Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.167
      1 /*	$NetBSD: kern_sig.c,v 1.167 2003/10/12 14:32:05 pk Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.167 2003/10/12 14:32:05 pk Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd.h"
     45 #include "opt_compat_netbsd32.h"
     46 
     47 #define	SIGPROP		/* include signal properties table */
     48 #include <sys/param.h>
     49 #include <sys/signalvar.h>
     50 #include <sys/resourcevar.h>
     51 #include <sys/namei.h>
     52 #include <sys/vnode.h>
     53 #include <sys/proc.h>
     54 #include <sys/systm.h>
     55 #include <sys/timeb.h>
     56 #include <sys/times.h>
     57 #include <sys/buf.h>
     58 #include <sys/acct.h>
     59 #include <sys/file.h>
     60 #include <sys/kernel.h>
     61 #include <sys/wait.h>
     62 #include <sys/ktrace.h>
     63 #include <sys/syslog.h>
     64 #include <sys/stat.h>
     65 #include <sys/core.h>
     66 #include <sys/filedesc.h>
     67 #include <sys/malloc.h>
     68 #include <sys/pool.h>
     69 #include <sys/ucontext.h>
     70 #include <sys/sa.h>
     71 #include <sys/savar.h>
     72 #include <sys/exec.h>
     73 
     74 #include <sys/mount.h>
     75 #include <sys/syscallargs.h>
     76 
     77 #include <machine/cpu.h>
     78 
     79 #include <sys/user.h>		/* for coredump */
     80 
     81 #include <uvm/uvm_extern.h>
     82 
     83 static void	child_psignal(struct proc *, int);
     84 static void	proc_stop(struct proc *);
     85 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     86 static void	ksiginfo_exithook(struct proc *, void *);
     87 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
     88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
     89 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
     90 
     91 sigset_t	contsigmask, stopsigmask, sigcantmask;
     92 
     93 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     94 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     95 struct pool	ksiginfo_pool;	/* memory pool for ksiginfo structures */
     96 
     97 /*
     98  * Can process p, with pcred pc, send the signal signum to process q?
     99  */
    100 #define	CANSIGNAL(p, pc, q, signum) \
    101 	((pc)->pc_ucred->cr_uid == 0 || \
    102 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
    103 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    104 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    105 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    106 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    107 
    108 /*
    109  * Remove and return the first ksiginfo element that matches our requested
    110  * signal, or return NULL if one not found.
    111  */
    112 static ksiginfo_t *
    113 ksiginfo_get(struct proc *p, int signo)
    114 {
    115 	ksiginfo_t *ksi;
    116 
    117 	simple_lock(&p->p_sigctx.ps_silock);
    118 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    119 		if (ksi->ksi_signo == signo) {
    120 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    121 			simple_unlock(&p->p_sigctx.ps_silock);
    122 			return ksi;
    123 		}
    124 	}
    125 	simple_unlock(&p->p_sigctx.ps_silock);
    126 	return NULL;
    127 }
    128 
    129 /*
    130  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    131  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    132  * they already existed in the queue and we add new entries for RT signals,
    133  * or for non RT signals with non-existing entries.
    134  */
    135 static void
    136 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
    137 {
    138 	ksiginfo_t *kp;
    139 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    140 	int s;
    141 
    142 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    143 		return;
    144 
    145 	s = splsoftclock();
    146 	simple_lock(&p->p_sigctx.ps_silock);
    147 #ifdef notyet	/* XXX: QUEUING */
    148 	if (ksi->ksi_signo < SIGRTMIN)
    149 #endif
    150 	{
    151 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    152 			if (kp->ksi_signo == ksi->ksi_signo) {
    153 				CIRCLEQ_ENTRY(ksiginfo) sv;
    154 				(void)memcpy(&sv, &kp->ksi_list, sizeof(sv));
    155 				*kp = *ksi;
    156 				(void)memcpy(&kp->ksi_list, &sv, sizeof(sv));
    157 				goto out;
    158 			}
    159 		}
    160 	}
    161 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
    162 	if (kp == NULL) {
    163 #ifdef DIAGNOSTIC
    164 		printf("Out of memory allocating siginfo for pid %d\n",
    165 		    p->p_pid);
    166 #endif
    167 		goto out;
    168 	}
    169 	*kp = *ksi;
    170 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    171 out:
    172 	simple_unlock(&p->p_sigctx.ps_silock);
    173 	splx(s);
    174 }
    175 
    176 /*
    177  * free all pending ksiginfo on exit
    178  */
    179 static void
    180 ksiginfo_exithook(struct proc *p, void *v)
    181 {
    182 
    183 	simple_lock(&p->p_sigctx.ps_silock);
    184 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    185 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    186 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    187 		pool_put(&ksiginfo_pool, ksi);
    188 	}
    189 	simple_unlock(&p->p_sigctx.ps_silock);
    190 }
    191 
    192 /*
    193  * Initialize signal-related data structures.
    194  */
    195 void
    196 signal_init(void)
    197 {
    198 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    199 	    &pool_allocator_nointr);
    200 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    201 	    &pool_allocator_nointr);
    202 	pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    203 	    NULL);
    204 	exithook_establish(ksiginfo_exithook, NULL);
    205 	exechook_establish(ksiginfo_exithook, NULL);
    206 }
    207 
    208 /*
    209  * Create an initial sigctx structure, using the same signal state
    210  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    211  * copy it from parent.
    212  */
    213 void
    214 sigactsinit(struct proc *np, struct proc *pp, int share)
    215 {
    216 	struct sigacts *ps;
    217 
    218 	if (share) {
    219 		np->p_sigacts = pp->p_sigacts;
    220 		pp->p_sigacts->sa_refcnt++;
    221 	} else {
    222 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    223 		if (pp)
    224 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    225 		else
    226 			memset(ps, '\0', sizeof(struct sigacts));
    227 		ps->sa_refcnt = 1;
    228 		np->p_sigacts = ps;
    229 	}
    230 }
    231 
    232 /*
    233  * Make this process not share its sigctx, maintaining all
    234  * signal state.
    235  */
    236 void
    237 sigactsunshare(struct proc *p)
    238 {
    239 	struct sigacts *oldps;
    240 
    241 	if (p->p_sigacts->sa_refcnt == 1)
    242 		return;
    243 
    244 	oldps = p->p_sigacts;
    245 	sigactsinit(p, NULL, 0);
    246 
    247 	if (--oldps->sa_refcnt == 0)
    248 		pool_put(&sigacts_pool, oldps);
    249 }
    250 
    251 /*
    252  * Release a sigctx structure.
    253  */
    254 void
    255 sigactsfree(struct proc *p)
    256 {
    257 	struct sigacts *ps;
    258 
    259 	ps = p->p_sigacts;
    260 	if (--ps->sa_refcnt > 0)
    261 		return;
    262 
    263 	pool_put(&sigacts_pool, ps);
    264 }
    265 
    266 int
    267 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    268 	struct sigaction *osa, const void *tramp, int vers)
    269 {
    270 	struct sigacts	*ps;
    271 	int		prop;
    272 
    273 	ps = p->p_sigacts;
    274 	if (signum <= 0 || signum >= NSIG)
    275 		return (EINVAL);
    276 
    277 	/*
    278 	 * Trampoline ABI version 0 is reserved for the legacy
    279 	 * kernel-provided on-stack trampoline.  Conversely, if we are
    280 	 * using a non-0 ABI version, we must have a trampoline.  Only
    281 	 * validate the vers if a new sigaction was supplied. Emulations
    282 	 * use legacy kernel trampolines with version 0, alternatively
    283 	 * check for that too.
    284 	 */
    285 	if ((vers != 0 && tramp == NULL) ||
    286 #ifdef SIGTRAMP_VALID
    287 	    (nsa != NULL &&
    288 	    ((vers == 0) ?
    289 		(p->p_emul->e_sigcode == NULL) :
    290 		!SIGTRAMP_VALID(vers))) ||
    291 #endif
    292 	    (vers == 0 && tramp != NULL))
    293 		return (EINVAL);
    294 
    295 	if (osa)
    296 		*osa = SIGACTION_PS(ps, signum);
    297 
    298 	if (nsa) {
    299 		if (nsa->sa_flags & ~SA_ALLBITS)
    300 			return (EINVAL);
    301 
    302 #ifndef __HAVE_SIGINFO
    303 		if (nsa->sa_flags & SA_SIGINFO)
    304 			return (EINVAL);
    305 #endif
    306 
    307 		prop = sigprop[signum];
    308 		if (prop & SA_CANTMASK)
    309 			return (EINVAL);
    310 
    311 		(void) splsched();	/* XXXSMP */
    312 		SIGACTION_PS(ps, signum) = *nsa;
    313 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    314 		ps->sa_sigdesc[signum].sd_vers = vers;
    315 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    316 		if ((prop & SA_NORESET) != 0)
    317 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    318 		if (signum == SIGCHLD) {
    319 			if (nsa->sa_flags & SA_NOCLDSTOP)
    320 				p->p_flag |= P_NOCLDSTOP;
    321 			else
    322 				p->p_flag &= ~P_NOCLDSTOP;
    323 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    324 				/*
    325 				 * Paranoia: since SA_NOCLDWAIT is implemented
    326 				 * by reparenting the dying child to PID 1 (and
    327 				 * trust it to reap the zombie), PID 1 itself
    328 				 * is forbidden to set SA_NOCLDWAIT.
    329 				 */
    330 				if (p->p_pid == 1)
    331 					p->p_flag &= ~P_NOCLDWAIT;
    332 				else
    333 					p->p_flag |= P_NOCLDWAIT;
    334 			} else
    335 				p->p_flag &= ~P_NOCLDWAIT;
    336 		}
    337 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    338 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    339 		else
    340 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    341 		/*
    342 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    343 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    344 		 * to ignore. However, don't put SIGCONT in
    345 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    346 	 	 */
    347 		if (nsa->sa_handler == SIG_IGN ||
    348 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    349 						/* never to be seen again */
    350 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    351 			if (signum != SIGCONT) {
    352 						/* easier in psignal */
    353 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    354 			}
    355 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    356 		} else {
    357 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    358 			if (nsa->sa_handler == SIG_DFL)
    359 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    360 			else
    361 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    362 		}
    363 		(void) spl0();
    364 	}
    365 
    366 	return (0);
    367 }
    368 
    369 #ifdef COMPAT_16
    370 /* ARGSUSED */
    371 int
    372 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    373 {
    374 	struct compat_16_sys___sigaction14_args /* {
    375 		syscallarg(int)				signum;
    376 		syscallarg(const struct sigaction *)	nsa;
    377 		syscallarg(struct sigaction *)		osa;
    378 	} */ *uap = v;
    379 	struct proc		*p;
    380 	struct sigaction	nsa, osa;
    381 	int			error;
    382 
    383 	if (SCARG(uap, nsa)) {
    384 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    385 		if (error)
    386 			return (error);
    387 	}
    388 	p = l->l_proc;
    389 	error = sigaction1(p, SCARG(uap, signum),
    390 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    391 	    NULL, 0);
    392 	if (error)
    393 		return (error);
    394 	if (SCARG(uap, osa)) {
    395 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    396 		if (error)
    397 			return (error);
    398 	}
    399 	return (0);
    400 }
    401 #endif
    402 
    403 /* ARGSUSED */
    404 int
    405 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    406 {
    407 	struct sys___sigaction_sigtramp_args /* {
    408 		syscallarg(int)				signum;
    409 		syscallarg(const struct sigaction *)	nsa;
    410 		syscallarg(struct sigaction *)		osa;
    411 		syscallarg(void *)			tramp;
    412 		syscallarg(int)				vers;
    413 	} */ *uap = v;
    414 	struct proc *p = l->l_proc;
    415 	struct sigaction nsa, osa;
    416 	int error;
    417 
    418 	if (SCARG(uap, nsa)) {
    419 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    420 		if (error)
    421 			return (error);
    422 	}
    423 	error = sigaction1(p, SCARG(uap, signum),
    424 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    425 	    SCARG(uap, tramp), SCARG(uap, vers));
    426 	if (error)
    427 		return (error);
    428 	if (SCARG(uap, osa)) {
    429 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    430 		if (error)
    431 			return (error);
    432 	}
    433 	return (0);
    434 }
    435 
    436 /*
    437  * Initialize signal state for process 0;
    438  * set to ignore signals that are ignored by default and disable the signal
    439  * stack.
    440  */
    441 void
    442 siginit(struct proc *p)
    443 {
    444 	struct sigacts	*ps;
    445 	int		signum, prop;
    446 
    447 	ps = p->p_sigacts;
    448 	sigemptyset(&contsigmask);
    449 	sigemptyset(&stopsigmask);
    450 	sigemptyset(&sigcantmask);
    451 	for (signum = 1; signum < NSIG; signum++) {
    452 		prop = sigprop[signum];
    453 		if (prop & SA_CONT)
    454 			sigaddset(&contsigmask, signum);
    455 		if (prop & SA_STOP)
    456 			sigaddset(&stopsigmask, signum);
    457 		if (prop & SA_CANTMASK)
    458 			sigaddset(&sigcantmask, signum);
    459 		if (prop & SA_IGNORE && signum != SIGCONT)
    460 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    461 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    462 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    463 	}
    464 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    465 	p->p_sigctx.ps_sigwaited = 0;
    466 	p->p_flag &= ~P_NOCLDSTOP;
    467 
    468 	/*
    469 	 * Reset stack state to the user stack.
    470 	 */
    471 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    472 	p->p_sigctx.ps_sigstk.ss_size = 0;
    473 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    474 
    475 	/* One reference. */
    476 	ps->sa_refcnt = 1;
    477 }
    478 
    479 /*
    480  * Reset signals for an exec of the specified process.
    481  */
    482 void
    483 execsigs(struct proc *p)
    484 {
    485 	struct sigacts	*ps;
    486 	int		signum, prop;
    487 
    488 	sigactsunshare(p);
    489 
    490 	ps = p->p_sigacts;
    491 
    492 	/*
    493 	 * Reset caught signals.  Held signals remain held
    494 	 * through p_sigctx.ps_sigmask (unless they were caught,
    495 	 * and are now ignored by default).
    496 	 */
    497 	for (signum = 1; signum < NSIG; signum++) {
    498 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    499 			prop = sigprop[signum];
    500 			if (prop & SA_IGNORE) {
    501 				if ((prop & SA_CONT) == 0)
    502 					sigaddset(&p->p_sigctx.ps_sigignore,
    503 					    signum);
    504 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    505 			}
    506 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    507 		}
    508 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    509 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    510 	}
    511 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    512 	p->p_sigctx.ps_sigwaited = 0;
    513 	p->p_flag &= ~P_NOCLDSTOP;
    514 
    515 	/*
    516 	 * Reset stack state to the user stack.
    517 	 */
    518 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    519 	p->p_sigctx.ps_sigstk.ss_size = 0;
    520 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    521 }
    522 
    523 int
    524 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    525 {
    526 
    527 	if (oss)
    528 		*oss = p->p_sigctx.ps_sigmask;
    529 
    530 	if (nss) {
    531 		(void)splsched();	/* XXXSMP */
    532 		switch (how) {
    533 		case SIG_BLOCK:
    534 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    535 			break;
    536 		case SIG_UNBLOCK:
    537 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    538 			CHECKSIGS(p);
    539 			break;
    540 		case SIG_SETMASK:
    541 			p->p_sigctx.ps_sigmask = *nss;
    542 			CHECKSIGS(p);
    543 			break;
    544 		default:
    545 			(void)spl0();	/* XXXSMP */
    546 			return (EINVAL);
    547 		}
    548 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    549 		(void)spl0();		/* XXXSMP */
    550 	}
    551 
    552 	return (0);
    553 }
    554 
    555 /*
    556  * Manipulate signal mask.
    557  * Note that we receive new mask, not pointer,
    558  * and return old mask as return value;
    559  * the library stub does the rest.
    560  */
    561 int
    562 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    563 {
    564 	struct sys___sigprocmask14_args /* {
    565 		syscallarg(int)			how;
    566 		syscallarg(const sigset_t *)	set;
    567 		syscallarg(sigset_t *)		oset;
    568 	} */ *uap = v;
    569 	struct proc	*p;
    570 	sigset_t	nss, oss;
    571 	int		error;
    572 
    573 	if (SCARG(uap, set)) {
    574 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    575 		if (error)
    576 			return (error);
    577 	}
    578 	p = l->l_proc;
    579 	error = sigprocmask1(p, SCARG(uap, how),
    580 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    581 	if (error)
    582 		return (error);
    583 	if (SCARG(uap, oset)) {
    584 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    585 		if (error)
    586 			return (error);
    587 	}
    588 	return (0);
    589 }
    590 
    591 void
    592 sigpending1(struct proc *p, sigset_t *ss)
    593 {
    594 
    595 	*ss = p->p_sigctx.ps_siglist;
    596 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    597 }
    598 
    599 /* ARGSUSED */
    600 int
    601 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    602 {
    603 	struct sys___sigpending14_args /* {
    604 		syscallarg(sigset_t *)	set;
    605 	} */ *uap = v;
    606 	struct proc	*p;
    607 	sigset_t	ss;
    608 
    609 	p = l->l_proc;
    610 	sigpending1(p, &ss);
    611 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    612 }
    613 
    614 int
    615 sigsuspend1(struct proc *p, const sigset_t *ss)
    616 {
    617 	struct sigacts *ps;
    618 
    619 	ps = p->p_sigacts;
    620 	if (ss) {
    621 		/*
    622 		 * When returning from sigpause, we want
    623 		 * the old mask to be restored after the
    624 		 * signal handler has finished.  Thus, we
    625 		 * save it here and mark the sigctx structure
    626 		 * to indicate this.
    627 		 */
    628 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    629 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    630 		(void) splsched();	/* XXXSMP */
    631 		p->p_sigctx.ps_sigmask = *ss;
    632 		CHECKSIGS(p);
    633 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    634 		(void) spl0();		/* XXXSMP */
    635 	}
    636 
    637 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    638 		/* void */;
    639 
    640 	/* always return EINTR rather than ERESTART... */
    641 	return (EINTR);
    642 }
    643 
    644 /*
    645  * Suspend process until signal, providing mask to be set
    646  * in the meantime.  Note nonstandard calling convention:
    647  * libc stub passes mask, not pointer, to save a copyin.
    648  */
    649 /* ARGSUSED */
    650 int
    651 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    652 {
    653 	struct sys___sigsuspend14_args /* {
    654 		syscallarg(const sigset_t *)	set;
    655 	} */ *uap = v;
    656 	struct proc	*p;
    657 	sigset_t	ss;
    658 	int		error;
    659 
    660 	if (SCARG(uap, set)) {
    661 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    662 		if (error)
    663 			return (error);
    664 	}
    665 
    666 	p = l->l_proc;
    667 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    668 }
    669 
    670 int
    671 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    672 	struct sigaltstack *oss)
    673 {
    674 
    675 	if (oss)
    676 		*oss = p->p_sigctx.ps_sigstk;
    677 
    678 	if (nss) {
    679 		if (nss->ss_flags & ~SS_ALLBITS)
    680 			return (EINVAL);
    681 
    682 		if (nss->ss_flags & SS_DISABLE) {
    683 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    684 				return (EINVAL);
    685 		} else {
    686 			if (nss->ss_size < MINSIGSTKSZ)
    687 				return (ENOMEM);
    688 		}
    689 		p->p_sigctx.ps_sigstk = *nss;
    690 	}
    691 
    692 	return (0);
    693 }
    694 
    695 /* ARGSUSED */
    696 int
    697 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    698 {
    699 	struct sys___sigaltstack14_args /* {
    700 		syscallarg(const struct sigaltstack *)	nss;
    701 		syscallarg(struct sigaltstack *)	oss;
    702 	} */ *uap = v;
    703 	struct proc		*p;
    704 	struct sigaltstack	nss, oss;
    705 	int			error;
    706 
    707 	if (SCARG(uap, nss)) {
    708 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    709 		if (error)
    710 			return (error);
    711 	}
    712 	p = l->l_proc;
    713 	error = sigaltstack1(p,
    714 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    715 	if (error)
    716 		return (error);
    717 	if (SCARG(uap, oss)) {
    718 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    719 		if (error)
    720 			return (error);
    721 	}
    722 	return (0);
    723 }
    724 
    725 /* ARGSUSED */
    726 int
    727 sys_kill(struct lwp *l, void *v, register_t *retval)
    728 {
    729 	struct sys_kill_args /* {
    730 		syscallarg(int)	pid;
    731 		syscallarg(int)	signum;
    732 	} */ *uap = v;
    733 	struct proc	*cp, *p;
    734 	struct pcred	*pc;
    735 	ksiginfo_t	ksi;
    736 
    737 	cp = l->l_proc;
    738 	pc = cp->p_cred;
    739 	if ((u_int)SCARG(uap, signum) >= NSIG)
    740 		return (EINVAL);
    741 	memset(&ksi, 0, sizeof(ksi));
    742 	ksi.ksi_signo = SCARG(uap, signum);
    743 	ksi.ksi_code = SI_USER;
    744 	ksi.ksi_pid = cp->p_pid;
    745 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    746 	if (SCARG(uap, pid) > 0) {
    747 		/* kill single process */
    748 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    749 			return (ESRCH);
    750 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    751 			return (EPERM);
    752 		if (SCARG(uap, signum))
    753 			kpsignal2(p, &ksi, 1);
    754 		return (0);
    755 	}
    756 	switch (SCARG(uap, pid)) {
    757 	case -1:		/* broadcast signal */
    758 		return (killpg1(cp, &ksi, 0, 1));
    759 	case 0:			/* signal own process group */
    760 		return (killpg1(cp, &ksi, 0, 0));
    761 	default:		/* negative explicit process group */
    762 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    763 	}
    764 	/* NOTREACHED */
    765 }
    766 
    767 /*
    768  * Common code for kill process group/broadcast kill.
    769  * cp is calling process.
    770  */
    771 int
    772 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    773 {
    774 	struct proc	*p;
    775 	struct pcred	*pc;
    776 	struct pgrp	*pgrp;
    777 	int		nfound;
    778 	int		signum = ksi->ksi_signo;
    779 
    780 	pc = cp->p_cred;
    781 	nfound = 0;
    782 	if (all) {
    783 		/*
    784 		 * broadcast
    785 		 */
    786 		proclist_lock_read();
    787 		LIST_FOREACH(p, &allproc, p_list) {
    788 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    789 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    790 				continue;
    791 			nfound++;
    792 			if (signum)
    793 				kpsignal2(p, ksi, 1);
    794 		}
    795 		proclist_unlock_read();
    796 	} else {
    797 		if (pgid == 0)
    798 			/*
    799 			 * zero pgid means send to my process group.
    800 			 */
    801 			pgrp = cp->p_pgrp;
    802 		else {
    803 			pgrp = pgfind(pgid);
    804 			if (pgrp == NULL)
    805 				return (ESRCH);
    806 		}
    807 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    808 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    809 			    !CANSIGNAL(cp, pc, p, signum))
    810 				continue;
    811 			nfound++;
    812 			if (signum && P_ZOMBIE(p) == 0)
    813 				kpsignal2(p, ksi, 1);
    814 		}
    815 	}
    816 	return (nfound ? 0 : ESRCH);
    817 }
    818 
    819 /*
    820  * Send a signal to a process group.
    821  */
    822 void
    823 gsignal(int pgid, int signum)
    824 {
    825 	ksiginfo_t ksi;
    826 	memset(&ksi, 0, sizeof(ksi));
    827 	ksi.ksi_signo = signum;
    828 	kgsignal(pgid, &ksi, NULL);
    829 }
    830 
    831 void
    832 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    833 {
    834 	struct pgrp *pgrp;
    835 
    836 	if (pgid && (pgrp = pgfind(pgid)))
    837 		kpgsignal(pgrp, ksi, data, 0);
    838 }
    839 
    840 /*
    841  * Send a signal to a process group. If checktty is 1,
    842  * limit to members which have a controlling terminal.
    843  */
    844 void
    845 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    846 {
    847 	ksiginfo_t ksi;
    848 	memset(&ksi, 0, sizeof(ksi));
    849 	ksi.ksi_signo = sig;
    850 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    851 }
    852 
    853 void
    854 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    855 {
    856 	struct proc *p;
    857 
    858 	if (pgrp)
    859 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    860 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    861 				kpsignal(p, ksi, data);
    862 }
    863 
    864 /*
    865  * Send a signal caused by a trap to the current process.
    866  * If it will be caught immediately, deliver it with correct code.
    867  * Otherwise, post it normally.
    868  */
    869 #ifndef __HAVE_SIGINFO
    870 void _trapsignal(struct lwp *, const ksiginfo_t *);
    871 void
    872 trapsignal(struct lwp *l, int signum, u_long code)
    873 {
    874 #define trapsignal _trapsignal
    875 	ksiginfo_t ksi;
    876 
    877 	KSI_INIT_TRAP(&ksi);
    878 	ksi.ksi_signo = signum;
    879 	ksi.ksi_trap = (int)code;
    880 	trapsignal(l, &ksi);
    881 }
    882 #endif
    883 
    884 void
    885 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    886 {
    887 	struct proc	*p;
    888 	struct sigacts	*ps;
    889 	int signum = ksi->ksi_signo;
    890 
    891 	KASSERT(KSI_TRAP_P(ksi));
    892 
    893 	p = l->l_proc;
    894 	ps = p->p_sigacts;
    895 	if ((p->p_flag & P_TRACED) == 0 &&
    896 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    897 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    898 		p->p_stats->p_ru.ru_nsignals++;
    899 #ifdef KTRACE
    900 		if (KTRPOINT(p, KTR_PSIG))
    901 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    902 			    &p->p_sigctx.ps_sigmask, ksi);
    903 #endif
    904 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    905 		(void) splsched();	/* XXXSMP */
    906 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    907 		    &p->p_sigctx.ps_sigmask);
    908 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    909 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    910 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    911 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    912 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    913 		}
    914 		(void) spl0();		/* XXXSMP */
    915 	} else {
    916 		p->p_sigctx.ps_lwp = l->l_lid;
    917 		/* XXX for core dump/debugger */
    918 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    919 		p->p_sigctx.ps_code = ksi->ksi_trap;
    920 		kpsignal2(p, ksi, 1);
    921 	}
    922 }
    923 
    924 /*
    925  * Fill in signal information and signal the parent for a child status change.
    926  */
    927 static void
    928 child_psignal(struct proc *p, int dolock)
    929 {
    930 	ksiginfo_t ksi;
    931 
    932 	(void)memset(&ksi, 0, sizeof(ksi));
    933 	ksi.ksi_signo = SIGCHLD;
    934 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    935 	ksi.ksi_pid = p->p_pid;
    936 	ksi.ksi_uid = p->p_ucred->cr_uid;
    937 	ksi.ksi_status = p->p_xstat;
    938 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    939 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    940 	kpsignal2(p->p_pptr, &ksi, dolock);
    941 }
    942 
    943 /*
    944  * Send the signal to the process.  If the signal has an action, the action
    945  * is usually performed by the target process rather than the caller; we add
    946  * the signal to the set of pending signals for the process.
    947  *
    948  * Exceptions:
    949  *   o When a stop signal is sent to a sleeping process that takes the
    950  *     default action, the process is stopped without awakening it.
    951  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    952  *     regardless of the signal action (eg, blocked or ignored).
    953  *
    954  * Other ignored signals are discarded immediately.
    955  *
    956  * XXXSMP: Invoked as psignal() or sched_psignal().
    957  */
    958 void
    959 psignal1(struct proc *p, int signum, int dolock)
    960 {
    961 	ksiginfo_t ksi;
    962 
    963 	memset(&ksi, 0, sizeof(ksi));
    964 	ksi.ksi_signo = signum;
    965 	kpsignal2(p, &ksi, dolock);
    966 }
    967 
    968 void
    969 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
    970 {
    971 
    972 	if ((p->p_flag & P_WEXIT) == 0 && data) {
    973 		size_t fd;
    974 		struct filedesc *fdp = p->p_fd;
    975 
    976 		ksi->ksi_fd = -1;
    977 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    978 			struct file *fp = fdp->fd_ofiles[fd];
    979 			/* XXX: lock? */
    980 			if (fp && fp->f_data == data) {
    981 				ksi->ksi_fd = fd;
    982 				break;
    983 			}
    984 		}
    985 	}
    986 	kpsignal2(p, ksi, dolock);
    987 }
    988 
    989 static void
    990 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
    991 {
    992 	struct lwp *l, *suspended;
    993 	int	s = 0, prop, allsusp;
    994 	sig_t	action;
    995 	int	signum = ksi->ksi_signo;
    996 
    997 #ifdef DIAGNOSTIC
    998 	if (signum <= 0 || signum >= NSIG)
    999 		panic("psignal signal number %d", signum);
   1000 
   1001 	/* XXXSMP: works, but icky */
   1002 	if (dolock)
   1003 		SCHED_ASSERT_UNLOCKED();
   1004 	else
   1005 		SCHED_ASSERT_LOCKED();
   1006 #endif
   1007 
   1008 
   1009 	/*
   1010 	 * Notify any interested parties in the signal.
   1011 	 */
   1012 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
   1013 
   1014 	prop = sigprop[signum];
   1015 
   1016 	/*
   1017 	 * If proc is traced, always give parent a chance.
   1018 	 */
   1019 	if (p->p_flag & P_TRACED)
   1020 		action = SIG_DFL;
   1021 	else {
   1022 		/*
   1023 		 * If the signal is being ignored,
   1024 		 * then we forget about it immediately.
   1025 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1026 		 * and if it is set to SIG_IGN,
   1027 		 * action will be SIG_DFL here.)
   1028 		 */
   1029 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1030 			return;
   1031 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1032 			action = SIG_HOLD;
   1033 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1034 			action = SIG_CATCH;
   1035 		else {
   1036 			action = SIG_DFL;
   1037 
   1038 			if (prop & SA_KILL && p->p_nice > NZERO)
   1039 				p->p_nice = NZERO;
   1040 
   1041 			/*
   1042 			 * If sending a tty stop signal to a member of an
   1043 			 * orphaned process group, discard the signal here if
   1044 			 * the action is default; don't stop the process below
   1045 			 * if sleeping, and don't clear any pending SIGCONT.
   1046 			 */
   1047 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1048 				return;
   1049 		}
   1050 	}
   1051 
   1052 	if (prop & SA_CONT)
   1053 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1054 
   1055 	if (prop & SA_STOP)
   1056 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1057 
   1058 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1059 
   1060 	/* CHECKSIGS() is "inlined" here. */
   1061 	p->p_sigctx.ps_sigcheck = 1;
   1062 
   1063 	/*
   1064 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1065 	 * please!), check if anything waits on it. If yes, clear the
   1066 	 * pending signal from siglist set, save it to ps_sigwaited,
   1067 	 * clear sigwait list, and wakeup any sigwaiters.
   1068 	 * The signal won't be processed further here.
   1069 	 */
   1070 	if ((prop & SA_CANTMASK) == 0
   1071 	    && p->p_sigctx.ps_sigwaited < 0
   1072 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)
   1073 	    && p->p_stat != SSTOP) {
   1074 		if (action == SIG_CATCH)
   1075 			ksiginfo_put(p, ksi);
   1076 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1077 		p->p_sigctx.ps_sigwaited = signum;
   1078 		sigemptyset(&p->p_sigctx.ps_sigwait);
   1079 		if (dolock)
   1080 			wakeup_one(&p->p_sigctx.ps_sigwait);
   1081 		else
   1082 			sched_wakeup(&p->p_sigctx.ps_sigwait);
   1083 		return;
   1084 	}
   1085 
   1086 	/*
   1087 	 * Defer further processing for signals which are held,
   1088 	 * except that stopped processes must be continued by SIGCONT.
   1089 	 */
   1090 	if (action == SIG_HOLD &&
   1091 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1092 		ksiginfo_put(p, ksi);
   1093 		return;
   1094 	}
   1095 	/* XXXSMP: works, but icky */
   1096 	if (dolock)
   1097 		SCHED_LOCK(s);
   1098 
   1099 	/* XXXUPSXXX LWPs might go to sleep without passing signal handling */
   1100 	if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
   1101 	    && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
   1102 		/*
   1103 		 * At least one LWP is running or on a run queue.
   1104 		 * The signal will be noticed when one of them returns
   1105 		 * to userspace.
   1106 		 */
   1107 		signotify(p);
   1108 		/*
   1109 		 * The signal will be noticed very soon.
   1110 		 */
   1111 		goto out;
   1112 	} else {
   1113 		/* Process is sleeping or stopped */
   1114 		if (p->p_flag & P_SA) {
   1115 			struct lwp *l2 = p->p_sa->sa_vp;
   1116 			l = NULL;
   1117 			allsusp = 1;
   1118 
   1119 			if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
   1120 				l = l2;
   1121 			else if (l2->l_stat == LSSUSPENDED)
   1122 				suspended = l2;
   1123 			else if ((l2->l_stat != LSZOMB) &&
   1124 				 (l2->l_stat != LSDEAD))
   1125 				allsusp = 0;
   1126 		} else {
   1127 			/*
   1128 			 * Find out if any of the sleeps are interruptable,
   1129 			 * and if all the live LWPs remaining are suspended.
   1130 			 */
   1131 			allsusp = 1;
   1132 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1133 				if (l->l_stat == LSSLEEP &&
   1134 				    l->l_flag & L_SINTR)
   1135 					break;
   1136 				if (l->l_stat == LSSUSPENDED)
   1137 					suspended = l;
   1138 				else if ((l->l_stat != LSZOMB) &&
   1139 				         (l->l_stat != LSDEAD))
   1140 					allsusp = 0;
   1141 			}
   1142 		}
   1143 		if (p->p_stat == SACTIVE) {
   1144 
   1145 
   1146 			if (l != NULL && (p->p_flag & P_TRACED))
   1147 				goto run;
   1148 
   1149 			/*
   1150 			 * If SIGCONT is default (or ignored) and process is
   1151 			 * asleep, we are finished; the process should not
   1152 			 * be awakened.
   1153 			 */
   1154 			if ((prop & SA_CONT) && action == SIG_DFL) {
   1155 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1156 				goto done;
   1157 			}
   1158 
   1159 			/*
   1160 			 * When a sleeping process receives a stop
   1161 			 * signal, process immediately if possible.
   1162 			 */
   1163 			if ((prop & SA_STOP) && action == SIG_DFL) {
   1164 				/*
   1165 				 * If a child holding parent blocked,
   1166 				 * stopping could cause deadlock.
   1167 				 */
   1168 				if (p->p_flag & P_PPWAIT) {
   1169 					goto out;
   1170 				}
   1171 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1172 				p->p_xstat = signum;
   1173 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1174 					/*
   1175 					 * XXXSMP: recursive call; don't lock
   1176 					 * the second time around.
   1177 					 */
   1178 					child_psignal(p, 0);
   1179 				}
   1180 				proc_stop(p);	/* XXXSMP: recurse? */
   1181 				goto done;
   1182 			}
   1183 
   1184 			if (l == NULL) {
   1185 				/*
   1186 				 * Special case: SIGKILL of a process
   1187 				 * which is entirely composed of
   1188 				 * suspended LWPs should succeed. We
   1189 				 * make this happen by unsuspending one of
   1190 				 * them.
   1191 				 */
   1192 				if (allsusp && (signum == SIGKILL))
   1193 					lwp_continue(suspended);
   1194 				goto done;
   1195 			}
   1196 			/*
   1197 			 * All other (caught or default) signals
   1198 			 * cause the process to run.
   1199 			 */
   1200 			goto runfast;
   1201 			/*NOTREACHED*/
   1202 		} else if (p->p_stat == SSTOP) {
   1203 			/* Process is stopped */
   1204 			/*
   1205 			 * If traced process is already stopped,
   1206 			 * then no further action is necessary.
   1207 			 */
   1208 			if (p->p_flag & P_TRACED)
   1209 				goto done;
   1210 
   1211 			/*
   1212 			 * Kill signal always sets processes running,
   1213 			 * if possible.
   1214 			 */
   1215 			if (signum == SIGKILL) {
   1216 				l = proc_unstop(p);
   1217 				if (l)
   1218 					goto runfast;
   1219 				goto done;
   1220 			}
   1221 
   1222 			if (prop & SA_CONT) {
   1223 				/*
   1224 				 * If SIGCONT is default (or ignored),
   1225 				 * we continue the process but don't
   1226 				 * leave the signal in ps_siglist, as
   1227 				 * it has no further action.  If
   1228 				 * SIGCONT is held, we continue the
   1229 				 * process and leave the signal in
   1230 				 * ps_siglist.  If the process catches
   1231 				 * SIGCONT, let it handle the signal
   1232 				 * itself.  If it isn't waiting on an
   1233 				 * event, then it goes back to run
   1234 				 * state.  Otherwise, process goes
   1235 				 * back to sleep state.
   1236 				 */
   1237 				if (action == SIG_DFL)
   1238 					sigdelset(&p->p_sigctx.ps_siglist,
   1239 					signum);
   1240 				l = proc_unstop(p);
   1241 				if (l && (action == SIG_CATCH))
   1242 					goto runfast;
   1243 				goto out;
   1244 			}
   1245 
   1246 			if (prop & SA_STOP) {
   1247 				/*
   1248 				 * Already stopped, don't need to stop again.
   1249 				 * (If we did the shell could get confused.)
   1250 				 */
   1251 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1252 				goto done;
   1253 			}
   1254 
   1255 			/*
   1256 			 * If a lwp is sleeping interruptibly, then
   1257 			 * wake it up; it will run until the kernel
   1258 			 * boundary, where it will stop in issignal(),
   1259 			 * since p->p_stat is still SSTOP. When the
   1260 			 * process is continued, it will be made
   1261 			 * runnable and can look at the signal.
   1262 			 */
   1263 			if (l)
   1264 				goto run;
   1265 			goto out;
   1266 		} else {
   1267 			/* Else what? */
   1268 			panic("psignal: Invalid process state %d.",
   1269 				p->p_stat);
   1270 		}
   1271 	}
   1272 	/*NOTREACHED*/
   1273 
   1274  runfast:
   1275 	if (action == SIG_CATCH) {
   1276 		ksiginfo_put(p, ksi);
   1277 		action = SIG_HOLD;
   1278 	}
   1279 	/*
   1280 	 * Raise priority to at least PUSER.
   1281 	 */
   1282 	if (l->l_priority > PUSER)
   1283 		l->l_priority = PUSER;
   1284  run:
   1285 	if (action == SIG_CATCH) {
   1286 		ksiginfo_put(p, ksi);
   1287 		action = SIG_HOLD;
   1288 	}
   1289 
   1290 	setrunnable(l);		/* XXXSMP: recurse? */
   1291  out:
   1292 	if (action == SIG_CATCH)
   1293 		ksiginfo_put(p, ksi);
   1294  done:
   1295 	/* XXXSMP: works, but icky */
   1296 	if (dolock)
   1297 		SCHED_UNLOCK(s);
   1298 }
   1299 
   1300 void
   1301 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1302 {
   1303 	struct proc *p = l->l_proc;
   1304 	struct lwp *le, *li;
   1305 	siginfo_t *si;
   1306 	int f;
   1307 
   1308 	if (p->p_flag & P_SA) {
   1309 
   1310 		/* XXXUPSXXX What if not on sa_vp ? */
   1311 
   1312 		f = l->l_flag & L_SA;
   1313 		l->l_flag &= ~L_SA;
   1314 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1315 		si->_info = ksi->ksi_info;
   1316 		le = li = NULL;
   1317 		if (KSI_TRAP_P(ksi))
   1318 			le = l;
   1319 		else
   1320 			li = l;
   1321 
   1322 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1323 			    sizeof(siginfo_t), si);
   1324 		l->l_flag |= f;
   1325 		return;
   1326 	}
   1327 
   1328 #ifdef __HAVE_SIGINFO
   1329 	(*p->p_emul->e_sendsig)(ksi, mask);
   1330 #else
   1331 	(*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, KSI_TRAPCODE(ksi));
   1332 #endif
   1333 }
   1334 
   1335 static __inline int firstsig(const sigset_t *);
   1336 
   1337 static __inline int
   1338 firstsig(const sigset_t *ss)
   1339 {
   1340 	int sig;
   1341 
   1342 	sig = ffs(ss->__bits[0]);
   1343 	if (sig != 0)
   1344 		return (sig);
   1345 #if NSIG > 33
   1346 	sig = ffs(ss->__bits[1]);
   1347 	if (sig != 0)
   1348 		return (sig + 32);
   1349 #endif
   1350 #if NSIG > 65
   1351 	sig = ffs(ss->__bits[2]);
   1352 	if (sig != 0)
   1353 		return (sig + 64);
   1354 #endif
   1355 #if NSIG > 97
   1356 	sig = ffs(ss->__bits[3]);
   1357 	if (sig != 0)
   1358 		return (sig + 96);
   1359 #endif
   1360 	return (0);
   1361 }
   1362 
   1363 /*
   1364  * If the current process has received a signal (should be caught or cause
   1365  * termination, should interrupt current syscall), return the signal number.
   1366  * Stop signals with default action are processed immediately, then cleared;
   1367  * they aren't returned.  This is checked after each entry to the system for
   1368  * a syscall or trap (though this can usually be done without calling issignal
   1369  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1370  * sequence is
   1371  *
   1372  *	while (signum = CURSIG(curlwp))
   1373  *		postsig(signum);
   1374  */
   1375 int
   1376 issignal(struct lwp *l)
   1377 {
   1378 	struct proc	*p = l->l_proc;
   1379 	int		s = 0, signum, prop;
   1380 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1381 	sigset_t	ss;
   1382 
   1383 	if (l->l_flag & L_SA) {
   1384 		struct sadata *sa = p->p_sa;
   1385 
   1386 		/* Bail out if we do not own the virtual processor */
   1387 		if (sa->sa_vp != l)
   1388 			return 0;
   1389 	}
   1390 
   1391 	if (p->p_stat == SSTOP) {
   1392 		/*
   1393 		 * The process is stopped/stopping. Stop ourselves now that
   1394 		 * we're on the kernel/userspace boundary.
   1395 		 */
   1396 		if (dolock)
   1397 			SCHED_LOCK(s);
   1398 		l->l_stat = LSSTOP;
   1399 		p->p_nrlwps--;
   1400 		if (p->p_flag & P_TRACED)
   1401 			goto sigtraceswitch;
   1402 		else
   1403 			goto sigswitch;
   1404 	}
   1405 	for (;;) {
   1406 		sigpending1(p, &ss);
   1407 		if (p->p_flag & P_PPWAIT)
   1408 			sigminusset(&stopsigmask, &ss);
   1409 		signum = firstsig(&ss);
   1410 		if (signum == 0) {		 	/* no signal to send */
   1411 			p->p_sigctx.ps_sigcheck = 0;
   1412 			if (locked && dolock)
   1413 				SCHED_LOCK(s);
   1414 			return (0);
   1415 		}
   1416 							/* take the signal! */
   1417 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1418 
   1419 		/*
   1420 		 * We should see pending but ignored signals
   1421 		 * only if P_TRACED was on when they were posted.
   1422 		 */
   1423 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1424 		    (p->p_flag & P_TRACED) == 0)
   1425 			continue;
   1426 
   1427 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1428 			/*
   1429 			 * If traced, always stop, and stay
   1430 			 * stopped until released by the debugger.
   1431 			 */
   1432 			p->p_xstat = signum;
   1433 			if ((p->p_flag & P_FSTRACE) == 0)
   1434 				child_psignal(p, dolock);
   1435 			if (dolock)
   1436 				SCHED_LOCK(s);
   1437 			proc_stop(p);
   1438 		sigtraceswitch:
   1439 			mi_switch(l, NULL);
   1440 			SCHED_ASSERT_UNLOCKED();
   1441 			if (dolock)
   1442 				splx(s);
   1443 			else
   1444 				dolock = 1;
   1445 
   1446 			/*
   1447 			 * If we are no longer being traced, or the parent
   1448 			 * didn't give us a signal, look for more signals.
   1449 			 */
   1450 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1451 				continue;
   1452 
   1453 			/*
   1454 			 * If the new signal is being masked, look for other
   1455 			 * signals.
   1456 			 */
   1457 			signum = p->p_xstat;
   1458 			p->p_xstat = 0;
   1459 			/*
   1460 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1461 			 * in setrunnable().
   1462 			 */
   1463 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1464 				continue;
   1465 							/* take the signal! */
   1466 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1467 		}
   1468 
   1469 		prop = sigprop[signum];
   1470 
   1471 		/*
   1472 		 * Decide whether the signal should be returned.
   1473 		 * Return the signal's number, or fall through
   1474 		 * to clear it from the pending mask.
   1475 		 */
   1476 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1477 
   1478 		case (long)SIG_DFL:
   1479 			/*
   1480 			 * Don't take default actions on system processes.
   1481 			 */
   1482 			if (p->p_pid <= 1) {
   1483 #ifdef DIAGNOSTIC
   1484 				/*
   1485 				 * Are you sure you want to ignore SIGSEGV
   1486 				 * in init? XXX
   1487 				 */
   1488 				printf("Process (pid %d) got signal %d\n",
   1489 				    p->p_pid, signum);
   1490 #endif
   1491 				break;		/* == ignore */
   1492 			}
   1493 			/*
   1494 			 * If there is a pending stop signal to process
   1495 			 * with default action, stop here,
   1496 			 * then clear the signal.  However,
   1497 			 * if process is member of an orphaned
   1498 			 * process group, ignore tty stop signals.
   1499 			 */
   1500 			if (prop & SA_STOP) {
   1501 				if (p->p_flag & P_TRACED ||
   1502 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1503 				    prop & SA_TTYSTOP))
   1504 					break;	/* == ignore */
   1505 				p->p_xstat = signum;
   1506 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1507 					child_psignal(p, dolock);
   1508 				if (dolock)
   1509 					SCHED_LOCK(s);
   1510 				proc_stop(p);
   1511 			sigswitch:
   1512 				mi_switch(l, NULL);
   1513 				SCHED_ASSERT_UNLOCKED();
   1514 				if (dolock)
   1515 					splx(s);
   1516 				else
   1517 					dolock = 1;
   1518 				break;
   1519 			} else if (prop & SA_IGNORE) {
   1520 				/*
   1521 				 * Except for SIGCONT, shouldn't get here.
   1522 				 * Default action is to ignore; drop it.
   1523 				 */
   1524 				break;		/* == ignore */
   1525 			} else
   1526 				goto keep;
   1527 			/*NOTREACHED*/
   1528 
   1529 		case (long)SIG_IGN:
   1530 			/*
   1531 			 * Masking above should prevent us ever trying
   1532 			 * to take action on an ignored signal other
   1533 			 * than SIGCONT, unless process is traced.
   1534 			 */
   1535 #ifdef DEBUG_ISSIGNAL
   1536 			if ((prop & SA_CONT) == 0 &&
   1537 			    (p->p_flag & P_TRACED) == 0)
   1538 				printf("issignal\n");
   1539 #endif
   1540 			break;		/* == ignore */
   1541 
   1542 		default:
   1543 			/*
   1544 			 * This signal has an action, let
   1545 			 * postsig() process it.
   1546 			 */
   1547 			goto keep;
   1548 		}
   1549 	}
   1550 	/* NOTREACHED */
   1551 
   1552  keep:
   1553 						/* leave the signal for later */
   1554 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1555 	CHECKSIGS(p);
   1556 	if (locked && dolock)
   1557 		SCHED_LOCK(s);
   1558 	return (signum);
   1559 }
   1560 
   1561 /*
   1562  * Put the argument process into the stopped state and notify the parent
   1563  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1564  * on the run queue.
   1565  */
   1566 static void
   1567 proc_stop(struct proc *p)
   1568 {
   1569 	struct lwp *l;
   1570 
   1571 	SCHED_ASSERT_LOCKED();
   1572 
   1573 	/* XXX lock process LWP state */
   1574 	p->p_stat = SSTOP;
   1575 	p->p_flag &= ~P_WAITED;
   1576 
   1577 	/*
   1578 	 * Put as many LWP's as possible in stopped state.
   1579 	 * Sleeping ones will notice the stopped state as they try to
   1580 	 * return to userspace.
   1581 	 */
   1582 
   1583 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1584 		if ((l->l_stat == LSONPROC) && (l == curlwp)) {
   1585 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1586 			 * is curlwp and hence is about to be mi_switched
   1587 			 * away; the only callers of proc_stop() are:
   1588 			 * - psignal
   1589 			 * - issignal()
   1590 			 * For the former, proc_stop() is only called when
   1591 			 * no processes are running, so we don't worry.
   1592 			 * For the latter, proc_stop() is called right
   1593 			 * before mi_switch().
   1594 			 */
   1595 			l->l_stat = LSSTOP;
   1596 			p->p_nrlwps--;
   1597 		}
   1598 		 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
   1599 			setrunnable(l);
   1600 		}
   1601 
   1602 /* !!!UPS!!! FIX ME */
   1603 #if 0
   1604 else if (l->l_stat == LSRUN) {
   1605 			/* Remove LWP from the run queue */
   1606 			remrunqueue(l);
   1607 			l->l_stat = LSSTOP;
   1608 			p->p_nrlwps--;
   1609 		} else if ((l->l_stat == LSSLEEP) ||
   1610 		    (l->l_stat == LSSUSPENDED) ||
   1611 		    (l->l_stat == LSZOMB) ||
   1612 		    (l->l_stat == LSDEAD)) {
   1613 			/*
   1614 			 * Don't do anything; let sleeping LWPs
   1615 			 * discover the stopped state of the process
   1616 			 * on their way out of the kernel; otherwise,
   1617 			 * things like NFS threads that sleep with
   1618 			 * locks will block the rest of the system
   1619 			 * from getting any work done.
   1620 			 *
   1621 			 * Suspended/dead/zombie LWPs aren't going
   1622 			 * anywhere, so we don't need to touch them.
   1623 			 */
   1624 		}
   1625 #ifdef DIAGNOSTIC
   1626 		else {
   1627 			panic("proc_stop: process %d lwp %d "
   1628 			      "in unstoppable state %d.\n",
   1629 			    p->p_pid, l->l_lid, l->l_stat);
   1630 		}
   1631 #endif
   1632 #endif
   1633 	}
   1634 	/* XXX unlock process LWP state */
   1635 
   1636 	sched_wakeup((caddr_t)p->p_pptr);
   1637 }
   1638 
   1639 /*
   1640  * Given a process in state SSTOP, set the state back to SACTIVE and
   1641  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1642  *
   1643  * If no LWPs ended up runnable (and therefore able to take a signal),
   1644  * return a LWP that is sleeping interruptably. The caller can wake
   1645  * that LWP up to take a signal.
   1646  */
   1647 struct lwp *
   1648 proc_unstop(struct proc *p)
   1649 {
   1650 	struct lwp *l, *lr = NULL;
   1651 	int cantake = 0;
   1652 
   1653 	SCHED_ASSERT_LOCKED();
   1654 
   1655 	/*
   1656 	 * Our caller wants to be informed if there are only sleeping
   1657 	 * and interruptable LWPs left after we have run so that it
   1658 	 * can invoke setrunnable() if required - return one of the
   1659 	 * interruptable LWPs if this is the case.
   1660 	 */
   1661 
   1662 	p->p_stat = SACTIVE;
   1663 	if (p->p_flag & P_SA) {
   1664 		/*
   1665 		 * Preferentially select the idle LWP as the interruptable
   1666 		 * LWP to return if it exists.
   1667 		 */
   1668 		lr = p->p_sa->sa_idle;
   1669 		if (lr != NULL)
   1670 			cantake = 1;
   1671 	}
   1672 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1673 		if (l->l_stat == LSRUN) {
   1674 			lr = NULL;
   1675 			cantake = 1;
   1676 		}
   1677 		if (l->l_stat != LSSTOP)
   1678 			continue;
   1679 
   1680 		if (l->l_wchan != NULL) {
   1681 			l->l_stat = LSSLEEP;
   1682 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1683 				lr = l;
   1684 				cantake = 1;
   1685 			}
   1686 		} else {
   1687 			setrunnable(l);
   1688 			lr = NULL;
   1689 			cantake = 1;
   1690 		}
   1691 	}
   1692 
   1693 	return lr;
   1694 }
   1695 
   1696 /*
   1697  * Take the action for the specified signal
   1698  * from the current set of pending signals.
   1699  */
   1700 void
   1701 postsig(int signum)
   1702 {
   1703 	struct lwp *l;
   1704 	struct proc	*p;
   1705 	struct sigacts	*ps;
   1706 	sig_t		action;
   1707 	sigset_t	*returnmask;
   1708 
   1709 	l = curlwp;
   1710 	p = l->l_proc;
   1711 	ps = p->p_sigacts;
   1712 #ifdef DIAGNOSTIC
   1713 	if (signum == 0)
   1714 		panic("postsig");
   1715 #endif
   1716 
   1717 	KERNEL_PROC_LOCK(l);
   1718 
   1719 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1720 	action = SIGACTION_PS(ps, signum).sa_handler;
   1721 	if (action == SIG_DFL) {
   1722 #ifdef KTRACE
   1723 		if (KTRPOINT(p, KTR_PSIG))
   1724 			ktrpsig(p, signum, action,
   1725 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1726 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1727 			    NULL);
   1728 #endif
   1729 		/*
   1730 		 * Default action, where the default is to kill
   1731 		 * the process.  (Other cases were ignored above.)
   1732 		 */
   1733 		sigexit(l, signum);
   1734 		/* NOTREACHED */
   1735 	} else {
   1736 		ksiginfo_t *ksi;
   1737 		/*
   1738 		 * If we get here, the signal must be caught.
   1739 		 */
   1740 #ifdef DIAGNOSTIC
   1741 		if (action == SIG_IGN ||
   1742 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1743 			panic("postsig action");
   1744 #endif
   1745 		/*
   1746 		 * Set the new mask value and also defer further
   1747 		 * occurrences of this signal.
   1748 		 *
   1749 		 * Special case: user has done a sigpause.  Here the
   1750 		 * current mask is not of interest, but rather the
   1751 		 * mask from before the sigpause is what we want
   1752 		 * restored after the signal processing is completed.
   1753 		 */
   1754 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1755 			returnmask = &p->p_sigctx.ps_oldmask;
   1756 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1757 		} else
   1758 			returnmask = &p->p_sigctx.ps_sigmask;
   1759 		p->p_stats->p_ru.ru_nsignals++;
   1760 		ksi = ksiginfo_get(p, signum);
   1761 #ifdef KTRACE
   1762 		if (KTRPOINT(p, KTR_PSIG))
   1763 			ktrpsig(p, signum, action,
   1764 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1765 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1766 			    ksi);
   1767 #endif
   1768 		if (ksi == NULL) {
   1769 			ksiginfo_t ksi1;
   1770 			/*
   1771 			 * we did not save any siginfo for this, either
   1772 			 * because the signal was not caught, or because the
   1773 			 * user did not request SA_SIGINFO
   1774 			 */
   1775 			(void)memset(&ksi1, 0, sizeof(ksi1));
   1776 			ksi1.ksi_signo = signum;
   1777 			kpsendsig(l, &ksi1, returnmask);
   1778 		} else {
   1779 			kpsendsig(l, ksi, returnmask);
   1780 			pool_put(&ksiginfo_pool, ksi);
   1781 		}
   1782 		p->p_sigctx.ps_lwp = 0;
   1783 		p->p_sigctx.ps_code = 0;
   1784 		p->p_sigctx.ps_signo = 0;
   1785 		(void) splsched();	/* XXXSMP */
   1786 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1787 		    &p->p_sigctx.ps_sigmask);
   1788 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1789 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1790 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1791 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1792 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1793 		}
   1794 		(void) spl0();		/* XXXSMP */
   1795 	}
   1796 
   1797 	KERNEL_PROC_UNLOCK(l);
   1798 }
   1799 
   1800 /*
   1801  * Kill the current process for stated reason.
   1802  */
   1803 void
   1804 killproc(struct proc *p, const char *why)
   1805 {
   1806 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1807 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1808 	psignal(p, SIGKILL);
   1809 }
   1810 
   1811 /*
   1812  * Force the current process to exit with the specified signal, dumping core
   1813  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1814  * allowing unrecoverable failures to terminate the process without changing
   1815  * signal state.  Mark the accounting record with the signal termination.
   1816  * If dumping core, save the signal number for the debugger.  Calls exit and
   1817  * does not return.
   1818  */
   1819 
   1820 #if defined(DEBUG)
   1821 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1822 #else
   1823 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1824 #endif
   1825 
   1826 static	const char logcoredump[] =
   1827 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1828 static	const char lognocoredump[] =
   1829 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1830 
   1831 /* Wrapper function for use in p_userret */
   1832 static void
   1833 lwp_coredump_hook(struct lwp *l, void *arg)
   1834 {
   1835 	int s;
   1836 
   1837 	/*
   1838 	 * Suspend ourselves, so that the kernel stack and therefore
   1839 	 * the userland registers saved in the trapframe are around
   1840 	 * for coredump() to write them out.
   1841 	 */
   1842 	KERNEL_PROC_LOCK(l);
   1843 	l->l_flag &= ~L_DETACHED;
   1844 	SCHED_LOCK(s);
   1845 	l->l_stat = LSSUSPENDED;
   1846 	l->l_proc->p_nrlwps--;
   1847 	/* XXX NJWLWP check if this makes sense here: */
   1848 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1849 	mi_switch(l, NULL);
   1850 	SCHED_ASSERT_UNLOCKED();
   1851 	splx(s);
   1852 
   1853 	lwp_exit(l);
   1854 }
   1855 
   1856 void
   1857 sigexit(struct lwp *l, int signum)
   1858 {
   1859 	struct proc	*p;
   1860 #if 0
   1861 	struct lwp	*l2;
   1862 #endif
   1863 	int		error, exitsig;
   1864 
   1865 	p = l->l_proc;
   1866 
   1867 	/*
   1868 	 * Don't permit coredump() or exit1() multiple times
   1869 	 * in the same process.
   1870 	 */
   1871 	if (p->p_flag & P_WEXIT) {
   1872 		KERNEL_PROC_UNLOCK(l);
   1873 		(*p->p_userret)(l, p->p_userret_arg);
   1874 	}
   1875 	p->p_flag |= P_WEXIT;
   1876 	/* We don't want to switch away from exiting. */
   1877 	/* XXX multiprocessor: stop LWPs on other processors. */
   1878 #if 0
   1879 	if (p->p_flag & P_SA) {
   1880 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1881 		    l2->l_flag &= ~L_SA;
   1882 		p->p_flag &= ~P_SA;
   1883 	}
   1884 #endif
   1885 
   1886 	/* Make other LWPs stick around long enough to be dumped */
   1887 	p->p_userret = lwp_coredump_hook;
   1888 	p->p_userret_arg = NULL;
   1889 
   1890 	exitsig = signum;
   1891 	p->p_acflag |= AXSIG;
   1892 	if (sigprop[signum] & SA_CORE) {
   1893 		p->p_sigctx.ps_signo = signum;
   1894 		if ((error = coredump(l)) == 0)
   1895 			exitsig |= WCOREFLAG;
   1896 
   1897 		if (kern_logsigexit) {
   1898 			/* XXX What if we ever have really large UIDs? */
   1899 			int uid = p->p_cred && p->p_ucred ?
   1900 				(int) p->p_ucred->cr_uid : -1;
   1901 
   1902 			if (error)
   1903 				log(LOG_INFO, lognocoredump, p->p_pid,
   1904 				    p->p_comm, uid, signum, error);
   1905 			else
   1906 				log(LOG_INFO, logcoredump, p->p_pid,
   1907 				    p->p_comm, uid, signum);
   1908 		}
   1909 
   1910 	}
   1911 
   1912 	exit1(l, W_EXITCODE(0, exitsig));
   1913 	/* NOTREACHED */
   1914 }
   1915 
   1916 /*
   1917  * Dump core, into a file named "progname.core" or "core" (depending on the
   1918  * value of shortcorename), unless the process was setuid/setgid.
   1919  */
   1920 int
   1921 coredump(struct lwp *l)
   1922 {
   1923 	struct vnode		*vp;
   1924 	struct proc		*p;
   1925 	struct vmspace		*vm;
   1926 	struct ucred		*cred;
   1927 	struct nameidata	nd;
   1928 	struct vattr		vattr;
   1929 	int			error, error1;
   1930 	char			name[MAXPATHLEN];
   1931 
   1932 	p = l->l_proc;
   1933 	vm = p->p_vmspace;
   1934 	cred = p->p_cred->pc_ucred;
   1935 
   1936 	/*
   1937 	 * Make sure the process has not set-id, to prevent data leaks.
   1938 	 */
   1939 	if (p->p_flag & P_SUGID)
   1940 		return (EPERM);
   1941 
   1942 	/*
   1943 	 * Refuse to core if the data + stack + user size is larger than
   1944 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   1945 	 * data.
   1946 	 */
   1947 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   1948 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   1949 		return (EFBIG);		/* better error code? */
   1950 
   1951 	/*
   1952 	 * The core dump will go in the current working directory.  Make
   1953 	 * sure that the directory is still there and that the mount flags
   1954 	 * allow us to write core dumps there.
   1955 	 */
   1956 	vp = p->p_cwdi->cwdi_cdir;
   1957 	if (vp->v_mount == NULL ||
   1958 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   1959 		return (EPERM);
   1960 
   1961 	error = build_corename(p, name);
   1962 	if (error)
   1963 		return error;
   1964 
   1965 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   1966 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   1967 	if (error)
   1968 		return (error);
   1969 	vp = nd.ni_vp;
   1970 
   1971 	/* Don't dump to non-regular files or files with links. */
   1972 	if (vp->v_type != VREG ||
   1973 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   1974 		error = EINVAL;
   1975 		goto out;
   1976 	}
   1977 	VATTR_NULL(&vattr);
   1978 	vattr.va_size = 0;
   1979 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   1980 	VOP_SETATTR(vp, &vattr, cred, p);
   1981 	p->p_acflag |= ACORE;
   1982 
   1983 	/* Now dump the actual core file. */
   1984 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   1985  out:
   1986 	VOP_UNLOCK(vp, 0);
   1987 	error1 = vn_close(vp, FWRITE, cred, p);
   1988 	if (error == 0)
   1989 		error = error1;
   1990 	return (error);
   1991 }
   1992 
   1993 /*
   1994  * Nonexistent system call-- signal process (may want to handle it).
   1995  * Flag error in case process won't see signal immediately (blocked or ignored).
   1996  */
   1997 /* ARGSUSED */
   1998 int
   1999 sys_nosys(struct lwp *l, void *v, register_t *retval)
   2000 {
   2001 	struct proc 	*p;
   2002 
   2003 	p = l->l_proc;
   2004 	psignal(p, SIGSYS);
   2005 	return (ENOSYS);
   2006 }
   2007 
   2008 static int
   2009 build_corename(struct proc *p, char dst[MAXPATHLEN])
   2010 {
   2011 	const char	*s;
   2012 	char		*d, *end;
   2013 	int		i;
   2014 
   2015 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   2016 	    *s != '\0'; s++) {
   2017 		if (*s == '%') {
   2018 			switch (*(s + 1)) {
   2019 			case 'n':
   2020 				i = snprintf(d, end - d, "%s", p->p_comm);
   2021 				break;
   2022 			case 'p':
   2023 				i = snprintf(d, end - d, "%d", p->p_pid);
   2024 				break;
   2025 			case 'u':
   2026 				i = snprintf(d, end - d, "%.*s",
   2027 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2028 				    p->p_pgrp->pg_session->s_login);
   2029 				break;
   2030 			case 't':
   2031 				i = snprintf(d, end - d, "%ld",
   2032 				    p->p_stats->p_start.tv_sec);
   2033 				break;
   2034 			default:
   2035 				goto copy;
   2036 			}
   2037 			d += i;
   2038 			s++;
   2039 		} else {
   2040  copy:			*d = *s;
   2041 			d++;
   2042 		}
   2043 		if (d >= end)
   2044 			return (ENAMETOOLONG);
   2045 	}
   2046 	*d = '\0';
   2047 	return 0;
   2048 }
   2049 
   2050 void
   2051 getucontext(struct lwp *l, ucontext_t *ucp)
   2052 {
   2053 	struct proc	*p;
   2054 
   2055 	p = l->l_proc;
   2056 
   2057 	ucp->uc_flags = 0;
   2058 	ucp->uc_link = l->l_ctxlink;
   2059 
   2060 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2061 	ucp->uc_flags |= _UC_SIGMASK;
   2062 
   2063 	/*
   2064 	 * The (unsupplied) definition of the `current execution stack'
   2065 	 * in the System V Interface Definition appears to allow returning
   2066 	 * the main context stack.
   2067 	 */
   2068 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2069 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2070 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2071 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2072 	} else {
   2073 		/* Simply copy alternate signal execution stack. */
   2074 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2075 	}
   2076 	ucp->uc_flags |= _UC_STACK;
   2077 
   2078 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2079 }
   2080 
   2081 /* ARGSUSED */
   2082 int
   2083 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2084 {
   2085 	struct sys_getcontext_args /* {
   2086 		syscallarg(struct __ucontext *) ucp;
   2087 	} */ *uap = v;
   2088 	ucontext_t uc;
   2089 
   2090 	getucontext(l, &uc);
   2091 
   2092 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2093 }
   2094 
   2095 int
   2096 setucontext(struct lwp *l, const ucontext_t *ucp)
   2097 {
   2098 	struct proc	*p;
   2099 	int		error;
   2100 
   2101 	p = l->l_proc;
   2102 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2103 		return (error);
   2104 	l->l_ctxlink = ucp->uc_link;
   2105 	/*
   2106 	 * We might want to take care of the stack portion here but currently
   2107 	 * don't; see the comment in getucontext().
   2108 	 */
   2109 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2110 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2111 
   2112 	return 0;
   2113 }
   2114 
   2115 /* ARGSUSED */
   2116 int
   2117 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2118 {
   2119 	struct sys_setcontext_args /* {
   2120 		syscallarg(const ucontext_t *) ucp;
   2121 	} */ *uap = v;
   2122 	ucontext_t uc;
   2123 	int error;
   2124 
   2125 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2126 		exit1(l, W_EXITCODE(0, 0));
   2127 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2128 	    (error = setucontext(l, &uc)) != 0)
   2129 		return (error);
   2130 
   2131 	return (EJUSTRETURN);
   2132 }
   2133 
   2134 /*
   2135  * sigtimedwait(2) system call, used also for implementation
   2136  * of sigwaitinfo() and sigwait().
   2137  *
   2138  * This only handles single LWP in signal wait. libpthread provides
   2139  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2140  *
   2141  * XXX no support for queued signals, si_code is always SI_USER.
   2142  */
   2143 int
   2144 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2145 {
   2146 	struct sys___sigtimedwait_args /* {
   2147 		syscallarg(const sigset_t *) set;
   2148 		syscallarg(siginfo_t *) info;
   2149 		syscallarg(struct timespec *) timeout;
   2150 	} */ *uap = v;
   2151 	sigset_t waitset, twaitset;
   2152 	struct proc *p = l->l_proc;
   2153 	int error, signum, s;
   2154 	int timo = 0;
   2155 	struct timeval tvstart;
   2156 	struct timespec ts;
   2157 
   2158 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
   2159 		return (error);
   2160 
   2161 	/*
   2162 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2163 	 * ignore SA_CANTMASK signals in waitset, we do this
   2164 	 * only for the below siglist check.
   2165 	 */
   2166 	sigminusset(&sigcantmask, &waitset);
   2167 
   2168 	/*
   2169 	 * First scan siglist and check if there is signal from
   2170 	 * our waitset already pending.
   2171 	 */
   2172 	twaitset = waitset;
   2173 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2174 	if ((signum = firstsig(&twaitset))) {
   2175 		/* found pending signal */
   2176 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2177 		goto sig;
   2178 	}
   2179 
   2180 	/*
   2181 	 * Calculate timeout, if it was specified.
   2182 	 */
   2183 	if (SCARG(uap, timeout)) {
   2184 		uint64_t ms;
   2185 
   2186 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   2187 			return (error);
   2188 
   2189 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2190 		timo = mstohz(ms);
   2191 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2192 			timo = 1;
   2193 		if (timo <= 0)
   2194 			return (EAGAIN);
   2195 
   2196 		/*
   2197 		 * Remember current mono_time, it would be used in
   2198 		 * ECANCELED/ERESTART case.
   2199 		 */
   2200 		s = splclock();
   2201 		tvstart = mono_time;
   2202 		splx(s);
   2203 	}
   2204 
   2205 	/*
   2206 	 * Setup ps_sigwait list.
   2207 	 */
   2208 	p->p_sigctx.ps_sigwaited = -1;
   2209 	p->p_sigctx.ps_sigwait = waitset;
   2210 
   2211 	/*
   2212 	 * Wait for signal to arrive. We can either be woken up or
   2213 	 * time out.
   2214 	 */
   2215 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2216 
   2217 	/*
   2218 	 * Check if a signal from our wait set has arrived, or if it
   2219 	 * was mere wakeup.
   2220 	 */
   2221 	if (!error) {
   2222 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
   2223 			/* wakeup via _lwp_wakeup() */
   2224 			error = ECANCELED;
   2225 		}
   2226 	}
   2227 
   2228 	/*
   2229 	 * On error, clear sigwait indication. psignal1() sets it
   2230 	 * in !error case.
   2231 	 */
   2232 	if (error) {
   2233 		p->p_sigctx.ps_sigwaited = 0;
   2234 
   2235 		/*
   2236 		 * If the sleep was interrupted (either by signal or wakeup),
   2237 		 * update the timeout and copyout new value back.
   2238 		 * It would be used when the syscall would be restarted
   2239 		 * or called again.
   2240 		 */
   2241 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2242 			struct timeval tvnow, tvtimo;
   2243 			int err;
   2244 
   2245 			s = splclock();
   2246 			tvnow = mono_time;
   2247 			splx(s);
   2248 
   2249 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2250 
   2251 			/* compute how much time has passed since start */
   2252 			timersub(&tvnow, &tvstart, &tvnow);
   2253 			/* substract passed time from timeout */
   2254 			timersub(&tvtimo, &tvnow, &tvtimo);
   2255 
   2256 			if (tvtimo.tv_sec < 0)
   2257 				return (EAGAIN);
   2258 
   2259 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2260 
   2261 			/* copy updated timeout to userland */
   2262 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
   2263 				return (err);
   2264 		}
   2265 
   2266 		return (error);
   2267 	}
   2268 
   2269 	/*
   2270 	 * If a signal from the wait set arrived, copy it to userland.
   2271 	 * XXX no queued signals for now
   2272 	 */
   2273 	if (signum > 0) {
   2274 		siginfo_t si;
   2275 
   2276  sig:
   2277 		memset(&si, 0, sizeof(si));
   2278 		si.si_signo = signum;
   2279 		si.si_code = SI_USER;
   2280 
   2281 		error = copyout(&si, SCARG(uap, info), sizeof(si));
   2282 		if (error)
   2283 			return (error);
   2284 	}
   2285 
   2286 	return (0);
   2287 }
   2288 
   2289 /*
   2290  * Returns true if signal is ignored or masked for passed process.
   2291  */
   2292 int
   2293 sigismasked(struct proc *p, int sig)
   2294 {
   2295 
   2296 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2297 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2298 }
   2299 
   2300 static int
   2301 filt_sigattach(struct knote *kn)
   2302 {
   2303 	struct proc *p = curproc;
   2304 
   2305 	kn->kn_ptr.p_proc = p;
   2306 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2307 
   2308 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2309 
   2310 	return (0);
   2311 }
   2312 
   2313 static void
   2314 filt_sigdetach(struct knote *kn)
   2315 {
   2316 	struct proc *p = kn->kn_ptr.p_proc;
   2317 
   2318 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2319 }
   2320 
   2321 /*
   2322  * signal knotes are shared with proc knotes, so we apply a mask to
   2323  * the hint in order to differentiate them from process hints.  This
   2324  * could be avoided by using a signal-specific knote list, but probably
   2325  * isn't worth the trouble.
   2326  */
   2327 static int
   2328 filt_signal(struct knote *kn, long hint)
   2329 {
   2330 
   2331 	if (hint & NOTE_SIGNAL) {
   2332 		hint &= ~NOTE_SIGNAL;
   2333 
   2334 		if (kn->kn_id == hint)
   2335 			kn->kn_data++;
   2336 	}
   2337 	return (kn->kn_data != 0);
   2338 }
   2339 
   2340 const struct filterops sig_filtops = {
   2341 	0, filt_sigattach, filt_sigdetach, filt_signal
   2342 };
   2343