Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.172
      1 /*	$NetBSD: kern_sig.c,v 1.172 2003/10/30 16:32:58 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.172 2003/10/30 16:32:58 jdolecek Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd.h"
     45 #include "opt_compat_netbsd32.h"
     46 
     47 #define	SIGPROP		/* include signal properties table */
     48 #include <sys/param.h>
     49 #include <sys/signalvar.h>
     50 #include <sys/resourcevar.h>
     51 #include <sys/namei.h>
     52 #include <sys/vnode.h>
     53 #include <sys/proc.h>
     54 #include <sys/systm.h>
     55 #include <sys/timeb.h>
     56 #include <sys/times.h>
     57 #include <sys/buf.h>
     58 #include <sys/acct.h>
     59 #include <sys/file.h>
     60 #include <sys/kernel.h>
     61 #include <sys/wait.h>
     62 #include <sys/ktrace.h>
     63 #include <sys/syslog.h>
     64 #include <sys/stat.h>
     65 #include <sys/core.h>
     66 #include <sys/filedesc.h>
     67 #include <sys/malloc.h>
     68 #include <sys/pool.h>
     69 #include <sys/ucontext.h>
     70 #include <sys/sa.h>
     71 #include <sys/savar.h>
     72 #include <sys/exec.h>
     73 
     74 #include <sys/mount.h>
     75 #include <sys/syscallargs.h>
     76 
     77 #include <machine/cpu.h>
     78 
     79 #include <sys/user.h>		/* for coredump */
     80 
     81 #include <uvm/uvm_extern.h>
     82 
     83 static void	child_psignal(struct proc *, int);
     84 static void	proc_stop(struct proc *);
     85 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     86 static void	ksiginfo_exithook(struct proc *, void *);
     87 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
     88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
     89 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
     90 
     91 sigset_t	contsigmask, stopsigmask, sigcantmask;
     92 
     93 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     94 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     95 struct pool	ksiginfo_pool;	/* memory pool for ksiginfo structures */
     96 
     97 /*
     98  * Can process p, with pcred pc, send the signal signum to process q?
     99  */
    100 #define	CANSIGNAL(p, pc, q, signum) \
    101 	((pc)->pc_ucred->cr_uid == 0 || \
    102 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
    103 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    104 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    105 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    106 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    107 
    108 /*
    109  * Remove and return the first ksiginfo element that matches our requested
    110  * signal, or return NULL if one not found.
    111  */
    112 static ksiginfo_t *
    113 ksiginfo_get(struct proc *p, int signo)
    114 {
    115 	ksiginfo_t *ksi;
    116 	int s;
    117 
    118 	s = splsoftclock();
    119 	simple_lock(&p->p_sigctx.ps_silock);
    120 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    121 		if (ksi->ksi_signo == signo) {
    122 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    123 			goto out;
    124 		}
    125 	}
    126 	ksi = NULL;
    127 out:
    128 	simple_unlock(&p->p_sigctx.ps_silock);
    129 	splx(s);
    130 	return ksi;
    131 }
    132 
    133 /*
    134  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    135  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    136  * they already existed in the queue and we add new entries for RT signals,
    137  * or for non RT signals with non-existing entries.
    138  */
    139 static void
    140 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
    141 {
    142 	ksiginfo_t *kp;
    143 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    144 	int s;
    145 
    146 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    147 		return;
    148 
    149 	s = splsoftclock();
    150 	simple_lock(&p->p_sigctx.ps_silock);
    151 #ifdef notyet	/* XXX: QUEUING */
    152 	if (ksi->ksi_signo < SIGRTMIN)
    153 #endif
    154 	{
    155 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    156 			if (kp->ksi_signo == ksi->ksi_signo) {
    157 				kp->ksi_info = ksi->ksi_info;
    158 				kp->ksi_flags = ksi->ksi_flags;
    159 				goto out;
    160 			}
    161 		}
    162 	}
    163 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
    164 	if (kp == NULL) {
    165 #ifdef DIAGNOSTIC
    166 		printf("Out of memory allocating siginfo for pid %d\n",
    167 		    p->p_pid);
    168 #endif
    169 		goto out;
    170 	}
    171 	*kp = *ksi;
    172 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    173 out:
    174 	simple_unlock(&p->p_sigctx.ps_silock);
    175 	splx(s);
    176 }
    177 
    178 /*
    179  * free all pending ksiginfo on exit
    180  */
    181 static void
    182 ksiginfo_exithook(struct proc *p, void *v)
    183 {
    184 	int s;
    185 
    186 	s = splsoftclock();
    187 	simple_lock(&p->p_sigctx.ps_silock);
    188 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    189 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    190 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    191 		pool_put(&ksiginfo_pool, ksi);
    192 	}
    193 	simple_unlock(&p->p_sigctx.ps_silock);
    194 	splx(s);
    195 }
    196 
    197 /*
    198  * Initialize signal-related data structures.
    199  */
    200 void
    201 signal_init(void)
    202 {
    203 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    204 	    &pool_allocator_nointr);
    205 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    206 	    &pool_allocator_nointr);
    207 	pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    208 	    NULL);
    209 	exithook_establish(ksiginfo_exithook, NULL);
    210 	exechook_establish(ksiginfo_exithook, NULL);
    211 }
    212 
    213 /*
    214  * Create an initial sigctx structure, using the same signal state
    215  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    216  * copy it from parent.
    217  */
    218 void
    219 sigactsinit(struct proc *np, struct proc *pp, int share)
    220 {
    221 	struct sigacts *ps;
    222 
    223 	if (share) {
    224 		np->p_sigacts = pp->p_sigacts;
    225 		pp->p_sigacts->sa_refcnt++;
    226 	} else {
    227 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    228 		if (pp)
    229 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    230 		else
    231 			memset(ps, '\0', sizeof(struct sigacts));
    232 		ps->sa_refcnt = 1;
    233 		np->p_sigacts = ps;
    234 	}
    235 }
    236 
    237 /*
    238  * Make this process not share its sigctx, maintaining all
    239  * signal state.
    240  */
    241 void
    242 sigactsunshare(struct proc *p)
    243 {
    244 	struct sigacts *oldps;
    245 
    246 	if (p->p_sigacts->sa_refcnt == 1)
    247 		return;
    248 
    249 	oldps = p->p_sigacts;
    250 	sigactsinit(p, NULL, 0);
    251 
    252 	if (--oldps->sa_refcnt == 0)
    253 		pool_put(&sigacts_pool, oldps);
    254 }
    255 
    256 /*
    257  * Release a sigctx structure.
    258  */
    259 void
    260 sigactsfree(struct proc *p)
    261 {
    262 	struct sigacts *ps;
    263 
    264 	ps = p->p_sigacts;
    265 	if (--ps->sa_refcnt > 0)
    266 		return;
    267 
    268 	pool_put(&sigacts_pool, ps);
    269 }
    270 
    271 int
    272 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    273 	struct sigaction *osa, const void *tramp, int vers)
    274 {
    275 	struct sigacts	*ps;
    276 	int		prop;
    277 
    278 	ps = p->p_sigacts;
    279 	if (signum <= 0 || signum >= NSIG)
    280 		return (EINVAL);
    281 
    282 	/*
    283 	 * Trampoline ABI version 0 is reserved for the legacy
    284 	 * kernel-provided on-stack trampoline.  Conversely, if we are
    285 	 * using a non-0 ABI version, we must have a trampoline.  Only
    286 	 * validate the vers if a new sigaction was supplied. Emulations
    287 	 * use legacy kernel trampolines with version 0, alternatively
    288 	 * check for that too.
    289 	 */
    290 	if ((vers != 0 && tramp == NULL) ||
    291 #ifdef SIGTRAMP_VALID
    292 	    (nsa != NULL &&
    293 	    ((vers == 0) ?
    294 		(p->p_emul->e_sigcode == NULL) :
    295 		!SIGTRAMP_VALID(vers))) ||
    296 #endif
    297 	    (vers == 0 && tramp != NULL))
    298 		return (EINVAL);
    299 
    300 	if (osa)
    301 		*osa = SIGACTION_PS(ps, signum);
    302 
    303 	if (nsa) {
    304 		if (nsa->sa_flags & ~SA_ALLBITS)
    305 			return (EINVAL);
    306 
    307 #ifndef __HAVE_SIGINFO
    308 		if (nsa->sa_flags & SA_SIGINFO)
    309 			return (EINVAL);
    310 #endif
    311 
    312 		prop = sigprop[signum];
    313 		if (prop & SA_CANTMASK)
    314 			return (EINVAL);
    315 
    316 		(void) splsched();	/* XXXSMP */
    317 		SIGACTION_PS(ps, signum) = *nsa;
    318 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    319 		ps->sa_sigdesc[signum].sd_vers = vers;
    320 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    321 		if ((prop & SA_NORESET) != 0)
    322 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    323 		if (signum == SIGCHLD) {
    324 			if (nsa->sa_flags & SA_NOCLDSTOP)
    325 				p->p_flag |= P_NOCLDSTOP;
    326 			else
    327 				p->p_flag &= ~P_NOCLDSTOP;
    328 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    329 				/*
    330 				 * Paranoia: since SA_NOCLDWAIT is implemented
    331 				 * by reparenting the dying child to PID 1 (and
    332 				 * trust it to reap the zombie), PID 1 itself
    333 				 * is forbidden to set SA_NOCLDWAIT.
    334 				 */
    335 				if (p->p_pid == 1)
    336 					p->p_flag &= ~P_NOCLDWAIT;
    337 				else
    338 					p->p_flag |= P_NOCLDWAIT;
    339 			} else
    340 				p->p_flag &= ~P_NOCLDWAIT;
    341 		}
    342 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    343 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    344 		else
    345 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    346 		/*
    347 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    348 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    349 		 * to ignore. However, don't put SIGCONT in
    350 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    351 	 	 */
    352 		if (nsa->sa_handler == SIG_IGN ||
    353 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    354 						/* never to be seen again */
    355 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    356 			if (signum != SIGCONT) {
    357 						/* easier in psignal */
    358 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    359 			}
    360 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    361 		} else {
    362 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    363 			if (nsa->sa_handler == SIG_DFL)
    364 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    365 			else
    366 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    367 		}
    368 		(void) spl0();
    369 	}
    370 
    371 	return (0);
    372 }
    373 
    374 #ifdef COMPAT_16
    375 /* ARGSUSED */
    376 int
    377 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    378 {
    379 	struct compat_16_sys___sigaction14_args /* {
    380 		syscallarg(int)				signum;
    381 		syscallarg(const struct sigaction *)	nsa;
    382 		syscallarg(struct sigaction *)		osa;
    383 	} */ *uap = v;
    384 	struct proc		*p;
    385 	struct sigaction	nsa, osa;
    386 	int			error;
    387 
    388 	if (SCARG(uap, nsa)) {
    389 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    390 		if (error)
    391 			return (error);
    392 	}
    393 	p = l->l_proc;
    394 	error = sigaction1(p, SCARG(uap, signum),
    395 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    396 	    NULL, 0);
    397 	if (error)
    398 		return (error);
    399 	if (SCARG(uap, osa)) {
    400 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    401 		if (error)
    402 			return (error);
    403 	}
    404 	return (0);
    405 }
    406 #endif
    407 
    408 /* ARGSUSED */
    409 int
    410 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    411 {
    412 	struct sys___sigaction_sigtramp_args /* {
    413 		syscallarg(int)				signum;
    414 		syscallarg(const struct sigaction *)	nsa;
    415 		syscallarg(struct sigaction *)		osa;
    416 		syscallarg(void *)			tramp;
    417 		syscallarg(int)				vers;
    418 	} */ *uap = v;
    419 	struct proc *p = l->l_proc;
    420 	struct sigaction nsa, osa;
    421 	int error;
    422 
    423 	if (SCARG(uap, nsa)) {
    424 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    425 		if (error)
    426 			return (error);
    427 	}
    428 	error = sigaction1(p, SCARG(uap, signum),
    429 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    430 	    SCARG(uap, tramp), SCARG(uap, vers));
    431 	if (error)
    432 		return (error);
    433 	if (SCARG(uap, osa)) {
    434 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    435 		if (error)
    436 			return (error);
    437 	}
    438 	return (0);
    439 }
    440 
    441 /*
    442  * Initialize signal state for process 0;
    443  * set to ignore signals that are ignored by default and disable the signal
    444  * stack.
    445  */
    446 void
    447 siginit(struct proc *p)
    448 {
    449 	struct sigacts	*ps;
    450 	int		signum, prop;
    451 
    452 	ps = p->p_sigacts;
    453 	sigemptyset(&contsigmask);
    454 	sigemptyset(&stopsigmask);
    455 	sigemptyset(&sigcantmask);
    456 	for (signum = 1; signum < NSIG; signum++) {
    457 		prop = sigprop[signum];
    458 		if (prop & SA_CONT)
    459 			sigaddset(&contsigmask, signum);
    460 		if (prop & SA_STOP)
    461 			sigaddset(&stopsigmask, signum);
    462 		if (prop & SA_CANTMASK)
    463 			sigaddset(&sigcantmask, signum);
    464 		if (prop & SA_IGNORE && signum != SIGCONT)
    465 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    466 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    467 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    468 	}
    469 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    470 	p->p_sigctx.ps_sigwaited = NULL;
    471 	p->p_flag &= ~P_NOCLDSTOP;
    472 
    473 	/*
    474 	 * Reset stack state to the user stack.
    475 	 */
    476 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    477 	p->p_sigctx.ps_sigstk.ss_size = 0;
    478 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    479 
    480 	/* One reference. */
    481 	ps->sa_refcnt = 1;
    482 }
    483 
    484 /*
    485  * Reset signals for an exec of the specified process.
    486  */
    487 void
    488 execsigs(struct proc *p)
    489 {
    490 	struct sigacts	*ps;
    491 	int		signum, prop;
    492 
    493 	sigactsunshare(p);
    494 
    495 	ps = p->p_sigacts;
    496 
    497 	/*
    498 	 * Reset caught signals.  Held signals remain held
    499 	 * through p_sigctx.ps_sigmask (unless they were caught,
    500 	 * and are now ignored by default).
    501 	 */
    502 	for (signum = 1; signum < NSIG; signum++) {
    503 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    504 			prop = sigprop[signum];
    505 			if (prop & SA_IGNORE) {
    506 				if ((prop & SA_CONT) == 0)
    507 					sigaddset(&p->p_sigctx.ps_sigignore,
    508 					    signum);
    509 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    510 			}
    511 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    512 		}
    513 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    514 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    515 	}
    516 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    517 	p->p_sigctx.ps_sigwaited = NULL;
    518 	p->p_flag &= ~P_NOCLDSTOP;
    519 
    520 	/*
    521 	 * Reset stack state to the user stack.
    522 	 */
    523 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    524 	p->p_sigctx.ps_sigstk.ss_size = 0;
    525 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    526 }
    527 
    528 int
    529 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    530 {
    531 
    532 	if (oss)
    533 		*oss = p->p_sigctx.ps_sigmask;
    534 
    535 	if (nss) {
    536 		(void)splsched();	/* XXXSMP */
    537 		switch (how) {
    538 		case SIG_BLOCK:
    539 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    540 			break;
    541 		case SIG_UNBLOCK:
    542 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    543 			CHECKSIGS(p);
    544 			break;
    545 		case SIG_SETMASK:
    546 			p->p_sigctx.ps_sigmask = *nss;
    547 			CHECKSIGS(p);
    548 			break;
    549 		default:
    550 			(void)spl0();	/* XXXSMP */
    551 			return (EINVAL);
    552 		}
    553 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    554 		(void)spl0();		/* XXXSMP */
    555 	}
    556 
    557 	return (0);
    558 }
    559 
    560 /*
    561  * Manipulate signal mask.
    562  * Note that we receive new mask, not pointer,
    563  * and return old mask as return value;
    564  * the library stub does the rest.
    565  */
    566 int
    567 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    568 {
    569 	struct sys___sigprocmask14_args /* {
    570 		syscallarg(int)			how;
    571 		syscallarg(const sigset_t *)	set;
    572 		syscallarg(sigset_t *)		oset;
    573 	} */ *uap = v;
    574 	struct proc	*p;
    575 	sigset_t	nss, oss;
    576 	int		error;
    577 
    578 	if (SCARG(uap, set)) {
    579 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    580 		if (error)
    581 			return (error);
    582 	}
    583 	p = l->l_proc;
    584 	error = sigprocmask1(p, SCARG(uap, how),
    585 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    586 	if (error)
    587 		return (error);
    588 	if (SCARG(uap, oset)) {
    589 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    590 		if (error)
    591 			return (error);
    592 	}
    593 	return (0);
    594 }
    595 
    596 void
    597 sigpending1(struct proc *p, sigset_t *ss)
    598 {
    599 
    600 	*ss = p->p_sigctx.ps_siglist;
    601 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    602 }
    603 
    604 /* ARGSUSED */
    605 int
    606 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    607 {
    608 	struct sys___sigpending14_args /* {
    609 		syscallarg(sigset_t *)	set;
    610 	} */ *uap = v;
    611 	struct proc	*p;
    612 	sigset_t	ss;
    613 
    614 	p = l->l_proc;
    615 	sigpending1(p, &ss);
    616 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    617 }
    618 
    619 int
    620 sigsuspend1(struct proc *p, const sigset_t *ss)
    621 {
    622 	struct sigacts *ps;
    623 
    624 	ps = p->p_sigacts;
    625 	if (ss) {
    626 		/*
    627 		 * When returning from sigpause, we want
    628 		 * the old mask to be restored after the
    629 		 * signal handler has finished.  Thus, we
    630 		 * save it here and mark the sigctx structure
    631 		 * to indicate this.
    632 		 */
    633 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    634 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    635 		(void) splsched();	/* XXXSMP */
    636 		p->p_sigctx.ps_sigmask = *ss;
    637 		CHECKSIGS(p);
    638 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    639 		(void) spl0();		/* XXXSMP */
    640 	}
    641 
    642 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    643 		/* void */;
    644 
    645 	/* always return EINTR rather than ERESTART... */
    646 	return (EINTR);
    647 }
    648 
    649 /*
    650  * Suspend process until signal, providing mask to be set
    651  * in the meantime.  Note nonstandard calling convention:
    652  * libc stub passes mask, not pointer, to save a copyin.
    653  */
    654 /* ARGSUSED */
    655 int
    656 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    657 {
    658 	struct sys___sigsuspend14_args /* {
    659 		syscallarg(const sigset_t *)	set;
    660 	} */ *uap = v;
    661 	struct proc	*p;
    662 	sigset_t	ss;
    663 	int		error;
    664 
    665 	if (SCARG(uap, set)) {
    666 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    667 		if (error)
    668 			return (error);
    669 	}
    670 
    671 	p = l->l_proc;
    672 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    673 }
    674 
    675 int
    676 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    677 	struct sigaltstack *oss)
    678 {
    679 
    680 	if (oss)
    681 		*oss = p->p_sigctx.ps_sigstk;
    682 
    683 	if (nss) {
    684 		if (nss->ss_flags & ~SS_ALLBITS)
    685 			return (EINVAL);
    686 
    687 		if (nss->ss_flags & SS_DISABLE) {
    688 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    689 				return (EINVAL);
    690 		} else {
    691 			if (nss->ss_size < MINSIGSTKSZ)
    692 				return (ENOMEM);
    693 		}
    694 		p->p_sigctx.ps_sigstk = *nss;
    695 	}
    696 
    697 	return (0);
    698 }
    699 
    700 /* ARGSUSED */
    701 int
    702 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    703 {
    704 	struct sys___sigaltstack14_args /* {
    705 		syscallarg(const struct sigaltstack *)	nss;
    706 		syscallarg(struct sigaltstack *)	oss;
    707 	} */ *uap = v;
    708 	struct proc		*p;
    709 	struct sigaltstack	nss, oss;
    710 	int			error;
    711 
    712 	if (SCARG(uap, nss)) {
    713 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    714 		if (error)
    715 			return (error);
    716 	}
    717 	p = l->l_proc;
    718 	error = sigaltstack1(p,
    719 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    720 	if (error)
    721 		return (error);
    722 	if (SCARG(uap, oss)) {
    723 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    724 		if (error)
    725 			return (error);
    726 	}
    727 	return (0);
    728 }
    729 
    730 /* ARGSUSED */
    731 int
    732 sys_kill(struct lwp *l, void *v, register_t *retval)
    733 {
    734 	struct sys_kill_args /* {
    735 		syscallarg(int)	pid;
    736 		syscallarg(int)	signum;
    737 	} */ *uap = v;
    738 	struct proc	*cp, *p;
    739 	struct pcred	*pc;
    740 	ksiginfo_t	ksi;
    741 
    742 	cp = l->l_proc;
    743 	pc = cp->p_cred;
    744 	if ((u_int)SCARG(uap, signum) >= NSIG)
    745 		return (EINVAL);
    746 	memset(&ksi, 0, sizeof(ksi));
    747 	ksi.ksi_signo = SCARG(uap, signum);
    748 	ksi.ksi_code = SI_USER;
    749 	ksi.ksi_pid = cp->p_pid;
    750 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    751 	if (SCARG(uap, pid) > 0) {
    752 		/* kill single process */
    753 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    754 			return (ESRCH);
    755 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    756 			return (EPERM);
    757 		if (SCARG(uap, signum))
    758 			kpsignal2(p, &ksi, 1);
    759 		return (0);
    760 	}
    761 	switch (SCARG(uap, pid)) {
    762 	case -1:		/* broadcast signal */
    763 		return (killpg1(cp, &ksi, 0, 1));
    764 	case 0:			/* signal own process group */
    765 		return (killpg1(cp, &ksi, 0, 0));
    766 	default:		/* negative explicit process group */
    767 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    768 	}
    769 	/* NOTREACHED */
    770 }
    771 
    772 /*
    773  * Common code for kill process group/broadcast kill.
    774  * cp is calling process.
    775  */
    776 int
    777 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    778 {
    779 	struct proc	*p;
    780 	struct pcred	*pc;
    781 	struct pgrp	*pgrp;
    782 	int		nfound;
    783 	int		signum = ksi->ksi_signo;
    784 
    785 	pc = cp->p_cred;
    786 	nfound = 0;
    787 	if (all) {
    788 		/*
    789 		 * broadcast
    790 		 */
    791 		proclist_lock_read();
    792 		LIST_FOREACH(p, &allproc, p_list) {
    793 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    794 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    795 				continue;
    796 			nfound++;
    797 			if (signum)
    798 				kpsignal2(p, ksi, 1);
    799 		}
    800 		proclist_unlock_read();
    801 	} else {
    802 		if (pgid == 0)
    803 			/*
    804 			 * zero pgid means send to my process group.
    805 			 */
    806 			pgrp = cp->p_pgrp;
    807 		else {
    808 			pgrp = pgfind(pgid);
    809 			if (pgrp == NULL)
    810 				return (ESRCH);
    811 		}
    812 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    813 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    814 			    !CANSIGNAL(cp, pc, p, signum))
    815 				continue;
    816 			nfound++;
    817 			if (signum && P_ZOMBIE(p) == 0)
    818 				kpsignal2(p, ksi, 1);
    819 		}
    820 	}
    821 	return (nfound ? 0 : ESRCH);
    822 }
    823 
    824 /*
    825  * Send a signal to a process group.
    826  */
    827 void
    828 gsignal(int pgid, int signum)
    829 {
    830 	ksiginfo_t ksi;
    831 	memset(&ksi, 0, sizeof(ksi));
    832 	ksi.ksi_signo = signum;
    833 	kgsignal(pgid, &ksi, NULL);
    834 }
    835 
    836 void
    837 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    838 {
    839 	struct pgrp *pgrp;
    840 
    841 	if (pgid && (pgrp = pgfind(pgid)))
    842 		kpgsignal(pgrp, ksi, data, 0);
    843 }
    844 
    845 /*
    846  * Send a signal to a process group. If checktty is 1,
    847  * limit to members which have a controlling terminal.
    848  */
    849 void
    850 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    851 {
    852 	ksiginfo_t ksi;
    853 	memset(&ksi, 0, sizeof(ksi));
    854 	ksi.ksi_signo = sig;
    855 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    856 }
    857 
    858 void
    859 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    860 {
    861 	struct proc *p;
    862 
    863 	if (pgrp)
    864 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    865 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    866 				kpsignal(p, ksi, data);
    867 }
    868 
    869 /*
    870  * Send a signal caused by a trap to the current process.
    871  * If it will be caught immediately, deliver it with correct code.
    872  * Otherwise, post it normally.
    873  */
    874 #ifndef __HAVE_SIGINFO
    875 void _trapsignal(struct lwp *, const ksiginfo_t *);
    876 void
    877 trapsignal(struct lwp *l, int signum, u_long code)
    878 {
    879 #define trapsignal _trapsignal
    880 	ksiginfo_t ksi;
    881 
    882 	KSI_INIT_TRAP(&ksi);
    883 	ksi.ksi_signo = signum;
    884 	ksi.ksi_trap = (int)code;
    885 	trapsignal(l, &ksi);
    886 }
    887 #endif
    888 
    889 void
    890 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    891 {
    892 	struct proc	*p;
    893 	struct sigacts	*ps;
    894 	int signum = ksi->ksi_signo;
    895 
    896 	KASSERT(KSI_TRAP_P(ksi));
    897 
    898 	p = l->l_proc;
    899 	ps = p->p_sigacts;
    900 	if ((p->p_flag & P_TRACED) == 0 &&
    901 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    902 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    903 		p->p_stats->p_ru.ru_nsignals++;
    904 #ifdef KTRACE
    905 		if (KTRPOINT(p, KTR_PSIG))
    906 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    907 			    &p->p_sigctx.ps_sigmask, ksi);
    908 #endif
    909 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    910 		(void) splsched();	/* XXXSMP */
    911 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    912 		    &p->p_sigctx.ps_sigmask);
    913 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    914 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    915 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    916 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    917 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    918 		}
    919 		(void) spl0();		/* XXXSMP */
    920 	} else {
    921 		p->p_sigctx.ps_lwp = l->l_lid;
    922 		/* XXX for core dump/debugger */
    923 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    924 		p->p_sigctx.ps_code = ksi->ksi_trap;
    925 		kpsignal2(p, ksi, 1);
    926 	}
    927 }
    928 
    929 /*
    930  * Fill in signal information and signal the parent for a child status change.
    931  */
    932 static void
    933 child_psignal(struct proc *p, int dolock)
    934 {
    935 	ksiginfo_t ksi;
    936 
    937 	(void)memset(&ksi, 0, sizeof(ksi));
    938 	ksi.ksi_signo = SIGCHLD;
    939 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    940 	ksi.ksi_pid = p->p_pid;
    941 	ksi.ksi_uid = p->p_ucred->cr_uid;
    942 	ksi.ksi_status = p->p_xstat;
    943 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    944 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    945 	kpsignal2(p->p_pptr, &ksi, dolock);
    946 }
    947 
    948 /*
    949  * Send the signal to the process.  If the signal has an action, the action
    950  * is usually performed by the target process rather than the caller; we add
    951  * the signal to the set of pending signals for the process.
    952  *
    953  * Exceptions:
    954  *   o When a stop signal is sent to a sleeping process that takes the
    955  *     default action, the process is stopped without awakening it.
    956  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    957  *     regardless of the signal action (eg, blocked or ignored).
    958  *
    959  * Other ignored signals are discarded immediately.
    960  *
    961  * XXXSMP: Invoked as psignal() or sched_psignal().
    962  */
    963 void
    964 psignal1(struct proc *p, int signum, int dolock)
    965 {
    966 	ksiginfo_t ksi;
    967 
    968 	memset(&ksi, 0, sizeof(ksi));
    969 	ksi.ksi_signo = signum;
    970 	kpsignal2(p, &ksi, dolock);
    971 }
    972 
    973 void
    974 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
    975 {
    976 
    977 	if ((p->p_flag & P_WEXIT) == 0 && data) {
    978 		size_t fd;
    979 		struct filedesc *fdp = p->p_fd;
    980 
    981 		ksi->ksi_fd = -1;
    982 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    983 			struct file *fp = fdp->fd_ofiles[fd];
    984 			/* XXX: lock? */
    985 			if (fp && fp->f_data == data) {
    986 				ksi->ksi_fd = fd;
    987 				break;
    988 			}
    989 		}
    990 	}
    991 	kpsignal2(p, ksi, dolock);
    992 }
    993 
    994 static void
    995 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
    996 {
    997 	struct lwp *l, *suspended = NULL;
    998 	int	s = 0, prop, allsusp;
    999 	sig_t	action;
   1000 	int	signum = ksi->ksi_signo;
   1001 
   1002 #ifdef DIAGNOSTIC
   1003 	if (signum <= 0 || signum >= NSIG)
   1004 		panic("psignal signal number %d", signum);
   1005 
   1006 	/* XXXSMP: works, but icky */
   1007 	if (dolock)
   1008 		SCHED_ASSERT_UNLOCKED();
   1009 	else
   1010 		SCHED_ASSERT_LOCKED();
   1011 #endif
   1012 
   1013 
   1014 	/*
   1015 	 * Notify any interested parties in the signal.
   1016 	 */
   1017 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
   1018 
   1019 	prop = sigprop[signum];
   1020 
   1021 	/*
   1022 	 * If proc is traced, always give parent a chance.
   1023 	 */
   1024 	if (p->p_flag & P_TRACED)
   1025 		action = SIG_DFL;
   1026 	else {
   1027 		/*
   1028 		 * If the signal is being ignored,
   1029 		 * then we forget about it immediately.
   1030 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1031 		 * and if it is set to SIG_IGN,
   1032 		 * action will be SIG_DFL here.)
   1033 		 */
   1034 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1035 			return;
   1036 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1037 			action = SIG_HOLD;
   1038 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1039 			action = SIG_CATCH;
   1040 		else {
   1041 			action = SIG_DFL;
   1042 
   1043 			if (prop & SA_KILL && p->p_nice > NZERO)
   1044 				p->p_nice = NZERO;
   1045 
   1046 			/*
   1047 			 * If sending a tty stop signal to a member of an
   1048 			 * orphaned process group, discard the signal here if
   1049 			 * the action is default; don't stop the process below
   1050 			 * if sleeping, and don't clear any pending SIGCONT.
   1051 			 */
   1052 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1053 				return;
   1054 		}
   1055 	}
   1056 
   1057 	if (prop & SA_CONT)
   1058 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1059 
   1060 	if (prop & SA_STOP)
   1061 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1062 
   1063 	/*
   1064 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1065 	 * please!), check if anything waits on it. If yes, save the
   1066 	 * info into provided ps_sigwaited, and wake-up the waiter.
   1067 	 * The signal won't be processed further here.
   1068 	 */
   1069 	if ((prop & SA_CANTMASK) == 0
   1070 	    && p->p_sigctx.ps_sigwaited
   1071 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
   1072 	    && p->p_stat != SSTOP) {
   1073 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
   1074 		p->p_sigctx.ps_sigwaited = NULL;
   1075 		if (dolock)
   1076 			wakeup_one(&p->p_sigctx.ps_sigwait);
   1077 		else
   1078 			sched_wakeup(&p->p_sigctx.ps_sigwait);
   1079 		return;
   1080 	}
   1081 
   1082 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1083 
   1084 	/* CHECKSIGS() is "inlined" here. */
   1085 	p->p_sigctx.ps_sigcheck = 1;
   1086 
   1087 	/*
   1088 	 * Defer further processing for signals which are held,
   1089 	 * except that stopped processes must be continued by SIGCONT.
   1090 	 */
   1091 	if (action == SIG_HOLD &&
   1092 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1093 		ksiginfo_put(p, ksi);
   1094 		return;
   1095 	}
   1096 	/* XXXSMP: works, but icky */
   1097 	if (dolock)
   1098 		SCHED_LOCK(s);
   1099 
   1100 	/* XXXUPSXXX LWPs might go to sleep without passing signal handling */
   1101 	if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)
   1102 	    && !((p->p_flag & P_SA) && (p->p_sa->sa_idle != NULL))) {
   1103 		/*
   1104 		 * At least one LWP is running or on a run queue.
   1105 		 * The signal will be noticed when one of them returns
   1106 		 * to userspace.
   1107 		 */
   1108 		signotify(p);
   1109 		/*
   1110 		 * The signal will be noticed very soon.
   1111 		 */
   1112 		goto out;
   1113 	} else {
   1114 		/* Process is sleeping or stopped */
   1115 		if (p->p_flag & P_SA) {
   1116 			struct lwp *l2 = p->p_sa->sa_vp;
   1117 			l = NULL;
   1118 			allsusp = 1;
   1119 
   1120 			if ((l2->l_stat == LSSLEEP) && (l2->l_flag & L_SINTR))
   1121 				l = l2;
   1122 			else if (l2->l_stat == LSSUSPENDED)
   1123 				suspended = l2;
   1124 			else if ((l2->l_stat != LSZOMB) &&
   1125 				 (l2->l_stat != LSDEAD))
   1126 				allsusp = 0;
   1127 		} else {
   1128 			/*
   1129 			 * Find out if any of the sleeps are interruptable,
   1130 			 * and if all the live LWPs remaining are suspended.
   1131 			 */
   1132 			allsusp = 1;
   1133 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1134 				if (l->l_stat == LSSLEEP &&
   1135 				    l->l_flag & L_SINTR)
   1136 					break;
   1137 				if (l->l_stat == LSSUSPENDED)
   1138 					suspended = l;
   1139 				else if ((l->l_stat != LSZOMB) &&
   1140 				         (l->l_stat != LSDEAD))
   1141 					allsusp = 0;
   1142 			}
   1143 		}
   1144 		if (p->p_stat == SACTIVE) {
   1145 
   1146 
   1147 			if (l != NULL && (p->p_flag & P_TRACED))
   1148 				goto run;
   1149 
   1150 			/*
   1151 			 * If SIGCONT is default (or ignored) and process is
   1152 			 * asleep, we are finished; the process should not
   1153 			 * be awakened.
   1154 			 */
   1155 			if ((prop & SA_CONT) && action == SIG_DFL) {
   1156 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1157 				goto done;
   1158 			}
   1159 
   1160 			/*
   1161 			 * When a sleeping process receives a stop
   1162 			 * signal, process immediately if possible.
   1163 			 */
   1164 			if ((prop & SA_STOP) && action == SIG_DFL) {
   1165 				/*
   1166 				 * If a child holding parent blocked,
   1167 				 * stopping could cause deadlock.
   1168 				 */
   1169 				if (p->p_flag & P_PPWAIT) {
   1170 					goto out;
   1171 				}
   1172 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1173 				p->p_xstat = signum;
   1174 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1175 					/*
   1176 					 * XXXSMP: recursive call; don't lock
   1177 					 * the second time around.
   1178 					 */
   1179 					child_psignal(p, 0);
   1180 				}
   1181 				proc_stop(p);	/* XXXSMP: recurse? */
   1182 				goto done;
   1183 			}
   1184 
   1185 			if (l == NULL) {
   1186 				/*
   1187 				 * Special case: SIGKILL of a process
   1188 				 * which is entirely composed of
   1189 				 * suspended LWPs should succeed. We
   1190 				 * make this happen by unsuspending one of
   1191 				 * them.
   1192 				 */
   1193 				if (allsusp && (signum == SIGKILL))
   1194 					lwp_continue(suspended);
   1195 				goto done;
   1196 			}
   1197 			/*
   1198 			 * All other (caught or default) signals
   1199 			 * cause the process to run.
   1200 			 */
   1201 			goto runfast;
   1202 			/*NOTREACHED*/
   1203 		} else if (p->p_stat == SSTOP) {
   1204 			/* Process is stopped */
   1205 			/*
   1206 			 * If traced process is already stopped,
   1207 			 * then no further action is necessary.
   1208 			 */
   1209 			if (p->p_flag & P_TRACED)
   1210 				goto done;
   1211 
   1212 			/*
   1213 			 * Kill signal always sets processes running,
   1214 			 * if possible.
   1215 			 */
   1216 			if (signum == SIGKILL) {
   1217 				l = proc_unstop(p);
   1218 				if (l)
   1219 					goto runfast;
   1220 				goto done;
   1221 			}
   1222 
   1223 			if (prop & SA_CONT) {
   1224 				/*
   1225 				 * If SIGCONT is default (or ignored),
   1226 				 * we continue the process but don't
   1227 				 * leave the signal in ps_siglist, as
   1228 				 * it has no further action.  If
   1229 				 * SIGCONT is held, we continue the
   1230 				 * process and leave the signal in
   1231 				 * ps_siglist.  If the process catches
   1232 				 * SIGCONT, let it handle the signal
   1233 				 * itself.  If it isn't waiting on an
   1234 				 * event, then it goes back to run
   1235 				 * state.  Otherwise, process goes
   1236 				 * back to sleep state.
   1237 				 */
   1238 				if (action == SIG_DFL)
   1239 					sigdelset(&p->p_sigctx.ps_siglist,
   1240 					signum);
   1241 				l = proc_unstop(p);
   1242 				if (l && (action == SIG_CATCH))
   1243 					goto runfast;
   1244 				goto out;
   1245 			}
   1246 
   1247 			if (prop & SA_STOP) {
   1248 				/*
   1249 				 * Already stopped, don't need to stop again.
   1250 				 * (If we did the shell could get confused.)
   1251 				 */
   1252 				sigdelset(&p->p_sigctx.ps_siglist, signum);
   1253 				goto done;
   1254 			}
   1255 
   1256 			/*
   1257 			 * If a lwp is sleeping interruptibly, then
   1258 			 * wake it up; it will run until the kernel
   1259 			 * boundary, where it will stop in issignal(),
   1260 			 * since p->p_stat is still SSTOP. When the
   1261 			 * process is continued, it will be made
   1262 			 * runnable and can look at the signal.
   1263 			 */
   1264 			if (l)
   1265 				goto run;
   1266 			goto out;
   1267 		} else {
   1268 			/* Else what? */
   1269 			panic("psignal: Invalid process state %d.",
   1270 				p->p_stat);
   1271 		}
   1272 	}
   1273 	/*NOTREACHED*/
   1274 
   1275  runfast:
   1276 	if (action == SIG_CATCH) {
   1277 		ksiginfo_put(p, ksi);
   1278 		action = SIG_HOLD;
   1279 	}
   1280 	/*
   1281 	 * Raise priority to at least PUSER.
   1282 	 */
   1283 	if (l->l_priority > PUSER)
   1284 		l->l_priority = PUSER;
   1285  run:
   1286 	if (action == SIG_CATCH) {
   1287 		ksiginfo_put(p, ksi);
   1288 		action = SIG_HOLD;
   1289 	}
   1290 
   1291 	setrunnable(l);		/* XXXSMP: recurse? */
   1292  out:
   1293 	if (action == SIG_CATCH)
   1294 		ksiginfo_put(p, ksi);
   1295  done:
   1296 	/* XXXSMP: works, but icky */
   1297 	if (dolock)
   1298 		SCHED_UNLOCK(s);
   1299 }
   1300 
   1301 void
   1302 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1303 {
   1304 	struct proc *p = l->l_proc;
   1305 	struct lwp *le, *li;
   1306 	siginfo_t *si;
   1307 	int f;
   1308 
   1309 	if (p->p_flag & P_SA) {
   1310 
   1311 		/* XXXUPSXXX What if not on sa_vp ? */
   1312 
   1313 		f = l->l_flag & L_SA;
   1314 		l->l_flag &= ~L_SA;
   1315 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1316 		si->_info = ksi->ksi_info;
   1317 		le = li = NULL;
   1318 		if (KSI_TRAP_P(ksi))
   1319 			le = l;
   1320 		else
   1321 			li = l;
   1322 
   1323 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1324 			    sizeof(siginfo_t), si);
   1325 		l->l_flag |= f;
   1326 		return;
   1327 	}
   1328 
   1329 #ifdef __HAVE_SIGINFO
   1330 	(*p->p_emul->e_sendsig)(ksi, mask);
   1331 #else
   1332 	(*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, KSI_TRAPCODE(ksi));
   1333 #endif
   1334 }
   1335 
   1336 static __inline int firstsig(const sigset_t *);
   1337 
   1338 static __inline int
   1339 firstsig(const sigset_t *ss)
   1340 {
   1341 	int sig;
   1342 
   1343 	sig = ffs(ss->__bits[0]);
   1344 	if (sig != 0)
   1345 		return (sig);
   1346 #if NSIG > 33
   1347 	sig = ffs(ss->__bits[1]);
   1348 	if (sig != 0)
   1349 		return (sig + 32);
   1350 #endif
   1351 #if NSIG > 65
   1352 	sig = ffs(ss->__bits[2]);
   1353 	if (sig != 0)
   1354 		return (sig + 64);
   1355 #endif
   1356 #if NSIG > 97
   1357 	sig = ffs(ss->__bits[3]);
   1358 	if (sig != 0)
   1359 		return (sig + 96);
   1360 #endif
   1361 	return (0);
   1362 }
   1363 
   1364 /*
   1365  * If the current process has received a signal (should be caught or cause
   1366  * termination, should interrupt current syscall), return the signal number.
   1367  * Stop signals with default action are processed immediately, then cleared;
   1368  * they aren't returned.  This is checked after each entry to the system for
   1369  * a syscall or trap (though this can usually be done without calling issignal
   1370  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1371  * sequence is
   1372  *
   1373  *	while (signum = CURSIG(curlwp))
   1374  *		postsig(signum);
   1375  */
   1376 int
   1377 issignal(struct lwp *l)
   1378 {
   1379 	struct proc	*p = l->l_proc;
   1380 	int		s = 0, signum, prop;
   1381 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1382 	sigset_t	ss;
   1383 
   1384 	if (l->l_flag & L_SA) {
   1385 		struct sadata *sa = p->p_sa;
   1386 
   1387 		/* Bail out if we do not own the virtual processor */
   1388 		if (sa->sa_vp != l)
   1389 			return 0;
   1390 	}
   1391 
   1392 	if (p->p_stat == SSTOP) {
   1393 		/*
   1394 		 * The process is stopped/stopping. Stop ourselves now that
   1395 		 * we're on the kernel/userspace boundary.
   1396 		 */
   1397 		if (dolock)
   1398 			SCHED_LOCK(s);
   1399 		l->l_stat = LSSTOP;
   1400 		p->p_nrlwps--;
   1401 		if (p->p_flag & P_TRACED)
   1402 			goto sigtraceswitch;
   1403 		else
   1404 			goto sigswitch;
   1405 	}
   1406 	for (;;) {
   1407 		sigpending1(p, &ss);
   1408 		if (p->p_flag & P_PPWAIT)
   1409 			sigminusset(&stopsigmask, &ss);
   1410 		signum = firstsig(&ss);
   1411 		if (signum == 0) {		 	/* no signal to send */
   1412 			p->p_sigctx.ps_sigcheck = 0;
   1413 			if (locked && dolock)
   1414 				SCHED_LOCK(s);
   1415 			return (0);
   1416 		}
   1417 							/* take the signal! */
   1418 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1419 
   1420 		/*
   1421 		 * We should see pending but ignored signals
   1422 		 * only if P_TRACED was on when they were posted.
   1423 		 */
   1424 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1425 		    (p->p_flag & P_TRACED) == 0)
   1426 			continue;
   1427 
   1428 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1429 			/*
   1430 			 * If traced, always stop, and stay
   1431 			 * stopped until released by the debugger.
   1432 			 */
   1433 			p->p_xstat = signum;
   1434 			if ((p->p_flag & P_FSTRACE) == 0)
   1435 				child_psignal(p, dolock);
   1436 			if (dolock)
   1437 				SCHED_LOCK(s);
   1438 			proc_stop(p);
   1439 		sigtraceswitch:
   1440 			mi_switch(l, NULL);
   1441 			SCHED_ASSERT_UNLOCKED();
   1442 			if (dolock)
   1443 				splx(s);
   1444 			else
   1445 				dolock = 1;
   1446 
   1447 			/*
   1448 			 * If we are no longer being traced, or the parent
   1449 			 * didn't give us a signal, look for more signals.
   1450 			 */
   1451 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1452 				continue;
   1453 
   1454 			/*
   1455 			 * If the new signal is being masked, look for other
   1456 			 * signals.
   1457 			 */
   1458 			signum = p->p_xstat;
   1459 			p->p_xstat = 0;
   1460 			/*
   1461 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1462 			 * in setrunnable().
   1463 			 */
   1464 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1465 				continue;
   1466 							/* take the signal! */
   1467 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1468 		}
   1469 
   1470 		prop = sigprop[signum];
   1471 
   1472 		/*
   1473 		 * Decide whether the signal should be returned.
   1474 		 * Return the signal's number, or fall through
   1475 		 * to clear it from the pending mask.
   1476 		 */
   1477 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1478 
   1479 		case (long)SIG_DFL:
   1480 			/*
   1481 			 * Don't take default actions on system processes.
   1482 			 */
   1483 			if (p->p_pid <= 1) {
   1484 #ifdef DIAGNOSTIC
   1485 				/*
   1486 				 * Are you sure you want to ignore SIGSEGV
   1487 				 * in init? XXX
   1488 				 */
   1489 				printf("Process (pid %d) got signal %d\n",
   1490 				    p->p_pid, signum);
   1491 #endif
   1492 				break;		/* == ignore */
   1493 			}
   1494 			/*
   1495 			 * If there is a pending stop signal to process
   1496 			 * with default action, stop here,
   1497 			 * then clear the signal.  However,
   1498 			 * if process is member of an orphaned
   1499 			 * process group, ignore tty stop signals.
   1500 			 */
   1501 			if (prop & SA_STOP) {
   1502 				if (p->p_flag & P_TRACED ||
   1503 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1504 				    prop & SA_TTYSTOP))
   1505 					break;	/* == ignore */
   1506 				p->p_xstat = signum;
   1507 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1508 					child_psignal(p, dolock);
   1509 				if (dolock)
   1510 					SCHED_LOCK(s);
   1511 				proc_stop(p);
   1512 			sigswitch:
   1513 				mi_switch(l, NULL);
   1514 				SCHED_ASSERT_UNLOCKED();
   1515 				if (dolock)
   1516 					splx(s);
   1517 				else
   1518 					dolock = 1;
   1519 				break;
   1520 			} else if (prop & SA_IGNORE) {
   1521 				/*
   1522 				 * Except for SIGCONT, shouldn't get here.
   1523 				 * Default action is to ignore; drop it.
   1524 				 */
   1525 				break;		/* == ignore */
   1526 			} else
   1527 				goto keep;
   1528 			/*NOTREACHED*/
   1529 
   1530 		case (long)SIG_IGN:
   1531 			/*
   1532 			 * Masking above should prevent us ever trying
   1533 			 * to take action on an ignored signal other
   1534 			 * than SIGCONT, unless process is traced.
   1535 			 */
   1536 #ifdef DEBUG_ISSIGNAL
   1537 			if ((prop & SA_CONT) == 0 &&
   1538 			    (p->p_flag & P_TRACED) == 0)
   1539 				printf("issignal\n");
   1540 #endif
   1541 			break;		/* == ignore */
   1542 
   1543 		default:
   1544 			/*
   1545 			 * This signal has an action, let
   1546 			 * postsig() process it.
   1547 			 */
   1548 			goto keep;
   1549 		}
   1550 	}
   1551 	/* NOTREACHED */
   1552 
   1553  keep:
   1554 						/* leave the signal for later */
   1555 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1556 	CHECKSIGS(p);
   1557 	if (locked && dolock)
   1558 		SCHED_LOCK(s);
   1559 	return (signum);
   1560 }
   1561 
   1562 /*
   1563  * Put the argument process into the stopped state and notify the parent
   1564  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1565  * on the run queue.
   1566  */
   1567 static void
   1568 proc_stop(struct proc *p)
   1569 {
   1570 	struct lwp *l;
   1571 
   1572 	SCHED_ASSERT_LOCKED();
   1573 
   1574 	/* XXX lock process LWP state */
   1575 	p->p_stat = SSTOP;
   1576 	p->p_flag &= ~P_WAITED;
   1577 
   1578 	/*
   1579 	 * Put as many LWP's as possible in stopped state.
   1580 	 * Sleeping ones will notice the stopped state as they try to
   1581 	 * return to userspace.
   1582 	 */
   1583 
   1584 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1585 		if ((l->l_stat == LSONPROC) && (l == curlwp)) {
   1586 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1587 			 * is curlwp and hence is about to be mi_switched
   1588 			 * away; the only callers of proc_stop() are:
   1589 			 * - psignal
   1590 			 * - issignal()
   1591 			 * For the former, proc_stop() is only called when
   1592 			 * no processes are running, so we don't worry.
   1593 			 * For the latter, proc_stop() is called right
   1594 			 * before mi_switch().
   1595 			 */
   1596 			l->l_stat = LSSTOP;
   1597 			p->p_nrlwps--;
   1598 		}
   1599 		 else if ( (l->l_stat == LSSLEEP) && (l->l_flag & L_SINTR)) {
   1600 			setrunnable(l);
   1601 		}
   1602 
   1603 /* !!!UPS!!! FIX ME */
   1604 #if 0
   1605 else if (l->l_stat == LSRUN) {
   1606 			/* Remove LWP from the run queue */
   1607 			remrunqueue(l);
   1608 			l->l_stat = LSSTOP;
   1609 			p->p_nrlwps--;
   1610 		} else if ((l->l_stat == LSSLEEP) ||
   1611 		    (l->l_stat == LSSUSPENDED) ||
   1612 		    (l->l_stat == LSZOMB) ||
   1613 		    (l->l_stat == LSDEAD)) {
   1614 			/*
   1615 			 * Don't do anything; let sleeping LWPs
   1616 			 * discover the stopped state of the process
   1617 			 * on their way out of the kernel; otherwise,
   1618 			 * things like NFS threads that sleep with
   1619 			 * locks will block the rest of the system
   1620 			 * from getting any work done.
   1621 			 *
   1622 			 * Suspended/dead/zombie LWPs aren't going
   1623 			 * anywhere, so we don't need to touch them.
   1624 			 */
   1625 		}
   1626 #ifdef DIAGNOSTIC
   1627 		else {
   1628 			panic("proc_stop: process %d lwp %d "
   1629 			      "in unstoppable state %d.\n",
   1630 			    p->p_pid, l->l_lid, l->l_stat);
   1631 		}
   1632 #endif
   1633 #endif
   1634 	}
   1635 	/* XXX unlock process LWP state */
   1636 
   1637 	sched_wakeup((caddr_t)p->p_pptr);
   1638 }
   1639 
   1640 /*
   1641  * Given a process in state SSTOP, set the state back to SACTIVE and
   1642  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1643  *
   1644  * If no LWPs ended up runnable (and therefore able to take a signal),
   1645  * return a LWP that is sleeping interruptably. The caller can wake
   1646  * that LWP up to take a signal.
   1647  */
   1648 struct lwp *
   1649 proc_unstop(struct proc *p)
   1650 {
   1651 	struct lwp *l, *lr = NULL;
   1652 	int cantake = 0;
   1653 
   1654 	SCHED_ASSERT_LOCKED();
   1655 
   1656 	/*
   1657 	 * Our caller wants to be informed if there are only sleeping
   1658 	 * and interruptable LWPs left after we have run so that it
   1659 	 * can invoke setrunnable() if required - return one of the
   1660 	 * interruptable LWPs if this is the case.
   1661 	 */
   1662 
   1663 	p->p_stat = SACTIVE;
   1664 	if (p->p_flag & P_SA) {
   1665 		/*
   1666 		 * Preferentially select the idle LWP as the interruptable
   1667 		 * LWP to return if it exists.
   1668 		 */
   1669 		lr = p->p_sa->sa_idle;
   1670 		if (lr != NULL)
   1671 			cantake = 1;
   1672 	}
   1673 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1674 		if (l->l_stat == LSRUN) {
   1675 			lr = NULL;
   1676 			cantake = 1;
   1677 		}
   1678 		if (l->l_stat != LSSTOP)
   1679 			continue;
   1680 
   1681 		if (l->l_wchan != NULL) {
   1682 			l->l_stat = LSSLEEP;
   1683 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1684 				lr = l;
   1685 				cantake = 1;
   1686 			}
   1687 		} else {
   1688 			setrunnable(l);
   1689 			lr = NULL;
   1690 			cantake = 1;
   1691 		}
   1692 	}
   1693 
   1694 	return lr;
   1695 }
   1696 
   1697 /*
   1698  * Take the action for the specified signal
   1699  * from the current set of pending signals.
   1700  */
   1701 void
   1702 postsig(int signum)
   1703 {
   1704 	struct lwp *l;
   1705 	struct proc	*p;
   1706 	struct sigacts	*ps;
   1707 	sig_t		action;
   1708 	sigset_t	*returnmask;
   1709 
   1710 	l = curlwp;
   1711 	p = l->l_proc;
   1712 	ps = p->p_sigacts;
   1713 #ifdef DIAGNOSTIC
   1714 	if (signum == 0)
   1715 		panic("postsig");
   1716 #endif
   1717 
   1718 	KERNEL_PROC_LOCK(l);
   1719 
   1720 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1721 	action = SIGACTION_PS(ps, signum).sa_handler;
   1722 	if (action == SIG_DFL) {
   1723 #ifdef KTRACE
   1724 		if (KTRPOINT(p, KTR_PSIG))
   1725 			ktrpsig(p, signum, action,
   1726 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1727 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1728 			    NULL);
   1729 #endif
   1730 		/*
   1731 		 * Default action, where the default is to kill
   1732 		 * the process.  (Other cases were ignored above.)
   1733 		 */
   1734 		sigexit(l, signum);
   1735 		/* NOTREACHED */
   1736 	} else {
   1737 		ksiginfo_t *ksi;
   1738 		/*
   1739 		 * If we get here, the signal must be caught.
   1740 		 */
   1741 #ifdef DIAGNOSTIC
   1742 		if (action == SIG_IGN ||
   1743 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1744 			panic("postsig action");
   1745 #endif
   1746 		/*
   1747 		 * Set the new mask value and also defer further
   1748 		 * occurrences of this signal.
   1749 		 *
   1750 		 * Special case: user has done a sigpause.  Here the
   1751 		 * current mask is not of interest, but rather the
   1752 		 * mask from before the sigpause is what we want
   1753 		 * restored after the signal processing is completed.
   1754 		 */
   1755 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1756 			returnmask = &p->p_sigctx.ps_oldmask;
   1757 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1758 		} else
   1759 			returnmask = &p->p_sigctx.ps_sigmask;
   1760 		p->p_stats->p_ru.ru_nsignals++;
   1761 		ksi = ksiginfo_get(p, signum);
   1762 #ifdef KTRACE
   1763 		if (KTRPOINT(p, KTR_PSIG))
   1764 			ktrpsig(p, signum, action,
   1765 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1766 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1767 			    ksi);
   1768 #endif
   1769 		if (ksi == NULL) {
   1770 			ksiginfo_t ksi1;
   1771 			/*
   1772 			 * we did not save any siginfo for this, either
   1773 			 * because the signal was not caught, or because the
   1774 			 * user did not request SA_SIGINFO
   1775 			 */
   1776 			(void)memset(&ksi1, 0, sizeof(ksi1));
   1777 			ksi1.ksi_signo = signum;
   1778 			kpsendsig(l, &ksi1, returnmask);
   1779 		} else {
   1780 			kpsendsig(l, ksi, returnmask);
   1781 			pool_put(&ksiginfo_pool, ksi);
   1782 		}
   1783 		p->p_sigctx.ps_lwp = 0;
   1784 		p->p_sigctx.ps_code = 0;
   1785 		p->p_sigctx.ps_signo = 0;
   1786 		(void) splsched();	/* XXXSMP */
   1787 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1788 		    &p->p_sigctx.ps_sigmask);
   1789 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1790 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1791 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1792 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1793 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1794 		}
   1795 		(void) spl0();		/* XXXSMP */
   1796 	}
   1797 
   1798 	KERNEL_PROC_UNLOCK(l);
   1799 }
   1800 
   1801 /*
   1802  * Kill the current process for stated reason.
   1803  */
   1804 void
   1805 killproc(struct proc *p, const char *why)
   1806 {
   1807 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1808 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1809 	psignal(p, SIGKILL);
   1810 }
   1811 
   1812 /*
   1813  * Force the current process to exit with the specified signal, dumping core
   1814  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1815  * allowing unrecoverable failures to terminate the process without changing
   1816  * signal state.  Mark the accounting record with the signal termination.
   1817  * If dumping core, save the signal number for the debugger.  Calls exit and
   1818  * does not return.
   1819  */
   1820 
   1821 #if defined(DEBUG)
   1822 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1823 #else
   1824 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1825 #endif
   1826 
   1827 static	const char logcoredump[] =
   1828 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1829 static	const char lognocoredump[] =
   1830 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1831 
   1832 /* Wrapper function for use in p_userret */
   1833 static void
   1834 lwp_coredump_hook(struct lwp *l, void *arg)
   1835 {
   1836 	int s;
   1837 
   1838 	/*
   1839 	 * Suspend ourselves, so that the kernel stack and therefore
   1840 	 * the userland registers saved in the trapframe are around
   1841 	 * for coredump() to write them out.
   1842 	 */
   1843 	KERNEL_PROC_LOCK(l);
   1844 	l->l_flag &= ~L_DETACHED;
   1845 	SCHED_LOCK(s);
   1846 	l->l_stat = LSSUSPENDED;
   1847 	l->l_proc->p_nrlwps--;
   1848 	/* XXX NJWLWP check if this makes sense here: */
   1849 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1850 	mi_switch(l, NULL);
   1851 	SCHED_ASSERT_UNLOCKED();
   1852 	splx(s);
   1853 
   1854 	lwp_exit(l);
   1855 }
   1856 
   1857 void
   1858 sigexit(struct lwp *l, int signum)
   1859 {
   1860 	struct proc	*p;
   1861 #if 0
   1862 	struct lwp	*l2;
   1863 #endif
   1864 	int		error, exitsig;
   1865 
   1866 	p = l->l_proc;
   1867 
   1868 	/*
   1869 	 * Don't permit coredump() or exit1() multiple times
   1870 	 * in the same process.
   1871 	 */
   1872 	if (p->p_flag & P_WEXIT) {
   1873 		KERNEL_PROC_UNLOCK(l);
   1874 		(*p->p_userret)(l, p->p_userret_arg);
   1875 	}
   1876 	p->p_flag |= P_WEXIT;
   1877 	/* We don't want to switch away from exiting. */
   1878 	/* XXX multiprocessor: stop LWPs on other processors. */
   1879 #if 0
   1880 	if (p->p_flag & P_SA) {
   1881 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1882 		    l2->l_flag &= ~L_SA;
   1883 		p->p_flag &= ~P_SA;
   1884 	}
   1885 #endif
   1886 
   1887 	/* Make other LWPs stick around long enough to be dumped */
   1888 	p->p_userret = lwp_coredump_hook;
   1889 	p->p_userret_arg = NULL;
   1890 
   1891 	exitsig = signum;
   1892 	p->p_acflag |= AXSIG;
   1893 	if (sigprop[signum] & SA_CORE) {
   1894 		p->p_sigctx.ps_signo = signum;
   1895 		if ((error = coredump(l)) == 0)
   1896 			exitsig |= WCOREFLAG;
   1897 
   1898 		if (kern_logsigexit) {
   1899 			/* XXX What if we ever have really large UIDs? */
   1900 			int uid = p->p_cred && p->p_ucred ?
   1901 				(int) p->p_ucred->cr_uid : -1;
   1902 
   1903 			if (error)
   1904 				log(LOG_INFO, lognocoredump, p->p_pid,
   1905 				    p->p_comm, uid, signum, error);
   1906 			else
   1907 				log(LOG_INFO, logcoredump, p->p_pid,
   1908 				    p->p_comm, uid, signum);
   1909 		}
   1910 
   1911 	}
   1912 
   1913 	exit1(l, W_EXITCODE(0, exitsig));
   1914 	/* NOTREACHED */
   1915 }
   1916 
   1917 /*
   1918  * Dump core, into a file named "progname.core" or "core" (depending on the
   1919  * value of shortcorename), unless the process was setuid/setgid.
   1920  */
   1921 int
   1922 coredump(struct lwp *l)
   1923 {
   1924 	struct vnode		*vp;
   1925 	struct proc		*p;
   1926 	struct vmspace		*vm;
   1927 	struct ucred		*cred;
   1928 	struct nameidata	nd;
   1929 	struct vattr		vattr;
   1930 	struct mount		*mp;
   1931 	int			error, error1;
   1932 	char			name[MAXPATHLEN];
   1933 
   1934 	p = l->l_proc;
   1935 	vm = p->p_vmspace;
   1936 	cred = p->p_cred->pc_ucred;
   1937 
   1938 	/*
   1939 	 * Make sure the process has not set-id, to prevent data leaks.
   1940 	 */
   1941 	if (p->p_flag & P_SUGID)
   1942 		return (EPERM);
   1943 
   1944 	/*
   1945 	 * Refuse to core if the data + stack + user size is larger than
   1946 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   1947 	 * data.
   1948 	 */
   1949 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   1950 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   1951 		return (EFBIG);		/* better error code? */
   1952 
   1953 restart:
   1954 	/*
   1955 	 * The core dump will go in the current working directory.  Make
   1956 	 * sure that the directory is still there and that the mount flags
   1957 	 * allow us to write core dumps there.
   1958 	 */
   1959 	vp = p->p_cwdi->cwdi_cdir;
   1960 	if (vp->v_mount == NULL ||
   1961 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   1962 		return (EPERM);
   1963 
   1964 	error = build_corename(p, name);
   1965 	if (error)
   1966 		return error;
   1967 
   1968 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   1969 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   1970 	if (error)
   1971 		return (error);
   1972 	vp = nd.ni_vp;
   1973 
   1974 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
   1975 		VOP_UNLOCK(vp, 0);
   1976 		if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
   1977 			return (error);
   1978 		if ((error = vn_start_write(NULL, &mp,
   1979 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
   1980 			return (error);
   1981 		goto restart;
   1982 	}
   1983 
   1984 	/* Don't dump to non-regular files or files with links. */
   1985 	if (vp->v_type != VREG ||
   1986 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   1987 		error = EINVAL;
   1988 		goto out;
   1989 	}
   1990 	VATTR_NULL(&vattr);
   1991 	vattr.va_size = 0;
   1992 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   1993 	VOP_SETATTR(vp, &vattr, cred, p);
   1994 	p->p_acflag |= ACORE;
   1995 
   1996 	/* Now dump the actual core file. */
   1997 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   1998  out:
   1999 	VOP_UNLOCK(vp, 0);
   2000 	vn_finished_write(mp, 0);
   2001 	error1 = vn_close(vp, FWRITE, cred, p);
   2002 	if (error == 0)
   2003 		error = error1;
   2004 	return (error);
   2005 }
   2006 
   2007 /*
   2008  * Nonexistent system call-- signal process (may want to handle it).
   2009  * Flag error in case process won't see signal immediately (blocked or ignored).
   2010  */
   2011 /* ARGSUSED */
   2012 int
   2013 sys_nosys(struct lwp *l, void *v, register_t *retval)
   2014 {
   2015 	struct proc 	*p;
   2016 
   2017 	p = l->l_proc;
   2018 	psignal(p, SIGSYS);
   2019 	return (ENOSYS);
   2020 }
   2021 
   2022 static int
   2023 build_corename(struct proc *p, char dst[MAXPATHLEN])
   2024 {
   2025 	const char	*s;
   2026 	char		*d, *end;
   2027 	int		i;
   2028 
   2029 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   2030 	    *s != '\0'; s++) {
   2031 		if (*s == '%') {
   2032 			switch (*(s + 1)) {
   2033 			case 'n':
   2034 				i = snprintf(d, end - d, "%s", p->p_comm);
   2035 				break;
   2036 			case 'p':
   2037 				i = snprintf(d, end - d, "%d", p->p_pid);
   2038 				break;
   2039 			case 'u':
   2040 				i = snprintf(d, end - d, "%.*s",
   2041 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2042 				    p->p_pgrp->pg_session->s_login);
   2043 				break;
   2044 			case 't':
   2045 				i = snprintf(d, end - d, "%ld",
   2046 				    p->p_stats->p_start.tv_sec);
   2047 				break;
   2048 			default:
   2049 				goto copy;
   2050 			}
   2051 			d += i;
   2052 			s++;
   2053 		} else {
   2054  copy:			*d = *s;
   2055 			d++;
   2056 		}
   2057 		if (d >= end)
   2058 			return (ENAMETOOLONG);
   2059 	}
   2060 	*d = '\0';
   2061 	return 0;
   2062 }
   2063 
   2064 void
   2065 getucontext(struct lwp *l, ucontext_t *ucp)
   2066 {
   2067 	struct proc	*p;
   2068 
   2069 	p = l->l_proc;
   2070 
   2071 	ucp->uc_flags = 0;
   2072 	ucp->uc_link = l->l_ctxlink;
   2073 
   2074 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2075 	ucp->uc_flags |= _UC_SIGMASK;
   2076 
   2077 	/*
   2078 	 * The (unsupplied) definition of the `current execution stack'
   2079 	 * in the System V Interface Definition appears to allow returning
   2080 	 * the main context stack.
   2081 	 */
   2082 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2083 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2084 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2085 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2086 	} else {
   2087 		/* Simply copy alternate signal execution stack. */
   2088 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2089 	}
   2090 	ucp->uc_flags |= _UC_STACK;
   2091 
   2092 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2093 }
   2094 
   2095 /* ARGSUSED */
   2096 int
   2097 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2098 {
   2099 	struct sys_getcontext_args /* {
   2100 		syscallarg(struct __ucontext *) ucp;
   2101 	} */ *uap = v;
   2102 	ucontext_t uc;
   2103 
   2104 	getucontext(l, &uc);
   2105 
   2106 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2107 }
   2108 
   2109 int
   2110 setucontext(struct lwp *l, const ucontext_t *ucp)
   2111 {
   2112 	struct proc	*p;
   2113 	int		error;
   2114 
   2115 	p = l->l_proc;
   2116 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2117 		return (error);
   2118 	l->l_ctxlink = ucp->uc_link;
   2119 	/*
   2120 	 * We might want to take care of the stack portion here but currently
   2121 	 * don't; see the comment in getucontext().
   2122 	 */
   2123 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2124 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2125 
   2126 	return 0;
   2127 }
   2128 
   2129 /* ARGSUSED */
   2130 int
   2131 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2132 {
   2133 	struct sys_setcontext_args /* {
   2134 		syscallarg(const ucontext_t *) ucp;
   2135 	} */ *uap = v;
   2136 	ucontext_t uc;
   2137 	int error;
   2138 
   2139 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2140 		exit1(l, W_EXITCODE(0, 0));
   2141 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2142 	    (error = setucontext(l, &uc)) != 0)
   2143 		return (error);
   2144 
   2145 	return (EJUSTRETURN);
   2146 }
   2147 
   2148 /*
   2149  * sigtimedwait(2) system call, used also for implementation
   2150  * of sigwaitinfo() and sigwait().
   2151  *
   2152  * This only handles single LWP in signal wait. libpthread provides
   2153  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2154  *
   2155  * XXX no support for queued signals, si_code is always SI_USER.
   2156  */
   2157 int
   2158 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2159 {
   2160 	struct sys___sigtimedwait_args /* {
   2161 		syscallarg(const sigset_t *) set;
   2162 		syscallarg(siginfo_t *) info;
   2163 		syscallarg(struct timespec *) timeout;
   2164 	} */ *uap = v;
   2165 	sigset_t waitset, twaitset;
   2166 	struct proc *p = l->l_proc;
   2167 	int error, signum, s;
   2168 	int timo = 0;
   2169 	struct timeval tvstart;
   2170 	struct timespec ts;
   2171 	ksiginfo_t *ksi;
   2172 
   2173 	if ((error = copyin(SCARG(uap, set), &waitset, sizeof(waitset))))
   2174 		return (error);
   2175 
   2176 	/*
   2177 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2178 	 * ignore SA_CANTMASK signals in waitset, we do this
   2179 	 * only for the below siglist check.
   2180 	 */
   2181 	sigminusset(&sigcantmask, &waitset);
   2182 
   2183 	/*
   2184 	 * First scan siglist and check if there is signal from
   2185 	 * our waitset already pending.
   2186 	 */
   2187 	twaitset = waitset;
   2188 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2189 	if ((signum = firstsig(&twaitset))) {
   2190 		/* found pending signal */
   2191 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2192 		ksi = ksiginfo_get(p, signum);
   2193 		if (!ksi) {
   2194 			/* No queued siginfo, manufacture one */
   2195 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2196 			KSI_INIT(ksi);
   2197 			ksi->ksi_info._signo = signum;
   2198 			ksi->ksi_info._code = SI_USER;
   2199 		}
   2200 
   2201 		goto sig;
   2202 	}
   2203 
   2204 	/*
   2205 	 * Calculate timeout, if it was specified.
   2206 	 */
   2207 	if (SCARG(uap, timeout)) {
   2208 		uint64_t ms;
   2209 
   2210 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   2211 			return (error);
   2212 
   2213 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2214 		timo = mstohz(ms);
   2215 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2216 			timo = 1;
   2217 		if (timo <= 0)
   2218 			return (EAGAIN);
   2219 
   2220 		/*
   2221 		 * Remember current mono_time, it would be used in
   2222 		 * ECANCELED/ERESTART case.
   2223 		 */
   2224 		s = splclock();
   2225 		tvstart = mono_time;
   2226 		splx(s);
   2227 	}
   2228 
   2229 	/*
   2230 	 * Setup ps_sigwait list.
   2231 	 */
   2232 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2233 	p->p_sigctx.ps_sigwaited = ksi;
   2234 	p->p_sigctx.ps_sigwait = &waitset;
   2235 
   2236 	/*
   2237 	 * Wait for signal to arrive. We can either be woken up or
   2238 	 * time out.
   2239 	 */
   2240 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2241 
   2242 	/*
   2243 	 * Need to find out if we woke as a result of lwp_wakeup()
   2244 	 * or a signal outside our wait set.
   2245 	 */
   2246 	if (error == EINTR && p->p_sigctx.ps_sigwaited
   2247 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
   2248 		/* wakeup via _lwp_wakeup() */
   2249 		error = ECANCELED;
   2250 	} else if (!error && p->p_sigctx.ps_sigwaited) {
   2251 		/* spurious wakeup - arrange for syscall restart */
   2252 		error = ERESTART;
   2253 		goto fail;
   2254 	}
   2255 
   2256 	/*
   2257 	 * On error, clear sigwait indication. psignal1() clears it
   2258 	 * in !error case.
   2259 	 */
   2260 	if (error) {
   2261 		p->p_sigctx.ps_sigwaited = NULL;
   2262 
   2263 		/*
   2264 		 * If the sleep was interrupted (either by signal or wakeup),
   2265 		 * update the timeout and copyout new value back.
   2266 		 * It would be used when the syscall would be restarted
   2267 		 * or called again.
   2268 		 */
   2269 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2270 			struct timeval tvnow, tvtimo;
   2271 			int err;
   2272 
   2273 			s = splclock();
   2274 			tvnow = mono_time;
   2275 			splx(s);
   2276 
   2277 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2278 
   2279 			/* compute how much time has passed since start */
   2280 			timersub(&tvnow, &tvstart, &tvnow);
   2281 			/* substract passed time from timeout */
   2282 			timersub(&tvtimo, &tvnow, &tvtimo);
   2283 
   2284 			if (tvtimo.tv_sec < 0) {
   2285 				error = EAGAIN;
   2286 				goto fail;
   2287 			}
   2288 
   2289 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2290 
   2291 			/* copy updated timeout to userland */
   2292 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
   2293 				error = err;
   2294 				goto fail;
   2295 			}
   2296 		}
   2297 
   2298 		goto fail;
   2299 	}
   2300 
   2301 	/*
   2302 	 * If a signal from the wait set arrived, copy it to userland.
   2303 	 * Copy only the used part of siginfo, the padding part is
   2304 	 * left unchanged (userland is not supposed to touch it anyway).
   2305 	 */
   2306  sig:
   2307 	error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
   2308 
   2309  fail:
   2310 	pool_put(&ksiginfo_pool, ksi);
   2311 	p->p_sigctx.ps_sigwait = NULL;
   2312 
   2313 	return (error);
   2314 }
   2315 
   2316 /*
   2317  * Returns true if signal is ignored or masked for passed process.
   2318  */
   2319 int
   2320 sigismasked(struct proc *p, int sig)
   2321 {
   2322 
   2323 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2324 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2325 }
   2326 
   2327 static int
   2328 filt_sigattach(struct knote *kn)
   2329 {
   2330 	struct proc *p = curproc;
   2331 
   2332 	kn->kn_ptr.p_proc = p;
   2333 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2334 
   2335 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2336 
   2337 	return (0);
   2338 }
   2339 
   2340 static void
   2341 filt_sigdetach(struct knote *kn)
   2342 {
   2343 	struct proc *p = kn->kn_ptr.p_proc;
   2344 
   2345 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2346 }
   2347 
   2348 /*
   2349  * signal knotes are shared with proc knotes, so we apply a mask to
   2350  * the hint in order to differentiate them from process hints.  This
   2351  * could be avoided by using a signal-specific knote list, but probably
   2352  * isn't worth the trouble.
   2353  */
   2354 static int
   2355 filt_signal(struct knote *kn, long hint)
   2356 {
   2357 
   2358 	if (hint & NOTE_SIGNAL) {
   2359 		hint &= ~NOTE_SIGNAL;
   2360 
   2361 		if (kn->kn_id == hint)
   2362 			kn->kn_data++;
   2363 	}
   2364 	return (kn->kn_data != 0);
   2365 }
   2366 
   2367 const struct filterops sig_filtops = {
   2368 	0, filt_sigattach, filt_sigdetach, filt_signal
   2369 };
   2370