthread provides
2133 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2134 *
2135 * XXX no support for queued signals, si_code is always SI_USER.
2136 */
2137 int
2138 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2139 {
2140 struct sys___sigtimedwait_args /* {
2141 syscallarg(const sigset_t *) set;
2142 syscallarg(siginfo_t *) info;
2143 syscallarg(struct timespec *) timeout;
2144 } */ *uap = v;
2145 sigset_t waitset, twaitset;
2146 struct proc *p = l->l_proc;
2147 int error, signum, s;
2148 int timo = 0;
2149 struct timeval tvstart;
2150 struct timespec ts;
2151
2152 if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
2153 return (error);
2154
2155 /*
2156 * Silently ignore SA_CANTMASK signals. psignal1() would
2157 * ignore SA_CANTMASK signals in waitset, we do this
2158 * only for the below siglist check.
2159 */
2160 sigminusset(&sigcantmask, &waitset);
2161
2162 /*
2163 * First scan siglist and check if there is signal from
2164 * our waitset already pending.
2165 */
2166 twaitset = waitset;
2167 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2168 if ((signum = firstsig(&twaitset))) {
2169 /* found pending signal */
2170 sigdelset(&p->p_sigctx.ps_siglist, signum);
2171 goto sig;
2172 }
2173
2174 /*
2175 * Calculate timeout, if it was specified.
2176 */
2177 if (SCARG(uap, timeout)) {
2178 uint64_t ms;
2179
2180 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2181 return (error);
2182
2183 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2184 timo = mstohz(ms);
2185 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2186 timo = 1;
2187 if (timo <= 0)
2188 return (EAGAIN);
2189
2190 /*
2191 * Remember current mono_time, it would be used in
2192 * ECANCELED/ERESTART case.
2193 */
2194 s = splclock();
2195 tvstart = mono_time;
2196 splx(s);
2197 }
2198
2199 /*
2200 * Setup ps_sigwait list.
2201 */
2202 p->p_sigctx.ps_sigwaited = -1;
2203 p->p_sigctx.ps_sigwait = waitset;
2204
2205 /*
2206 * Wait for signal to arrive. We can either be woken up or
2207 * time out.
2208 */
2209 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2210
2211 /*
2212 * Check if a signal from our wait set has arrived, or if it
2213 * was mere wakeup.
2214 */
2215 if (!error) {
2216 if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
2217 /* wakeup via _lwp_wakeup() */
2218 error = ECANCELED;
2219 }
2220 }
2221
2222 /*
2223 * On error, clear sigwait indication. psignal1() sets it
2224 * in !error case.
2225 */
2226 if (error) {
2227 p->p_sigctx.ps_sigwaited = 0;
2228
2229 /*
2230 * If the sleep was interrupted (either by signal or wakeup),
2231 * update the timeout and copyout new value back.
2232 * It would be used when the syscall would be restarted
2233 * or called again.
2234 */
2235 if (timo && (error == ERESTART || error == ECANCELED)) {
2236 struct timeval tvnow, tvtimo;
2237 int err;
2238
2239 s = splclock();
2240 tvnow = mono_time;
2241 splx(s);
2242
2243 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2244
2245 /* compute how much time has passed since start */
2246 timersub(&tvnow, &tvstart, &tvnow);
2247 /* substract passed time from timeout */
2248 timersub(&tvtimo, &tvnow, &tvtimo);
2249
2250 if (tvtimo.tv_sec < 0)
2251 return (EAGAIN);
2252
2253 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2254
2255 /* copy updated timeout to userland */
2256 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
2257 return (err);
2258 }
2259
2260 return (error);
2261 }
2262
2263 /*
2264 * If a signal from the wait set arrived, copy it to userland.
2265 * XXX no queued signals for now
2266 */
2267 if (signum > 0) {
2268 siginfo_t si;
2269
2270 sig:
2271 memset(&si, 0, sizeof(si));
2272 si.si_signo = signum;
2273 si.si_code = SI_USER;
2274
2275 error = copyout(&si, SCARG(uap, info), sizeof(si));
2276 if (error)
2277 return (error);
2278 }
2279
2280 return (0);
2281 }
2282
2283 /*
2284 * Returns true if signal is ignored or masked for passed process.
2285 */
2286 int
2287 sigismasked(struct proc *p, int sig)
2288 {
2289
2290 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2291 sigismember(&p->p_sigctx.ps_sigmask, sig));
2292 }
2293
2294 static int
2295 filt_sigattach(struct knote *kn)
2296 {
2297 struct proc *p = curproc;
2298
2299 kn->kn_ptr.p_proc = p;
2300 kn->kn_flags |= EV_CLEAR; /* automatically set */
2301
2302 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2303
2304 return (0);
2305 }
2306
2307 static void
2308 filt_sigdetach(struct knote *kn)
2309 {
2310 struct proc *p = kn->kn_ptr.p_proc;
2311
2312 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2313 }
2314
2315 /*
2316 * signal knotes are shared with proc knotes, so we apply a mask to
2317 * the hint in order to differentiate them from process hints. This
2318 * could be avoided by using a signal-specific knote list, but probably
2319 * isn't worth the trouble.
2320 */
2321 static int
2322 filt_signal(struct knote *kn, long hint)
2323 {
2324
2325 if (hint & NOTE_SIGNAL) {
2326 hint &= ~NOTE_SIGNAL;
2327
2328 if (kn->kn_id == hint)
2329 kn->kn_data++;
2330 }
2331 return (kn->kn_data != 0);
2332 }
2333
2334 const struct filterops sig_filtops = {
2335 0, filt_sigattach, filt_sigdetach, filt_signal
2336 };
2337