kern_sig.c revision 1.183 1 /* $NetBSD: kern_sig.c,v 1.183 2003/12/20 19:01:30 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.183 2003/12/20 19:01:30 fvdl Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm_extern.h>
82
83 static void child_psignal(struct proc *, int);
84 static int build_corename(struct proc *, char [MAXPATHLEN]);
85 static void ksiginfo_exithook(struct proc *, void *);
86 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
87 static ksiginfo_t *ksiginfo_get(struct proc *, int);
88 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
89
90 sigset_t contsigmask, stopsigmask, sigcantmask;
91
92 struct pool sigacts_pool; /* memory pool for sigacts structures */
93 struct pool siginfo_pool; /* memory pool for siginfo structures */
94 struct pool ksiginfo_pool; /* memory pool for ksiginfo structures */
95
96 /*
97 * Can process p, with pcred pc, send the signal signum to process q?
98 */
99 #define CANSIGNAL(p, pc, q, signum) \
100 ((pc)->pc_ucred->cr_uid == 0 || \
101 (pc)->p_ruid == (q)->p_cred->p_ruid || \
102 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
103 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
104 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
105 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
106
107 /*
108 * Remove and return the first ksiginfo element that matches our requested
109 * signal, or return NULL if one not found.
110 */
111 static ksiginfo_t *
112 ksiginfo_get(struct proc *p, int signo)
113 {
114 ksiginfo_t *ksi;
115 int s;
116
117 s = splsoftclock();
118 simple_lock(&p->p_sigctx.ps_silock);
119 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
120 if (ksi->ksi_signo == signo) {
121 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
122 goto out;
123 }
124 }
125 ksi = NULL;
126 out:
127 simple_unlock(&p->p_sigctx.ps_silock);
128 splx(s);
129 return ksi;
130 }
131
132 /*
133 * Append a new ksiginfo element to the list of pending ksiginfo's, if
134 * we need to (SA_SIGINFO was requested). We replace non RT signals if
135 * they already existed in the queue and we add new entries for RT signals,
136 * or for non RT signals with non-existing entries.
137 */
138 static void
139 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
140 {
141 ksiginfo_t *kp;
142 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
143 int s;
144
145 if ((sa->sa_flags & SA_SIGINFO) == 0)
146 return;
147
148 s = splsoftclock();
149 simple_lock(&p->p_sigctx.ps_silock);
150 #ifdef notyet /* XXX: QUEUING */
151 if (ksi->ksi_signo < SIGRTMIN)
152 #endif
153 {
154 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
155 if (kp->ksi_signo == ksi->ksi_signo) {
156 KSI_COPY(ksi, kp);
157 goto out;
158 }
159 }
160 }
161 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
162 if (kp == NULL) {
163 #ifdef DIAGNOSTIC
164 printf("Out of memory allocating siginfo for pid %d\n",
165 p->p_pid);
166 #endif
167 goto out;
168 }
169 *kp = *ksi;
170 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
171 out:
172 simple_unlock(&p->p_sigctx.ps_silock);
173 splx(s);
174 }
175
176 /*
177 * free all pending ksiginfo on exit
178 */
179 static void
180 ksiginfo_exithook(struct proc *p, void *v)
181 {
182 int s;
183
184 s = splsoftclock();
185 simple_lock(&p->p_sigctx.ps_silock);
186 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
187 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
188 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
189 pool_put(&ksiginfo_pool, ksi);
190 }
191 simple_unlock(&p->p_sigctx.ps_silock);
192 splx(s);
193 }
194
195 /*
196 * Initialize signal-related data structures.
197 */
198 void
199 signal_init(void)
200 {
201 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
202 &pool_allocator_nointr);
203 pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
204 &pool_allocator_nointr);
205 pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
206 NULL);
207 exithook_establish(ksiginfo_exithook, NULL);
208 exechook_establish(ksiginfo_exithook, NULL);
209 }
210
211 /*
212 * Create an initial sigctx structure, using the same signal state
213 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
214 * copy it from parent.
215 */
216 void
217 sigactsinit(struct proc *np, struct proc *pp, int share)
218 {
219 struct sigacts *ps;
220
221 if (share) {
222 np->p_sigacts = pp->p_sigacts;
223 pp->p_sigacts->sa_refcnt++;
224 } else {
225 ps = pool_get(&sigacts_pool, PR_WAITOK);
226 if (pp)
227 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
228 else
229 memset(ps, '\0', sizeof(struct sigacts));
230 ps->sa_refcnt = 1;
231 np->p_sigacts = ps;
232 }
233 }
234
235 /*
236 * Make this process not share its sigctx, maintaining all
237 * signal state.
238 */
239 void
240 sigactsunshare(struct proc *p)
241 {
242 struct sigacts *oldps;
243
244 if (p->p_sigacts->sa_refcnt == 1)
245 return;
246
247 oldps = p->p_sigacts;
248 sigactsinit(p, NULL, 0);
249
250 if (--oldps->sa_refcnt == 0)
251 pool_put(&sigacts_pool, oldps);
252 }
253
254 /*
255 * Release a sigctx structure.
256 */
257 void
258 sigactsfree(struct proc *p)
259 {
260 struct sigacts *ps;
261
262 ps = p->p_sigacts;
263 if (--ps->sa_refcnt > 0)
264 return;
265
266 pool_put(&sigacts_pool, ps);
267 }
268
269 int
270 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
271 struct sigaction *osa, const void *tramp, int vers)
272 {
273 struct sigacts *ps;
274 int prop;
275
276 ps = p->p_sigacts;
277 if (signum <= 0 || signum >= NSIG)
278 return (EINVAL);
279
280 /*
281 * Trampoline ABI version 0 is reserved for the legacy
282 * kernel-provided on-stack trampoline. Conversely, if we are
283 * using a non-0 ABI version, we must have a trampoline. Only
284 * validate the vers if a new sigaction was supplied. Emulations
285 * use legacy kernel trampolines with version 0, alternatively
286 * check for that too.
287 */
288 if ((vers != 0 && tramp == NULL) ||
289 #ifdef SIGTRAMP_VALID
290 (nsa != NULL &&
291 ((vers == 0) ?
292 (p->p_emul->e_sigcode == NULL) :
293 !SIGTRAMP_VALID(vers))) ||
294 #endif
295 (vers == 0 && tramp != NULL))
296 return (EINVAL);
297
298 if (osa)
299 *osa = SIGACTION_PS(ps, signum);
300
301 if (nsa) {
302 if (nsa->sa_flags & ~SA_ALLBITS)
303 return (EINVAL);
304
305 #ifndef __HAVE_SIGINFO
306 if (nsa->sa_flags & SA_SIGINFO)
307 return (EINVAL);
308 #endif
309
310 prop = sigprop[signum];
311 if (prop & SA_CANTMASK)
312 return (EINVAL);
313
314 (void) splsched(); /* XXXSMP */
315 SIGACTION_PS(ps, signum) = *nsa;
316 ps->sa_sigdesc[signum].sd_tramp = tramp;
317 ps->sa_sigdesc[signum].sd_vers = vers;
318 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
319 if ((prop & SA_NORESET) != 0)
320 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
321 if (signum == SIGCHLD) {
322 if (nsa->sa_flags & SA_NOCLDSTOP)
323 p->p_flag |= P_NOCLDSTOP;
324 else
325 p->p_flag &= ~P_NOCLDSTOP;
326 if (nsa->sa_flags & SA_NOCLDWAIT) {
327 /*
328 * Paranoia: since SA_NOCLDWAIT is implemented
329 * by reparenting the dying child to PID 1 (and
330 * trust it to reap the zombie), PID 1 itself
331 * is forbidden to set SA_NOCLDWAIT.
332 */
333 if (p->p_pid == 1)
334 p->p_flag &= ~P_NOCLDWAIT;
335 else
336 p->p_flag |= P_NOCLDWAIT;
337 } else
338 p->p_flag &= ~P_NOCLDWAIT;
339 }
340 if ((nsa->sa_flags & SA_NODEFER) == 0)
341 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
342 else
343 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
344 /*
345 * Set bit in p_sigctx.ps_sigignore for signals that are set to
346 * SIG_IGN, and for signals set to SIG_DFL where the default is
347 * to ignore. However, don't put SIGCONT in
348 * p_sigctx.ps_sigignore, as we have to restart the process.
349 */
350 if (nsa->sa_handler == SIG_IGN ||
351 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
352 /* never to be seen again */
353 sigdelset(&p->p_sigctx.ps_siglist, signum);
354 if (signum != SIGCONT) {
355 /* easier in psignal */
356 sigaddset(&p->p_sigctx.ps_sigignore, signum);
357 }
358 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
359 } else {
360 sigdelset(&p->p_sigctx.ps_sigignore, signum);
361 if (nsa->sa_handler == SIG_DFL)
362 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
363 else
364 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
365 }
366 (void) spl0();
367 }
368
369 return (0);
370 }
371
372 #ifdef COMPAT_16
373 /* ARGSUSED */
374 int
375 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
376 {
377 struct compat_16_sys___sigaction14_args /* {
378 syscallarg(int) signum;
379 syscallarg(const struct sigaction *) nsa;
380 syscallarg(struct sigaction *) osa;
381 } */ *uap = v;
382 struct proc *p;
383 struct sigaction nsa, osa;
384 int error;
385
386 if (SCARG(uap, nsa)) {
387 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
388 if (error)
389 return (error);
390 }
391 p = l->l_proc;
392 error = sigaction1(p, SCARG(uap, signum),
393 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
394 NULL, 0);
395 if (error)
396 return (error);
397 if (SCARG(uap, osa)) {
398 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
399 if (error)
400 return (error);
401 }
402 return (0);
403 }
404 #endif
405
406 /* ARGSUSED */
407 int
408 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
409 {
410 struct sys___sigaction_sigtramp_args /* {
411 syscallarg(int) signum;
412 syscallarg(const struct sigaction *) nsa;
413 syscallarg(struct sigaction *) osa;
414 syscallarg(void *) tramp;
415 syscallarg(int) vers;
416 } */ *uap = v;
417 struct proc *p = l->l_proc;
418 struct sigaction nsa, osa;
419 int error;
420
421 if (SCARG(uap, nsa)) {
422 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
423 if (error)
424 return (error);
425 }
426 error = sigaction1(p, SCARG(uap, signum),
427 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
428 SCARG(uap, tramp), SCARG(uap, vers));
429 if (error)
430 return (error);
431 if (SCARG(uap, osa)) {
432 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
433 if (error)
434 return (error);
435 }
436 return (0);
437 }
438
439 /*
440 * Initialize signal state for process 0;
441 * set to ignore signals that are ignored by default and disable the signal
442 * stack.
443 */
444 void
445 siginit(struct proc *p)
446 {
447 struct sigacts *ps;
448 int signum, prop;
449
450 ps = p->p_sigacts;
451 sigemptyset(&contsigmask);
452 sigemptyset(&stopsigmask);
453 sigemptyset(&sigcantmask);
454 for (signum = 1; signum < NSIG; signum++) {
455 prop = sigprop[signum];
456 if (prop & SA_CONT)
457 sigaddset(&contsigmask, signum);
458 if (prop & SA_STOP)
459 sigaddset(&stopsigmask, signum);
460 if (prop & SA_CANTMASK)
461 sigaddset(&sigcantmask, signum);
462 if (prop & SA_IGNORE && signum != SIGCONT)
463 sigaddset(&p->p_sigctx.ps_sigignore, signum);
464 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
465 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
466 }
467 sigemptyset(&p->p_sigctx.ps_sigcatch);
468 p->p_sigctx.ps_sigwaited = NULL;
469 p->p_flag &= ~P_NOCLDSTOP;
470
471 /*
472 * Reset stack state to the user stack.
473 */
474 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
475 p->p_sigctx.ps_sigstk.ss_size = 0;
476 p->p_sigctx.ps_sigstk.ss_sp = 0;
477
478 /* One reference. */
479 ps->sa_refcnt = 1;
480 }
481
482 /*
483 * Reset signals for an exec of the specified process.
484 */
485 void
486 execsigs(struct proc *p)
487 {
488 struct sigacts *ps;
489 int signum, prop;
490
491 sigactsunshare(p);
492
493 ps = p->p_sigacts;
494
495 /*
496 * Reset caught signals. Held signals remain held
497 * through p_sigctx.ps_sigmask (unless they were caught,
498 * and are now ignored by default).
499 */
500 for (signum = 1; signum < NSIG; signum++) {
501 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
502 prop = sigprop[signum];
503 if (prop & SA_IGNORE) {
504 if ((prop & SA_CONT) == 0)
505 sigaddset(&p->p_sigctx.ps_sigignore,
506 signum);
507 sigdelset(&p->p_sigctx.ps_siglist, signum);
508 }
509 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
510 }
511 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
512 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
513 }
514 sigemptyset(&p->p_sigctx.ps_sigcatch);
515 p->p_sigctx.ps_sigwaited = NULL;
516 p->p_flag &= ~P_NOCLDSTOP;
517
518 /*
519 * Reset stack state to the user stack.
520 */
521 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
522 p->p_sigctx.ps_sigstk.ss_size = 0;
523 p->p_sigctx.ps_sigstk.ss_sp = 0;
524 }
525
526 int
527 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
528 {
529
530 if (oss)
531 *oss = p->p_sigctx.ps_sigmask;
532
533 if (nss) {
534 (void)splsched(); /* XXXSMP */
535 switch (how) {
536 case SIG_BLOCK:
537 sigplusset(nss, &p->p_sigctx.ps_sigmask);
538 break;
539 case SIG_UNBLOCK:
540 sigminusset(nss, &p->p_sigctx.ps_sigmask);
541 CHECKSIGS(p);
542 break;
543 case SIG_SETMASK:
544 p->p_sigctx.ps_sigmask = *nss;
545 CHECKSIGS(p);
546 break;
547 default:
548 (void)spl0(); /* XXXSMP */
549 return (EINVAL);
550 }
551 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
552 (void)spl0(); /* XXXSMP */
553 }
554
555 return (0);
556 }
557
558 /*
559 * Manipulate signal mask.
560 * Note that we receive new mask, not pointer,
561 * and return old mask as return value;
562 * the library stub does the rest.
563 */
564 int
565 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
566 {
567 struct sys___sigprocmask14_args /* {
568 syscallarg(int) how;
569 syscallarg(const sigset_t *) set;
570 syscallarg(sigset_t *) oset;
571 } */ *uap = v;
572 struct proc *p;
573 sigset_t nss, oss;
574 int error;
575
576 if (SCARG(uap, set)) {
577 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
578 if (error)
579 return (error);
580 }
581 p = l->l_proc;
582 error = sigprocmask1(p, SCARG(uap, how),
583 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
584 if (error)
585 return (error);
586 if (SCARG(uap, oset)) {
587 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
588 if (error)
589 return (error);
590 }
591 return (0);
592 }
593
594 void
595 sigpending1(struct proc *p, sigset_t *ss)
596 {
597
598 *ss = p->p_sigctx.ps_siglist;
599 sigminusset(&p->p_sigctx.ps_sigmask, ss);
600 }
601
602 /* ARGSUSED */
603 int
604 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
605 {
606 struct sys___sigpending14_args /* {
607 syscallarg(sigset_t *) set;
608 } */ *uap = v;
609 struct proc *p;
610 sigset_t ss;
611
612 p = l->l_proc;
613 sigpending1(p, &ss);
614 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
615 }
616
617 int
618 sigsuspend1(struct proc *p, const sigset_t *ss)
619 {
620 struct sigacts *ps;
621
622 ps = p->p_sigacts;
623 if (ss) {
624 /*
625 * When returning from sigpause, we want
626 * the old mask to be restored after the
627 * signal handler has finished. Thus, we
628 * save it here and mark the sigctx structure
629 * to indicate this.
630 */
631 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
632 p->p_sigctx.ps_flags |= SAS_OLDMASK;
633 (void) splsched(); /* XXXSMP */
634 p->p_sigctx.ps_sigmask = *ss;
635 CHECKSIGS(p);
636 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
637 (void) spl0(); /* XXXSMP */
638 }
639
640 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
641 /* void */;
642
643 /* always return EINTR rather than ERESTART... */
644 return (EINTR);
645 }
646
647 /*
648 * Suspend process until signal, providing mask to be set
649 * in the meantime. Note nonstandard calling convention:
650 * libc stub passes mask, not pointer, to save a copyin.
651 */
652 /* ARGSUSED */
653 int
654 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
655 {
656 struct sys___sigsuspend14_args /* {
657 syscallarg(const sigset_t *) set;
658 } */ *uap = v;
659 struct proc *p;
660 sigset_t ss;
661 int error;
662
663 if (SCARG(uap, set)) {
664 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
665 if (error)
666 return (error);
667 }
668
669 p = l->l_proc;
670 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
671 }
672
673 int
674 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
675 struct sigaltstack *oss)
676 {
677
678 if (oss)
679 *oss = p->p_sigctx.ps_sigstk;
680
681 if (nss) {
682 if (nss->ss_flags & ~SS_ALLBITS)
683 return (EINVAL);
684
685 if (nss->ss_flags & SS_DISABLE) {
686 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
687 return (EINVAL);
688 } else {
689 if (nss->ss_size < MINSIGSTKSZ)
690 return (ENOMEM);
691 }
692 p->p_sigctx.ps_sigstk = *nss;
693 }
694
695 return (0);
696 }
697
698 /* ARGSUSED */
699 int
700 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
701 {
702 struct sys___sigaltstack14_args /* {
703 syscallarg(const struct sigaltstack *) nss;
704 syscallarg(struct sigaltstack *) oss;
705 } */ *uap = v;
706 struct proc *p;
707 struct sigaltstack nss, oss;
708 int error;
709
710 if (SCARG(uap, nss)) {
711 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
712 if (error)
713 return (error);
714 }
715 p = l->l_proc;
716 error = sigaltstack1(p,
717 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
718 if (error)
719 return (error);
720 if (SCARG(uap, oss)) {
721 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
722 if (error)
723 return (error);
724 }
725 return (0);
726 }
727
728 /* ARGSUSED */
729 int
730 sys_kill(struct lwp *l, void *v, register_t *retval)
731 {
732 struct sys_kill_args /* {
733 syscallarg(int) pid;
734 syscallarg(int) signum;
735 } */ *uap = v;
736 struct proc *cp, *p;
737 struct pcred *pc;
738 ksiginfo_t ksi;
739
740 cp = l->l_proc;
741 pc = cp->p_cred;
742 if ((u_int)SCARG(uap, signum) >= NSIG)
743 return (EINVAL);
744 memset(&ksi, 0, sizeof(ksi));
745 ksi.ksi_signo = SCARG(uap, signum);
746 ksi.ksi_code = SI_USER;
747 ksi.ksi_pid = cp->p_pid;
748 ksi.ksi_uid = cp->p_ucred->cr_uid;
749 if (SCARG(uap, pid) > 0) {
750 /* kill single process */
751 if ((p = pfind(SCARG(uap, pid))) == NULL)
752 return (ESRCH);
753 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
754 return (EPERM);
755 if (SCARG(uap, signum))
756 kpsignal2(p, &ksi, 1);
757 return (0);
758 }
759 switch (SCARG(uap, pid)) {
760 case -1: /* broadcast signal */
761 return (killpg1(cp, &ksi, 0, 1));
762 case 0: /* signal own process group */
763 return (killpg1(cp, &ksi, 0, 0));
764 default: /* negative explicit process group */
765 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
766 }
767 /* NOTREACHED */
768 }
769
770 /*
771 * Common code for kill process group/broadcast kill.
772 * cp is calling process.
773 */
774 int
775 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
776 {
777 struct proc *p;
778 struct pcred *pc;
779 struct pgrp *pgrp;
780 int nfound;
781 int signum = ksi->ksi_signo;
782
783 pc = cp->p_cred;
784 nfound = 0;
785 if (all) {
786 /*
787 * broadcast
788 */
789 proclist_lock_read();
790 LIST_FOREACH(p, &allproc, p_list) {
791 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
792 p == cp || !CANSIGNAL(cp, pc, p, signum))
793 continue;
794 nfound++;
795 if (signum)
796 kpsignal2(p, ksi, 1);
797 }
798 proclist_unlock_read();
799 } else {
800 if (pgid == 0)
801 /*
802 * zero pgid means send to my process group.
803 */
804 pgrp = cp->p_pgrp;
805 else {
806 pgrp = pgfind(pgid);
807 if (pgrp == NULL)
808 return (ESRCH);
809 }
810 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
811 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
812 !CANSIGNAL(cp, pc, p, signum))
813 continue;
814 nfound++;
815 if (signum && P_ZOMBIE(p) == 0)
816 kpsignal2(p, ksi, 1);
817 }
818 }
819 return (nfound ? 0 : ESRCH);
820 }
821
822 /*
823 * Send a signal to a process group.
824 */
825 void
826 gsignal(int pgid, int signum)
827 {
828 ksiginfo_t ksi;
829 memset(&ksi, 0, sizeof(ksi));
830 ksi.ksi_signo = signum;
831 kgsignal(pgid, &ksi, NULL);
832 }
833
834 void
835 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
836 {
837 struct pgrp *pgrp;
838
839 if (pgid && (pgrp = pgfind(pgid)))
840 kpgsignal(pgrp, ksi, data, 0);
841 }
842
843 /*
844 * Send a signal to a process group. If checktty is 1,
845 * limit to members which have a controlling terminal.
846 */
847 void
848 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
849 {
850 ksiginfo_t ksi;
851 memset(&ksi, 0, sizeof(ksi));
852 ksi.ksi_signo = sig;
853 kpgsignal(pgrp, &ksi, NULL, checkctty);
854 }
855
856 void
857 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
858 {
859 struct proc *p;
860
861 if (pgrp)
862 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
863 if (checkctty == 0 || p->p_flag & P_CONTROLT)
864 kpsignal(p, ksi, data);
865 }
866
867 /*
868 * Send a signal caused by a trap to the current process.
869 * If it will be caught immediately, deliver it with correct code.
870 * Otherwise, post it normally.
871 */
872 #ifndef __HAVE_SIGINFO
873 void _trapsignal(struct lwp *, const ksiginfo_t *);
874 void
875 trapsignal(struct lwp *l, int signum, u_long code)
876 {
877 #define trapsignal _trapsignal
878 ksiginfo_t ksi;
879
880 KSI_INIT_TRAP(&ksi);
881 ksi.ksi_signo = signum;
882 ksi.ksi_trap = (int)code;
883 trapsignal(l, &ksi);
884 }
885 #endif
886
887 void
888 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
889 {
890 struct proc *p;
891 struct sigacts *ps;
892 int signum = ksi->ksi_signo;
893
894 KASSERT(KSI_TRAP_P(ksi));
895
896 p = l->l_proc;
897 ps = p->p_sigacts;
898 if ((p->p_flag & P_TRACED) == 0 &&
899 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
900 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
901 p->p_stats->p_ru.ru_nsignals++;
902 #ifdef KTRACE
903 if (KTRPOINT(p, KTR_PSIG))
904 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
905 &p->p_sigctx.ps_sigmask, ksi);
906 #endif
907 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
908 (void) splsched(); /* XXXSMP */
909 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
910 &p->p_sigctx.ps_sigmask);
911 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
912 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
913 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
914 sigaddset(&p->p_sigctx.ps_sigignore, signum);
915 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
916 }
917 (void) spl0(); /* XXXSMP */
918 } else {
919 p->p_sigctx.ps_lwp = l->l_lid;
920 /* XXX for core dump/debugger */
921 p->p_sigctx.ps_signo = ksi->ksi_signo;
922 p->p_sigctx.ps_code = ksi->ksi_trap;
923 kpsignal2(p, ksi, 1);
924 }
925 }
926
927 /*
928 * Fill in signal information and signal the parent for a child status change.
929 */
930 static void
931 child_psignal(struct proc *p, int dolock)
932 {
933 ksiginfo_t ksi;
934
935 (void)memset(&ksi, 0, sizeof(ksi));
936 ksi.ksi_signo = SIGCHLD;
937 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
938 ksi.ksi_pid = p->p_pid;
939 ksi.ksi_uid = p->p_ucred->cr_uid;
940 ksi.ksi_status = p->p_xstat;
941 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
942 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
943 kpsignal2(p->p_pptr, &ksi, dolock);
944 }
945
946 /*
947 * Send the signal to the process. If the signal has an action, the action
948 * is usually performed by the target process rather than the caller; we add
949 * the signal to the set of pending signals for the process.
950 *
951 * Exceptions:
952 * o When a stop signal is sent to a sleeping process that takes the
953 * default action, the process is stopped without awakening it.
954 * o SIGCONT restarts stopped processes (or puts them back to sleep)
955 * regardless of the signal action (eg, blocked or ignored).
956 *
957 * Other ignored signals are discarded immediately.
958 *
959 * XXXSMP: Invoked as psignal() or sched_psignal().
960 */
961 void
962 psignal1(struct proc *p, int signum, int dolock)
963 {
964 ksiginfo_t ksi;
965
966 memset(&ksi, 0, sizeof(ksi));
967 ksi.ksi_signo = signum;
968 kpsignal2(p, &ksi, dolock);
969 }
970
971 void
972 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
973 {
974
975 if ((p->p_flag & P_WEXIT) == 0 && data) {
976 size_t fd;
977 struct filedesc *fdp = p->p_fd;
978
979 ksi->ksi_fd = -1;
980 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
981 struct file *fp = fdp->fd_ofiles[fd];
982 /* XXX: lock? */
983 if (fp && fp->f_data == data) {
984 ksi->ksi_fd = fd;
985 break;
986 }
987 }
988 }
989 kpsignal2(p, ksi, dolock);
990 }
991
992 static void
993 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
994 {
995 struct lwp *l, *suspended = NULL;
996 int s = 0, prop, allsusp;
997 sig_t action;
998 int signum = ksi->ksi_signo;
999
1000 #ifdef DIAGNOSTIC
1001 if (signum <= 0 || signum >= NSIG)
1002 panic("psignal signal number %d", signum);
1003
1004 /* XXXSMP: works, but icky */
1005 if (dolock)
1006 SCHED_ASSERT_UNLOCKED();
1007 else
1008 SCHED_ASSERT_LOCKED();
1009 #endif
1010
1011 /*
1012 * Allow emulation-specific signal filtering
1013 */
1014 if ((p->p_emul->e_sigfilter != NULL) &&
1015 ((*p->p_emul->e_sigfilter)(proc_representative_lwp(p), ksi) == 0))
1016 return;
1017
1018 /*
1019 * Notify any interested parties in the signal.
1020 */
1021 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1022
1023 prop = sigprop[signum];
1024
1025 /*
1026 * If proc is traced, always give parent a chance.
1027 */
1028 if (p->p_flag & P_TRACED)
1029 action = SIG_DFL;
1030 else {
1031 /*
1032 * If the signal is being ignored,
1033 * then we forget about it immediately.
1034 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1035 * and if it is set to SIG_IGN,
1036 * action will be SIG_DFL here.)
1037 */
1038 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1039 return;
1040 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1041 action = SIG_HOLD;
1042 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1043 action = SIG_CATCH;
1044 else {
1045 action = SIG_DFL;
1046
1047 if (prop & SA_KILL && p->p_nice > NZERO)
1048 p->p_nice = NZERO;
1049
1050 /*
1051 * If sending a tty stop signal to a member of an
1052 * orphaned process group, discard the signal here if
1053 * the action is default; don't stop the process below
1054 * if sleeping, and don't clear any pending SIGCONT.
1055 */
1056 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1057 return;
1058 }
1059 }
1060
1061 if (prop & SA_CONT)
1062 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1063
1064 if (prop & SA_STOP)
1065 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1066
1067 /*
1068 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1069 * please!), check if anything waits on it. If yes, save the
1070 * info into provided ps_sigwaited, and wake-up the waiter.
1071 * The signal won't be processed further here.
1072 */
1073 if ((prop & SA_CANTMASK) == 0
1074 && p->p_sigctx.ps_sigwaited
1075 && sigismember(p->p_sigctx.ps_sigwait, signum)
1076 && p->p_stat != SSTOP) {
1077 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1078 p->p_sigctx.ps_sigwaited = NULL;
1079 if (dolock)
1080 wakeup_one(&p->p_sigctx.ps_sigwait);
1081 else
1082 sched_wakeup(&p->p_sigctx.ps_sigwait);
1083 return;
1084 }
1085
1086 sigaddset(&p->p_sigctx.ps_siglist, signum);
1087
1088 /* CHECKSIGS() is "inlined" here. */
1089 p->p_sigctx.ps_sigcheck = 1;
1090
1091 /*
1092 * Defer further processing for signals which are held,
1093 * except that stopped processes must be continued by SIGCONT.
1094 */
1095 if (action == SIG_HOLD &&
1096 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1097 ksiginfo_put(p, ksi);
1098 return;
1099 }
1100 /* XXXSMP: works, but icky */
1101 if (dolock)
1102 SCHED_LOCK(s);
1103
1104 if (p->p_flag & P_SA) {
1105 l = p->p_sa->sa_vp;
1106 allsusp = 0;
1107 if (p->p_stat == SACTIVE) {
1108 KDASSERT(l != NULL);
1109 if (l->l_flag & L_SA_IDLE) {
1110 /* wakeup idle LWP */
1111 } else if (l->l_flag & L_SA_YIELD) {
1112 /* idle LWP is already waking up */
1113 goto out;
1114 /*NOTREACHED*/
1115 } else {
1116 if (l->l_stat == LSRUN ||
1117 l->l_stat == LSONPROC) {
1118 signotify(p);
1119 goto out;
1120 /*NOTREACHED*/
1121 }
1122 if (l->l_stat == LSSLEEP &&
1123 l->l_flag & L_SINTR) {
1124 /* ok to signal vp lwp */
1125 } else if (signum == SIGKILL) {
1126 /*
1127 * get a suspended lwp from
1128 * the cache to send KILL
1129 * signal
1130 * XXXcl add signal checks at resume points
1131 */
1132 suspended = sa_getcachelwp(p);
1133 allsusp = 1;
1134 } else
1135 l = NULL;
1136 }
1137 } else if (p->p_stat == SSTOP) {
1138 if (l->l_stat != LSSLEEP || (l->l_flag & L_SINTR) == 0)
1139 l = NULL;
1140 }
1141 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1142 /*
1143 * At least one LWP is running or on a run queue.
1144 * The signal will be noticed when one of them returns
1145 * to userspace.
1146 */
1147 signotify(p);
1148 /*
1149 * The signal will be noticed very soon.
1150 */
1151 goto out;
1152 /*NOTREACHED*/
1153 } else {
1154 /*
1155 * Find out if any of the sleeps are interruptable,
1156 * and if all the live LWPs remaining are suspended.
1157 */
1158 allsusp = 1;
1159 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1160 if (l->l_stat == LSSLEEP &&
1161 l->l_flag & L_SINTR)
1162 break;
1163 if (l->l_stat == LSSUSPENDED)
1164 suspended = l;
1165 else if ((l->l_stat != LSZOMB) &&
1166 (l->l_stat != LSDEAD))
1167 allsusp = 0;
1168 }
1169 }
1170
1171 if (p->p_stat == SACTIVE) {
1172
1173 if (l != NULL && (p->p_flag & P_TRACED))
1174 goto run;
1175
1176 /*
1177 * If SIGCONT is default (or ignored) and process is
1178 * asleep, we are finished; the process should not
1179 * be awakened.
1180 */
1181 if ((prop & SA_CONT) && action == SIG_DFL) {
1182 sigdelset(&p->p_sigctx.ps_siglist, signum);
1183 goto done;
1184 }
1185
1186 /*
1187 * When a sleeping process receives a stop
1188 * signal, process immediately if possible.
1189 */
1190 if ((prop & SA_STOP) && action == SIG_DFL) {
1191 /*
1192 * If a child holding parent blocked,
1193 * stopping could cause deadlock.
1194 */
1195 if (p->p_flag & P_PPWAIT) {
1196 goto out;
1197 }
1198 sigdelset(&p->p_sigctx.ps_siglist, signum);
1199 p->p_xstat = signum;
1200 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1201 /*
1202 * XXXSMP: recursive call; don't lock
1203 * the second time around.
1204 */
1205 child_psignal(p, 0);
1206 }
1207 proc_stop(p, 1); /* XXXSMP: recurse? */
1208 goto done;
1209 }
1210
1211 if (l == NULL) {
1212 /*
1213 * Special case: SIGKILL of a process
1214 * which is entirely composed of
1215 * suspended LWPs should succeed. We
1216 * make this happen by unsuspending one of
1217 * them.
1218 */
1219 if (allsusp && (signum == SIGKILL))
1220 lwp_continue(suspended);
1221 goto done;
1222 }
1223 /*
1224 * All other (caught or default) signals
1225 * cause the process to run.
1226 */
1227 goto runfast;
1228 /*NOTREACHED*/
1229 } else if (p->p_stat == SSTOP) {
1230 /* Process is stopped */
1231 /*
1232 * If traced process is already stopped,
1233 * then no further action is necessary.
1234 */
1235 if (p->p_flag & P_TRACED)
1236 goto done;
1237
1238 /*
1239 * Kill signal always sets processes running,
1240 * if possible.
1241 */
1242 if (signum == SIGKILL) {
1243 l = proc_unstop(p);
1244 if (l)
1245 goto runfast;
1246 goto done;
1247 }
1248
1249 if (prop & SA_CONT) {
1250 /*
1251 * If SIGCONT is default (or ignored),
1252 * we continue the process but don't
1253 * leave the signal in ps_siglist, as
1254 * it has no further action. If
1255 * SIGCONT is held, we continue the
1256 * process and leave the signal in
1257 * ps_siglist. If the process catches
1258 * SIGCONT, let it handle the signal
1259 * itself. If it isn't waiting on an
1260 * event, then it goes back to run
1261 * state. Otherwise, process goes
1262 * back to sleep state.
1263 */
1264 if (action == SIG_DFL)
1265 sigdelset(&p->p_sigctx.ps_siglist,
1266 signum);
1267 l = proc_unstop(p);
1268 if (l && (action == SIG_CATCH))
1269 goto runfast;
1270 goto out;
1271 }
1272
1273 if (prop & SA_STOP) {
1274 /*
1275 * Already stopped, don't need to stop again.
1276 * (If we did the shell could get confused.)
1277 */
1278 sigdelset(&p->p_sigctx.ps_siglist, signum);
1279 goto done;
1280 }
1281
1282 /*
1283 * If a lwp is sleeping interruptibly, then
1284 * wake it up; it will run until the kernel
1285 * boundary, where it will stop in issignal(),
1286 * since p->p_stat is still SSTOP. When the
1287 * process is continued, it will be made
1288 * runnable and can look at the signal.
1289 */
1290 if (l)
1291 goto run;
1292 goto out;
1293 } else {
1294 /* Else what? */
1295 panic("psignal: Invalid process state %d.", p->p_stat);
1296 }
1297 /*NOTREACHED*/
1298
1299 runfast:
1300 if (action == SIG_CATCH) {
1301 ksiginfo_put(p, ksi);
1302 action = SIG_HOLD;
1303 }
1304 /*
1305 * Raise priority to at least PUSER.
1306 */
1307 if (l->l_priority > PUSER)
1308 l->l_priority = PUSER;
1309 run:
1310 if (action == SIG_CATCH) {
1311 ksiginfo_put(p, ksi);
1312 action = SIG_HOLD;
1313 }
1314
1315 setrunnable(l); /* XXXSMP: recurse? */
1316 out:
1317 if (action == SIG_CATCH)
1318 ksiginfo_put(p, ksi);
1319 done:
1320 /* XXXSMP: works, but icky */
1321 if (dolock)
1322 SCHED_UNLOCK(s);
1323 }
1324
1325 void
1326 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1327 {
1328 struct proc *p = l->l_proc;
1329 struct lwp *le, *li;
1330 siginfo_t *si;
1331 int f;
1332
1333 if (p->p_flag & P_SA) {
1334
1335 /* XXXUPSXXX What if not on sa_vp ? */
1336
1337 f = l->l_flag & L_SA;
1338 l->l_flag &= ~L_SA;
1339 si = pool_get(&siginfo_pool, PR_WAITOK);
1340 si->_info = ksi->ksi_info;
1341 le = li = NULL;
1342 if (KSI_TRAP_P(ksi))
1343 le = l;
1344 else
1345 li = l;
1346
1347 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1348 sizeof(siginfo_t), si);
1349 l->l_flag |= f;
1350 return;
1351 }
1352
1353 #ifdef __HAVE_SIGINFO
1354 (*p->p_emul->e_sendsig)(ksi, mask);
1355 #else
1356 (*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, KSI_TRAPCODE(ksi));
1357 #endif
1358 }
1359
1360 static __inline int firstsig(const sigset_t *);
1361
1362 static __inline int
1363 firstsig(const sigset_t *ss)
1364 {
1365 int sig;
1366
1367 sig = ffs(ss->__bits[0]);
1368 if (sig != 0)
1369 return (sig);
1370 #if NSIG > 33
1371 sig = ffs(ss->__bits[1]);
1372 if (sig != 0)
1373 return (sig + 32);
1374 #endif
1375 #if NSIG > 65
1376 sig = ffs(ss->__bits[2]);
1377 if (sig != 0)
1378 return (sig + 64);
1379 #endif
1380 #if NSIG > 97
1381 sig = ffs(ss->__bits[3]);
1382 if (sig != 0)
1383 return (sig + 96);
1384 #endif
1385 return (0);
1386 }
1387
1388 /*
1389 * If the current process has received a signal (should be caught or cause
1390 * termination, should interrupt current syscall), return the signal number.
1391 * Stop signals with default action are processed immediately, then cleared;
1392 * they aren't returned. This is checked after each entry to the system for
1393 * a syscall or trap (though this can usually be done without calling issignal
1394 * by checking the pending signal masks in the CURSIG macro.) The normal call
1395 * sequence is
1396 *
1397 * while (signum = CURSIG(curlwp))
1398 * postsig(signum);
1399 */
1400 int
1401 issignal(struct lwp *l)
1402 {
1403 struct proc *p = l->l_proc;
1404 int s = 0, signum, prop;
1405 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1406 sigset_t ss;
1407
1408 if (l->l_flag & L_SA) {
1409 struct sadata *sa = p->p_sa;
1410
1411 /* Bail out if we do not own the virtual processor */
1412 if (sa->sa_vp != l)
1413 return 0;
1414 }
1415
1416 if (p->p_stat == SSTOP) {
1417 /*
1418 * The process is stopped/stopping. Stop ourselves now that
1419 * we're on the kernel/userspace boundary.
1420 */
1421 if (dolock)
1422 SCHED_LOCK(s);
1423 l->l_stat = LSSTOP;
1424 p->p_nrlwps--;
1425 if (p->p_flag & P_TRACED)
1426 goto sigtraceswitch;
1427 else
1428 goto sigswitch;
1429 }
1430 for (;;) {
1431 sigpending1(p, &ss);
1432 if (p->p_flag & P_PPWAIT)
1433 sigminusset(&stopsigmask, &ss);
1434 signum = firstsig(&ss);
1435 if (signum == 0) { /* no signal to send */
1436 p->p_sigctx.ps_sigcheck = 0;
1437 if (locked && dolock)
1438 SCHED_LOCK(s);
1439 return (0);
1440 }
1441 /* take the signal! */
1442 sigdelset(&p->p_sigctx.ps_siglist, signum);
1443
1444 /*
1445 * We should see pending but ignored signals
1446 * only if P_TRACED was on when they were posted.
1447 */
1448 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1449 (p->p_flag & P_TRACED) == 0)
1450 continue;
1451
1452 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1453 /*
1454 * If traced, always stop, and stay
1455 * stopped until released by the debugger.
1456 */
1457 p->p_xstat = signum;
1458 if ((p->p_flag & P_FSTRACE) == 0)
1459 child_psignal(p, dolock);
1460 if (dolock)
1461 SCHED_LOCK(s);
1462 proc_stop(p, 1);
1463 sigtraceswitch:
1464 mi_switch(l, NULL);
1465 SCHED_ASSERT_UNLOCKED();
1466 if (dolock)
1467 splx(s);
1468 else
1469 dolock = 1;
1470
1471 /*
1472 * If we are no longer being traced, or the parent
1473 * didn't give us a signal, look for more signals.
1474 */
1475 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1476 continue;
1477
1478 /*
1479 * If the new signal is being masked, look for other
1480 * signals.
1481 */
1482 signum = p->p_xstat;
1483 p->p_xstat = 0;
1484 /*
1485 * `p->p_sigctx.ps_siglist |= mask' is done
1486 * in setrunnable().
1487 */
1488 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1489 continue;
1490 /* take the signal! */
1491 sigdelset(&p->p_sigctx.ps_siglist, signum);
1492 }
1493
1494 prop = sigprop[signum];
1495
1496 /*
1497 * Decide whether the signal should be returned.
1498 * Return the signal's number, or fall through
1499 * to clear it from the pending mask.
1500 */
1501 switch ((long)SIGACTION(p, signum).sa_handler) {
1502
1503 case (long)SIG_DFL:
1504 /*
1505 * Don't take default actions on system processes.
1506 */
1507 if (p->p_pid <= 1) {
1508 #ifdef DIAGNOSTIC
1509 /*
1510 * Are you sure you want to ignore SIGSEGV
1511 * in init? XXX
1512 */
1513 printf("Process (pid %d) got signal %d\n",
1514 p->p_pid, signum);
1515 #endif
1516 break; /* == ignore */
1517 }
1518 /*
1519 * If there is a pending stop signal to process
1520 * with default action, stop here,
1521 * then clear the signal. However,
1522 * if process is member of an orphaned
1523 * process group, ignore tty stop signals.
1524 */
1525 if (prop & SA_STOP) {
1526 if (p->p_flag & P_TRACED ||
1527 (p->p_pgrp->pg_jobc == 0 &&
1528 prop & SA_TTYSTOP))
1529 break; /* == ignore */
1530 p->p_xstat = signum;
1531 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1532 child_psignal(p, dolock);
1533 if (dolock)
1534 SCHED_LOCK(s);
1535 proc_stop(p, 1);
1536 sigswitch:
1537 mi_switch(l, NULL);
1538 SCHED_ASSERT_UNLOCKED();
1539 if (dolock)
1540 splx(s);
1541 else
1542 dolock = 1;
1543 break;
1544 } else if (prop & SA_IGNORE) {
1545 /*
1546 * Except for SIGCONT, shouldn't get here.
1547 * Default action is to ignore; drop it.
1548 */
1549 break; /* == ignore */
1550 } else
1551 goto keep;
1552 /*NOTREACHED*/
1553
1554 case (long)SIG_IGN:
1555 /*
1556 * Masking above should prevent us ever trying
1557 * to take action on an ignored signal other
1558 * than SIGCONT, unless process is traced.
1559 */
1560 #ifdef DEBUG_ISSIGNAL
1561 if ((prop & SA_CONT) == 0 &&
1562 (p->p_flag & P_TRACED) == 0)
1563 printf("issignal\n");
1564 #endif
1565 break; /* == ignore */
1566
1567 default:
1568 /*
1569 * This signal has an action, let
1570 * postsig() process it.
1571 */
1572 goto keep;
1573 }
1574 }
1575 /* NOTREACHED */
1576
1577 keep:
1578 /* leave the signal for later */
1579 sigaddset(&p->p_sigctx.ps_siglist, signum);
1580 CHECKSIGS(p);
1581 if (locked && dolock)
1582 SCHED_LOCK(s);
1583 return (signum);
1584 }
1585
1586 /*
1587 * Put the argument process into the stopped state and notify the parent
1588 * via wakeup. Signals are handled elsewhere. The process must not be
1589 * on the run queue.
1590 */
1591 void
1592 proc_stop(struct proc *p, int wakeup)
1593 {
1594 struct lwp *l;
1595 struct proc *parent;
1596
1597 SCHED_ASSERT_LOCKED();
1598
1599 /* XXX lock process LWP state */
1600 p->p_flag &= ~P_WAITED;
1601 p->p_stat = SSTOP;
1602 parent = p->p_pptr;
1603 parent->p_nstopchild++;
1604
1605 if (p->p_flag & P_SA) {
1606 /*
1607 * Only (try to) put the LWP on the VP in stopped
1608 * state.
1609 * All other LWPs will suspend in sa_setwoken()
1610 * because the VP-LWP in stopped state cannot be
1611 * repossessed.
1612 */
1613 l = p->p_sa->sa_vp;
1614 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1615 l->l_stat = LSSTOP;
1616 p->p_nrlwps--;
1617 } else if (l->l_stat == LSRUN) {
1618 /* Remove LWP from the run queue */
1619 remrunqueue(l);
1620 l->l_stat = LSSTOP;
1621 p->p_nrlwps--;
1622 } else if (l->l_stat == LSSLEEP &&
1623 l->l_flag & L_SA_IDLE) {
1624 l->l_flag &= ~L_SA_IDLE;
1625 l->l_stat = LSSTOP;
1626 }
1627 goto out;
1628 }
1629
1630 /*
1631 * Put as many LWP's as possible in stopped state.
1632 * Sleeping ones will notice the stopped state as they try to
1633 * return to userspace.
1634 */
1635
1636 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1637 if (l->l_stat == LSONPROC) {
1638 /* XXX SMP this assumes that a LWP that is LSONPROC
1639 * is curlwp and hence is about to be mi_switched
1640 * away; the only callers of proc_stop() are:
1641 * - psignal
1642 * - issignal()
1643 * For the former, proc_stop() is only called when
1644 * no processes are running, so we don't worry.
1645 * For the latter, proc_stop() is called right
1646 * before mi_switch().
1647 */
1648 l->l_stat = LSSTOP;
1649 p->p_nrlwps--;
1650 } else if (l->l_stat == LSRUN) {
1651 /* Remove LWP from the run queue */
1652 remrunqueue(l);
1653 l->l_stat = LSSTOP;
1654 p->p_nrlwps--;
1655 } else if ((l->l_stat == LSSLEEP) ||
1656 (l->l_stat == LSSUSPENDED) ||
1657 (l->l_stat == LSZOMB) ||
1658 (l->l_stat == LSDEAD)) {
1659 /*
1660 * Don't do anything; let sleeping LWPs
1661 * discover the stopped state of the process
1662 * on their way out of the kernel; otherwise,
1663 * things like NFS threads that sleep with
1664 * locks will block the rest of the system
1665 * from getting any work done.
1666 *
1667 * Suspended/dead/zombie LWPs aren't going
1668 * anywhere, so we don't need to touch them.
1669 */
1670 }
1671 #ifdef DIAGNOSTIC
1672 else {
1673 panic("proc_stop: process %d lwp %d "
1674 "in unstoppable state %d.\n",
1675 p->p_pid, l->l_lid, l->l_stat);
1676 }
1677 #endif
1678 }
1679
1680 out:
1681 /* XXX unlock process LWP state */
1682
1683 if (wakeup)
1684 sched_wakeup((caddr_t)p->p_pptr);
1685 }
1686
1687 /*
1688 * Given a process in state SSTOP, set the state back to SACTIVE and
1689 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1690 *
1691 * If no LWPs ended up runnable (and therefore able to take a signal),
1692 * return a LWP that is sleeping interruptably. The caller can wake
1693 * that LWP up to take a signal.
1694 */
1695 struct lwp *
1696 proc_unstop(struct proc *p)
1697 {
1698 struct lwp *l, *lr = NULL;
1699 int cantake = 0;
1700
1701 SCHED_ASSERT_LOCKED();
1702
1703 /*
1704 * Our caller wants to be informed if there are only sleeping
1705 * and interruptable LWPs left after we have run so that it
1706 * can invoke setrunnable() if required - return one of the
1707 * interruptable LWPs if this is the case.
1708 */
1709
1710 if (!(p->p_flag & P_WAITED))
1711 p->p_pptr->p_nstopchild--;
1712 p->p_stat = SACTIVE;
1713 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1714 if (l->l_stat == LSRUN) {
1715 lr = NULL;
1716 cantake = 1;
1717 }
1718 if (l->l_stat != LSSTOP)
1719 continue;
1720
1721 if (l->l_wchan != NULL) {
1722 l->l_stat = LSSLEEP;
1723 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1724 lr = l;
1725 cantake = 1;
1726 }
1727 } else {
1728 setrunnable(l);
1729 lr = NULL;
1730 cantake = 1;
1731 }
1732 }
1733 if (p->p_flag & P_SA) {
1734 /* Only consider returning the LWP on the VP. */
1735 lr = p->p_sa->sa_vp;
1736 if (lr->l_stat == LSSLEEP) {
1737 if (lr->l_flag & L_SA_YIELD)
1738 setrunnable(lr);
1739 else if (lr->l_flag & L_SINTR)
1740 return lr;
1741 }
1742 return NULL;
1743 }
1744 return lr;
1745 }
1746
1747 /*
1748 * Take the action for the specified signal
1749 * from the current set of pending signals.
1750 */
1751 void
1752 postsig(int signum)
1753 {
1754 struct lwp *l;
1755 struct proc *p;
1756 struct sigacts *ps;
1757 sig_t action;
1758 sigset_t *returnmask;
1759
1760 l = curlwp;
1761 p = l->l_proc;
1762 ps = p->p_sigacts;
1763 #ifdef DIAGNOSTIC
1764 if (signum == 0)
1765 panic("postsig");
1766 #endif
1767
1768 KERNEL_PROC_LOCK(l);
1769
1770 sigdelset(&p->p_sigctx.ps_siglist, signum);
1771 action = SIGACTION_PS(ps, signum).sa_handler;
1772 if (action == SIG_DFL) {
1773 #ifdef KTRACE
1774 if (KTRPOINT(p, KTR_PSIG))
1775 ktrpsig(p, signum, action,
1776 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1777 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1778 NULL);
1779 #endif
1780 /*
1781 * Default action, where the default is to kill
1782 * the process. (Other cases were ignored above.)
1783 */
1784 sigexit(l, signum);
1785 /* NOTREACHED */
1786 } else {
1787 ksiginfo_t *ksi;
1788 /*
1789 * If we get here, the signal must be caught.
1790 */
1791 #ifdef DIAGNOSTIC
1792 if (action == SIG_IGN ||
1793 sigismember(&p->p_sigctx.ps_sigmask, signum))
1794 panic("postsig action");
1795 #endif
1796 /*
1797 * Set the new mask value and also defer further
1798 * occurrences of this signal.
1799 *
1800 * Special case: user has done a sigpause. Here the
1801 * current mask is not of interest, but rather the
1802 * mask from before the sigpause is what we want
1803 * restored after the signal processing is completed.
1804 */
1805 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1806 returnmask = &p->p_sigctx.ps_oldmask;
1807 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1808 } else
1809 returnmask = &p->p_sigctx.ps_sigmask;
1810 p->p_stats->p_ru.ru_nsignals++;
1811 ksi = ksiginfo_get(p, signum);
1812 #ifdef KTRACE
1813 if (KTRPOINT(p, KTR_PSIG))
1814 ktrpsig(p, signum, action,
1815 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1816 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1817 ksi);
1818 #endif
1819 if (ksi == NULL) {
1820 ksiginfo_t ksi1;
1821 /*
1822 * we did not save any siginfo for this, either
1823 * because the signal was not caught, or because the
1824 * user did not request SA_SIGINFO
1825 */
1826 (void)memset(&ksi1, 0, sizeof(ksi1));
1827 ksi1.ksi_signo = signum;
1828 kpsendsig(l, &ksi1, returnmask);
1829 } else {
1830 kpsendsig(l, ksi, returnmask);
1831 pool_put(&ksiginfo_pool, ksi);
1832 }
1833 p->p_sigctx.ps_lwp = 0;
1834 p->p_sigctx.ps_code = 0;
1835 p->p_sigctx.ps_signo = 0;
1836 (void) splsched(); /* XXXSMP */
1837 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1838 &p->p_sigctx.ps_sigmask);
1839 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1840 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1841 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1842 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1843 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1844 }
1845 (void) spl0(); /* XXXSMP */
1846 }
1847
1848 KERNEL_PROC_UNLOCK(l);
1849 }
1850
1851 /*
1852 * Kill the current process for stated reason.
1853 */
1854 void
1855 killproc(struct proc *p, const char *why)
1856 {
1857 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1858 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1859 psignal(p, SIGKILL);
1860 }
1861
1862 /*
1863 * Force the current process to exit with the specified signal, dumping core
1864 * if appropriate. We bypass the normal tests for masked and caught signals,
1865 * allowing unrecoverable failures to terminate the process without changing
1866 * signal state. Mark the accounting record with the signal termination.
1867 * If dumping core, save the signal number for the debugger. Calls exit and
1868 * does not return.
1869 */
1870
1871 #if defined(DEBUG)
1872 int kern_logsigexit = 1; /* not static to make public for sysctl */
1873 #else
1874 int kern_logsigexit = 0; /* not static to make public for sysctl */
1875 #endif
1876
1877 static const char logcoredump[] =
1878 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1879 static const char lognocoredump[] =
1880 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1881
1882 /* Wrapper function for use in p_userret */
1883 static void
1884 lwp_coredump_hook(struct lwp *l, void *arg)
1885 {
1886 int s;
1887
1888 /*
1889 * Suspend ourselves, so that the kernel stack and therefore
1890 * the userland registers saved in the trapframe are around
1891 * for coredump() to write them out.
1892 */
1893 KERNEL_PROC_LOCK(l);
1894 l->l_flag &= ~L_DETACHED;
1895 SCHED_LOCK(s);
1896 l->l_stat = LSSUSPENDED;
1897 l->l_proc->p_nrlwps--;
1898 /* XXX NJWLWP check if this makes sense here: */
1899 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1900 mi_switch(l, NULL);
1901 SCHED_ASSERT_UNLOCKED();
1902 splx(s);
1903
1904 lwp_exit(l);
1905 }
1906
1907 void
1908 sigexit(struct lwp *l, int signum)
1909 {
1910 struct proc *p;
1911 #if 0
1912 struct lwp *l2;
1913 #endif
1914 int error, exitsig;
1915
1916 p = l->l_proc;
1917
1918 /*
1919 * Don't permit coredump() or exit1() multiple times
1920 * in the same process.
1921 */
1922 if (p->p_flag & P_WEXIT) {
1923 KERNEL_PROC_UNLOCK(l);
1924 (*p->p_userret)(l, p->p_userret_arg);
1925 }
1926 p->p_flag |= P_WEXIT;
1927 /* We don't want to switch away from exiting. */
1928 /* XXX multiprocessor: stop LWPs on other processors. */
1929 #if 0
1930 if (p->p_flag & P_SA) {
1931 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1932 l2->l_flag &= ~L_SA;
1933 p->p_flag &= ~P_SA;
1934 }
1935 #endif
1936
1937 /* Make other LWPs stick around long enough to be dumped */
1938 p->p_userret = lwp_coredump_hook;
1939 p->p_userret_arg = NULL;
1940
1941 exitsig = signum;
1942 p->p_acflag |= AXSIG;
1943 if (sigprop[signum] & SA_CORE) {
1944 p->p_sigctx.ps_signo = signum;
1945 if ((error = coredump(l)) == 0)
1946 exitsig |= WCOREFLAG;
1947
1948 if (kern_logsigexit) {
1949 /* XXX What if we ever have really large UIDs? */
1950 int uid = p->p_cred && p->p_ucred ?
1951 (int) p->p_ucred->cr_uid : -1;
1952
1953 if (error)
1954 log(LOG_INFO, lognocoredump, p->p_pid,
1955 p->p_comm, uid, signum, error);
1956 else
1957 log(LOG_INFO, logcoredump, p->p_pid,
1958 p->p_comm, uid, signum);
1959 }
1960
1961 }
1962
1963 exit1(l, W_EXITCODE(0, exitsig));
1964 /* NOTREACHED */
1965 }
1966
1967 /*
1968 * Dump core, into a file named "progname.core" or "core" (depending on the
1969 * value of shortcorename), unless the process was setuid/setgid.
1970 */
1971 int
1972 coredump(struct lwp *l)
1973 {
1974 struct vnode *vp;
1975 struct proc *p;
1976 struct vmspace *vm;
1977 struct ucred *cred;
1978 struct nameidata nd;
1979 struct vattr vattr;
1980 struct mount *mp;
1981 int error, error1;
1982 char name[MAXPATHLEN];
1983
1984 p = l->l_proc;
1985 vm = p->p_vmspace;
1986 cred = p->p_cred->pc_ucred;
1987
1988 /*
1989 * Make sure the process has not set-id, to prevent data leaks.
1990 */
1991 if (p->p_flag & P_SUGID)
1992 return (EPERM);
1993
1994 /*
1995 * Refuse to core if the data + stack + user size is larger than
1996 * the core dump limit. XXX THIS IS WRONG, because of mapped
1997 * data.
1998 */
1999 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2000 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2001 return (EFBIG); /* better error code? */
2002
2003 restart:
2004 /*
2005 * The core dump will go in the current working directory. Make
2006 * sure that the directory is still there and that the mount flags
2007 * allow us to write core dumps there.
2008 */
2009 vp = p->p_cwdi->cwdi_cdir;
2010 if (vp->v_mount == NULL ||
2011 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2012 return (EPERM);
2013
2014 error = build_corename(p, name);
2015 if (error)
2016 return error;
2017
2018 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2019 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2020 if (error)
2021 return (error);
2022 vp = nd.ni_vp;
2023
2024 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2025 VOP_UNLOCK(vp, 0);
2026 if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2027 return (error);
2028 if ((error = vn_start_write(NULL, &mp,
2029 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2030 return (error);
2031 goto restart;
2032 }
2033
2034 /* Don't dump to non-regular files or files with links. */
2035 if (vp->v_type != VREG ||
2036 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2037 error = EINVAL;
2038 goto out;
2039 }
2040 VATTR_NULL(&vattr);
2041 vattr.va_size = 0;
2042 VOP_LEASE(vp, p, cred, LEASE_WRITE);
2043 VOP_SETATTR(vp, &vattr, cred, p);
2044 p->p_acflag |= ACORE;
2045
2046 /* Now dump the actual core file. */
2047 error = (*p->p_execsw->es_coredump)(l, vp, cred);
2048 out:
2049 VOP_UNLOCK(vp, 0);
2050 vn_finished_write(mp, 0);
2051 error1 = vn_close(vp, FWRITE, cred, p);
2052 if (error == 0)
2053 error = error1;
2054 return (error);
2055 }
2056
2057 /*
2058 * Nonexistent system call-- signal process (may want to handle it).
2059 * Flag error in case process won't see signal immediately (blocked or ignored).
2060 */
2061 /* ARGSUSED */
2062 int
2063 sys_nosys(struct lwp *l, void *v, register_t *retval)
2064 {
2065 struct proc *p;
2066
2067 p = l->l_proc;
2068 psignal(p, SIGSYS);
2069 return (ENOSYS);
2070 }
2071
2072 static int
2073 build_corename(struct proc *p, char dst[MAXPATHLEN])
2074 {
2075 const char *s;
2076 char *d, *end;
2077 int i;
2078
2079 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
2080 *s != '\0'; s++) {
2081 if (*s == '%') {
2082 switch (*(s + 1)) {
2083 case 'n':
2084 i = snprintf(d, end - d, "%s", p->p_comm);
2085 break;
2086 case 'p':
2087 i = snprintf(d, end - d, "%d", p->p_pid);
2088 break;
2089 case 'u':
2090 i = snprintf(d, end - d, "%.*s",
2091 (int)sizeof p->p_pgrp->pg_session->s_login,
2092 p->p_pgrp->pg_session->s_login);
2093 break;
2094 case 't':
2095 i = snprintf(d, end - d, "%ld",
2096 p->p_stats->p_start.tv_sec);
2097 break;
2098 default:
2099 goto copy;
2100 }
2101 d += i;
2102 s++;
2103 } else {
2104 copy: *d = *s;
2105 d++;
2106 }
2107 if (d >= end)
2108 return (ENAMETOOLONG);
2109 }
2110 *d = '\0';
2111 return 0;
2112 }
2113
2114 void
2115 getucontext(struct lwp *l, ucontext_t *ucp)
2116 {
2117 struct proc *p;
2118
2119 p = l->l_proc;
2120
2121 ucp->uc_flags = 0;
2122 ucp->uc_link = l->l_ctxlink;
2123
2124 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2125 ucp->uc_flags |= _UC_SIGMASK;
2126
2127 /*
2128 * The (unsupplied) definition of the `current execution stack'
2129 * in the System V Interface Definition appears to allow returning
2130 * the main context stack.
2131 */
2132 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2133 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2134 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2135 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2136 } else {
2137 /* Simply copy alternate signal execution stack. */
2138 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2139 }
2140 ucp->uc_flags |= _UC_STACK;
2141
2142 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2143 }
2144
2145 /* ARGSUSED */
2146 int
2147 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2148 {
2149 struct sys_getcontext_args /* {
2150 syscallarg(struct __ucontext *) ucp;
2151 } */ *uap = v;
2152 ucontext_t uc;
2153
2154 getucontext(l, &uc);
2155
2156 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2157 }
2158
2159 int
2160 setucontext(struct lwp *l, const ucontext_t *ucp)
2161 {
2162 struct proc *p;
2163 int error;
2164
2165 p = l->l_proc;
2166 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2167 return (error);
2168 l->l_ctxlink = ucp->uc_link;
2169 /*
2170 * We might want to take care of the stack portion here but currently
2171 * don't; see the comment in getucontext().
2172 */
2173 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2174 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2175
2176 return 0;
2177 }
2178
2179 /* ARGSUSED */
2180 int
2181 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2182 {
2183 struct sys_setcontext_args /* {
2184 syscallarg(const ucontext_t *) ucp;
2185 } */ *uap = v;
2186 ucontext_t uc;
2187 int error;
2188
2189 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2190 exit1(l, W_EXITCODE(0, 0));
2191 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2192 (error = setucontext(l, &uc)) != 0)
2193 return (error);
2194
2195 return (EJUSTRETURN);
2196 }
2197
2198 /*
2199 * sigtimedwait(2) system call, used also for implementation
2200 * of sigwaitinfo() and sigwait().
2201 *
2202 * This only handles single LWP in signal wait. libpthread provides
2203 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2204 */
2205 int
2206 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2207 {
2208 struct sys___sigtimedwait_args /* {
2209 syscallarg(const sigset_t *) set;
2210 syscallarg(siginfo_t *) info;
2211 syscallarg(struct timespec *) timeout;
2212 } */ *uap = v;
2213 sigset_t *waitset, twaitset;
2214 struct proc *p = l->l_proc;
2215 int error, signum, s;
2216 int timo = 0;
2217 struct timeval tvstart;
2218 struct timespec ts;
2219 ksiginfo_t *ksi;
2220
2221 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2222
2223 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2224 FREE(waitset, M_TEMP);
2225 return (error);
2226 }
2227
2228 /*
2229 * Silently ignore SA_CANTMASK signals. psignal1() would
2230 * ignore SA_CANTMASK signals in waitset, we do this
2231 * only for the below siglist check.
2232 */
2233 sigminusset(&sigcantmask, waitset);
2234
2235 /*
2236 * First scan siglist and check if there is signal from
2237 * our waitset already pending.
2238 */
2239 twaitset = *waitset;
2240 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2241 if ((signum = firstsig(&twaitset))) {
2242 /* found pending signal */
2243 sigdelset(&p->p_sigctx.ps_siglist, signum);
2244 ksi = ksiginfo_get(p, signum);
2245 if (!ksi) {
2246 /* No queued siginfo, manufacture one */
2247 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2248 KSI_INIT(ksi);
2249 ksi->ksi_info._signo = signum;
2250 ksi->ksi_info._code = SI_USER;
2251 }
2252
2253 goto sig;
2254 }
2255
2256 /*
2257 * Calculate timeout, if it was specified.
2258 */
2259 if (SCARG(uap, timeout)) {
2260 uint64_t ms;
2261
2262 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2263 return (error);
2264
2265 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2266 timo = mstohz(ms);
2267 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2268 timo = 1;
2269 if (timo <= 0)
2270 return (EAGAIN);
2271
2272 /*
2273 * Remember current mono_time, it would be used in
2274 * ECANCELED/ERESTART case.
2275 */
2276 s = splclock();
2277 tvstart = mono_time;
2278 splx(s);
2279 }
2280
2281 /*
2282 * Setup ps_sigwait list. Pass pointer to malloced memory
2283 * here; it's not possible to pass pointer to a structure
2284 * on current process's stack, the current process might
2285 * be swapped out at the time the signal would get delivered.
2286 */
2287 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2288 p->p_sigctx.ps_sigwaited = ksi;
2289 p->p_sigctx.ps_sigwait = waitset;
2290
2291 /*
2292 * Wait for signal to arrive. We can either be woken up or
2293 * time out.
2294 */
2295 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2296
2297 /*
2298 * Need to find out if we woke as a result of lwp_wakeup()
2299 * or a signal outside our wait set.
2300 */
2301 if (error == EINTR && p->p_sigctx.ps_sigwaited
2302 && !firstsig(&p->p_sigctx.ps_siglist)) {
2303 /* wakeup via _lwp_wakeup() */
2304 error = ECANCELED;
2305 } else if (!error && p->p_sigctx.ps_sigwaited) {
2306 /* spurious wakeup - arrange for syscall restart */
2307 error = ERESTART;
2308 goto fail;
2309 }
2310
2311 /*
2312 * On error, clear sigwait indication. psignal1() clears it
2313 * in !error case.
2314 */
2315 if (error) {
2316 p->p_sigctx.ps_sigwaited = NULL;
2317
2318 /*
2319 * If the sleep was interrupted (either by signal or wakeup),
2320 * update the timeout and copyout new value back.
2321 * It would be used when the syscall would be restarted
2322 * or called again.
2323 */
2324 if (timo && (error == ERESTART || error == ECANCELED)) {
2325 struct timeval tvnow, tvtimo;
2326 int err;
2327
2328 s = splclock();
2329 tvnow = mono_time;
2330 splx(s);
2331
2332 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2333
2334 /* compute how much time has passed since start */
2335 timersub(&tvnow, &tvstart, &tvnow);
2336 /* substract passed time from timeout */
2337 timersub(&tvtimo, &tvnow, &tvtimo);
2338
2339 if (tvtimo.tv_sec < 0) {
2340 error = EAGAIN;
2341 goto fail;
2342 }
2343
2344 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2345
2346 /* copy updated timeout to userland */
2347 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
2348 error = err;
2349 goto fail;
2350 }
2351 }
2352
2353 goto fail;
2354 }
2355
2356 /*
2357 * If a signal from the wait set arrived, copy it to userland.
2358 * Copy only the used part of siginfo, the padding part is
2359 * left unchanged (userland is not supposed to touch it anyway).
2360 */
2361 sig:
2362 error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2363
2364 fail:
2365 FREE(waitset, M_TEMP);
2366 pool_put(&ksiginfo_pool, ksi);
2367 p->p_sigctx.ps_sigwait = NULL;
2368
2369 return (error);
2370 }
2371
2372 /*
2373 * Returns true if signal is ignored or masked for passed process.
2374 */
2375 int
2376 sigismasked(struct proc *p, int sig)
2377 {
2378
2379 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2380 sigismember(&p->p_sigctx.ps_sigmask, sig));
2381 }
2382
2383 static int
2384 filt_sigattach(struct knote *kn)
2385 {
2386 struct proc *p = curproc;
2387
2388 kn->kn_ptr.p_proc = p;
2389 kn->kn_flags |= EV_CLEAR; /* automatically set */
2390
2391 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2392
2393 return (0);
2394 }
2395
2396 static void
2397 filt_sigdetach(struct knote *kn)
2398 {
2399 struct proc *p = kn->kn_ptr.p_proc;
2400
2401 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2402 }
2403
2404 /*
2405 * signal knotes are shared with proc knotes, so we apply a mask to
2406 * the hint in order to differentiate them from process hints. This
2407 * could be avoided by using a signal-specific knote list, but probably
2408 * isn't worth the trouble.
2409 */
2410 static int
2411 filt_signal(struct knote *kn, long hint)
2412 {
2413
2414 if (hint & NOTE_SIGNAL) {
2415 hint &= ~NOTE_SIGNAL;
2416
2417 if (kn->kn_id == hint)
2418 kn->kn_data++;
2419 }
2420 return (kn->kn_data != 0);
2421 }
2422
2423 const struct filterops sig_filtops = {
2424 0, filt_sigattach, filt_sigdetach, filt_signal
2425 };
2426