Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.170
      1 /*	$NetBSD: kern_sig.c,v 1.170 2003/10/25 09:06:51 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.170 2003/10/25 09:06:51 christos Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd.h"
     45 #include "opt_compat_netbsd32.h"
     46 
     47 #define	SIGPROP		/* include signal properties table */
     48 #include <sys/param.h>
     49 #include <sys/signalvar.h>
     50 #include <sys/resourcevar.h>
     51 #include <sys/namei.h>
     52 #include <sys/vnode.h>
     53 #include <sys/proc.h>
     54 #include <sys/systm.h>
     55 #include <sys/timeb.h>
     56 #include <sys/times.h>
     57 #include <sys/buf.h>
     58 #include <sys/acct.h>
     59 #include <sys/file.h>
     60 #include <sys/kernel.h>
     61 #include <sys/wait.h>
     62 #include <sys/ktrace.h>
     63 #include <sys/syslog.h>
     64 #include <sys/stat.h>
     65 #include <sys/core.h>
     66 #include <sys/filedesc.h>
     67 #include <sys/malloc.h>
     68 #include <sys/pool.h>
     69 #include <sys/ucontext.h>
     70 #include <sys/sa.h>
     71 #include <sys/savar.h>
     72 #include <sys/exec.h>
     73 
     74 #include <sys/mount.h>
     75 #include <sys/syscallargs.h>
     76 
     77 #include <machine/cpu.h>
     78 
     79 #include <sys/user.h>		/* for coredump */
     80 
     81 #include <uvm/uvm_extern.h>
     82 
     83 static void	child_psignal(struct proc *, int);
     84 static void	proc_stop(struct proc *);
     85 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     86 static void	ksiginfo_exithook(struct proc *, void *);
     87 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
     88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
     89 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
     90 
     91 sigset_t	contsigmask, stopsigmask, sigcantmask;
     92 
     93 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     94 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     95 struct pool	ksiginfo_pool;	/* memory pool for ksiginfo structures */
     96 
     97 /*
     98  * Can process p, with pcred pc, send the signal signum to process q?
     99  */
    100 #define	CANSIGNAL(p, pc, q, signum) \
    101 	((pc)->pc_ucred->cr_uid == 0 || \
    102 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
    103 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    104 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    105 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    106 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    107 
    108 /*
    109  * Remove and return the first ksiginfo element that matches our requested
    110  * signal, or return NULL if one not found.
    111  */
    112 static ksiginfo_t *
    113 ksiginfo_get(struct proc *p, int signo)
    114 {
    115 	ksiginfo_t *ksi;
    116 	int s;
    117 
    118 	s = splsoftclock();
    119 	simple_lock(&p->p_sigctx.ps_silock);
    120 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    121 		if (ksi->ksi_signo == signo) {
    122 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    123 			goto out;
    124 		}
    125 	}
    126 	ksi = NULL;
    127 out:
    128 	simple_unlock(&p->p_sigctx.ps_silock);
    129 	splx(s);
    130 	return ksi;
    131 }
    132 
    133 /*
    134  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    135  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    136  * they already existed in the queue and we add new entries for RT signals,
    137  * or for non RT signals with non-existing entries.
    138  */
    139 static void
    140 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
    141 {
    142 	ksiginfo_t *kp;
    143 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    144 	int s;
    145 
    146 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    147 		return;
    148 
    149 	s = splsoftclock();
    150 	simple_lock(&p->p_sigctx.ps_silock);
    151 #ifdef notyet	/* XXX: QUEUING */
    152 	if (ksi->ksi_signo < SIGRTMIN)
    153 #endif
    154 	{
    155 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    156 			if (kp->ksi_signo == ksi->ksi_signo) {
    157 				CIRCLEQ_ENTRY(ksiginfo) sv;
    158 				(void)memcpy(&sv, &kp->ksi_list, sizeof(sv));
    159 				*kp = *ksi;
    160 				(void)memcpy(&kp->ksi_list, &sv, sizeof(sv));
    161 				goto out;
    162 			}
    163 		}
    164 	}
    165 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
    166 	if (kp == NULL) {
    167 #ifdef DIAGNOSTIC
    168 		printf("Out of memory allocating siginfo for pid %d\n",
    169 		    p->p_pid);
    170 #endif
    171 		goto out;
    172 	}
    173 	*kp = *ksi;
    174 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    175 out:
    176 	simple_unlock(&p->p_sigctx.ps_silock);
    177 	splx(s);
    178 }
    179 
    180 /*
    181  * free all pending ksiginfo on exit
    182  */
    183 static void
    184 ksiginfo_exithook(struct proc *p, void *v)
    185 {
    186 	int s;
    187 
    188 	s = splsoftclock();
    189 	simple_lock(&p->p_sigctx.ps_silock);
    190 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    191 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    192 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    193 		pool_put(&ksiginfo_pool, ksi);
    194 	}
    195 	simple_unlock(&p->p_sigctx.ps_silock);
    196 	splx(s);
    197 }
    198 
    199 /*
    200  * Initialize signal-related data structures.
    201  */
    202 void
    203 signal_init(void)
    204 {
    205 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    206 	    &pool_allocator_nointr);
    207 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    208 	    &pool_allocator_nointr);
    209 	pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    210 	    NULL);
    211 	exithook_establish(ksiginfo_exithook, NULL);
    212 	exechook_establish(ksiginfo_exithook, NULL);
    213 }
    214 
    215 /*
    216  * Create an initial sigctx structure, using the same signal state
    217  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    218  * copy it from parent.
    219  */
    220 void
    221 sigactsinit(struct proc *np, struct proc *pp, int share)
    222 {
    223 	struct sigacts *ps;
    224 
    225 	if (share) {
    226 		np->p_sigacts = pp->p_sigacts;
    227 		pp->p_sigacts->sa_refcnt++;
    228 	} else {
    229 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    230 		if (pp)
    231 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    232 		else
    233 			memset(ps, '\0', sizeof(struct sigacts));
    234 		ps->sa_refcnt = 1;
    235 		np->p_sigacts = ps;
    236 	}
    237 }
    238 
    239 /*
    240  * Make this process not share its sigctx, maintaining all
    241  * signal state.
    242  */
    243 void
    244 sigactsunshare(struct proc *p)
    245 {
    246 	struct sigacts *oldps;
    247 
    248 	if (p->p_sigacts->sa_refcnt == 1)
    249 		return;
    250 
    251 	oldps = p->p_sigacts;
    252 	sigactsinit(p, NULL, 0);
    253 
    254 	if (--oldps->sa_refcnt == 0)
    255 		pool_put(&sigacts_pool, oldps);
    256 }
    257 
    258 /*
    259  * Release a sigctx structure.
    260  */
    261 void
    262 sigactsfree(struct proc *p)
    263 {
    264 	struct sigacts *ps;
    265 
    266 	ps = p->p_sigacts;
    267 	if (--ps->sa_refcnt > 0)
    268 		return;
    269 
    270 	pool_put(&sigacts_pool, ps);
    271 }
    272 
    273 int
    274 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    275 	struct sigaction *osa, const void *tramp, int vers)
    276 {
    277 	struct sigacts	*ps;
    278 	int		prop;
    279 
    280 	ps = p->p_sigacts;
    281 	if (signum <= 0 || signum >= NSIG)
    282 		return (EINVAL);
    283 
    284 	/*
    285 	 * Trampoline ABI version 0 is reserved for the legacy
    286 	 * kernel-provided on-stack trampoline.  Conversely, if we are
    287 	 * using a non-0 ABI version, we must have a trampoline.  Only
    288 	 * validate the vers if a new sigaction was supplied. Emulations
    289 	 * use legacy kernel trampolines with version 0, alternatively
    290 	 * check for that too.
    291 	 */
    292 	if ((vers != 0 && tramp == NULL) ||
    293 #ifdef SIGTRAMP_VALID
    294 	    (nsa != NULL &&
    295 	    ((vers == 0) ?
    296 		(p->p_emul->e_sigcode == NULL) :
    297 		!SIGTRAMP_VALID(vers))) ||
    298 #endif
    299 	    (vers == 0 && tramp != NULL))
    300 		return (EINVAL);
    301 
    302 	if (osa)
    303 		*osa = SIGACTION_PS(ps, signum);
    304 
    305 	if (nsa) {
    306 		if (nsa->sa_flags & ~SA_ALLBITS)
    307 			return (EINVAL);
    308 
    309 #ifndef __HAVE_SIGINFO
    310 		if (nsa->sa_flags & SA_SIGINFO)
    311 			return (EINVAL);
    312 #endif
    313 
    314 		prop = sigprop[signum];
    315 		if (prop & SA_CANTMASK)
    316 			return (EINVAL);
    317 
    318 		(void) splsched();	/* XXXSMP */
    319 		SIGACTION_PS(ps, signum) = *nsa;
    320 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    321 		ps->sa_sigdesc[signum].sd_vers = vers;
    322 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    323 		if ((prop & SA_NORESET) != 0)
    324 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    325 		if (signum == SIGCHLD) {
    326 			if (nsa->sa_flags & SA_NOCLDSTOP)
    327 				p->p_flag |= P_NOCLDSTOP;
    328 			else
    329 				p->p_flag &= ~P_NOCLDSTOP;
    330 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    331 				/*
    332 				 * Paranoia: since SA_NOCLDWAIT is implemented
    333 				 * by reparenting the dying child to PID 1 (and
    334 				 * trust it to reap the zombie), PID 1 itself
    335 				 * is forbidden to set SA_NOCLDWAIT.
    336 				 */
    337 				if (p->p_pid == 1)
    338 					p->p_flag &= ~P_NOCLDWAIT;
    339 				else
    340 					p->p_flag |= P_NOCLDWAIT;
    341 			} else
    342 				p->p_flag &= ~P_NOCLDWAIT;
    343 		}
    344 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    345 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    346 		else
    347 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    348 		/*
    349 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    350 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    351 		 * to ignore. However, don't put SIGCONT in
    352 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    353 	 	 */
    354 		if (nsa->sa_handler == SIG_IGN ||
    355 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    356 						/* never to be seen again */
    357 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    358 			if (signum != SIGCONT) {
    359 						/* easier in psignal */
    360 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    361 			}
    362 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    363 		} else {
    364 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    365 			if (nsa->sa_handler == SIG_DFL)
    366 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    367 			else
    368 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    369 		}
    370 		(void) spl0();
    371 	}
    372 
    373 	return (0);
    374 }
    375 
    376 #ifdef COMPAT_16
    377 /* ARGSUSED */
    378 int
    379 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    380 {
    381 	struct compat_16_sys___sigaction14_args /* {
    382 		syscallarg(int)				signum;
    383 		syscallarg(const struct sigaction *)	nsa;
    384 		syscallarg(struct sigaction *)		osa;
    385 	} */ *uap = v;
    386 	struct proc		*p;
    387 	struct sigaction	nsa, osa;
    388 	int			error;
    389 
    390 	if (SCARG(uap, nsa)) {
    391 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    392 		if (error)
    393 			return (error);
    394 	}
    395 	p = l->l_proc;
    396 	error = sigaction1(p, SCARG(uap, signum),
    397 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    398 	    NULL, 0);
    399 	if (error)
    400 		return (error);
    401 	if (SCARG(uap, osa)) {
    402 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    403 		if (error)
    404 			return (error);
    405 	}
    406 	return (0);
    407 }
    408 #endif
    409 
    410 /* ARGSUSED */
    411 int
    412 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    413 {
    414 	struct sys___sigaction_sigtramp_args /* {
    415 		syscallarg(int)				signum;
    416 		syscallarg(const struct sigaction *)	nsa;
    417 		syscallarg(struct sigaction *)		osa;
    418 		syscallarg(void *)			tramp;
    419 		syscallarg(int)				vers;
    420 	} */ *uap = v;
    421 	struct proc *p = l->l_proc;
    422 	struct sigaction nsa, osa;
    423 	int error;
    424 
    425 	if (SCARG(uap, nsa)) {
    426 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    427 		if (error)
    428 			return (error);
    429 	}
    430 	error = sigaction1(p, SCARG(uap, signum),
    431 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    432 	    SCARG(uap, tramp), SCARG(uap, vers));
    433 	if (error)
    434 		return (error);
    435 	if (SCARG(uap, osa)) {
    436 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    437 		if (error)
    438 			return (error);
    439 	}
    440 	return (0);
    441 }
    442 
    443 /*
    444  * Initialize signal state for process 0;
    445  * set to ignore signals that are ignored by default and disable the signal
    446  * stack.
    447  */
    448 void
    449 siginit(struct proc *p)
    450 {
    451 	struct sigacts	*ps;
    452 	int		signum, prop;
    453 
    454 	ps = p->p_sigacts;
    455 	sigemptyset(&contsigmask);
    456 	sigemptyset(&stopsigmask);
    457 	sigemptyset(&sigcantmask);
    458 	for (signum = 1; signum < NSIG; signum++) {
    459 		prop = sigprop[signum];
    460 		if (prop & SA_CONT)
    461 			sigaddset(&contsigmask, signum);
    462 		if (prop & SA_STOP)
    463 			sigaddset(&stopsigmask, signum);
    464 		if (prop & SA_CANTMASK)
    465 			sigaddset(&sigcantmask, signum);
    466 		if (prop & SA_IGNORE && signum != SIGCONT)
    467 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    468 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    469 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    470 	}
    471 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    472 	p->p_sigctx.ps_sigwaited = 0;
    473 	p->p_flag &= ~P_NOCLDSTOP;
    474 
    475 	/*
    476 	 * Reset stack state to the user stack.
    477 	 */
    478 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    479 	p->p_sigctx.ps_sigstk.ss_size = 0;
    480 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    481 
    482 	/* One reference. */
    483 	ps->sa_refcnt = 1;
    484 }
    485 
    486 /*
    487  * Reset signals for an exec of the specified process.
    488  */
    489 void
    490 execsigs(struct proc *p)
    491 {
    492 	struct sigacts	*ps;
    493 	int		signum, prop;
    494 
    495 	sigactsunshare(p);
    496 
    497 	ps = p->p_sigacts;
    498 
    499 	/*
    500 	 * Reset caught signals.  Held signals remain held
    501 	 * through p_sigctx.ps_sigmask (unless they were caught,
    502 	 * and are now ignored by default).
    503 	 */
    504 	for (signum = 1; signum < NSIG; signum++) {
    505 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    506 			prop = sigprop[signum];
    507 			if (prop & SA_IGNORE) {
    508 				if ((prop & SA_CONT) == 0)
    509 					sigaddset(&p->p_sigctx.ps_sigignore,
    510 					    signum);
    511 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    512 			}
    513 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    514 		}
    515 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    516 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    517 	}
    518 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    519 	p->p_sigctx.ps_sigwaited = 0;
    520 	p->p_flag &= ~P_NOCLDSTOP;
    521 
    522 	/*
    523 	 * Reset stack state to the user stack.
    524 	 */
    525 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    526 	p->p_sigctx.ps_sigstk.ss_size = 0;
    527 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    528 }
    529 
    530 int
    531 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    532 {
    533 
    534 	if (oss)
    535 		*oss = p->p_sigctx.ps_sigmask;
    536 
    537 	if (nss) {
    538 		(void)splsched();	/* XXXSMP */
    539 		switch (how) {
    540 		case SIG_BLOCK:
    541 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    542 			break;
    543 		case SIG_UNBLOCK:
    544 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    545 			CHECKSIGS(p);
    546 			break;
    547 		case SIG_SETMASK:
    548 			p->p_sigctx.ps_sigmask = *nss;
    549 			CHECKSIGS(p);
    550 			break;
    551 		default:
    552 			(void)spl0();	/* XXXSMP */
    553 			return (EINVAL);
    554 		}
    555 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    556 		(void)spl0();		/* XXXSMP */
    557 	}
    558 
    559 	return (0);
    560 }
    561 
    562 /*
    563  * Manipulate signal mask.
    564  * Note that we receive new mask, not pointer,
    565  * and return old mask as return value;
    566  * the library stub does the rest.
    567  */
    568 int
    569 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    570 {
    571 	struct sys___sigprocmask14_args /* {
    572 		syscallarg(int)			how;
    573 		syscallarg(const sigset_t *)	set;
    574 		syscallarg(sigset_t *)		oset;
    575 	} */ *uap = v;
    576 	struct proc	*p;
    577 	sigset_t	nss, oss;
    578 	int		error;
    579 
    580 	if (SCARG(uap, set)) {
    581 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    582 		if (error)
    583 			return (error);
    584 	}
    585 	p = l->l_proc;
    586 	error = sigprocmask1(p, SCARG(uap, how),
    587 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    588 	if (error)
    589 		return (error);
    590 	if (SCARG(uap, oset)) {
    591 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    592 		if (error)
    593 			return (error);
    594 	}
    595 	return (0);
    596 }
    597 
    598 void
    599 sigpending1(struct proc *p, sigset_t *ss)
    600 {
    601 
    602 	*ss = p->p_sigctx.ps_siglist;
    603 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    604 }
    605 
    606 /* ARGSUSED */
    607 int
    608 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    609 {
    610 	struct sys___sigpending14_args /* {
    611 		syscallarg(sigset_t *)	set;
    612 	} */ *uap = v;
    613 	struct proc	*p;
    614 	sigset_t	ss;
    615 
    616 	p = l->l_proc;
    617 	sigpending1(p, &ss);
    618 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    619 }
    620 
    621 int
    622 sigsuspend1(struct proc *p, const sigset_t *ss)
    623 {
    624 	struct sigacts *ps;
    625 
    626 	ps = p->p_sigacts;
    627 	if (ss) {
    628 		/*
    629 		 * When returning from sigpause, we want
    630 		 * the old mask to be restored after the
    631 		 * signal handler has finished.  Thus, we
    632 		 * save it here and mark the sigctx structure
    633 		 * to indicate this.
    634 		 */
    635 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    636 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    637 		(void) splsched();	/* XXXSMP */
    638 		p->p_sigctx.ps_sigmask = *ss;
    639 		CHECKSIGS(p);
    640 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    641 		(void) spl0();		/* XXXSMP */
    642 	}
    643 
    644 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    645 		/* void */;
    646 
    647 	/* always return EINTR rather than ERESTART... */
    648 	return (EINTR);
    649 }
    650 
    651 /*
    652  * Suspend process until signal, providing mask to be set
    653  * in the meantime.  Note nonstandard calling convention:
    654  * libc stub passes mask, not pointer, to save a copyin.
    655  */
    656 /* ARGSUSED */
    657 int
    658 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    659 {
    660 	struct sys___sigsuspend14_args /* {
    661 		syscallarg(const sigset_t *)	set;
    662 	} */ *uap = v;
    663 	struct proc	*p;
    664 	sigset_t	ss;
    665 	int		error;
    666 
    667 	if (SCARG(uap, set)) {
    668 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    669 		if (error)
    670 			return (error);
    671 	}
    672 
    673 	p = l->l_proc;
    674 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    675 }
    676 
    677 int
    678 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    679 	struct sigaltstack *oss)
    680 {
    681 
    682 	if (oss)
    683 		*oss = p->p_sigctx.ps_sigstk;
    684 
    685 	if (nss) {
    686 		if (nss->ss_flags & ~SS_ALLBITS)
    687 			return (EINVAL);
    688 
    689 		if (nss->ss_flags & SS_DISABLE) {
    690 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    691 				return (EINVAL);
    692 		} else {
    693 			if (nss->ss_size < MINSIGSTKSZ)
    694 				return (ENOMEM);
    695 		}
    696 		p->p_sigctx.ps_sigstk = *nss;
    697 	}
    698 
    699 	return (0);
    700 }
    701 
    702 /* ARGSUSED */
    703 int
    704 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    705 {
    706 	struct sys___sigaltstack14_args /* {
    707 		syscallarg(const struct sigaltstack *)	nss;
    708 		syscallarg(struct sigaltstack *)	oss;
    709 	} */ *uap = v;
    710 	struct proc		*p;
    711 	struct sigaltstack	nss, oss;
    712 	int			error;
    713 
    714 	if (SCARG(uap, nss)) {
    715 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    716 		if (error)
    717 			return (error);
    718 	}
    719 	p = l->l_proc;
    720 	error = sigaltstack1(p,
    721 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    722 	if (error)
    723 		return (error);
    724 	if (SCARG(uap, oss)) {
    725 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    726 		if (error)
    727 			return (error);
    728 	}
    729 	return (0);
    730 }
    731 
    732 /* ARGSUSED */
    733 int
    734 sys_kill(struct lwp *l, void *v, register_t *retval)
    735 {
    736 	struct sys_kill_args /* {
    737 		syscallarg(int)	pid;
    738 		syscallarg(int)	signum;
    739 	} */ *uap = v;
    740 	struct proc	*cp, *p;
    741 	struct pcred	*pc;
    742 	ksiginfo_t	ksi;
    743 
    744 	cp = l->l_proc;
    745 	pc = cp->p_cred;
    746 	if ((u_int)SCARG(uap, signum) >= NSIG)
    747 		return (EINVAL);
    748 	memset(&ksi, 0, sizeof(ksi));
    749 	ksi.ksi_signo = SCARG(uap, signum);
    750 	ksi.ksi_code = SI_USER;
    751 	ksi.ksi_pid = cp->p_pid;
    752 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    753 	if (SCARG(uap, pid) > 0) {
    754 		/* kill single process */
    755 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    756 			return (ESRCH);
    757 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    758 			return (EPERM);
    759 		if (SCARG(uap, signum))
    760 			kpsignal2(p, &ksi, 1);
    761 		return (0);
    762 	}
    763 	switch (SCARG(uap, pid)) {
    764 	case -1:		/* broadcast signal */
    765 		return (killpg1(cp, &ksi, 0, 1));
    766 	case 0:			/* signal own process group */
    767 		return (killpg1(cp, &ksi, 0, 0));
    768 	default:		/* negative explicit process group */
    769 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    770 	}
    771 	/* NOTREACHED */
    772 }
    773 
    774 /*
    775  * Common code for kill process group/broadcast kill.
    776  * cp is calling process.
    777  */
    778 int
    779 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    780 {
    781 	struct proc	*p;
    782 	struct pcred	*pc;
    783 	struct pgrp	*pgrp;
    784 	int		nfound;
    785 	int		signum = ksi->ksi_signo;
    786 
    787 	pc = cp->p_cred;
    788 	nfound = 0;
    789 	if (all) {
    790 		/*
    791 		 * broadcast
    792 		 */
    793 		proclist_lock_read();
    794 		LIST_FOREACH(p, &allproc, p_list) {
    795 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    796 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    797 				continue;
    798 			nfound++;
    799 			if (signum)
    800 				kpsignal2(p, ksi, 1);
    801 		}
    802 		proclist_unlock_read();
    803 	} else {
    804 		if (pgid == 0)
    805 			/*
    806 			 * zero pgid means send to my process group.
    807 			 */
    808 			pgrp = cp->p_pgrp;
    809 		else {
    810 			pgrp = pgfind(pgid);
    811 			if (pgrp == NULL)
    812 				return (ESRCH);
    813 		}
    814 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    815 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    816 			    !CANSIGNAL(cp, pc, p, signum))
    817 				continue;
    818 			nfound++;
    819 			if (signum && P_ZOMBIE(p) == 0)
    820 				kpsignal2(p, ksi, 1);
    821 		}
    822 	}
    823 	return (nfound ? 0 : ESRCH);
    824 }
    825 
    826 /*
    827  * Send a signal to a process group.
    828  */
    829 void
    830 gsignal(int pgid, int signum)
    831 {
    832 	ksiginfo_t ksi;
    833 	memset(&ksi, 0, sizeof(ksi));
    834 	ksi.ksi_signo = signum;
    835 	kgsignal(pgid, &ksi, NULL);
    836 }
    837 
    838 void
    839 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    840 {
    841 	struct pgrp *pgrp;
    842 
    843 	if (pgid && (pgrp = pgfind(pgid)))
    844 		kpgsignal(pgrp, ksi, data, 0);
    845 }
    846 
    847 /*
    848  * Send a signal to a process group. If checktty is 1,
    849  * limit to members which have a controlling terminal.
    850  */
    851 void
    852 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    853 {
    854 	ksiginfo_t ksi;
    855 	memset(&ksi, 0, sizeof(ksi));
    856 	ksi.ksi_signo = sig;
    857 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    858 }
    859 
    860 void
    861 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    862 {
    863 	struct proc *p;
    864 
    865 	if (pgrp)
    866 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    867 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    868 				kpsignal(p, ksi, data);
    869 }
    870 
    871 /*
    872  * Send a signal caused by a trap to the current process.
    873  * If it will be caught immediately, deliver it with correct code.
    874  * Otherwise, post it normally.
    875  */
    876 #ifndef __HAVE_SIGINFO
    877 void _trapsignal(struct lwp *, const ksiginfo_t *);
    878 void
    879 trapsignal(struct lwp *l, int signum, u_long code)
    880 {
    881 #define trapsignal _trapsignal
    882 	ksiginfo_t ksi;
    883 
    884 	KSI_INIT_TRAP(&ksi);
    885 	ksi.ksi_signo = signum;
    886 	ksi.ksi_trap = (int)code;
    887 	trapsignal(l, &ksi);
    888 }
    889 #endif
    890 
    891 void
    892 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    893 {
    894 	struct proc	*p;
    895 	struct sigacts	*ps;
    896 	int signum = ksi->ksi_signo;
    897 
    898 	KASSERT(KSI_TRAP_P(ksi));
    899 
    900 	p = l->l_proc;
    901 	ps = p->p_sigacts;
    902 	if ((p->p_flag & P_TRACED) == 0 &&
    903 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    904 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    905 		p->p_stats->p_ru.ru_nsignals++;
    906 #ifdef KTRACE
    907 		if (KTRPOINT(p, KTR_PSIG))
    908 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    909 			    &p->p_sigctx.ps_sigmask, ksi);
    910 #endif
    911 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    912 		(void) splsched();	/* XXXSMP */
    913 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    914 		    &p->p_sigctx.ps_sigmask);
    915 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    916 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    917 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    918 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    919 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    920 		}
    921 		(void) spl0();		/* XXXSMP */
    922 	} else {
    923 		p->p_sigctx.ps_lwp = l->l_lid;
    924 		/* XXX for core dump/debugger */
    925 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    926 		p->p_sigctx.ps_code = ksi->ksi_trap;
    927 		kpsignal2(p, ksi, 1);
    928 	}
    929 }
    930 
    931 /*
    932  * Fill in signal information and signal the parent for a child status change.
    933  */
    934 static void
    935 child_psignal(struct proc *p, int dolock)
    936 {
    937 	ksiginfo_t ksi;
    938 
    939 	(void)memset(&ksi, 0, sizeof(ksi));
    940 	ksi.ksi_signo = SIGCHLD;
    941 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    942 	ksi.ksi_pid = p->p_pid;
    943 	ksi.ksi_uid = p->p_ucred->cr_uid;
    944 	ksi.ksi_status = p->p_xstat;
    945 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    946 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    947 	kpsignal2(p->p_pptr, &ksi, dolock);
    948 }
    949 
    950 /*
    951  * Send the signal to the process.  If the signal has an action, the action
    952  * is usually performed by the target process rather than the caller; we add
    953  * the signal to the set of pending signals for the process.
    954  *
    955  * Exceptions:
    956  *   o When a stop signal is sent to a sleeping process that takes the
    957  *     default action, the process is stopped without awakening it.
    958  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    959  *     regardless of the signal action (eg, blocked or ignored).
    960  *
    961  * Other ignored signals are discarded immediately.
    962  *
    963  * XXXSMP: Invoked as psignal() or sched_psignal().
    964  */
    965 void
    966 psignal1(struct proc *p, int signum, int dolock)
    967 {
    968 	ksiginfo_t ksi;
    969 
    970 	memset(&ksi, 0, sizeof(ksi));
    971 	ksi.ksi_signo = signum;
    972 	kpsignal2(p, &ksi, dolock);
    973 }
    974 
    975 void
    976 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
    977 {
    978 
    979 	if ((p->p_flag & P_WEXIT) == 0 && data) {
    980 		size_t fd;
    981 		struct filedesc *fdp = p->p_fd;
    982 
    983 		ksi->ksi_fd = -1;
    984 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    985 			struct file *fp = fdp->fd_ofiles[fd];
    986 			/* XXX: lock? */
    987 			if (fp && fp->f_data == data) {
    988 				ksi->ksi_fd = fd;
    989 				break;
    990 			}
    991 		}
    992 	}
    993 	kpsignal2(p, ksi, dolock);
    994 }
    995 
    996 static void
    997 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
    998 {
    999 	struct lwp *l, *suspended = NULL;
   1000 	int	s = 0, prop, allsusp;
   1001 	sig_t	action;
   1002 	int	signum = ksi->ksi_signo;
   1003 
   1004 #ifdef DIAGNOSTIC
   1005 	if (signum <= 0 || signum >= NSIG)
   1006 		panic("psignal signal number %d", signum);
   1007 
   1008 	/* XXXSMP: works, but icky */
   1009 	if (dolock)
   1010 		SCHED_ASSERT_UNLOCKED();
   1011 	else
   1012 		SCHED_ASSERT_LOCKED();
   1013 #endif
   1014 
   1015 
   1016 	/*
   1017 	 * Notify any interested parties in the signal.
   1018 	 */
   1019 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
   1020 
   1021 	prop = sigprop[signum];
   1022 
   1023 	/*
   1024 	 * If proc is traced, always give parent a chance.
   1025 	 */
   1026 	if (p->p_flag & P_TRACED)
   1027 		action = SIG_DFL;
   1028 	else {
   1029 		/*
   1030 		 * If the signal is being ignored,
   1031 		 * then we forget about it immediately.
   1032 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1033 		 * and if it is set to SIG_IGN,
   1034 		 * action will be SIG_DFL here.)
   1035 		 */
   1036 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1037 			return;
   1038 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1039 			action = SIG_HOLD;
   1040 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1041 			action = SIG_CATCH;
   1042 		else {
   1043 			action = SIG_DFL;
   1044 
   1045 			if (prop & SA_KILL && p->p_nice > NZERO)
   1046 				p->p_nice = NZERO;
   1047 
   1048 			/*
   1049 			 * If sending a tty stop signal to a member of an
   1050 			 * orphaned process group, discard the signal here if
   1051 			 * the action is default; don't stop the process below
   1052 			 * if sleeping, and don't clear any pending SIGCONT.
   1053 			 */
   1054 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1055 				return;
   1056 		}
   1057 	}
   1058 
   1059 	if (prop & SA_CONT)
   1060 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1061 
   1062 	if (prop & SA_STOP)
   1063 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1064 
   1065 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1066 
   1067 	/* CHECKSIGS() is "inlined" here. */
   1068 	p->p_sigctx.ps_sigcheck = 1;
   1069 
   1070 	/*
   1071 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1072 	 * please!), check if anything waits on it. If yes, clear the
   1073 	 * pending signal from siglist set, save it to ps_sigwaited,
   1074 	 * clear sigwait list, and wakeup any sigwaiters.
   1075 	 * The signal won't be processed further here.
   1076 	 */
   1077 	if ((prop & SA_CANTMASK) == 0
   1078 	    && p->p_sigctx.ps_sigwaited < 0
   1079 	    && sigismember(&p->p_sigctx.ps_sigwait, signum)
   1080 	    && p->p_stat != SSTOP) {
   1081 		if (action == SIG_CATCH)
   1082 			ksiginfo_put(p, ksi);
   1083 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1084 		p->p_sigctx.ps_sigwaited = signum;
   1085 		sigemptyset(&p->p_sigctx.ps_sigwait);
   1086 		if (dolock)
   1087 			wakeup_one(&p->p_sigctx.ps_sigwait);
   1088 		else
   1089 			sched_wakeup(&p->p_sigctx.ps_sigwait);
   1090 		return;
   1091 	}
   1092 
   1093 	/*
   1094 	 * Defer further processing for signals which are held,
   1095 	 * except that stopped processes must be continued by SIGCONT.
   1096 	 */
   1097 	if (action == SIG_HOLD &&
   1098 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1099 		ksiginfo_put(p, ksi);
   1100 		return;
   1101 	}
   1102 	/* XXXSMP: works, but icky */
   1103 	if (dolock)
   1104 		SCHED_LOCK(s);
   1105 
   1106 	/* XXXUPSXXX LWPs might go to sleep without passing signal handling */
   1107 	if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
   1108 	    && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
   1109 		/*
   1110 		 * At least one LWP is running or on a run queue.
   1111 		 * The signal will be noticed when one of them returns
   1112 		 * to userspace.
   1113 		 */
   1114 		signotify(p);
   1115 		/*
   1116 		 * The signal will be noticed very soon.
   1117 		 */
   1118 		goto out;
   1119 	} else {
   1120 		/* Process is sleeping or stopped */
   1121 		if (p->p_flag & P_SA) {
   1122 			struct lwp *l2 = p->p_sa->sa_vp;
   1123 			l = NULL;
   1124 			allsusp = 1;
   1125 
   1126 			if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
   1127 				l = l2;
   1128 			else if (l2->l_stat == LSSUSPENDED)
   1129 				suspended = l2;
   1130 			else if ((l2->l_stat != LSZOMB) &&
   1131 				 (l2->l_stat != LSDEAD))
   1132 				allsusp = 0;
   1133 		} else {
   1134 			/*
   1135 			 * Find out if any of the sleeps are interruptable,
   1136 			 * and if all the live LWPs remaining are suspended.
   1137 			 */
   1138 			allsusp = 1;
   1139 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1140 				if (l->l_stat == LSSLEEP &&
   1141 				    l->l_flag & L_SINTR)
   1142 					break;
   1143 				if (l->l_stat == LSSUSPENDED)
   1144 					suspended = l;
   1145 				else if ((l->l_stat != LSZOMB) &&
   1146 				         (l->l_stat != LSDEAD))
   1147 					allsusp = 0;
   1148 			}
   1149 		}
   1150 		if (p->p_stat == SACTIVE) {
   1151 
   1152 
   1153 			if (l != NULL && (p->p_flag & P_TRACED))
   1154 				goto run;
   1155 
   1156 			/*
   1157 			 * If SIGCONT is default (or ignored) and process is
   1158 			 * asleep, we are finished; the process should not
   1159 			 * be awakened.
   1160 			 */
   1161 			if ((prop & SA_CONT) && action == SIG_DFL) {
   1162 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1163 				goto done;
   1164 			}
   1165 
   1166 			/*
   1167 			 * When a sleeping process receives a stop
   1168 			 * signal, process immediately if possible.
   1169 			 */
   1170 			if ((prop & SA_STOP) && action == SIG_DFL) {
   1171 				/*
   1172 				 * If a child holding parent blocked,
   1173 				 * stopping could cause deadlock.
   1174 				 */
   1175 				if (p->p_flag & P_PPWAIT) {
   1176 					goto out;
   1177 				}
   1178 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1179 				p->p_xstat = signum;
   1180 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1181 					/*
   1182 					 * XXXSMP: recursive call; don't lock
   1183 					 * the second time around.
   1184 					 */
   1185 					child_psignal(p, 0);
   1186 				}
   1187 				proc_stop(p);	/* XXXSMP: recurse? */
   1188 				goto done;
   1189 			}
   1190 
   1191 			if (l == NULL) {
   1192 				/*
   1193 				 * Special case: SIGKILL of a process
   1194 				 * which is entirely composed of
   1195 				 * suspended LWPs should succeed. We
   1196 				 * make this happen by unsuspending one of
   1197 				 * them.
   1198 				 */
   1199 				if (allsusp && (signum == SIGKILL))
   1200 					lwp_continue(suspended);
   1201 				goto done;
   1202 			}
   1203 			/*
   1204 			 * All other (caught or default) signals
   1205 			 * cause the process to run.
   1206 			 */
   1207 			goto runfast;
   1208 			/*NOTREACHED*/
   1209 		} else if (p->p_stat == SSTOP) {
   1210 			/* Process is stopped */
   1211 			/*
   1212 			 * If traced process is already stopped,
   1213 			 * then no further action is necessary.
   1214 			 */
   1215 			if (p->p_flag & P_TRACED)
   1216 				goto done;
   1217 
   1218 			/*
   1219 			 * Kill signal always sets processes running,
   1220 			 * if possible.
   1221 			 */
   1222 			if (signum == SIGKILL) {
   1223 				l = proc_unstop(p);
   1224 				if (l)
   1225 					goto runfast;
   1226 				goto done;
   1227 			}
   1228 
   1229 			if (prop & SA_CONT) {
   1230 				/*
   1231 				 * If SIGCONT is default (or ignored),
   1232 				 * we continue the process but don't
   1233 				 * leave the signal in ps_siglist, as
   1234 				 * it has no further action.  If
   1235 				 * SIGCONT is held, we continue the
   1236 				 * process and leave the signal in
   1237 				 * ps_siglist.  If the process catches
   1238 				 * SIGCONT, let it handle the signal
   1239 				 * itself.  If it isn't waiting on an
   1240 				 * event, then it goes back to run
   1241 				 * state.  Otherwise, process goes
   1242 				 * back to sleep state.
   1243 				 */
   1244 				if (action == SIG_DFL)
   1245 					sigdelset(&p->p_sigctx.ps_siglist,
   1246 					signum);
   1247 				l = proc_unstop(p);
   1248 				if (l && (action == SIG_CATCH))
   1249 					goto runfast;
   1250 				goto out;
   1251 			}
   1252 
   1253 			if (prop & SA_STOP) {
   1254 				/*
   1255 				 * Already stopped, don't need to stop again.
   1256 				 * (If we did the shell could get confused.)
   1257 				 */
   1258 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1259 				goto done;
   1260 			}
   1261 
   1262 			/*
   1263 			 * If a lwp is sleeping interruptibly, then
   1264 			 * wake it up; it will run until the kernel
   1265 			 * boundary, where it will stop in issignal(),
   1266 			 * since p->p_stat is still SSTOP. When the
   1267 			 * process is continued, it will be made
   1268 			 * runnable and can look at the signal.
   1269 			 */
   1270 			if (l)
   1271 				goto run;
   1272 			goto out;
   1273 		} else {
   1274 			/* Else what? */
   1275 			panic("psignal: Invalid process state %d.",
   1276 				p->p_stat);
   1277 		}
   1278 	}
   1279 	/*NOTREACHED*/
   1280 
   1281  runfast:
   1282 	if (action == SIG_CATCH) {
   1283 		ksiginfo_put(p, ksi);
   1284 		action = SIG_HOLD;
   1285 	}
   1286 	/*
   1287 	 * Raise priority to at least PUSER.
   1288 	 */
   1289 	if (l->l_priority > PUSER)
   1290 		l->l_priority = PUSER;
   1291  run:
   1292 	if (action == SIG_CATCH) {
   1293 		ksiginfo_put(p, ksi);
   1294 		action = SIG_HOLD;
   1295 	}
   1296 
   1297 	setrunnable(l);		/* XXXSMP: recurse? */
   1298  out:
   1299 	if (action == SIG_CATCH)
   1300 		ksiginfo_put(p, ksi);
   1301  done:
   1302 	/* XXXSMP: works, but icky */
   1303 	if (dolock)
   1304 		SCHED_UNLOCK(s);
   1305 }
   1306 
   1307 void
   1308 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1309 {
   1310 	struct proc *p = l->l_proc;
   1311 	struct lwp *le, *li;
   1312 	siginfo_t *si;
   1313 	int f;
   1314 
   1315 	if (p->p_flag & P_SA) {
   1316 
   1317 		/* XXXUPSXXX What if not on sa_vp ? */
   1318 
   1319 		f = l->l_flag & L_SA;
   1320 		l->l_flag &= ~L_SA;
   1321 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1322 		si->_info = ksi->ksi_info;
   1323 		le = li = NULL;
   1324 		if (KSI_TRAP_P(ksi))
   1325 			le = l;
   1326 		else
   1327 			li = l;
   1328 
   1329 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1330 			    sizeof(siginfo_t), si);
   1331 		l->l_flag |= f;
   1332 		return;
   1333 	}
   1334 
   1335 #ifdef __HAVE_SIGINFO
   1336 	(*p->p_emul->e_sendsig)(ksi, mask);
   1337 #else
   1338 	(*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, KSI_TRAPCODE(ksi));
   1339 #endif
   1340 }
   1341 
   1342 static __inline int firstsig(const sigset_t *);
   1343 
   1344 static __inline int
   1345 firstsig(const sigset_t *ss)
   1346 {
   1347 	int sig;
   1348 
   1349 	sig = ffs(ss->__bits[0]);
   1350 	if (sig != 0)
   1351 		return (sig);
   1352 #if NSIG > 33
   1353 	sig = ffs(ss->__bits[1]);
   1354 	if (sig != 0)
   1355 		return (sig + 32);
   1356 #endif
   1357 #if NSIG > 65
   1358 	sig = ffs(ss->__bits[2]);
   1359 	if (sig != 0)
   1360 		return (sig + 64);
   1361 #endif
   1362 #if NSIG > 97
   1363 	sig = ffs(ss->__bits[3]);
   1364 	if (sig != 0)
   1365 		return (sig + 96);
   1366 #endif
   1367 	return (0);
   1368 }
   1369 
   1370 /*
   1371  * If the current process has received a signal (should be caught or cause
   1372  * termination, should interrupt current syscall), return the signal number.
   1373  * Stop signals with default action are processed immediately, then cleared;
   1374  * they aren't returned.  This is checked after each entry to the system for
   1375  * a syscall or trap (though this can usually be done without calling issignal
   1376  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1377  * sequence is
   1378  *
   1379  *	while (signum = CURSIG(curlwp))
   1380  *		postsig(signum);
   1381  */
   1382 int
   1383 issignal(struct lwp *l)
   1384 {
   1385 	struct proc	*p = l->l_proc;
   1386 	int		s = 0, signum, prop;
   1387 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1388 	sigset_t	ss;
   1389 
   1390 	if (l->l_flag & L_SA) {
   1391 		struct sadata *sa = p->p_sa;
   1392 
   1393 		/* Bail out if we do not own the virtual processor */
   1394 		if (sa->sa_vp != l)
   1395 			return 0;
   1396 	}
   1397 
   1398 	if (p->p_stat == SSTOP) {
   1399 		/*
   1400 		 * The process is stopped/stopping. Stop ourselves now that
   1401 		 * we're on the kernel/userspace boundary.
   1402 		 */
   1403 		if (dolock)
   1404 			SCHED_LOCK(s);
   1405 		l->l_stat = LSSTOP;
   1406 		p->p_nrlwps--;
   1407 		if (p->p_flag & P_TRACED)
   1408 			goto sigtraceswitch;
   1409 		else
   1410 			goto sigswitch;
   1411 	}
   1412 	for (;;) {
   1413 		sigpending1(p, &ss);
   1414 		if (p->p_flag & P_PPWAIT)
   1415 			sigminusset(&stopsigmask, &ss);
   1416 		signum = firstsig(&ss);
   1417 		if (signum == 0) {		 	/* no signal to send */
   1418 			p->p_sigctx.ps_sigcheck = 0;
   1419 			if (locked && dolock)
   1420 				SCHED_LOCK(s);
   1421 			return (0);
   1422 		}
   1423 							/* take the signal! */
   1424 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1425 
   1426 		/*
   1427 		 * We should see pending but ignored signals
   1428 		 * only if P_TRACED was on when they were posted.
   1429 		 */
   1430 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1431 		    (p->p_flag & P_TRACED) == 0)
   1432 			continue;
   1433 
   1434 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1435 			/*
   1436 			 * If traced, always stop, and stay
   1437 			 * stopped until released by the debugger.
   1438 			 */
   1439 			p->p_xstat = signum;
   1440 			if ((p->p_flag & P_FSTRACE) == 0)
   1441 				child_psignal(p, dolock);
   1442 			if (dolock)
   1443 				SCHED_LOCK(s);
   1444 			proc_stop(p);
   1445 		sigtraceswitch:
   1446 			mi_switch(l, NULL);
   1447 			SCHED_ASSERT_UNLOCKED();
   1448 			if (dolock)
   1449 				splx(s);
   1450 			else
   1451 				dolock = 1;
   1452 
   1453 			/*
   1454 			 * If we are no longer being traced, or the parent
   1455 			 * didn't give us a signal, look for more signals.
   1456 			 */
   1457 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1458 				continue;
   1459 
   1460 			/*
   1461 			 * If the new signal is being masked, look for other
   1462 			 * signals.
   1463 			 */
   1464 			signum = p->p_xstat;
   1465 			p->p_xstat = 0;
   1466 			/*
   1467 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1468 			 * in setrunnable().
   1469 			 */
   1470 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1471 				continue;
   1472 							/* take the signal! */
   1473 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1474 		}
   1475 
   1476 		prop = sigprop[signum];
   1477 
   1478 		/*
   1479 		 * Decide whether the signal should be returned.
   1480 		 * Return the signal's number, or fall through
   1481 		 * to clear it from the pending mask.
   1482 		 */
   1483 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1484 
   1485 		case (long)SIG_DFL:
   1486 			/*
   1487 			 * Don't take default actions on system processes.
   1488 			 */
   1489 			if (p->p_pid <= 1) {
   1490 #ifdef DIAGNOSTIC
   1491 				/*
   1492 				 * Are you sure you want to ignore SIGSEGV
   1493 				 * in init? XXX
   1494 				 */
   1495 				printf("Process (pid %d) got signal %d\n",
   1496 				    p->p_pid, signum);
   1497 #endif
   1498 				break;		/* == ignore */
   1499 			}
   1500 			/*
   1501 			 * If there is a pending stop signal to process
   1502 			 * with default action, stop here,
   1503 			 * then clear the signal.  However,
   1504 			 * if process is member of an orphaned
   1505 			 * process group, ignore tty stop signals.
   1506 			 */
   1507 			if (prop & SA_STOP) {
   1508 				if (p->p_flag & P_TRACED ||
   1509 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1510 				    prop & SA_TTYSTOP))
   1511 					break;	/* == ignore */
   1512 				p->p_xstat = signum;
   1513 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1514 					child_psignal(p, dolock);
   1515 				if (dolock)
   1516 					SCHED_LOCK(s);
   1517 				proc_stop(p);
   1518 			sigswitch:
   1519 				mi_switch(l, NULL);
   1520 				SCHED_ASSERT_UNLOCKED();
   1521 				if (dolock)
   1522 					splx(s);
   1523 				else
   1524 					dolock = 1;
   1525 				break;
   1526 			} else if (prop & SA_IGNORE) {
   1527 				/*
   1528 				 * Except for SIGCONT, shouldn't get here.
   1529 				 * Default action is to ignore; drop it.
   1530 				 */
   1531 				break;		/* == ignore */
   1532 			} else
   1533 				goto keep;
   1534 			/*NOTREACHED*/
   1535 
   1536 		case (long)SIG_IGN:
   1537 			/*
   1538 			 * Masking above should prevent us ever trying
   1539 			 * to take action on an ignored signal other
   1540 			 * than SIGCONT, unless process is traced.
   1541 			 */
   1542 #ifdef DEBUG_ISSIGNAL
   1543 			if ((prop & SA_CONT) == 0 &&
   1544 			    (p->p_flag & P_TRACED) == 0)
   1545 				printf("issignal\n");
   1546 #endif
   1547 			break;		/* == ignore */
   1548 
   1549 		default:
   1550 			/*
   1551 			 * This signal has an action, let
   1552 			 * postsig() process it.
   1553 			 */
   1554 			goto keep;
   1555 		}
   1556 	}
   1557 	/* NOTREACHED */
   1558 
   1559  keep:
   1560 						/* leave the signal for later */
   1561 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1562 	CHECKSIGS(p);
   1563 	if (locked && dolock)
   1564 		SCHED_LOCK(s);
   1565 	return (signum);
   1566 }
   1567 
   1568 /*
   1569  * Put the argument process into the stopped state and notify the parent
   1570  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1571  * on the run queue.
   1572  */
   1573 static void
   1574 proc_stop(struct proc *p)
   1575 {
   1576 	struct lwp *l;
   1577 
   1578 	SCHED_ASSERT_LOCKED();
   1579 
   1580 	/* XXX lock process LWP state */
   1581 	p->p_stat = SSTOP;
   1582 	p->p_flag &= ~P_WAITED;
   1583 
   1584 	/*
   1585 	 * Put as many LWP's as possible in stopped state.
   1586 	 * Sleeping ones will notice the stopped state as they try to
   1587 	 * return to userspace.
   1588 	 */
   1589 
   1590 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1591 		if ((l->l_stat == LSONPROC) && (l == curlwp)) {
   1592 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1593 			 * is curlwp and hence is about to be mi_switched
   1594 			 * away; the only callers of proc_stop() are:
   1595 			 * - psignal
   1596 			 * - issignal()
   1597 			 * For the former, proc_stop() is only called when
   1598 			 * no processes are running, so we don't worry.
   1599 			 * For the latter, proc_stop() is called right
   1600 			 * before mi_switch().
   1601 			 */
   1602 			l->l_stat = LSSTOP;
   1603 			p->p_nrlwps--;
   1604 		}
   1605 		 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
   1606 			setrunnable(l);
   1607 		}
   1608 
   1609 /* !!!UPS!!! FIX ME */
   1610 #if 0
   1611 else if (l->l_stat == LSRUN) {
   1612 			/* Remove LWP from the run queue */
   1613 			remrunqueue(l);
   1614 			l->l_stat = LSSTOP;
   1615 			p->p_nrlwps--;
   1616 		} else if ((l->l_stat == LSSLEEP) ||
   1617 		    (l->l_stat == LSSUSPENDED) ||
   1618 		    (l->l_stat == LSZOMB) ||
   1619 		    (l->l_stat == LSDEAD)) {
   1620 			/*
   1621 			 * Don't do anything; let sleeping LWPs
   1622 			 * discover the stopped state of the process
   1623 			 * on their way out of the kernel; otherwise,
   1624 			 * things like NFS threads that sleep with
   1625 			 * locks will block the rest of the system
   1626 			 * from getting any work done.
   1627 			 *
   1628 			 * Suspended/dead/zombie LWPs aren't going
   1629 			 * anywhere, so we don't need to touch them.
   1630 			 */
   1631 		}
   1632 #ifdef DIAGNOSTIC
   1633 		else {
   1634 			panic("proc_stop: process %d lwp %d "
   1635 			      "in unstoppable state %d.\n",
   1636 			    p->p_pid, l->l_lid, l->l_stat);
   1637 		}
   1638 #endif
   1639 #endif
   1640 	}
   1641 	/* XXX unlock process LWP state */
   1642 
   1643 	sched_wakeup((caddr_t)p->p_pptr);
   1644 }
   1645 
   1646 /*
   1647  * Given a process in state SSTOP, set the state back to SACTIVE and
   1648  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1649  *
   1650  * If no LWPs ended up runnable (and therefore able to take a signal),
   1651  * return a LWP that is sleeping interruptably. The caller can wake
   1652  * that LWP up to take a signal.
   1653  */
   1654 struct lwp *
   1655 proc_unstop(struct proc *p)
   1656 {
   1657 	struct lwp *l, *lr = NULL;
   1658 	int cantake = 0;
   1659 
   1660 	SCHED_ASSERT_LOCKED();
   1661 
   1662 	/*
   1663 	 * Our caller wants to be informed if there are only sleeping
   1664 	 * and interruptable LWPs left after we have run so that it
   1665 	 * can invoke setrunnable() if required - return one of the
   1666 	 * interruptable LWPs if this is the case.
   1667 	 */
   1668 
   1669 	p->p_stat = SACTIVE;
   1670 	if (p->p_flag & P_SA) {
   1671 		/*
   1672 		 * Preferentially select the idle LWP as the interruptable
   1673 		 * LWP to return if it exists.
   1674 		 */
   1675 		lr = p->p_sa->sa_idle;
   1676 		if (lr != NULL)
   1677 			cantake = 1;
   1678 	}
   1679 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1680 		if (l->l_stat == LSRUN) {
   1681 			lr = NULL;
   1682 			cantake = 1;
   1683 		}
   1684 		if (l->l_stat != LSSTOP)
   1685 			continue;
   1686 
   1687 		if (l->l_wchan != NULL) {
   1688 			l->l_stat = LSSLEEP;
   1689 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1690 				lr = l;
   1691 				cantake = 1;
   1692 			}
   1693 		} else {
   1694 			setrunnable(l);
   1695 			lr = NULL;
   1696 			cantake = 1;
   1697 		}
   1698 	}
   1699 
   1700 	return lr;
   1701 }
   1702 
   1703 /*
   1704  * Take the action for the specified signal
   1705  * from the current set of pending signals.
   1706  */
   1707 void
   1708 postsig(int signum)
   1709 {
   1710 	struct lwp *l;
   1711 	struct proc	*p;
   1712 	struct sigacts	*ps;
   1713 	sig_t		action;
   1714 	sigset_t	*returnmask;
   1715 
   1716 	l = curlwp;
   1717 	p = l->l_proc;
   1718 	ps = p->p_sigacts;
   1719 #ifdef DIAGNOSTIC
   1720 	if (signum == 0)
   1721 		panic("postsig");
   1722 #endif
   1723 
   1724 	KERNEL_PROC_LOCK(l);
   1725 
   1726 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1727 	action = SIGACTION_PS(ps, signum).sa_handler;
   1728 	if (action == SIG_DFL) {
   1729 #ifdef KTRACE
   1730 		if (KTRPOINT(p, KTR_PSIG))
   1731 			ktrpsig(p, signum, action,
   1732 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1733 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1734 			    NULL);
   1735 #endif
   1736 		/*
   1737 		 * Default action, where the default is to kill
   1738 		 * the process.  (Other cases were ignored above.)
   1739 		 */
   1740 		sigexit(l, signum);
   1741 		/* NOTREACHED */
   1742 	} else {
   1743 		ksiginfo_t *ksi;
   1744 		/*
   1745 		 * If we get here, the signal must be caught.
   1746 		 */
   1747 #ifdef DIAGNOSTIC
   1748 		if (action == SIG_IGN ||
   1749 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1750 			panic("postsig action");
   1751 #endif
   1752 		/*
   1753 		 * Set the new mask value and also defer further
   1754 		 * occurrences of this signal.
   1755 		 *
   1756 		 * Special case: user has done a sigpause.  Here the
   1757 		 * current mask is not of interest, but rather the
   1758 		 * mask from before the sigpause is what we want
   1759 		 * restored after the signal processing is completed.
   1760 		 */
   1761 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1762 			returnmask = &p->p_sigctx.ps_oldmask;
   1763 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1764 		} else
   1765 			returnmask = &p->p_sigctx.ps_sigmask;
   1766 		p->p_stats->p_ru.ru_nsignals++;
   1767 		ksi = ksiginfo_get(p, signum);
   1768 #ifdef KTRACE
   1769 		if (KTRPOINT(p, KTR_PSIG))
   1770 			ktrpsig(p, signum, action,
   1771 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1772 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1773 			    ksi);
   1774 #endif
   1775 		if (ksi == NULL) {
   1776 			ksiginfo_t ksi1;
   1777 			/*
   1778 			 * we did not save any siginfo for this, either
   1779 			 * because the signal was not caught, or because the
   1780 			 * user did not request SA_SIGINFO
   1781 			 */
   1782 			(void)memset(&ksi1, 0, sizeof(ksi1));
   1783 			ksi1.ksi_signo = signum;
   1784 			kpsendsig(l, &ksi1, returnmask);
   1785 		} else {
   1786 			kpsendsig(l, ksi, returnmask);
   1787 			pool_put(&ksiginfo_pool, ksi);
   1788 		}
   1789 		p->p_sigctx.ps_lwp = 0;
   1790 		p->p_sigctx.ps_code = 0;
   1791 		p->p_sigctx.ps_signo = 0;
   1792 		(void) splsched();	/* XXXSMP */
   1793 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1794 		    &p->p_sigctx.ps_sigmask);
   1795 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1796 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1797 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1798 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1799 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1800 		}
   1801 		(void) spl0();		/* XXXSMP */
   1802 	}
   1803 
   1804 	KERNEL_PROC_UNLOCK(l);
   1805 }
   1806 
   1807 /*
   1808  * Kill the current process for stated reason.
   1809  */
   1810 void
   1811 killproc(struct proc *p, const char *why)
   1812 {
   1813 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1814 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1815 	psignal(p, SIGKILL);
   1816 }
   1817 
   1818 /*
   1819  * Force the current process to exit with the specified signal, dumping core
   1820  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1821  * allowing unrecoverable failures to terminate the process without changing
   1822  * signal state.  Mark the accounting record with the signal termination.
   1823  * If dumping core, save the signal number for the debugger.  Calls exit and
   1824  * does not return.
   1825  */
   1826 
   1827 #if defined(DEBUG)
   1828 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1829 #else
   1830 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1831 #endif
   1832 
   1833 static	const char logcoredump[] =
   1834 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1835 static	const char lognocoredump[] =
   1836 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1837 
   1838 /* Wrapper function for use in p_userret */
   1839 static void
   1840 lwp_coredump_hook(struct lwp *l, void *arg)
   1841 {
   1842 	int s;
   1843 
   1844 	/*
   1845 	 * Suspend ourselves, so that the kernel stack and therefore
   1846 	 * the userland registers saved in the trapframe are around
   1847 	 * for coredump() to write them out.
   1848 	 */
   1849 	KERNEL_PROC_LOCK(l);
   1850 	l->l_flag &= ~L_DETACHED;
   1851 	SCHED_LOCK(s);
   1852 	l->l_stat = LSSUSPENDED;
   1853 	l->l_proc->p_nrlwps--;
   1854 	/* XXX NJWLWP check if this makes sense here: */
   1855 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1856 	mi_switch(l, NULL);
   1857 	SCHED_ASSERT_UNLOCKED();
   1858 	splx(s);
   1859 
   1860 	lwp_exit(l);
   1861 }
   1862 
   1863 void
   1864 sigexit(struct lwp *l, int signum)
   1865 {
   1866 	struct proc	*p;
   1867 #if 0
   1868 	struct lwp	*l2;
   1869 #endif
   1870 	int		error, exitsig;
   1871 
   1872 	p = l->l_proc;
   1873 
   1874 	/*
   1875 	 * Don't permit coredump() or exit1() multiple times
   1876 	 * in the same process.
   1877 	 */
   1878 	if (p->p_flag & P_WEXIT) {
   1879 		KERNEL_PROC_UNLOCK(l);
   1880 		(*p->p_userret)(l, p->p_userret_arg);
   1881 	}
   1882 	p->p_flag |= P_WEXIT;
   1883 	/* We don't want to switch away from exiting. */
   1884 	/* XXX multiprocessor: stop LWPs on other processors. */
   1885 #if 0
   1886 	if (p->p_flag & P_SA) {
   1887 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1888 		    l2->l_flag &= ~L_SA;
   1889 		p->p_flag &= ~P_SA;
   1890 	}
   1891 #endif
   1892 
   1893 	/* Make other LWPs stick around long enough to be dumped */
   1894 	p->p_userret = lwp_coredump_hook;
   1895 	p->p_userret_arg = NULL;
   1896 
   1897 	exitsig = signum;
   1898 	p->p_acflag |= AXSIG;
   1899 	if (sigprop[signum] & SA_CORE) {
   1900 		p->p_sigctx.ps_signo = signum;
   1901 		if ((error = coredump(l)) == 0)
   1902 			exitsig |= WCOREFLAG;
   1903 
   1904 		if (kern_logsigexit) {
   1905 			/* XXX What if we ever have really large UIDs? */
   1906 			int uid = p->p_cred && p->p_ucred ?
   1907 				(int) p->p_ucred->cr_uid : -1;
   1908 
   1909 			if (error)
   1910 				log(LOG_INFO, lognocoredump, p->p_pid,
   1911 				    p->p_comm, uid, signum, error);
   1912 			else
   1913 				log(LOG_INFO, logcoredump, p->p_pid,
   1914 				    p->p_comm, uid, signum);
   1915 		}
   1916 
   1917 	}
   1918 
   1919 	exit1(l, W_EXITCODE(0, exitsig));
   1920 	/* NOTREACHED */
   1921 }
   1922 
   1923 /*
   1924  * Dump core, into a file named "progname.core" or "core" (depending on the
   1925  * value of shortcorename), unless the process was setuid/setgid.
   1926  */
   1927 int
   1928 coredump(struct lwp *l)
   1929 {
   1930 	struct vnode		*vp;
   1931 	struct proc		*p;
   1932 	struct vmspace		*vm;
   1933 	struct ucred		*cred;
   1934 	struct nameidata	nd;
   1935 	struct vattr		vattr;
   1936 	struct mount		*mp;
   1937 	int			error, error1;
   1938 	char			name[MAXPATHLEN];
   1939 
   1940 	p = l->l_proc;
   1941 	vm = p->p_vmspace;
   1942 	cred = p->p_cred->pc_ucred;
   1943 
   1944 	/*
   1945 	 * Make sure the process has not set-id, to prevent data leaks.
   1946 	 */
   1947 	if (p->p_flag & P_SUGID)
   1948 		return (EPERM);
   1949 
   1950 	/*
   1951 	 * Refuse to core if the data + stack + user size is larger than
   1952 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   1953 	 * data.
   1954 	 */
   1955 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   1956 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   1957 		return (EFBIG);		/* better error code? */
   1958 
   1959 restart:
   1960 	/*
   1961 	 * The core dump will go in the current working directory.  Make
   1962 	 * sure that the directory is still there and that the mount flags
   1963 	 * allow us to write core dumps there.
   1964 	 */
   1965 	vp = p->p_cwdi->cwdi_cdir;
   1966 	if (vp->v_mount == NULL ||
   1967 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   1968 		return (EPERM);
   1969 
   1970 	error = build_corename(p, name);
   1971 	if (error)
   1972 		return error;
   1973 
   1974 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   1975 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   1976 	if (error)
   1977 		return (error);
   1978 	vp = nd.ni_vp;
   1979 
   1980 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
   1981 		VOP_UNLOCK(vp, 0);
   1982 		if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
   1983 			return (error);
   1984 		if ((error = vn_start_write(NULL, &mp,
   1985 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
   1986 			return (error);
   1987 		goto restart;
   1988 	}
   1989 
   1990 	/* Don't dump to non-regular files or files with links. */
   1991 	if (vp->v_type != VREG ||
   1992 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   1993 		error = EINVAL;
   1994 		goto out;
   1995 	}
   1996 	VATTR_NULL(&vattr);
   1997 	vattr.va_size = 0;
   1998 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   1999 	VOP_SETATTR(vp, &vattr, cred, p);
   2000 	p->p_acflag |= ACORE;
   2001 
   2002 	/* Now dump the actual core file. */
   2003 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   2004  out:
   2005 	VOP_UNLOCK(vp, 0);
   2006 	vn_finished_write(mp, 0);
   2007 	error1 = vn_close(vp, FWRITE, cred, p);
   2008 	if (error == 0)
   2009 		error = error1;
   2010 	return (error);
   2011 }
   2012 
   2013 /*
   2014  * Nonexistent system call-- signal process (may want to handle it).
   2015  * Flag error in case process won't see signal immediately (blocked or ignored).
   2016  */
   2017 /* ARGSUSED */
   2018 int
   2019 sys_nosys(struct lwp *l, void *v, register_t *retval)
   2020 {
   2021 	struct proc 	*p;
   2022 
   2023 	p = l->l_proc;
   2024 	psignal(p, SIGSYS);
   2025 	return (ENOSYS);
   2026 }
   2027 
   2028 static int
   2029 build_corename(struct proc *p, char dst[MAXPATHLEN])
   2030 {
   2031 	const char	*s;
   2032 	char		*d, *end;
   2033 	int		i;
   2034 
   2035 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   2036 	    *s != '\0'; s++) {
   2037 		if (*s == '%') {
   2038 			switch (*(s + 1)) {
   2039 			case 'n':
   2040 				i = snprintf(d, end - d, "%s", p->p_comm);
   2041 				break;
   2042 			case 'p':
   2043 				i = snprintf(d, end - d, "%d", p->p_pid);
   2044 				break;
   2045 			case 'u':
   2046 				i = snprintf(d, end - d, "%.*s",
   2047 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2048 				    p->p_pgrp->pg_session->s_login);
   2049 				break;
   2050 			case 't':
   2051 				i = snprintf(d, end - d, "%ld",
   2052 				    p->p_stats->p_start.tv_sec);
   2053 				break;
   2054 			default:
   2055 				goto copy;
   2056 			}
   2057 			d += i;
   2058 			s++;
   2059 		} else {
   2060  copy:			*d = *s;
   2061 			d++;
   2062 		}
   2063 		if (d >= end)
   2064 			return (ENAMETOOLONG);
   2065 	}
   2066 	*d = '\0';
   2067 	return 0;
   2068 }
   2069 
   2070 void
   2071 getucontext(struct lwp *l, ucontext_t *ucp)
   2072 {
   2073 	struct proc	*p;
   2074 
   2075 	p = l->l_proc;
   2076 
   2077 	ucp->uc_flags = 0;
   2078 	ucp->uc_link = l->l_ctxlink;
   2079 
   2080 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2081 	ucp->uc_flags |= _UC_SIGMASK;
   2082 
   2083 	/*
   2084 	 * The (unsupplied) definition of the `current execution stack'
   2085 	 * in the System V Interface Definition appears to allow returning
   2086 	 * the main context stack.
   2087 	 */
   2088 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2089 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2090 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2091 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2092 	} else {
   2093 		/* Simply copy alternate signal execution stack. */
   2094 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2095 	}
   2096 	ucp->uc_flags |= _UC_STACK;
   2097 
   2098 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2099 }
   2100 
   2101 /* ARGSUSED */
   2102 int
   2103 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2104 {
   2105 	struct sys_getcontext_args /* {
   2106 		syscallarg(struct __ucontext *) ucp;
   2107 	} */ *uap = v;
   2108 	ucontext_t uc;
   2109 
   2110 	getucontext(l, &uc);
   2111 
   2112 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2113 }
   2114 
   2115 int
   2116 setucontext(struct lwp *l, const ucontext_t *ucp)
   2117 {
   2118 	struct proc	*p;
   2119 	int		error;
   2120 
   2121 	p = l->l_proc;
   2122 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2123 		return (error);
   2124 	l->l_ctxlink = ucp->uc_link;
   2125 	/*
   2126 	 * We might want to take care of the stack portion here but currently
   2127 	 * don't; see the comment in getucontext().
   2128 	 */
   2129 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2130 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2131 
   2132 	return 0;
   2133 }
   2134 
   2135 /* ARGSUSED */
   2136 int
   2137 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2138 {
   2139 	struct sys_setcontext_args /* {
   2140 		syscallarg(const ucontext_t *) ucp;
   2141 	} */ *uap = v;
   2142 	ucontext_t uc;
   2143 	int error;
   2144 
   2145 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2146 		exit1(l, W_EXITCODE(0, 0));
   2147 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2148 	    (error = setucontext(l, &uc)) != 0)
   2149 		return (error);
   2150 
   2151 	return (EJUSTRETURN);
   2152 }
   2153 
   2154 /*
   2155  * sigtimedwait(2) system call, used also for implementation
   2156  * of sigwaitinfo() and sigwait().
   2157  *
   2158  * This only handles single LWP in signal wait. libpthread provides
   2159  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2160  *
   2161  * XXX no support for queued signals, si_code is always SI_USER.
   2162  */
   2163 int
   2164 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2165 {
   2166 	struct sys___sigtimedwait_args /* {
   2167 		syscallarg(const sigset_t *) set;
   2168 		syscallarg(siginfo_t *) info;
   2169 		syscallarg(struct timespec *) timeout;
   2170 	} */ *uap = v;
   2171 	sigset_t waitset, twaitset;
   2172 	struct proc *p = l->l_proc;
   2173 	int error, signum, s;
   2174 	int timo = 0;
   2175 	struct timeval tvstart;
   2176 	struct timespec ts;
   2177 
   2178 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
   2179 		return (error);
   2180 
   2181 	/*
   2182 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2183 	 * ignore SA_CANTMASK signals in waitset, we do this
   2184 	 * only for the below siglist check.
   2185 	 */
   2186 	sigminusset(&sigcantmask, &waitset);
   2187 
   2188 	/*
   2189 	 * First scan siglist and check if there is signal from
   2190 	 * our waitset already pending.
   2191 	 */
   2192 	twaitset = waitset;
   2193 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2194 	if ((signum = firstsig(&twaitset))) {
   2195 		/* found pending signal */
   2196 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2197 		goto sig;
   2198 	}
   2199 
   2200 	/*
   2201 	 * Calculate timeout, if it was specified.
   2202 	 */
   2203 	if (SCARG(uap, timeout)) {
   2204 		uint64_t ms;
   2205 
   2206 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   2207 			return (error);
   2208 
   2209 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2210 		timo = mstohz(ms);
   2211 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2212 			timo = 1;
   2213 		if (timo <= 0)
   2214 			return (EAGAIN);
   2215 
   2216 		/*
   2217 		 * Remember current mono_time, it would be used in
   2218 		 * ECANCELED/ERESTART case.
   2219 		 */
   2220 		s = splclock();
   2221 		tvstart = mono_time;
   2222 		splx(s);
   2223 	}
   2224 
   2225 	/*
   2226 	 * Setup ps_sigwait list.
   2227 	 */
   2228 	p->p_sigctx.ps_sigwaited = -1;
   2229 	p->p_sigctx.ps_sigwait = waitset;
   2230 
   2231 	/*
   2232 	 * Wait for signal to arrive. We can either be woken up or
   2233 	 * time out.
   2234 	 */
   2235 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2236 
   2237 	/*
   2238 	 * Check if a signal from our wait set has arrived, or if it
   2239 	 * was mere wakeup.
   2240 	 */
   2241 	if (!error) {
   2242 		if ((signum = p->p_sigctx.ps_sigwaited) <= 0) {
   2243 			/* wakeup via _lwp_wakeup() */
   2244 			error = ECANCELED;
   2245 		}
   2246 	}
   2247 
   2248 	/*
   2249 	 * On error, clear sigwait indication. psignal1() sets it
   2250 	 * in !error case.
   2251 	 */
   2252 	if (error) {
   2253 		p->p_sigctx.ps_sigwaited = 0;
   2254 
   2255 		/*
   2256 		 * If the sleep was interrupted (either by signal or wakeup),
   2257 		 * update the timeout and copyout new value back.
   2258 		 * It would be used when the syscall would be restarted
   2259 		 * or called again.
   2260 		 */
   2261 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2262 			struct timeval tvnow, tvtimo;
   2263 			int err;
   2264 
   2265 			s = splclock();
   2266 			tvnow = mono_time;
   2267 			splx(s);
   2268 
   2269 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2270 
   2271 			/* compute how much time has passed since start */
   2272 			timersub(&tvnow, &tvstart, &tvnow);
   2273 			/* substract passed time from timeout */
   2274 			timersub(&tvtimo, &tvnow, &tvtimo);
   2275 
   2276 			if (tvtimo.tv_sec < 0)
   2277 				return (EAGAIN);
   2278 
   2279 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2280 
   2281 			/* copy updated timeout to userland */
   2282 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts))))
   2283 				return (err);
   2284 		}
   2285 
   2286 		return (error);
   2287 	}
   2288 
   2289 	/*
   2290 	 * If a signal from the wait set arrived, copy it to userland.
   2291 	 * XXX no queued signals for now
   2292 	 */
   2293 	if (signum > 0) {
   2294 		siginfo_t si;
   2295 
   2296  sig:
   2297 		memset(&si, 0, sizeof(si));
   2298 		si.si_signo = signum;
   2299 		si.si_code = SI_USER;
   2300 
   2301 		error = copyout(&si, SCARG(uap, info), sizeof(si));
   2302 		if (error)
   2303 			return (error);
   2304 	}
   2305 
   2306 	return (0);
   2307 }
   2308 
   2309 /*
   2310  * Returns true if signal is ignored or masked for passed process.
   2311  */
   2312 int
   2313 sigismasked(struct proc *p, int sig)
   2314 {
   2315 
   2316 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2317 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2318 }
   2319 
   2320 static int
   2321 filt_sigattach(struct knote *kn)
   2322 {
   2323 	struct proc *p = curproc;
   2324 
   2325 	kn->kn_ptr.p_proc = p;
   2326 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2327 
   2328 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2329 
   2330 	return (0);
   2331 }
   2332 
   2333 static void
   2334 filt_sigdetach(struct knote *kn)
   2335 {
   2336 	struct proc *p = kn->kn_ptr.p_proc;
   2337 
   2338 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2339 }
   2340 
   2341 /*
   2342  * signal knotes are shared with proc knotes, so we apply a mask to
   2343  * the hint in order to differentiate them from process hints.  This
   2344  * could be avoided by using a signal-specific knote list, but probably
   2345  * isn't worth the trouble.
   2346  */
   2347 static int
   2348 filt_signal(struct knote *kn, long hint)
   2349 {
   2350 
   2351 	if (hint & NOTE_SIGNAL) {
   2352 		hint &= ~NOTE_SIGNAL;
   2353 
   2354 		if (kn->kn_id == hint)
   2355 			kn->kn_data++;
   2356 	}
   2357 	return (kn->kn_data != 0);
   2358 }
   2359 
   2360 const struct filterops sig_filtops = {
   2361 	0, filt_sigattach, filt_sigdetach, filt_signal
   2362 };
   2363