Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.186
      1 /*	$NetBSD: kern_sig.c,v 1.186 2004/03/11 22:34:26 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.186 2004/03/11 22:34:26 christos Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd.h"
     45 #include "opt_compat_netbsd32.h"
     46 
     47 #define	SIGPROP		/* include signal properties table */
     48 #include <sys/param.h>
     49 #include <sys/signalvar.h>
     50 #include <sys/resourcevar.h>
     51 #include <sys/namei.h>
     52 #include <sys/vnode.h>
     53 #include <sys/proc.h>
     54 #include <sys/systm.h>
     55 #include <sys/timeb.h>
     56 #include <sys/times.h>
     57 #include <sys/buf.h>
     58 #include <sys/acct.h>
     59 #include <sys/file.h>
     60 #include <sys/kernel.h>
     61 #include <sys/wait.h>
     62 #include <sys/ktrace.h>
     63 #include <sys/syslog.h>
     64 #include <sys/stat.h>
     65 #include <sys/core.h>
     66 #include <sys/filedesc.h>
     67 #include <sys/malloc.h>
     68 #include <sys/pool.h>
     69 #include <sys/ucontext.h>
     70 #include <sys/sa.h>
     71 #include <sys/savar.h>
     72 #include <sys/exec.h>
     73 
     74 #include <sys/mount.h>
     75 #include <sys/syscallargs.h>
     76 
     77 #include <machine/cpu.h>
     78 
     79 #include <sys/user.h>		/* for coredump */
     80 
     81 #include <uvm/uvm_extern.h>
     82 
     83 static void	child_psignal(struct proc *, int);
     84 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     85 static void	ksiginfo_exithook(struct proc *, void *);
     86 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
     87 static ksiginfo_t *ksiginfo_get(struct proc *, int);
     88 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
     89 
     90 sigset_t	contsigmask, stopsigmask, sigcantmask;
     91 
     92 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     93 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     94 struct pool	ksiginfo_pool;	/* memory pool for ksiginfo structures */
     95 
     96 /*
     97  * Can process p, with pcred pc, send the signal signum to process q?
     98  */
     99 #define	CANSIGNAL(p, pc, q, signum) \
    100 	((pc)->pc_ucred->cr_uid == 0 || \
    101 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
    102 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    103 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    104 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    105 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    106 
    107 /*
    108  * Remove and return the first ksiginfo element that matches our requested
    109  * signal, or return NULL if one not found.
    110  */
    111 static ksiginfo_t *
    112 ksiginfo_get(struct proc *p, int signo)
    113 {
    114 	ksiginfo_t *ksi;
    115 	int s;
    116 
    117 	s = splsoftclock();
    118 	simple_lock(&p->p_sigctx.ps_silock);
    119 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    120 		if (ksi->ksi_signo == signo) {
    121 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    122 			goto out;
    123 		}
    124 	}
    125 	ksi = NULL;
    126 out:
    127 	simple_unlock(&p->p_sigctx.ps_silock);
    128 	splx(s);
    129 	return ksi;
    130 }
    131 
    132 /*
    133  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    134  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    135  * they already existed in the queue and we add new entries for RT signals,
    136  * or for non RT signals with non-existing entries.
    137  */
    138 static void
    139 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
    140 {
    141 	ksiginfo_t *kp;
    142 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    143 	int s;
    144 
    145 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    146 		return;
    147 
    148 	s = splsoftclock();
    149 	simple_lock(&p->p_sigctx.ps_silock);
    150 #ifdef notyet	/* XXX: QUEUING */
    151 	if (ksi->ksi_signo < SIGRTMIN)
    152 #endif
    153 	{
    154 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    155 			if (kp->ksi_signo == ksi->ksi_signo) {
    156 				KSI_COPY(ksi, kp);
    157 				goto out;
    158 			}
    159 		}
    160 	}
    161 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
    162 	if (kp == NULL) {
    163 #ifdef DIAGNOSTIC
    164 		printf("Out of memory allocating siginfo for pid %d\n",
    165 		    p->p_pid);
    166 #endif
    167 		goto out;
    168 	}
    169 	*kp = *ksi;
    170 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    171 out:
    172 	simple_unlock(&p->p_sigctx.ps_silock);
    173 	splx(s);
    174 }
    175 
    176 /*
    177  * free all pending ksiginfo on exit
    178  */
    179 static void
    180 ksiginfo_exithook(struct proc *p, void *v)
    181 {
    182 	int s;
    183 
    184 	s = splsoftclock();
    185 	simple_lock(&p->p_sigctx.ps_silock);
    186 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    187 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    188 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    189 		pool_put(&ksiginfo_pool, ksi);
    190 	}
    191 	simple_unlock(&p->p_sigctx.ps_silock);
    192 	splx(s);
    193 }
    194 
    195 /*
    196  * Initialize signal-related data structures.
    197  */
    198 void
    199 signal_init(void)
    200 {
    201 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    202 	    &pool_allocator_nointr);
    203 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    204 	    &pool_allocator_nointr);
    205 	pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    206 	    NULL);
    207 	exithook_establish(ksiginfo_exithook, NULL);
    208 	exechook_establish(ksiginfo_exithook, NULL);
    209 }
    210 
    211 /*
    212  * Create an initial sigctx structure, using the same signal state
    213  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    214  * copy it from parent.
    215  */
    216 void
    217 sigactsinit(struct proc *np, struct proc *pp, int share)
    218 {
    219 	struct sigacts *ps;
    220 
    221 	if (share) {
    222 		np->p_sigacts = pp->p_sigacts;
    223 		pp->p_sigacts->sa_refcnt++;
    224 	} else {
    225 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    226 		if (pp)
    227 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    228 		else
    229 			memset(ps, '\0', sizeof(struct sigacts));
    230 		ps->sa_refcnt = 1;
    231 		np->p_sigacts = ps;
    232 	}
    233 }
    234 
    235 /*
    236  * Make this process not share its sigctx, maintaining all
    237  * signal state.
    238  */
    239 void
    240 sigactsunshare(struct proc *p)
    241 {
    242 	struct sigacts *oldps;
    243 
    244 	if (p->p_sigacts->sa_refcnt == 1)
    245 		return;
    246 
    247 	oldps = p->p_sigacts;
    248 	sigactsinit(p, NULL, 0);
    249 
    250 	if (--oldps->sa_refcnt == 0)
    251 		pool_put(&sigacts_pool, oldps);
    252 }
    253 
    254 /*
    255  * Release a sigctx structure.
    256  */
    257 void
    258 sigactsfree(struct proc *p)
    259 {
    260 	struct sigacts *ps;
    261 
    262 	ps = p->p_sigacts;
    263 	if (--ps->sa_refcnt > 0)
    264 		return;
    265 
    266 	pool_put(&sigacts_pool, ps);
    267 }
    268 
    269 int
    270 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    271 	struct sigaction *osa, const void *tramp, int vers)
    272 {
    273 	struct sigacts	*ps;
    274 	int		prop;
    275 
    276 	ps = p->p_sigacts;
    277 	if (signum <= 0 || signum >= NSIG)
    278 		return (EINVAL);
    279 
    280 	/*
    281 	 * Trampoline ABI version 0 is reserved for the legacy
    282 	 * kernel-provided on-stack trampoline.  Conversely, if we are
    283 	 * using a non-0 ABI version, we must have a trampoline.  Only
    284 	 * validate the vers if a new sigaction was supplied. Emulations
    285 	 * use legacy kernel trampolines with version 0, alternatively
    286 	 * check for that too.
    287 	 */
    288 	if ((vers != 0 && tramp == NULL) ||
    289 #ifdef SIGTRAMP_VALID
    290 	    (nsa != NULL &&
    291 	    ((vers == 0) ?
    292 		(p->p_emul->e_sigcode == NULL) :
    293 		!SIGTRAMP_VALID(vers))) ||
    294 #endif
    295 	    (vers == 0 && tramp != NULL))
    296 		return (EINVAL);
    297 
    298 	if (osa)
    299 		*osa = SIGACTION_PS(ps, signum);
    300 
    301 	if (nsa) {
    302 		if (nsa->sa_flags & ~SA_ALLBITS)
    303 			return (EINVAL);
    304 
    305 #ifndef __HAVE_SIGINFO
    306 		if (nsa->sa_flags & SA_SIGINFO)
    307 			return (EINVAL);
    308 #endif
    309 
    310 		prop = sigprop[signum];
    311 		if (prop & SA_CANTMASK)
    312 			return (EINVAL);
    313 
    314 		(void) splsched();	/* XXXSMP */
    315 		SIGACTION_PS(ps, signum) = *nsa;
    316 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    317 		ps->sa_sigdesc[signum].sd_vers = vers;
    318 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    319 		if ((prop & SA_NORESET) != 0)
    320 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    321 		if (signum == SIGCHLD) {
    322 			if (nsa->sa_flags & SA_NOCLDSTOP)
    323 				p->p_flag |= P_NOCLDSTOP;
    324 			else
    325 				p->p_flag &= ~P_NOCLDSTOP;
    326 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    327 				/*
    328 				 * Paranoia: since SA_NOCLDWAIT is implemented
    329 				 * by reparenting the dying child to PID 1 (and
    330 				 * trust it to reap the zombie), PID 1 itself
    331 				 * is forbidden to set SA_NOCLDWAIT.
    332 				 */
    333 				if (p->p_pid == 1)
    334 					p->p_flag &= ~P_NOCLDWAIT;
    335 				else
    336 					p->p_flag |= P_NOCLDWAIT;
    337 			} else
    338 				p->p_flag &= ~P_NOCLDWAIT;
    339 		}
    340 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    341 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    342 		else
    343 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    344 		/*
    345 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    346 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    347 		 * to ignore. However, don't put SIGCONT in
    348 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    349 	 	 */
    350 		if (nsa->sa_handler == SIG_IGN ||
    351 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    352 						/* never to be seen again */
    353 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    354 			if (signum != SIGCONT) {
    355 						/* easier in psignal */
    356 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    357 			}
    358 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    359 		} else {
    360 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    361 			if (nsa->sa_handler == SIG_DFL)
    362 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    363 			else
    364 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    365 		}
    366 		(void) spl0();
    367 	}
    368 
    369 	return (0);
    370 }
    371 
    372 #ifdef COMPAT_16
    373 /* ARGSUSED */
    374 int
    375 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    376 {
    377 	struct compat_16_sys___sigaction14_args /* {
    378 		syscallarg(int)				signum;
    379 		syscallarg(const struct sigaction *)	nsa;
    380 		syscallarg(struct sigaction *)		osa;
    381 	} */ *uap = v;
    382 	struct proc		*p;
    383 	struct sigaction	nsa, osa;
    384 	int			error;
    385 
    386 	if (SCARG(uap, nsa)) {
    387 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    388 		if (error)
    389 			return (error);
    390 	}
    391 	p = l->l_proc;
    392 	error = sigaction1(p, SCARG(uap, signum),
    393 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    394 	    NULL, 0);
    395 	if (error)
    396 		return (error);
    397 	if (SCARG(uap, osa)) {
    398 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    399 		if (error)
    400 			return (error);
    401 	}
    402 	return (0);
    403 }
    404 #endif
    405 
    406 /* ARGSUSED */
    407 int
    408 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    409 {
    410 	struct sys___sigaction_sigtramp_args /* {
    411 		syscallarg(int)				signum;
    412 		syscallarg(const struct sigaction *)	nsa;
    413 		syscallarg(struct sigaction *)		osa;
    414 		syscallarg(void *)			tramp;
    415 		syscallarg(int)				vers;
    416 	} */ *uap = v;
    417 	struct proc *p = l->l_proc;
    418 	struct sigaction nsa, osa;
    419 	int error;
    420 
    421 	if (SCARG(uap, nsa)) {
    422 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    423 		if (error)
    424 			return (error);
    425 	}
    426 	error = sigaction1(p, SCARG(uap, signum),
    427 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    428 	    SCARG(uap, tramp), SCARG(uap, vers));
    429 	if (error)
    430 		return (error);
    431 	if (SCARG(uap, osa)) {
    432 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    433 		if (error)
    434 			return (error);
    435 	}
    436 	return (0);
    437 }
    438 
    439 /*
    440  * Initialize signal state for process 0;
    441  * set to ignore signals that are ignored by default and disable the signal
    442  * stack.
    443  */
    444 void
    445 siginit(struct proc *p)
    446 {
    447 	struct sigacts	*ps;
    448 	int		signum, prop;
    449 
    450 	ps = p->p_sigacts;
    451 	sigemptyset(&contsigmask);
    452 	sigemptyset(&stopsigmask);
    453 	sigemptyset(&sigcantmask);
    454 	for (signum = 1; signum < NSIG; signum++) {
    455 		prop = sigprop[signum];
    456 		if (prop & SA_CONT)
    457 			sigaddset(&contsigmask, signum);
    458 		if (prop & SA_STOP)
    459 			sigaddset(&stopsigmask, signum);
    460 		if (prop & SA_CANTMASK)
    461 			sigaddset(&sigcantmask, signum);
    462 		if (prop & SA_IGNORE && signum != SIGCONT)
    463 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    464 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    465 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    466 	}
    467 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    468 	p->p_sigctx.ps_sigwaited = NULL;
    469 	p->p_flag &= ~P_NOCLDSTOP;
    470 
    471 	/*
    472 	 * Reset stack state to the user stack.
    473 	 */
    474 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    475 	p->p_sigctx.ps_sigstk.ss_size = 0;
    476 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    477 
    478 	/* One reference. */
    479 	ps->sa_refcnt = 1;
    480 }
    481 
    482 /*
    483  * Reset signals for an exec of the specified process.
    484  */
    485 void
    486 execsigs(struct proc *p)
    487 {
    488 	struct sigacts	*ps;
    489 	int		signum, prop;
    490 
    491 	sigactsunshare(p);
    492 
    493 	ps = p->p_sigacts;
    494 
    495 	/*
    496 	 * Reset caught signals.  Held signals remain held
    497 	 * through p_sigctx.ps_sigmask (unless they were caught,
    498 	 * and are now ignored by default).
    499 	 */
    500 	for (signum = 1; signum < NSIG; signum++) {
    501 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    502 			prop = sigprop[signum];
    503 			if (prop & SA_IGNORE) {
    504 				if ((prop & SA_CONT) == 0)
    505 					sigaddset(&p->p_sigctx.ps_sigignore,
    506 					    signum);
    507 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    508 			}
    509 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    510 		}
    511 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    512 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    513 	}
    514 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    515 	p->p_sigctx.ps_sigwaited = NULL;
    516 	p->p_flag &= ~P_NOCLDSTOP;
    517 
    518 	/*
    519 	 * Reset stack state to the user stack.
    520 	 */
    521 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    522 	p->p_sigctx.ps_sigstk.ss_size = 0;
    523 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    524 }
    525 
    526 int
    527 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    528 {
    529 
    530 	if (oss)
    531 		*oss = p->p_sigctx.ps_sigmask;
    532 
    533 	if (nss) {
    534 		(void)splsched();	/* XXXSMP */
    535 		switch (how) {
    536 		case SIG_BLOCK:
    537 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    538 			break;
    539 		case SIG_UNBLOCK:
    540 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    541 			CHECKSIGS(p);
    542 			break;
    543 		case SIG_SETMASK:
    544 			p->p_sigctx.ps_sigmask = *nss;
    545 			CHECKSIGS(p);
    546 			break;
    547 		default:
    548 			(void)spl0();	/* XXXSMP */
    549 			return (EINVAL);
    550 		}
    551 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    552 		(void)spl0();		/* XXXSMP */
    553 	}
    554 
    555 	return (0);
    556 }
    557 
    558 /*
    559  * Manipulate signal mask.
    560  * Note that we receive new mask, not pointer,
    561  * and return old mask as return value;
    562  * the library stub does the rest.
    563  */
    564 int
    565 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    566 {
    567 	struct sys___sigprocmask14_args /* {
    568 		syscallarg(int)			how;
    569 		syscallarg(const sigset_t *)	set;
    570 		syscallarg(sigset_t *)		oset;
    571 	} */ *uap = v;
    572 	struct proc	*p;
    573 	sigset_t	nss, oss;
    574 	int		error;
    575 
    576 	if (SCARG(uap, set)) {
    577 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    578 		if (error)
    579 			return (error);
    580 	}
    581 	p = l->l_proc;
    582 	error = sigprocmask1(p, SCARG(uap, how),
    583 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    584 	if (error)
    585 		return (error);
    586 	if (SCARG(uap, oset)) {
    587 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    588 		if (error)
    589 			return (error);
    590 	}
    591 	return (0);
    592 }
    593 
    594 void
    595 sigpending1(struct proc *p, sigset_t *ss)
    596 {
    597 
    598 	*ss = p->p_sigctx.ps_siglist;
    599 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    600 }
    601 
    602 /* ARGSUSED */
    603 int
    604 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    605 {
    606 	struct sys___sigpending14_args /* {
    607 		syscallarg(sigset_t *)	set;
    608 	} */ *uap = v;
    609 	struct proc	*p;
    610 	sigset_t	ss;
    611 
    612 	p = l->l_proc;
    613 	sigpending1(p, &ss);
    614 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    615 }
    616 
    617 int
    618 sigsuspend1(struct proc *p, const sigset_t *ss)
    619 {
    620 	struct sigacts *ps;
    621 
    622 	ps = p->p_sigacts;
    623 	if (ss) {
    624 		/*
    625 		 * When returning from sigpause, we want
    626 		 * the old mask to be restored after the
    627 		 * signal handler has finished.  Thus, we
    628 		 * save it here and mark the sigctx structure
    629 		 * to indicate this.
    630 		 */
    631 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    632 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    633 		(void) splsched();	/* XXXSMP */
    634 		p->p_sigctx.ps_sigmask = *ss;
    635 		CHECKSIGS(p);
    636 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    637 		(void) spl0();		/* XXXSMP */
    638 	}
    639 
    640 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    641 		/* void */;
    642 
    643 	/* always return EINTR rather than ERESTART... */
    644 	return (EINTR);
    645 }
    646 
    647 /*
    648  * Suspend process until signal, providing mask to be set
    649  * in the meantime.  Note nonstandard calling convention:
    650  * libc stub passes mask, not pointer, to save a copyin.
    651  */
    652 /* ARGSUSED */
    653 int
    654 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    655 {
    656 	struct sys___sigsuspend14_args /* {
    657 		syscallarg(const sigset_t *)	set;
    658 	} */ *uap = v;
    659 	struct proc	*p;
    660 	sigset_t	ss;
    661 	int		error;
    662 
    663 	if (SCARG(uap, set)) {
    664 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    665 		if (error)
    666 			return (error);
    667 	}
    668 
    669 	p = l->l_proc;
    670 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    671 }
    672 
    673 int
    674 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    675 	struct sigaltstack *oss)
    676 {
    677 
    678 	if (oss)
    679 		*oss = p->p_sigctx.ps_sigstk;
    680 
    681 	if (nss) {
    682 		if (nss->ss_flags & ~SS_ALLBITS)
    683 			return (EINVAL);
    684 
    685 		if (nss->ss_flags & SS_DISABLE) {
    686 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    687 				return (EINVAL);
    688 		} else {
    689 			if (nss->ss_size < MINSIGSTKSZ)
    690 				return (ENOMEM);
    691 		}
    692 		p->p_sigctx.ps_sigstk = *nss;
    693 	}
    694 
    695 	return (0);
    696 }
    697 
    698 /* ARGSUSED */
    699 int
    700 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    701 {
    702 	struct sys___sigaltstack14_args /* {
    703 		syscallarg(const struct sigaltstack *)	nss;
    704 		syscallarg(struct sigaltstack *)	oss;
    705 	} */ *uap = v;
    706 	struct proc		*p;
    707 	struct sigaltstack	nss, oss;
    708 	int			error;
    709 
    710 	if (SCARG(uap, nss)) {
    711 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    712 		if (error)
    713 			return (error);
    714 	}
    715 	p = l->l_proc;
    716 	error = sigaltstack1(p,
    717 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    718 	if (error)
    719 		return (error);
    720 	if (SCARG(uap, oss)) {
    721 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    722 		if (error)
    723 			return (error);
    724 	}
    725 	return (0);
    726 }
    727 
    728 /* ARGSUSED */
    729 int
    730 sys_kill(struct lwp *l, void *v, register_t *retval)
    731 {
    732 	struct sys_kill_args /* {
    733 		syscallarg(int)	pid;
    734 		syscallarg(int)	signum;
    735 	} */ *uap = v;
    736 	struct proc	*cp, *p;
    737 	struct pcred	*pc;
    738 	ksiginfo_t	ksi;
    739 
    740 	cp = l->l_proc;
    741 	pc = cp->p_cred;
    742 	if ((u_int)SCARG(uap, signum) >= NSIG)
    743 		return (EINVAL);
    744 	memset(&ksi, 0, sizeof(ksi));
    745 	ksi.ksi_signo = SCARG(uap, signum);
    746 	ksi.ksi_code = SI_USER;
    747 	ksi.ksi_pid = cp->p_pid;
    748 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    749 	if (SCARG(uap, pid) > 0) {
    750 		/* kill single process */
    751 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    752 			return (ESRCH);
    753 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    754 			return (EPERM);
    755 		if (SCARG(uap, signum))
    756 			kpsignal2(p, &ksi, 1);
    757 		return (0);
    758 	}
    759 	switch (SCARG(uap, pid)) {
    760 	case -1:		/* broadcast signal */
    761 		return (killpg1(cp, &ksi, 0, 1));
    762 	case 0:			/* signal own process group */
    763 		return (killpg1(cp, &ksi, 0, 0));
    764 	default:		/* negative explicit process group */
    765 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    766 	}
    767 	/* NOTREACHED */
    768 }
    769 
    770 /*
    771  * Common code for kill process group/broadcast kill.
    772  * cp is calling process.
    773  */
    774 int
    775 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    776 {
    777 	struct proc	*p;
    778 	struct pcred	*pc;
    779 	struct pgrp	*pgrp;
    780 	int		nfound;
    781 	int		signum = ksi->ksi_signo;
    782 
    783 	pc = cp->p_cred;
    784 	nfound = 0;
    785 	if (all) {
    786 		/*
    787 		 * broadcast
    788 		 */
    789 		proclist_lock_read();
    790 		LIST_FOREACH(p, &allproc, p_list) {
    791 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    792 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    793 				continue;
    794 			nfound++;
    795 			if (signum)
    796 				kpsignal2(p, ksi, 1);
    797 		}
    798 		proclist_unlock_read();
    799 	} else {
    800 		if (pgid == 0)
    801 			/*
    802 			 * zero pgid means send to my process group.
    803 			 */
    804 			pgrp = cp->p_pgrp;
    805 		else {
    806 			pgrp = pgfind(pgid);
    807 			if (pgrp == NULL)
    808 				return (ESRCH);
    809 		}
    810 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    811 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    812 			    !CANSIGNAL(cp, pc, p, signum))
    813 				continue;
    814 			nfound++;
    815 			if (signum && P_ZOMBIE(p) == 0)
    816 				kpsignal2(p, ksi, 1);
    817 		}
    818 	}
    819 	return (nfound ? 0 : ESRCH);
    820 }
    821 
    822 /*
    823  * Send a signal to a process group.
    824  */
    825 void
    826 gsignal(int pgid, int signum)
    827 {
    828 	ksiginfo_t ksi;
    829 	memset(&ksi, 0, sizeof(ksi));
    830 	ksi.ksi_signo = signum;
    831 	kgsignal(pgid, &ksi, NULL);
    832 }
    833 
    834 void
    835 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    836 {
    837 	struct pgrp *pgrp;
    838 
    839 	if (pgid && (pgrp = pgfind(pgid)))
    840 		kpgsignal(pgrp, ksi, data, 0);
    841 }
    842 
    843 /*
    844  * Send a signal to a process group. If checktty is 1,
    845  * limit to members which have a controlling terminal.
    846  */
    847 void
    848 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    849 {
    850 	ksiginfo_t ksi;
    851 	memset(&ksi, 0, sizeof(ksi));
    852 	ksi.ksi_signo = sig;
    853 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    854 }
    855 
    856 void
    857 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    858 {
    859 	struct proc *p;
    860 
    861 	if (pgrp)
    862 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    863 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    864 				kpsignal(p, ksi, data);
    865 }
    866 
    867 /*
    868  * Send a signal caused by a trap to the current process.
    869  * If it will be caught immediately, deliver it with correct code.
    870  * Otherwise, post it normally.
    871  */
    872 #ifndef __HAVE_SIGINFO
    873 void _trapsignal(struct lwp *, const ksiginfo_t *);
    874 void
    875 trapsignal(struct lwp *l, int signum, u_long code)
    876 {
    877 #define trapsignal _trapsignal
    878 	ksiginfo_t ksi;
    879 
    880 	KSI_INIT_TRAP(&ksi);
    881 	ksi.ksi_signo = signum;
    882 	ksi.ksi_trap = (int)code;
    883 	trapsignal(l, &ksi);
    884 }
    885 #endif
    886 
    887 void
    888 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    889 {
    890 	struct proc	*p;
    891 	struct sigacts	*ps;
    892 	int signum = ksi->ksi_signo;
    893 
    894 	KASSERT(KSI_TRAP_P(ksi));
    895 
    896 	p = l->l_proc;
    897 	ps = p->p_sigacts;
    898 	if ((p->p_flag & P_TRACED) == 0 &&
    899 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    900 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    901 		p->p_stats->p_ru.ru_nsignals++;
    902 #ifdef KTRACE
    903 		if (KTRPOINT(p, KTR_PSIG))
    904 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    905 			    &p->p_sigctx.ps_sigmask, ksi);
    906 #endif
    907 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    908 		(void) splsched();	/* XXXSMP */
    909 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    910 		    &p->p_sigctx.ps_sigmask);
    911 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    912 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    913 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    914 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    915 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    916 		}
    917 		(void) spl0();		/* XXXSMP */
    918 	} else {
    919 		p->p_sigctx.ps_lwp = l->l_lid;
    920 		/* XXX for core dump/debugger */
    921 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    922 		p->p_sigctx.ps_code = ksi->ksi_trap;
    923 		kpsignal2(p, ksi, 1);
    924 	}
    925 }
    926 
    927 /*
    928  * Fill in signal information and signal the parent for a child status change.
    929  */
    930 static void
    931 child_psignal(struct proc *p, int dolock)
    932 {
    933 	ksiginfo_t ksi;
    934 
    935 	(void)memset(&ksi, 0, sizeof(ksi));
    936 	ksi.ksi_signo = SIGCHLD;
    937 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    938 	ksi.ksi_pid = p->p_pid;
    939 	ksi.ksi_uid = p->p_ucred->cr_uid;
    940 	ksi.ksi_status = p->p_xstat;
    941 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    942 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    943 	kpsignal2(p->p_pptr, &ksi, dolock);
    944 }
    945 
    946 /*
    947  * Send the signal to the process.  If the signal has an action, the action
    948  * is usually performed by the target process rather than the caller; we add
    949  * the signal to the set of pending signals for the process.
    950  *
    951  * Exceptions:
    952  *   o When a stop signal is sent to a sleeping process that takes the
    953  *     default action, the process is stopped without awakening it.
    954  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    955  *     regardless of the signal action (eg, blocked or ignored).
    956  *
    957  * Other ignored signals are discarded immediately.
    958  *
    959  * XXXSMP: Invoked as psignal() or sched_psignal().
    960  */
    961 void
    962 psignal1(struct proc *p, int signum, int dolock)
    963 {
    964 	ksiginfo_t ksi;
    965 
    966 	memset(&ksi, 0, sizeof(ksi));
    967 	ksi.ksi_signo = signum;
    968 	kpsignal2(p, &ksi, dolock);
    969 }
    970 
    971 void
    972 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
    973 {
    974 
    975 	if ((p->p_flag & P_WEXIT) == 0 && data) {
    976 		size_t fd;
    977 		struct filedesc *fdp = p->p_fd;
    978 
    979 		ksi->ksi_fd = -1;
    980 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    981 			struct file *fp = fdp->fd_ofiles[fd];
    982 			/* XXX: lock? */
    983 			if (fp && fp->f_data == data) {
    984 				ksi->ksi_fd = fd;
    985 				break;
    986 			}
    987 		}
    988 	}
    989 	kpsignal2(p, ksi, dolock);
    990 }
    991 
    992 static void
    993 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
    994 {
    995 	struct lwp *l, *suspended = NULL;
    996 	int	s = 0, prop, allsusp;
    997 	sig_t	action;
    998 	int	signum = ksi->ksi_signo;
    999 
   1000 #ifdef DIAGNOSTIC
   1001 	if (signum <= 0 || signum >= NSIG)
   1002 		panic("psignal signal number %d", signum);
   1003 
   1004 	/* XXXSMP: works, but icky */
   1005 	if (dolock)
   1006 		SCHED_ASSERT_UNLOCKED();
   1007 	else
   1008 		SCHED_ASSERT_LOCKED();
   1009 #endif
   1010 
   1011 	/*
   1012 	 * Notify any interested parties in the signal.
   1013 	 */
   1014 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
   1015 
   1016 	prop = sigprop[signum];
   1017 
   1018 	/*
   1019 	 * If proc is traced, always give parent a chance.
   1020 	 */
   1021 	if (p->p_flag & P_TRACED)
   1022 		action = SIG_DFL;
   1023 	else {
   1024 		/*
   1025 		 * If the signal is being ignored,
   1026 		 * then we forget about it immediately.
   1027 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1028 		 * and if it is set to SIG_IGN,
   1029 		 * action will be SIG_DFL here.)
   1030 		 */
   1031 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1032 			return;
   1033 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1034 			action = SIG_HOLD;
   1035 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1036 			action = SIG_CATCH;
   1037 		else {
   1038 			action = SIG_DFL;
   1039 
   1040 			if (prop & SA_KILL && p->p_nice > NZERO)
   1041 				p->p_nice = NZERO;
   1042 
   1043 			/*
   1044 			 * If sending a tty stop signal to a member of an
   1045 			 * orphaned process group, discard the signal here if
   1046 			 * the action is default; don't stop the process below
   1047 			 * if sleeping, and don't clear any pending SIGCONT.
   1048 			 */
   1049 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1050 				return;
   1051 		}
   1052 	}
   1053 
   1054 	if (prop & SA_CONT)
   1055 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1056 
   1057 	if (prop & SA_STOP)
   1058 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1059 
   1060 	/*
   1061 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1062 	 * please!), check if anything waits on it. If yes, save the
   1063 	 * info into provided ps_sigwaited, and wake-up the waiter.
   1064 	 * The signal won't be processed further here.
   1065 	 */
   1066 	if ((prop & SA_CANTMASK) == 0
   1067 	    && p->p_sigctx.ps_sigwaited
   1068 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
   1069 	    && p->p_stat != SSTOP) {
   1070 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
   1071 		p->p_sigctx.ps_sigwaited = NULL;
   1072 		if (dolock)
   1073 			wakeup_one(&p->p_sigctx.ps_sigwait);
   1074 		else
   1075 			sched_wakeup(&p->p_sigctx.ps_sigwait);
   1076 		return;
   1077 	}
   1078 
   1079 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1080 
   1081 	/* CHECKSIGS() is "inlined" here. */
   1082 	p->p_sigctx.ps_sigcheck = 1;
   1083 
   1084 	/*
   1085 	 * Defer further processing for signals which are held,
   1086 	 * except that stopped processes must be continued by SIGCONT.
   1087 	 */
   1088 	if (action == SIG_HOLD &&
   1089 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1090 		ksiginfo_put(p, ksi);
   1091 		return;
   1092 	}
   1093 	/* XXXSMP: works, but icky */
   1094 	if (dolock)
   1095 		SCHED_LOCK(s);
   1096 
   1097 	if (p->p_flag & P_SA) {
   1098 		l = p->p_sa->sa_vp;
   1099 		allsusp = 0;
   1100 		if (p->p_stat == SACTIVE) {
   1101 			KDASSERT(l != NULL);
   1102 			if (l->l_flag & L_SA_IDLE) {
   1103 				/* wakeup idle LWP */
   1104 			} else if (l->l_flag & L_SA_YIELD) {
   1105 				/* idle LWP is already waking up */
   1106 				goto out;
   1107 				/*NOTREACHED*/
   1108 			} else {
   1109 				if (l->l_stat == LSRUN ||
   1110 				    l->l_stat == LSONPROC) {
   1111 					signotify(p);
   1112 					goto out;
   1113 					/*NOTREACHED*/
   1114 				}
   1115 				if (l->l_stat == LSSLEEP &&
   1116 				    l->l_flag & L_SINTR) {
   1117 					/* ok to signal vp lwp */
   1118 				} else if (signum == SIGKILL) {
   1119 					/*
   1120 					 * get a suspended lwp from
   1121 					 * the cache to send KILL
   1122 					 * signal
   1123 					 * XXXcl add signal checks at resume points
   1124 					 */
   1125 					suspended = sa_getcachelwp(p);
   1126 					allsusp = 1;
   1127 				} else
   1128 					l = NULL;
   1129 			}
   1130 		} else if (p->p_stat == SSTOP) {
   1131 			if (l->l_stat != LSSLEEP || (l->l_flag & L_SINTR) == 0)
   1132 				l = NULL;
   1133 		}
   1134 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
   1135 		/*
   1136 		 * At least one LWP is running or on a run queue.
   1137 		 * The signal will be noticed when one of them returns
   1138 		 * to userspace.
   1139 		 */
   1140 		signotify(p);
   1141 		/*
   1142 		 * The signal will be noticed very soon.
   1143 		 */
   1144 		goto out;
   1145 		/*NOTREACHED*/
   1146 	} else {
   1147 		/*
   1148 		 * Find out if any of the sleeps are interruptable,
   1149 		 * and if all the live LWPs remaining are suspended.
   1150 		 */
   1151 		allsusp = 1;
   1152 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1153 			if (l->l_stat == LSSLEEP &&
   1154 			    l->l_flag & L_SINTR)
   1155 				break;
   1156 			if (l->l_stat == LSSUSPENDED)
   1157 				suspended = l;
   1158 			else if ((l->l_stat != LSZOMB) &&
   1159 			    (l->l_stat != LSDEAD))
   1160 				allsusp = 0;
   1161 		}
   1162 	}
   1163 
   1164 	switch (p->p_stat) {
   1165 	case SACTIVE:
   1166 
   1167 		if (l != NULL && (p->p_flag & P_TRACED))
   1168 			goto run;
   1169 
   1170 		/*
   1171 		 * If SIGCONT is default (or ignored) and process is
   1172 		 * asleep, we are finished; the process should not
   1173 		 * be awakened.
   1174 		 */
   1175 		if ((prop & SA_CONT) && action == SIG_DFL) {
   1176 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1177 			goto done;
   1178 		}
   1179 
   1180 		/*
   1181 		 * When a sleeping process receives a stop
   1182 		 * signal, process immediately if possible.
   1183 		 */
   1184 		if ((prop & SA_STOP) && action == SIG_DFL) {
   1185 			/*
   1186 			 * If a child holding parent blocked,
   1187 			 * stopping could cause deadlock.
   1188 			 */
   1189 			if (p->p_flag & P_PPWAIT) {
   1190 				goto out;
   1191 			}
   1192 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1193 			p->p_xstat = signum;
   1194 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1195 				/*
   1196 				 * XXXSMP: recursive call; don't lock
   1197 				 * the second time around.
   1198 				 */
   1199 				child_psignal(p, 0);
   1200 			}
   1201 			proc_stop(p, 1);	/* XXXSMP: recurse? */
   1202 			goto done;
   1203 		}
   1204 
   1205 		if (l == NULL) {
   1206 			/*
   1207 			 * Special case: SIGKILL of a process
   1208 			 * which is entirely composed of
   1209 			 * suspended LWPs should succeed. We
   1210 			 * make this happen by unsuspending one of
   1211 			 * them.
   1212 			 */
   1213 			if (allsusp && (signum == SIGKILL))
   1214 				lwp_continue(suspended);
   1215 			goto done;
   1216 		}
   1217 		/*
   1218 		 * All other (caught or default) signals
   1219 		 * cause the process to run.
   1220 		 */
   1221 		goto runfast;
   1222 		/*NOTREACHED*/
   1223 	case SSTOP:
   1224 		/* Process is stopped */
   1225 		/*
   1226 		 * If traced process is already stopped,
   1227 		 * then no further action is necessary.
   1228 		 */
   1229 		if (p->p_flag & P_TRACED)
   1230 			goto done;
   1231 
   1232 		/*
   1233 		 * Kill signal always sets processes running,
   1234 		 * if possible.
   1235 		 */
   1236 		if (signum == SIGKILL) {
   1237 			l = proc_unstop(p);
   1238 			if (l)
   1239 				goto runfast;
   1240 			goto done;
   1241 		}
   1242 
   1243 		if (prop & SA_CONT) {
   1244 			/*
   1245 			 * If SIGCONT is default (or ignored),
   1246 			 * we continue the process but don't
   1247 			 * leave the signal in ps_siglist, as
   1248 			 * it has no further action.  If
   1249 			 * SIGCONT is held, we continue the
   1250 			 * process and leave the signal in
   1251 			 * ps_siglist.  If the process catches
   1252 			 * SIGCONT, let it handle the signal
   1253 			 * itself.  If it isn't waiting on an
   1254 			 * event, then it goes back to run
   1255 			 * state.  Otherwise, process goes
   1256 			 * back to sleep state.
   1257 			 */
   1258 			if (action == SIG_DFL)
   1259 				sigdelset(&p->p_sigctx.ps_siglist,
   1260 				    signum);
   1261 			l = proc_unstop(p);
   1262 			if (l && (action == SIG_CATCH))
   1263 				goto runfast;
   1264 			goto out;
   1265 		}
   1266 
   1267 		if (prop & SA_STOP) {
   1268 			/*
   1269 			 * Already stopped, don't need to stop again.
   1270 			 * (If we did the shell could get confused.)
   1271 			 */
   1272 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1273 			goto done;
   1274 		}
   1275 
   1276 		/*
   1277 		 * If a lwp is sleeping interruptibly, then
   1278 		 * wake it up; it will run until the kernel
   1279 		 * boundary, where it will stop in issignal(),
   1280 		 * since p->p_stat is still SSTOP. When the
   1281 		 * process is continued, it will be made
   1282 		 * runnable and can look at the signal.
   1283 		 */
   1284 		if (l)
   1285 			goto run;
   1286 		goto out;
   1287 	case SIDL:
   1288 		/* Process is being created by fork */
   1289 		/* XXX: We are not ready to receive signals yet */
   1290 		goto done;
   1291 	default:
   1292 		/* Else what? */
   1293 		panic("psignal: Invalid process state %d.", p->p_stat);
   1294 	}
   1295 	/*NOTREACHED*/
   1296 
   1297  runfast:
   1298 	if (action == SIG_CATCH) {
   1299 		ksiginfo_put(p, ksi);
   1300 		action = SIG_HOLD;
   1301 	}
   1302 	/*
   1303 	 * Raise priority to at least PUSER.
   1304 	 */
   1305 	if (l->l_priority > PUSER)
   1306 		l->l_priority = PUSER;
   1307  run:
   1308 	if (action == SIG_CATCH) {
   1309 		ksiginfo_put(p, ksi);
   1310 		action = SIG_HOLD;
   1311 	}
   1312 
   1313 	setrunnable(l);		/* XXXSMP: recurse? */
   1314  out:
   1315 	if (action == SIG_CATCH)
   1316 		ksiginfo_put(p, ksi);
   1317  done:
   1318 	/* XXXSMP: works, but icky */
   1319 	if (dolock)
   1320 		SCHED_UNLOCK(s);
   1321 }
   1322 
   1323 void
   1324 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1325 {
   1326 	struct proc *p = l->l_proc;
   1327 	struct lwp *le, *li;
   1328 	siginfo_t *si;
   1329 	int f;
   1330 
   1331 	if (p->p_flag & P_SA) {
   1332 
   1333 		/* XXXUPSXXX What if not on sa_vp ? */
   1334 
   1335 		f = l->l_flag & L_SA;
   1336 		l->l_flag &= ~L_SA;
   1337 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1338 		si->_info = ksi->ksi_info;
   1339 		le = li = NULL;
   1340 		if (KSI_TRAP_P(ksi))
   1341 			le = l;
   1342 		else
   1343 			li = l;
   1344 
   1345 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1346 			    sizeof(siginfo_t), si);
   1347 		l->l_flag |= f;
   1348 		return;
   1349 	}
   1350 
   1351 #ifdef __HAVE_SIGINFO
   1352 	(*p->p_emul->e_sendsig)(ksi, mask);
   1353 #else
   1354 	(*p->p_emul->e_sendsig)(ksi->ksi_signo, mask, KSI_TRAPCODE(ksi));
   1355 #endif
   1356 }
   1357 
   1358 static __inline int firstsig(const sigset_t *);
   1359 
   1360 static __inline int
   1361 firstsig(const sigset_t *ss)
   1362 {
   1363 	int sig;
   1364 
   1365 	sig = ffs(ss->__bits[0]);
   1366 	if (sig != 0)
   1367 		return (sig);
   1368 #if NSIG > 33
   1369 	sig = ffs(ss->__bits[1]);
   1370 	if (sig != 0)
   1371 		return (sig + 32);
   1372 #endif
   1373 #if NSIG > 65
   1374 	sig = ffs(ss->__bits[2]);
   1375 	if (sig != 0)
   1376 		return (sig + 64);
   1377 #endif
   1378 #if NSIG > 97
   1379 	sig = ffs(ss->__bits[3]);
   1380 	if (sig != 0)
   1381 		return (sig + 96);
   1382 #endif
   1383 	return (0);
   1384 }
   1385 
   1386 /*
   1387  * If the current process has received a signal (should be caught or cause
   1388  * termination, should interrupt current syscall), return the signal number.
   1389  * Stop signals with default action are processed immediately, then cleared;
   1390  * they aren't returned.  This is checked after each entry to the system for
   1391  * a syscall or trap (though this can usually be done without calling issignal
   1392  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1393  * sequence is
   1394  *
   1395  *	while (signum = CURSIG(curlwp))
   1396  *		postsig(signum);
   1397  */
   1398 int
   1399 issignal(struct lwp *l)
   1400 {
   1401 	struct proc	*p = l->l_proc;
   1402 	int		s = 0, signum, prop;
   1403 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1404 	sigset_t	ss;
   1405 
   1406 	if (l->l_flag & L_SA) {
   1407 		struct sadata *sa = p->p_sa;
   1408 
   1409 		/* Bail out if we do not own the virtual processor */
   1410 		if (sa->sa_vp != l)
   1411 			return 0;
   1412 	}
   1413 
   1414 	if (p->p_stat == SSTOP) {
   1415 		/*
   1416 		 * The process is stopped/stopping. Stop ourselves now that
   1417 		 * we're on the kernel/userspace boundary.
   1418 		 */
   1419 		if (dolock)
   1420 			SCHED_LOCK(s);
   1421 		l->l_stat = LSSTOP;
   1422 		p->p_nrlwps--;
   1423 		if (p->p_flag & P_TRACED)
   1424 			goto sigtraceswitch;
   1425 		else
   1426 			goto sigswitch;
   1427 	}
   1428 	for (;;) {
   1429 		sigpending1(p, &ss);
   1430 		if (p->p_flag & P_PPWAIT)
   1431 			sigminusset(&stopsigmask, &ss);
   1432 		signum = firstsig(&ss);
   1433 		if (signum == 0) {		 	/* no signal to send */
   1434 			p->p_sigctx.ps_sigcheck = 0;
   1435 			if (locked && dolock)
   1436 				SCHED_LOCK(s);
   1437 			return (0);
   1438 		}
   1439 							/* take the signal! */
   1440 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1441 
   1442 		/*
   1443 		 * We should see pending but ignored signals
   1444 		 * only if P_TRACED was on when they were posted.
   1445 		 */
   1446 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1447 		    (p->p_flag & P_TRACED) == 0)
   1448 			continue;
   1449 
   1450 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1451 			/*
   1452 			 * If traced, always stop, and stay
   1453 			 * stopped until released by the debugger.
   1454 			 */
   1455 			p->p_xstat = signum;
   1456 
   1457 			/* Emulation-specific handling of signal trace */
   1458 			if ((p->p_emul->e_tracesig != NULL) &&
   1459 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
   1460 				goto childresumed;
   1461 
   1462 			if ((p->p_flag & P_FSTRACE) == 0)
   1463 				child_psignal(p, dolock);
   1464 			if (dolock)
   1465 				SCHED_LOCK(s);
   1466 			proc_stop(p, 1);
   1467 		sigtraceswitch:
   1468 			mi_switch(l, NULL);
   1469 			SCHED_ASSERT_UNLOCKED();
   1470 			if (dolock)
   1471 				splx(s);
   1472 			else
   1473 				dolock = 1;
   1474 
   1475 		childresumed:
   1476 			/*
   1477 			 * If we are no longer being traced, or the parent
   1478 			 * didn't give us a signal, look for more signals.
   1479 			 */
   1480 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1481 				continue;
   1482 
   1483 			/*
   1484 			 * If the new signal is being masked, look for other
   1485 			 * signals.
   1486 			 */
   1487 			signum = p->p_xstat;
   1488 			p->p_xstat = 0;
   1489 			/*
   1490 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1491 			 * in setrunnable().
   1492 			 */
   1493 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1494 				continue;
   1495 							/* take the signal! */
   1496 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1497 		}
   1498 
   1499 		prop = sigprop[signum];
   1500 
   1501 		/*
   1502 		 * Decide whether the signal should be returned.
   1503 		 * Return the signal's number, or fall through
   1504 		 * to clear it from the pending mask.
   1505 		 */
   1506 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1507 
   1508 		case (long)SIG_DFL:
   1509 			/*
   1510 			 * Don't take default actions on system processes.
   1511 			 */
   1512 			if (p->p_pid <= 1) {
   1513 #ifdef DIAGNOSTIC
   1514 				/*
   1515 				 * Are you sure you want to ignore SIGSEGV
   1516 				 * in init? XXX
   1517 				 */
   1518 				printf("Process (pid %d) got signal %d\n",
   1519 				    p->p_pid, signum);
   1520 #endif
   1521 				break;		/* == ignore */
   1522 			}
   1523 			/*
   1524 			 * If there is a pending stop signal to process
   1525 			 * with default action, stop here,
   1526 			 * then clear the signal.  However,
   1527 			 * if process is member of an orphaned
   1528 			 * process group, ignore tty stop signals.
   1529 			 */
   1530 			if (prop & SA_STOP) {
   1531 				if (p->p_flag & P_TRACED ||
   1532 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1533 				    prop & SA_TTYSTOP))
   1534 					break;	/* == ignore */
   1535 				p->p_xstat = signum;
   1536 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1537 					child_psignal(p, dolock);
   1538 				if (dolock)
   1539 					SCHED_LOCK(s);
   1540 				proc_stop(p, 1);
   1541 			sigswitch:
   1542 				mi_switch(l, NULL);
   1543 				SCHED_ASSERT_UNLOCKED();
   1544 				if (dolock)
   1545 					splx(s);
   1546 				else
   1547 					dolock = 1;
   1548 				break;
   1549 			} else if (prop & SA_IGNORE) {
   1550 				/*
   1551 				 * Except for SIGCONT, shouldn't get here.
   1552 				 * Default action is to ignore; drop it.
   1553 				 */
   1554 				break;		/* == ignore */
   1555 			} else
   1556 				goto keep;
   1557 			/*NOTREACHED*/
   1558 
   1559 		case (long)SIG_IGN:
   1560 			/*
   1561 			 * Masking above should prevent us ever trying
   1562 			 * to take action on an ignored signal other
   1563 			 * than SIGCONT, unless process is traced.
   1564 			 */
   1565 #ifdef DEBUG_ISSIGNAL
   1566 			if ((prop & SA_CONT) == 0 &&
   1567 			    (p->p_flag & P_TRACED) == 0)
   1568 				printf("issignal\n");
   1569 #endif
   1570 			break;		/* == ignore */
   1571 
   1572 		default:
   1573 			/*
   1574 			 * This signal has an action, let
   1575 			 * postsig() process it.
   1576 			 */
   1577 			goto keep;
   1578 		}
   1579 	}
   1580 	/* NOTREACHED */
   1581 
   1582  keep:
   1583 						/* leave the signal for later */
   1584 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1585 	CHECKSIGS(p);
   1586 	if (locked && dolock)
   1587 		SCHED_LOCK(s);
   1588 	return (signum);
   1589 }
   1590 
   1591 /*
   1592  * Put the argument process into the stopped state and notify the parent
   1593  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1594  * on the run queue.
   1595  */
   1596 void
   1597 proc_stop(struct proc *p, int wakeup)
   1598 {
   1599 	struct lwp *l;
   1600 	struct proc *parent;
   1601 
   1602 	SCHED_ASSERT_LOCKED();
   1603 
   1604 	/* XXX lock process LWP state */
   1605 	p->p_flag &= ~P_WAITED;
   1606 	p->p_stat = SSTOP;
   1607 	parent = p->p_pptr;
   1608 	parent->p_nstopchild++;
   1609 
   1610 	if (p->p_flag & P_SA) {
   1611 		/*
   1612 		 * Only (try to) put the LWP on the VP in stopped
   1613 		 * state.
   1614 		 * All other LWPs will suspend in sa_setwoken()
   1615 		 * because the VP-LWP in stopped state cannot be
   1616 		 * repossessed.
   1617 		 */
   1618 		l = p->p_sa->sa_vp;
   1619 		if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
   1620 			l->l_stat = LSSTOP;
   1621 			p->p_nrlwps--;
   1622 		} else if (l->l_stat == LSRUN) {
   1623 			/* Remove LWP from the run queue */
   1624 			remrunqueue(l);
   1625 			l->l_stat = LSSTOP;
   1626 			p->p_nrlwps--;
   1627 		} else if (l->l_stat == LSSLEEP &&
   1628 		    l->l_flag & L_SA_IDLE) {
   1629 			l->l_flag &= ~L_SA_IDLE;
   1630 			l->l_stat = LSSTOP;
   1631 		}
   1632 		goto out;
   1633 	}
   1634 
   1635 	/*
   1636 	 * Put as many LWP's as possible in stopped state.
   1637 	 * Sleeping ones will notice the stopped state as they try to
   1638 	 * return to userspace.
   1639 	 */
   1640 
   1641 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1642 		if (l->l_stat == LSONPROC) {
   1643 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1644 			 * is curlwp and hence is about to be mi_switched
   1645 			 * away; the only callers of proc_stop() are:
   1646 			 * - psignal
   1647 			 * - issignal()
   1648 			 * For the former, proc_stop() is only called when
   1649 			 * no processes are running, so we don't worry.
   1650 			 * For the latter, proc_stop() is called right
   1651 			 * before mi_switch().
   1652 			 */
   1653 			l->l_stat = LSSTOP;
   1654 			p->p_nrlwps--;
   1655 		} else if (l->l_stat == LSRUN) {
   1656 			/* Remove LWP from the run queue */
   1657 			remrunqueue(l);
   1658 			l->l_stat = LSSTOP;
   1659 			p->p_nrlwps--;
   1660 		} else if ((l->l_stat == LSSLEEP) ||
   1661 		    (l->l_stat == LSSUSPENDED) ||
   1662 		    (l->l_stat == LSZOMB) ||
   1663 		    (l->l_stat == LSDEAD)) {
   1664 			/*
   1665 			 * Don't do anything; let sleeping LWPs
   1666 			 * discover the stopped state of the process
   1667 			 * on their way out of the kernel; otherwise,
   1668 			 * things like NFS threads that sleep with
   1669 			 * locks will block the rest of the system
   1670 			 * from getting any work done.
   1671 			 *
   1672 			 * Suspended/dead/zombie LWPs aren't going
   1673 			 * anywhere, so we don't need to touch them.
   1674 			 */
   1675 		}
   1676 #ifdef DIAGNOSTIC
   1677 		else {
   1678 			panic("proc_stop: process %d lwp %d "
   1679 			      "in unstoppable state %d.\n",
   1680 			    p->p_pid, l->l_lid, l->l_stat);
   1681 		}
   1682 #endif
   1683 	}
   1684 
   1685  out:
   1686 	/* XXX unlock process LWP state */
   1687 
   1688 	if (wakeup)
   1689 		sched_wakeup((caddr_t)p->p_pptr);
   1690 }
   1691 
   1692 /*
   1693  * Given a process in state SSTOP, set the state back to SACTIVE and
   1694  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1695  *
   1696  * If no LWPs ended up runnable (and therefore able to take a signal),
   1697  * return a LWP that is sleeping interruptably. The caller can wake
   1698  * that LWP up to take a signal.
   1699  */
   1700 struct lwp *
   1701 proc_unstop(struct proc *p)
   1702 {
   1703 	struct lwp *l, *lr = NULL;
   1704 	int cantake = 0;
   1705 
   1706 	SCHED_ASSERT_LOCKED();
   1707 
   1708 	/*
   1709 	 * Our caller wants to be informed if there are only sleeping
   1710 	 * and interruptable LWPs left after we have run so that it
   1711 	 * can invoke setrunnable() if required - return one of the
   1712 	 * interruptable LWPs if this is the case.
   1713 	 */
   1714 
   1715 	if (!(p->p_flag & P_WAITED))
   1716 		p->p_pptr->p_nstopchild--;
   1717 	p->p_stat = SACTIVE;
   1718 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1719 		if (l->l_stat == LSRUN) {
   1720 			lr = NULL;
   1721 			cantake = 1;
   1722 		}
   1723 		if (l->l_stat != LSSTOP)
   1724 			continue;
   1725 
   1726 		if (l->l_wchan != NULL) {
   1727 			l->l_stat = LSSLEEP;
   1728 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1729 				lr = l;
   1730 				cantake = 1;
   1731 			}
   1732 		} else {
   1733 			setrunnable(l);
   1734 			lr = NULL;
   1735 			cantake = 1;
   1736 		}
   1737 	}
   1738 	if (p->p_flag & P_SA) {
   1739 		/* Only consider returning the LWP on the VP. */
   1740 		lr = p->p_sa->sa_vp;
   1741 		if (lr->l_stat == LSSLEEP) {
   1742 			if (lr->l_flag & L_SA_YIELD)
   1743 				setrunnable(lr);
   1744 			else if (lr->l_flag & L_SINTR)
   1745 				return lr;
   1746 		}
   1747 		return NULL;
   1748 	}
   1749 	return lr;
   1750 }
   1751 
   1752 /*
   1753  * Take the action for the specified signal
   1754  * from the current set of pending signals.
   1755  */
   1756 void
   1757 postsig(int signum)
   1758 {
   1759 	struct lwp *l;
   1760 	struct proc	*p;
   1761 	struct sigacts	*ps;
   1762 	sig_t		action;
   1763 	sigset_t	*returnmask;
   1764 
   1765 	l = curlwp;
   1766 	p = l->l_proc;
   1767 	ps = p->p_sigacts;
   1768 #ifdef DIAGNOSTIC
   1769 	if (signum == 0)
   1770 		panic("postsig");
   1771 #endif
   1772 
   1773 	KERNEL_PROC_LOCK(l);
   1774 
   1775 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1776 	action = SIGACTION_PS(ps, signum).sa_handler;
   1777 	if (action == SIG_DFL) {
   1778 #ifdef KTRACE
   1779 		if (KTRPOINT(p, KTR_PSIG))
   1780 			ktrpsig(p, signum, action,
   1781 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1782 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1783 			    NULL);
   1784 #endif
   1785 		/*
   1786 		 * Default action, where the default is to kill
   1787 		 * the process.  (Other cases were ignored above.)
   1788 		 */
   1789 		sigexit(l, signum);
   1790 		/* NOTREACHED */
   1791 	} else {
   1792 		ksiginfo_t *ksi;
   1793 		/*
   1794 		 * If we get here, the signal must be caught.
   1795 		 */
   1796 #ifdef DIAGNOSTIC
   1797 		if (action == SIG_IGN ||
   1798 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1799 			panic("postsig action");
   1800 #endif
   1801 		/*
   1802 		 * Set the new mask value and also defer further
   1803 		 * occurrences of this signal.
   1804 		 *
   1805 		 * Special case: user has done a sigpause.  Here the
   1806 		 * current mask is not of interest, but rather the
   1807 		 * mask from before the sigpause is what we want
   1808 		 * restored after the signal processing is completed.
   1809 		 */
   1810 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1811 			returnmask = &p->p_sigctx.ps_oldmask;
   1812 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1813 		} else
   1814 			returnmask = &p->p_sigctx.ps_sigmask;
   1815 		p->p_stats->p_ru.ru_nsignals++;
   1816 		ksi = ksiginfo_get(p, signum);
   1817 #ifdef KTRACE
   1818 		if (KTRPOINT(p, KTR_PSIG))
   1819 			ktrpsig(p, signum, action,
   1820 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1821 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1822 			    ksi);
   1823 #endif
   1824 		if (ksi == NULL) {
   1825 			ksiginfo_t ksi1;
   1826 			/*
   1827 			 * we did not save any siginfo for this, either
   1828 			 * because the signal was not caught, or because the
   1829 			 * user did not request SA_SIGINFO
   1830 			 */
   1831 			(void)memset(&ksi1, 0, sizeof(ksi1));
   1832 			ksi1.ksi_signo = signum;
   1833 			kpsendsig(l, &ksi1, returnmask);
   1834 		} else {
   1835 			kpsendsig(l, ksi, returnmask);
   1836 			pool_put(&ksiginfo_pool, ksi);
   1837 		}
   1838 		p->p_sigctx.ps_lwp = 0;
   1839 		p->p_sigctx.ps_code = 0;
   1840 		p->p_sigctx.ps_signo = 0;
   1841 		(void) splsched();	/* XXXSMP */
   1842 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1843 		    &p->p_sigctx.ps_sigmask);
   1844 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1845 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1846 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1847 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1848 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1849 		}
   1850 		(void) spl0();		/* XXXSMP */
   1851 	}
   1852 
   1853 	KERNEL_PROC_UNLOCK(l);
   1854 }
   1855 
   1856 /*
   1857  * Kill the current process for stated reason.
   1858  */
   1859 void
   1860 killproc(struct proc *p, const char *why)
   1861 {
   1862 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1863 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1864 	psignal(p, SIGKILL);
   1865 }
   1866 
   1867 /*
   1868  * Force the current process to exit with the specified signal, dumping core
   1869  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1870  * allowing unrecoverable failures to terminate the process without changing
   1871  * signal state.  Mark the accounting record with the signal termination.
   1872  * If dumping core, save the signal number for the debugger.  Calls exit and
   1873  * does not return.
   1874  */
   1875 
   1876 #if defined(DEBUG)
   1877 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1878 #else
   1879 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1880 #endif
   1881 
   1882 static	const char logcoredump[] =
   1883 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1884 static	const char lognocoredump[] =
   1885 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1886 
   1887 /* Wrapper function for use in p_userret */
   1888 static void
   1889 lwp_coredump_hook(struct lwp *l, void *arg)
   1890 {
   1891 	int s;
   1892 
   1893 	/*
   1894 	 * Suspend ourselves, so that the kernel stack and therefore
   1895 	 * the userland registers saved in the trapframe are around
   1896 	 * for coredump() to write them out.
   1897 	 */
   1898 	KERNEL_PROC_LOCK(l);
   1899 	l->l_flag &= ~L_DETACHED;
   1900 	SCHED_LOCK(s);
   1901 	l->l_stat = LSSUSPENDED;
   1902 	l->l_proc->p_nrlwps--;
   1903 	/* XXX NJWLWP check if this makes sense here: */
   1904 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1905 	mi_switch(l, NULL);
   1906 	SCHED_ASSERT_UNLOCKED();
   1907 	splx(s);
   1908 
   1909 	lwp_exit(l);
   1910 }
   1911 
   1912 void
   1913 sigexit(struct lwp *l, int signum)
   1914 {
   1915 	struct proc	*p;
   1916 #if 0
   1917 	struct lwp	*l2;
   1918 #endif
   1919 	int		error, exitsig;
   1920 
   1921 	p = l->l_proc;
   1922 
   1923 	/*
   1924 	 * Don't permit coredump() or exit1() multiple times
   1925 	 * in the same process.
   1926 	 */
   1927 	if (p->p_flag & P_WEXIT) {
   1928 		KERNEL_PROC_UNLOCK(l);
   1929 		(*p->p_userret)(l, p->p_userret_arg);
   1930 	}
   1931 	p->p_flag |= P_WEXIT;
   1932 	/* We don't want to switch away from exiting. */
   1933 	/* XXX multiprocessor: stop LWPs on other processors. */
   1934 #if 0
   1935 	if (p->p_flag & P_SA) {
   1936 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1937 		    l2->l_flag &= ~L_SA;
   1938 		p->p_flag &= ~P_SA;
   1939 	}
   1940 #endif
   1941 
   1942 	/* Make other LWPs stick around long enough to be dumped */
   1943 	p->p_userret = lwp_coredump_hook;
   1944 	p->p_userret_arg = NULL;
   1945 
   1946 	exitsig = signum;
   1947 	p->p_acflag |= AXSIG;
   1948 	if (sigprop[signum] & SA_CORE) {
   1949 		p->p_sigctx.ps_signo = signum;
   1950 		if ((error = coredump(l)) == 0)
   1951 			exitsig |= WCOREFLAG;
   1952 
   1953 		if (kern_logsigexit) {
   1954 			/* XXX What if we ever have really large UIDs? */
   1955 			int uid = p->p_cred && p->p_ucred ?
   1956 				(int) p->p_ucred->cr_uid : -1;
   1957 
   1958 			if (error)
   1959 				log(LOG_INFO, lognocoredump, p->p_pid,
   1960 				    p->p_comm, uid, signum, error);
   1961 			else
   1962 				log(LOG_INFO, logcoredump, p->p_pid,
   1963 				    p->p_comm, uid, signum);
   1964 		}
   1965 
   1966 	}
   1967 
   1968 	exit1(l, W_EXITCODE(0, exitsig));
   1969 	/* NOTREACHED */
   1970 }
   1971 
   1972 /*
   1973  * Dump core, into a file named "progname.core" or "core" (depending on the
   1974  * value of shortcorename), unless the process was setuid/setgid.
   1975  */
   1976 int
   1977 coredump(struct lwp *l)
   1978 {
   1979 	struct vnode		*vp;
   1980 	struct proc		*p;
   1981 	struct vmspace		*vm;
   1982 	struct ucred		*cred;
   1983 	struct nameidata	nd;
   1984 	struct vattr		vattr;
   1985 	struct mount		*mp;
   1986 	int			error, error1;
   1987 	char			name[MAXPATHLEN];
   1988 
   1989 	p = l->l_proc;
   1990 	vm = p->p_vmspace;
   1991 	cred = p->p_cred->pc_ucred;
   1992 
   1993 	/*
   1994 	 * Make sure the process has not set-id, to prevent data leaks.
   1995 	 */
   1996 	if (p->p_flag & P_SUGID)
   1997 		return (EPERM);
   1998 
   1999 	/*
   2000 	 * Refuse to core if the data + stack + user size is larger than
   2001 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   2002 	 * data.
   2003 	 */
   2004 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   2005 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   2006 		return (EFBIG);		/* better error code? */
   2007 
   2008 restart:
   2009 	/*
   2010 	 * The core dump will go in the current working directory.  Make
   2011 	 * sure that the directory is still there and that the mount flags
   2012 	 * allow us to write core dumps there.
   2013 	 */
   2014 	vp = p->p_cwdi->cwdi_cdir;
   2015 	if (vp->v_mount == NULL ||
   2016 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   2017 		return (EPERM);
   2018 
   2019 	error = build_corename(p, name);
   2020 	if (error)
   2021 		return error;
   2022 
   2023 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   2024 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   2025 	if (error)
   2026 		return (error);
   2027 	vp = nd.ni_vp;
   2028 
   2029 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
   2030 		VOP_UNLOCK(vp, 0);
   2031 		if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
   2032 			return (error);
   2033 		if ((error = vn_start_write(NULL, &mp,
   2034 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
   2035 			return (error);
   2036 		goto restart;
   2037 	}
   2038 
   2039 	/* Don't dump to non-regular files or files with links. */
   2040 	if (vp->v_type != VREG ||
   2041 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   2042 		error = EINVAL;
   2043 		goto out;
   2044 	}
   2045 	VATTR_NULL(&vattr);
   2046 	vattr.va_size = 0;
   2047 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   2048 	VOP_SETATTR(vp, &vattr, cred, p);
   2049 	p->p_acflag |= ACORE;
   2050 
   2051 	/* Now dump the actual core file. */
   2052 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   2053  out:
   2054 	VOP_UNLOCK(vp, 0);
   2055 	vn_finished_write(mp, 0);
   2056 	error1 = vn_close(vp, FWRITE, cred, p);
   2057 	if (error == 0)
   2058 		error = error1;
   2059 	return (error);
   2060 }
   2061 
   2062 /*
   2063  * Nonexistent system call-- signal process (may want to handle it).
   2064  * Flag error in case process won't see signal immediately (blocked or ignored).
   2065  */
   2066 /* ARGSUSED */
   2067 int
   2068 sys_nosys(struct lwp *l, void *v, register_t *retval)
   2069 {
   2070 	struct proc 	*p;
   2071 
   2072 	p = l->l_proc;
   2073 	psignal(p, SIGSYS);
   2074 	return (ENOSYS);
   2075 }
   2076 
   2077 static int
   2078 build_corename(struct proc *p, char dst[MAXPATHLEN])
   2079 {
   2080 	const char	*s;
   2081 	char		*d, *end;
   2082 	int		i;
   2083 
   2084 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   2085 	    *s != '\0'; s++) {
   2086 		if (*s == '%') {
   2087 			switch (*(s + 1)) {
   2088 			case 'n':
   2089 				i = snprintf(d, end - d, "%s", p->p_comm);
   2090 				break;
   2091 			case 'p':
   2092 				i = snprintf(d, end - d, "%d", p->p_pid);
   2093 				break;
   2094 			case 'u':
   2095 				i = snprintf(d, end - d, "%.*s",
   2096 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2097 				    p->p_pgrp->pg_session->s_login);
   2098 				break;
   2099 			case 't':
   2100 				i = snprintf(d, end - d, "%ld",
   2101 				    p->p_stats->p_start.tv_sec);
   2102 				break;
   2103 			default:
   2104 				goto copy;
   2105 			}
   2106 			d += i;
   2107 			s++;
   2108 		} else {
   2109  copy:			*d = *s;
   2110 			d++;
   2111 		}
   2112 		if (d >= end)
   2113 			return (ENAMETOOLONG);
   2114 	}
   2115 	*d = '\0';
   2116 	return 0;
   2117 }
   2118 
   2119 void
   2120 getucontext(struct lwp *l, ucontext_t *ucp)
   2121 {
   2122 	struct proc	*p;
   2123 
   2124 	p = l->l_proc;
   2125 
   2126 	ucp->uc_flags = 0;
   2127 	ucp->uc_link = l->l_ctxlink;
   2128 
   2129 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2130 	ucp->uc_flags |= _UC_SIGMASK;
   2131 
   2132 	/*
   2133 	 * The (unsupplied) definition of the `current execution stack'
   2134 	 * in the System V Interface Definition appears to allow returning
   2135 	 * the main context stack.
   2136 	 */
   2137 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2138 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2139 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2140 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2141 	} else {
   2142 		/* Simply copy alternate signal execution stack. */
   2143 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2144 	}
   2145 	ucp->uc_flags |= _UC_STACK;
   2146 
   2147 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2148 }
   2149 
   2150 /* ARGSUSED */
   2151 int
   2152 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2153 {
   2154 	struct sys_getcontext_args /* {
   2155 		syscallarg(struct __ucontext *) ucp;
   2156 	} */ *uap = v;
   2157 	ucontext_t uc;
   2158 
   2159 	getucontext(l, &uc);
   2160 
   2161 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2162 }
   2163 
   2164 int
   2165 setucontext(struct lwp *l, const ucontext_t *ucp)
   2166 {
   2167 	struct proc	*p;
   2168 	int		error;
   2169 
   2170 	p = l->l_proc;
   2171 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2172 		return (error);
   2173 	l->l_ctxlink = ucp->uc_link;
   2174 
   2175 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2176 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2177 
   2178 	/*
   2179 	 * If there was stack information, update whether or not we are
   2180 	 * still running on an alternate signal stack.
   2181 	 */
   2182 	if ((ucp->uc_flags & _UC_STACK) != 0) {
   2183 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
   2184 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   2185 		else
   2186 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   2187 	}
   2188 
   2189 	return 0;
   2190 }
   2191 
   2192 /* ARGSUSED */
   2193 int
   2194 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2195 {
   2196 	struct sys_setcontext_args /* {
   2197 		syscallarg(const ucontext_t *) ucp;
   2198 	} */ *uap = v;
   2199 	ucontext_t uc;
   2200 	int error;
   2201 
   2202 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2203 		exit1(l, W_EXITCODE(0, 0));
   2204 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2205 	    (error = setucontext(l, &uc)) != 0)
   2206 		return (error);
   2207 
   2208 	return (EJUSTRETURN);
   2209 }
   2210 
   2211 /*
   2212  * sigtimedwait(2) system call, used also for implementation
   2213  * of sigwaitinfo() and sigwait().
   2214  *
   2215  * This only handles single LWP in signal wait. libpthread provides
   2216  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2217  */
   2218 int
   2219 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2220 {
   2221 	struct sys___sigtimedwait_args /* {
   2222 		syscallarg(const sigset_t *) set;
   2223 		syscallarg(siginfo_t *) info;
   2224 		syscallarg(struct timespec *) timeout;
   2225 	} */ *uap = v;
   2226 	sigset_t *waitset, twaitset;
   2227 	struct proc *p = l->l_proc;
   2228 	int error, signum, s;
   2229 	int timo = 0;
   2230 	struct timeval tvstart;
   2231 	struct timespec ts;
   2232 	ksiginfo_t *ksi;
   2233 
   2234 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
   2235 
   2236 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
   2237 		FREE(waitset, M_TEMP);
   2238 		return (error);
   2239 	}
   2240 
   2241 	/*
   2242 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2243 	 * ignore SA_CANTMASK signals in waitset, we do this
   2244 	 * only for the below siglist check.
   2245 	 */
   2246 	sigminusset(&sigcantmask, waitset);
   2247 
   2248 	/*
   2249 	 * First scan siglist and check if there is signal from
   2250 	 * our waitset already pending.
   2251 	 */
   2252 	twaitset = *waitset;
   2253 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2254 	if ((signum = firstsig(&twaitset))) {
   2255 		/* found pending signal */
   2256 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2257 		ksi = ksiginfo_get(p, signum);
   2258 		if (!ksi) {
   2259 			/* No queued siginfo, manufacture one */
   2260 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2261 			KSI_INIT(ksi);
   2262 			ksi->ksi_info._signo = signum;
   2263 			ksi->ksi_info._code = SI_USER;
   2264 		}
   2265 
   2266 		goto sig;
   2267 	}
   2268 
   2269 	/*
   2270 	 * Calculate timeout, if it was specified.
   2271 	 */
   2272 	if (SCARG(uap, timeout)) {
   2273 		uint64_t ms;
   2274 
   2275 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   2276 			return (error);
   2277 
   2278 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2279 		timo = mstohz(ms);
   2280 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2281 			timo = 1;
   2282 		if (timo <= 0)
   2283 			return (EAGAIN);
   2284 
   2285 		/*
   2286 		 * Remember current mono_time, it would be used in
   2287 		 * ECANCELED/ERESTART case.
   2288 		 */
   2289 		s = splclock();
   2290 		tvstart = mono_time;
   2291 		splx(s);
   2292 	}
   2293 
   2294 	/*
   2295 	 * Setup ps_sigwait list. Pass pointer to malloced memory
   2296 	 * here; it's not possible to pass pointer to a structure
   2297 	 * on current process's stack, the current process might
   2298 	 * be swapped out at the time the signal would get delivered.
   2299 	 */
   2300 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2301 	p->p_sigctx.ps_sigwaited = ksi;
   2302 	p->p_sigctx.ps_sigwait = waitset;
   2303 
   2304 	/*
   2305 	 * Wait for signal to arrive. We can either be woken up or
   2306 	 * time out.
   2307 	 */
   2308 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2309 
   2310 	/*
   2311 	 * Need to find out if we woke as a result of lwp_wakeup()
   2312 	 * or a signal outside our wait set.
   2313 	 */
   2314 	if (error == EINTR && p->p_sigctx.ps_sigwaited
   2315 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
   2316 		/* wakeup via _lwp_wakeup() */
   2317 		error = ECANCELED;
   2318 	} else if (!error && p->p_sigctx.ps_sigwaited) {
   2319 		/* spurious wakeup - arrange for syscall restart */
   2320 		error = ERESTART;
   2321 		goto fail;
   2322 	}
   2323 
   2324 	/*
   2325 	 * On error, clear sigwait indication. psignal1() clears it
   2326 	 * in !error case.
   2327 	 */
   2328 	if (error) {
   2329 		p->p_sigctx.ps_sigwaited = NULL;
   2330 
   2331 		/*
   2332 		 * If the sleep was interrupted (either by signal or wakeup),
   2333 		 * update the timeout and copyout new value back.
   2334 		 * It would be used when the syscall would be restarted
   2335 		 * or called again.
   2336 		 */
   2337 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2338 			struct timeval tvnow, tvtimo;
   2339 			int err;
   2340 
   2341 			s = splclock();
   2342 			tvnow = mono_time;
   2343 			splx(s);
   2344 
   2345 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2346 
   2347 			/* compute how much time has passed since start */
   2348 			timersub(&tvnow, &tvstart, &tvnow);
   2349 			/* substract passed time from timeout */
   2350 			timersub(&tvtimo, &tvnow, &tvtimo);
   2351 
   2352 			if (tvtimo.tv_sec < 0) {
   2353 				error = EAGAIN;
   2354 				goto fail;
   2355 			}
   2356 
   2357 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2358 
   2359 			/* copy updated timeout to userland */
   2360 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
   2361 				error = err;
   2362 				goto fail;
   2363 			}
   2364 		}
   2365 
   2366 		goto fail;
   2367 	}
   2368 
   2369 	/*
   2370 	 * If a signal from the wait set arrived, copy it to userland.
   2371 	 * Copy only the used part of siginfo, the padding part is
   2372 	 * left unchanged (userland is not supposed to touch it anyway).
   2373 	 */
   2374  sig:
   2375 	error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
   2376 
   2377  fail:
   2378 	FREE(waitset, M_TEMP);
   2379 	pool_put(&ksiginfo_pool, ksi);
   2380 	p->p_sigctx.ps_sigwait = NULL;
   2381 
   2382 	return (error);
   2383 }
   2384 
   2385 /*
   2386  * Returns true if signal is ignored or masked for passed process.
   2387  */
   2388 int
   2389 sigismasked(struct proc *p, int sig)
   2390 {
   2391 
   2392 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2393 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2394 }
   2395 
   2396 static int
   2397 filt_sigattach(struct knote *kn)
   2398 {
   2399 	struct proc *p = curproc;
   2400 
   2401 	kn->kn_ptr.p_proc = p;
   2402 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2403 
   2404 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2405 
   2406 	return (0);
   2407 }
   2408 
   2409 static void
   2410 filt_sigdetach(struct knote *kn)
   2411 {
   2412 	struct proc *p = kn->kn_ptr.p_proc;
   2413 
   2414 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2415 }
   2416 
   2417 /*
   2418  * signal knotes are shared with proc knotes, so we apply a mask to
   2419  * the hint in order to differentiate them from process hints.  This
   2420  * could be avoided by using a signal-specific knote list, but probably
   2421  * isn't worth the trouble.
   2422  */
   2423 static int
   2424 filt_signal(struct knote *kn, long hint)
   2425 {
   2426 
   2427 	if (hint & NOTE_SIGNAL) {
   2428 		hint &= ~NOTE_SIGNAL;
   2429 
   2430 		if (kn->kn_id == hint)
   2431 			kn->kn_data++;
   2432 	}
   2433 	return (kn->kn_data != 0);
   2434 }
   2435 
   2436 const struct filterops sig_filtops = {
   2437 	0, filt_sigattach, filt_sigdetach, filt_signal
   2438 };
   2439