Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.193
      1 /*	$NetBSD: kern_sig.c,v 1.193 2004/04/03 19:46:10 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.193 2004/04/03 19:46:10 matt Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd.h"
     45 #include "opt_compat_netbsd32.h"
     46 
     47 #define	SIGPROP		/* include signal properties table */
     48 #include <sys/param.h>
     49 #include <sys/signalvar.h>
     50 #include <sys/resourcevar.h>
     51 #include <sys/namei.h>
     52 #include <sys/vnode.h>
     53 #include <sys/proc.h>
     54 #include <sys/systm.h>
     55 #include <sys/timeb.h>
     56 #include <sys/times.h>
     57 #include <sys/buf.h>
     58 #include <sys/acct.h>
     59 #include <sys/file.h>
     60 #include <sys/kernel.h>
     61 #include <sys/wait.h>
     62 #include <sys/ktrace.h>
     63 #include <sys/syslog.h>
     64 #include <sys/stat.h>
     65 #include <sys/core.h>
     66 #include <sys/filedesc.h>
     67 #include <sys/malloc.h>
     68 #include <sys/pool.h>
     69 #include <sys/ucontext.h>
     70 #include <sys/sa.h>
     71 #include <sys/savar.h>
     72 #include <sys/exec.h>
     73 
     74 #include <sys/mount.h>
     75 #include <sys/syscallargs.h>
     76 
     77 #include <machine/cpu.h>
     78 
     79 #include <sys/user.h>		/* for coredump */
     80 
     81 #include <uvm/uvm_extern.h>
     82 
     83 static void	child_psignal(struct proc *, int);
     84 static int	build_corename(struct proc *, char [MAXPATHLEN]);
     85 static void	ksiginfo_exithook(struct proc *, void *);
     86 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
     87 static ksiginfo_t *ksiginfo_get(struct proc *, int);
     88 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
     89 
     90 sigset_t	contsigmask, stopsigmask, sigcantmask, sigtrapmask;
     91 
     92 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     93 struct pool	siginfo_pool;	/* memory pool for siginfo structures */
     94 struct pool	ksiginfo_pool;	/* memory pool for ksiginfo structures */
     95 
     96 /*
     97  * Can process p, with pcred pc, send the signal signum to process q?
     98  */
     99 #define	CANSIGNAL(p, pc, q, signum) \
    100 	((pc)->pc_ucred->cr_uid == 0 || \
    101 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
    102 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    103 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    104 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    105 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    106 
    107 /*
    108  * Remove and return the first ksiginfo element that matches our requested
    109  * signal, or return NULL if one not found.
    110  */
    111 static ksiginfo_t *
    112 ksiginfo_get(struct proc *p, int signo)
    113 {
    114 	ksiginfo_t *ksi;
    115 	int s;
    116 
    117 	s = splsoftclock();
    118 	simple_lock(&p->p_sigctx.ps_silock);
    119 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    120 		if (ksi->ksi_signo == signo) {
    121 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    122 			goto out;
    123 		}
    124 	}
    125 	ksi = NULL;
    126 out:
    127 	simple_unlock(&p->p_sigctx.ps_silock);
    128 	splx(s);
    129 	return ksi;
    130 }
    131 
    132 /*
    133  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    134  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    135  * they already existed in the queue and we add new entries for RT signals,
    136  * or for non RT signals with non-existing entries.
    137  */
    138 static void
    139 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
    140 {
    141 	ksiginfo_t *kp;
    142 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    143 	int s;
    144 
    145 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    146 		return;
    147 	/*
    148 	 * If there's no info, don't save it.
    149 	 */
    150 	if (KSI_EMPTY_P(ksi))
    151 		return;
    152 
    153 	s = splsoftclock();
    154 	simple_lock(&p->p_sigctx.ps_silock);
    155 #ifdef notyet	/* XXX: QUEUING */
    156 	if (ksi->ksi_signo < SIGRTMIN)
    157 #endif
    158 	{
    159 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    160 			if (kp->ksi_signo == ksi->ksi_signo) {
    161 				KSI_COPY(ksi, kp);
    162 				goto out;
    163 			}
    164 		}
    165 	}
    166 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
    167 	if (kp == NULL) {
    168 #ifdef DIAGNOSTIC
    169 		printf("Out of memory allocating siginfo for pid %d\n",
    170 		    p->p_pid);
    171 #endif
    172 		goto out;
    173 	}
    174 	*kp = *ksi;
    175 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    176 out:
    177 	simple_unlock(&p->p_sigctx.ps_silock);
    178 	splx(s);
    179 }
    180 
    181 /*
    182  * free all pending ksiginfo on exit
    183  */
    184 static void
    185 ksiginfo_exithook(struct proc *p, void *v)
    186 {
    187 	int s;
    188 
    189 	s = splsoftclock();
    190 	simple_lock(&p->p_sigctx.ps_silock);
    191 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    192 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    193 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    194 		pool_put(&ksiginfo_pool, ksi);
    195 	}
    196 	simple_unlock(&p->p_sigctx.ps_silock);
    197 	splx(s);
    198 }
    199 
    200 /*
    201  * Initialize signal-related data structures.
    202  */
    203 void
    204 signal_init(void)
    205 {
    206 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    207 	    &pool_allocator_nointr);
    208 	pool_init(&siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    209 	    &pool_allocator_nointr);
    210 	pool_init(&ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    211 	    NULL);
    212 	exithook_establish(ksiginfo_exithook, NULL);
    213 	exechook_establish(ksiginfo_exithook, NULL);
    214 
    215 	sigaddset(&sigtrapmask, SIGSEGV);
    216 	sigaddset(&sigtrapmask, SIGBUS);
    217 	sigaddset(&sigtrapmask, SIGILL);
    218 	sigaddset(&sigtrapmask, SIGFPE);
    219 	sigaddset(&sigtrapmask, SIGTRAP);
    220 }
    221 
    222 /*
    223  * Create an initial sigctx structure, using the same signal state
    224  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    225  * copy it from parent.
    226  */
    227 void
    228 sigactsinit(struct proc *np, struct proc *pp, int share)
    229 {
    230 	struct sigacts *ps;
    231 
    232 	if (share) {
    233 		np->p_sigacts = pp->p_sigacts;
    234 		pp->p_sigacts->sa_refcnt++;
    235 	} else {
    236 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    237 		if (pp)
    238 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    239 		else
    240 			memset(ps, '\0', sizeof(struct sigacts));
    241 		ps->sa_refcnt = 1;
    242 		np->p_sigacts = ps;
    243 	}
    244 }
    245 
    246 /*
    247  * Make this process not share its sigctx, maintaining all
    248  * signal state.
    249  */
    250 void
    251 sigactsunshare(struct proc *p)
    252 {
    253 	struct sigacts *oldps;
    254 
    255 	if (p->p_sigacts->sa_refcnt == 1)
    256 		return;
    257 
    258 	oldps = p->p_sigacts;
    259 	sigactsinit(p, NULL, 0);
    260 
    261 	if (--oldps->sa_refcnt == 0)
    262 		pool_put(&sigacts_pool, oldps);
    263 }
    264 
    265 /*
    266  * Release a sigctx structure.
    267  */
    268 void
    269 sigactsfree(struct proc *p)
    270 {
    271 	struct sigacts *ps;
    272 
    273 	ps = p->p_sigacts;
    274 	if (--ps->sa_refcnt > 0)
    275 		return;
    276 
    277 	pool_put(&sigacts_pool, ps);
    278 }
    279 
    280 int
    281 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    282 	struct sigaction *osa, const void *tramp, int vers)
    283 {
    284 	struct sigacts	*ps;
    285 	int		prop;
    286 
    287 	ps = p->p_sigacts;
    288 	if (signum <= 0 || signum >= NSIG)
    289 		return (EINVAL);
    290 
    291 	/*
    292 	 * Trampoline ABI version 0 is reserved for the legacy
    293 	 * kernel-provided on-stack trampoline.  Conversely, if we are
    294 	 * using a non-0 ABI version, we must have a trampoline.  Only
    295 	 * validate the vers if a new sigaction was supplied. Emulations
    296 	 * use legacy kernel trampolines with version 0, alternatively
    297 	 * check for that too.
    298 	 */
    299 	if ((vers != 0 && tramp == NULL) ||
    300 #ifdef SIGTRAMP_VALID
    301 	    (nsa != NULL &&
    302 	    ((vers == 0) ?
    303 		(p->p_emul->e_sigcode == NULL) :
    304 		!SIGTRAMP_VALID(vers))) ||
    305 #endif
    306 	    (vers == 0 && tramp != NULL))
    307 		return (EINVAL);
    308 
    309 	if (osa)
    310 		*osa = SIGACTION_PS(ps, signum);
    311 
    312 	if (nsa) {
    313 		if (nsa->sa_flags & ~SA_ALLBITS)
    314 			return (EINVAL);
    315 
    316 		prop = sigprop[signum];
    317 		if (prop & SA_CANTMASK)
    318 			return (EINVAL);
    319 
    320 		(void) splsched();	/* XXXSMP */
    321 		SIGACTION_PS(ps, signum) = *nsa;
    322 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    323 		ps->sa_sigdesc[signum].sd_vers = vers;
    324 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    325 		if ((prop & SA_NORESET) != 0)
    326 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    327 		if (signum == SIGCHLD) {
    328 			if (nsa->sa_flags & SA_NOCLDSTOP)
    329 				p->p_flag |= P_NOCLDSTOP;
    330 			else
    331 				p->p_flag &= ~P_NOCLDSTOP;
    332 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    333 				/*
    334 				 * Paranoia: since SA_NOCLDWAIT is implemented
    335 				 * by reparenting the dying child to PID 1 (and
    336 				 * trust it to reap the zombie), PID 1 itself
    337 				 * is forbidden to set SA_NOCLDWAIT.
    338 				 */
    339 				if (p->p_pid == 1)
    340 					p->p_flag &= ~P_NOCLDWAIT;
    341 				else
    342 					p->p_flag |= P_NOCLDWAIT;
    343 			} else
    344 				p->p_flag &= ~P_NOCLDWAIT;
    345 		}
    346 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    347 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    348 		else
    349 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    350 		/*
    351 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    352 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    353 		 * to ignore. However, don't put SIGCONT in
    354 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    355 	 	 */
    356 		if (nsa->sa_handler == SIG_IGN ||
    357 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    358 						/* never to be seen again */
    359 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    360 			if (signum != SIGCONT) {
    361 						/* easier in psignal */
    362 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    363 			}
    364 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    365 		} else {
    366 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    367 			if (nsa->sa_handler == SIG_DFL)
    368 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    369 			else
    370 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    371 		}
    372 		(void) spl0();
    373 	}
    374 
    375 	return (0);
    376 }
    377 
    378 #ifdef COMPAT_16
    379 /* ARGSUSED */
    380 int
    381 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    382 {
    383 	struct compat_16_sys___sigaction14_args /* {
    384 		syscallarg(int)				signum;
    385 		syscallarg(const struct sigaction *)	nsa;
    386 		syscallarg(struct sigaction *)		osa;
    387 	} */ *uap = v;
    388 	struct proc		*p;
    389 	struct sigaction	nsa, osa;
    390 	int			error;
    391 
    392 	if (SCARG(uap, nsa)) {
    393 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    394 		if (error)
    395 			return (error);
    396 	}
    397 	p = l->l_proc;
    398 	error = sigaction1(p, SCARG(uap, signum),
    399 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    400 	    NULL, 0);
    401 	if (error)
    402 		return (error);
    403 	if (SCARG(uap, osa)) {
    404 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    405 		if (error)
    406 			return (error);
    407 	}
    408 	return (0);
    409 }
    410 #endif
    411 
    412 /* ARGSUSED */
    413 int
    414 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    415 {
    416 	struct sys___sigaction_sigtramp_args /* {
    417 		syscallarg(int)				signum;
    418 		syscallarg(const struct sigaction *)	nsa;
    419 		syscallarg(struct sigaction *)		osa;
    420 		syscallarg(void *)			tramp;
    421 		syscallarg(int)				vers;
    422 	} */ *uap = v;
    423 	struct proc *p = l->l_proc;
    424 	struct sigaction nsa, osa;
    425 	int error;
    426 
    427 	if (SCARG(uap, nsa)) {
    428 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    429 		if (error)
    430 			return (error);
    431 	}
    432 	error = sigaction1(p, SCARG(uap, signum),
    433 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    434 	    SCARG(uap, tramp), SCARG(uap, vers));
    435 	if (error)
    436 		return (error);
    437 	if (SCARG(uap, osa)) {
    438 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    439 		if (error)
    440 			return (error);
    441 	}
    442 	return (0);
    443 }
    444 
    445 /*
    446  * Initialize signal state for process 0;
    447  * set to ignore signals that are ignored by default and disable the signal
    448  * stack.
    449  */
    450 void
    451 siginit(struct proc *p)
    452 {
    453 	struct sigacts	*ps;
    454 	int		signum, prop;
    455 
    456 	ps = p->p_sigacts;
    457 	sigemptyset(&contsigmask);
    458 	sigemptyset(&stopsigmask);
    459 	sigemptyset(&sigcantmask);
    460 	for (signum = 1; signum < NSIG; signum++) {
    461 		prop = sigprop[signum];
    462 		if (prop & SA_CONT)
    463 			sigaddset(&contsigmask, signum);
    464 		if (prop & SA_STOP)
    465 			sigaddset(&stopsigmask, signum);
    466 		if (prop & SA_CANTMASK)
    467 			sigaddset(&sigcantmask, signum);
    468 		if (prop & SA_IGNORE && signum != SIGCONT)
    469 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    470 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    471 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    472 	}
    473 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    474 	p->p_sigctx.ps_sigwaited = NULL;
    475 	p->p_flag &= ~P_NOCLDSTOP;
    476 
    477 	/*
    478 	 * Reset stack state to the user stack.
    479 	 */
    480 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    481 	p->p_sigctx.ps_sigstk.ss_size = 0;
    482 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    483 
    484 	/* One reference. */
    485 	ps->sa_refcnt = 1;
    486 }
    487 
    488 /*
    489  * Reset signals for an exec of the specified process.
    490  */
    491 void
    492 execsigs(struct proc *p)
    493 {
    494 	struct sigacts	*ps;
    495 	int		signum, prop;
    496 
    497 	sigactsunshare(p);
    498 
    499 	ps = p->p_sigacts;
    500 
    501 	/*
    502 	 * Reset caught signals.  Held signals remain held
    503 	 * through p_sigctx.ps_sigmask (unless they were caught,
    504 	 * and are now ignored by default).
    505 	 */
    506 	for (signum = 1; signum < NSIG; signum++) {
    507 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    508 			prop = sigprop[signum];
    509 			if (prop & SA_IGNORE) {
    510 				if ((prop & SA_CONT) == 0)
    511 					sigaddset(&p->p_sigctx.ps_sigignore,
    512 					    signum);
    513 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    514 			}
    515 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    516 		}
    517 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    518 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    519 	}
    520 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    521 	p->p_sigctx.ps_sigwaited = NULL;
    522 	p->p_flag &= ~P_NOCLDSTOP;
    523 
    524 	/*
    525 	 * Reset stack state to the user stack.
    526 	 */
    527 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    528 	p->p_sigctx.ps_sigstk.ss_size = 0;
    529 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    530 }
    531 
    532 int
    533 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    534 {
    535 
    536 	if (oss)
    537 		*oss = p->p_sigctx.ps_sigmask;
    538 
    539 	if (nss) {
    540 		(void)splsched();	/* XXXSMP */
    541 		switch (how) {
    542 		case SIG_BLOCK:
    543 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    544 			break;
    545 		case SIG_UNBLOCK:
    546 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    547 			CHECKSIGS(p);
    548 			break;
    549 		case SIG_SETMASK:
    550 			p->p_sigctx.ps_sigmask = *nss;
    551 			CHECKSIGS(p);
    552 			break;
    553 		default:
    554 			(void)spl0();	/* XXXSMP */
    555 			return (EINVAL);
    556 		}
    557 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    558 		(void)spl0();		/* XXXSMP */
    559 	}
    560 
    561 	return (0);
    562 }
    563 
    564 /*
    565  * Manipulate signal mask.
    566  * Note that we receive new mask, not pointer,
    567  * and return old mask as return value;
    568  * the library stub does the rest.
    569  */
    570 int
    571 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    572 {
    573 	struct sys___sigprocmask14_args /* {
    574 		syscallarg(int)			how;
    575 		syscallarg(const sigset_t *)	set;
    576 		syscallarg(sigset_t *)		oset;
    577 	} */ *uap = v;
    578 	struct proc	*p;
    579 	sigset_t	nss, oss;
    580 	int		error;
    581 
    582 	if (SCARG(uap, set)) {
    583 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    584 		if (error)
    585 			return (error);
    586 	}
    587 	p = l->l_proc;
    588 	error = sigprocmask1(p, SCARG(uap, how),
    589 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    590 	if (error)
    591 		return (error);
    592 	if (SCARG(uap, oset)) {
    593 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    594 		if (error)
    595 			return (error);
    596 	}
    597 	return (0);
    598 }
    599 
    600 void
    601 sigpending1(struct proc *p, sigset_t *ss)
    602 {
    603 
    604 	*ss = p->p_sigctx.ps_siglist;
    605 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    606 }
    607 
    608 /* ARGSUSED */
    609 int
    610 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    611 {
    612 	struct sys___sigpending14_args /* {
    613 		syscallarg(sigset_t *)	set;
    614 	} */ *uap = v;
    615 	struct proc	*p;
    616 	sigset_t	ss;
    617 
    618 	p = l->l_proc;
    619 	sigpending1(p, &ss);
    620 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    621 }
    622 
    623 int
    624 sigsuspend1(struct proc *p, const sigset_t *ss)
    625 {
    626 	struct sigacts *ps;
    627 
    628 	ps = p->p_sigacts;
    629 	if (ss) {
    630 		/*
    631 		 * When returning from sigpause, we want
    632 		 * the old mask to be restored after the
    633 		 * signal handler has finished.  Thus, we
    634 		 * save it here and mark the sigctx structure
    635 		 * to indicate this.
    636 		 */
    637 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    638 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    639 		(void) splsched();	/* XXXSMP */
    640 		p->p_sigctx.ps_sigmask = *ss;
    641 		CHECKSIGS(p);
    642 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    643 		(void) spl0();		/* XXXSMP */
    644 	}
    645 
    646 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    647 		/* void */;
    648 
    649 	/* always return EINTR rather than ERESTART... */
    650 	return (EINTR);
    651 }
    652 
    653 /*
    654  * Suspend process until signal, providing mask to be set
    655  * in the meantime.  Note nonstandard calling convention:
    656  * libc stub passes mask, not pointer, to save a copyin.
    657  */
    658 /* ARGSUSED */
    659 int
    660 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    661 {
    662 	struct sys___sigsuspend14_args /* {
    663 		syscallarg(const sigset_t *)	set;
    664 	} */ *uap = v;
    665 	struct proc	*p;
    666 	sigset_t	ss;
    667 	int		error;
    668 
    669 	if (SCARG(uap, set)) {
    670 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    671 		if (error)
    672 			return (error);
    673 	}
    674 
    675 	p = l->l_proc;
    676 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    677 }
    678 
    679 int
    680 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    681 	struct sigaltstack *oss)
    682 {
    683 
    684 	if (oss)
    685 		*oss = p->p_sigctx.ps_sigstk;
    686 
    687 	if (nss) {
    688 		if (nss->ss_flags & ~SS_ALLBITS)
    689 			return (EINVAL);
    690 
    691 		if (nss->ss_flags & SS_DISABLE) {
    692 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    693 				return (EINVAL);
    694 		} else {
    695 			if (nss->ss_size < MINSIGSTKSZ)
    696 				return (ENOMEM);
    697 		}
    698 		p->p_sigctx.ps_sigstk = *nss;
    699 	}
    700 
    701 	return (0);
    702 }
    703 
    704 /* ARGSUSED */
    705 int
    706 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    707 {
    708 	struct sys___sigaltstack14_args /* {
    709 		syscallarg(const struct sigaltstack *)	nss;
    710 		syscallarg(struct sigaltstack *)	oss;
    711 	} */ *uap = v;
    712 	struct proc		*p;
    713 	struct sigaltstack	nss, oss;
    714 	int			error;
    715 
    716 	if (SCARG(uap, nss)) {
    717 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    718 		if (error)
    719 			return (error);
    720 	}
    721 	p = l->l_proc;
    722 	error = sigaltstack1(p,
    723 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    724 	if (error)
    725 		return (error);
    726 	if (SCARG(uap, oss)) {
    727 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    728 		if (error)
    729 			return (error);
    730 	}
    731 	return (0);
    732 }
    733 
    734 /* ARGSUSED */
    735 int
    736 sys_kill(struct lwp *l, void *v, register_t *retval)
    737 {
    738 	struct sys_kill_args /* {
    739 		syscallarg(int)	pid;
    740 		syscallarg(int)	signum;
    741 	} */ *uap = v;
    742 	struct proc	*cp, *p;
    743 	struct pcred	*pc;
    744 	ksiginfo_t	ksi;
    745 
    746 	cp = l->l_proc;
    747 	pc = cp->p_cred;
    748 	if ((u_int)SCARG(uap, signum) >= NSIG)
    749 		return (EINVAL);
    750 	KSI_INIT(&ksi);
    751 	ksi.ksi_signo = SCARG(uap, signum);
    752 	ksi.ksi_code = SI_USER;
    753 	ksi.ksi_pid = cp->p_pid;
    754 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    755 	if (SCARG(uap, pid) > 0) {
    756 		/* kill single process */
    757 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    758 			return (ESRCH);
    759 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    760 			return (EPERM);
    761 		if (SCARG(uap, signum))
    762 			kpsignal2(p, &ksi, 1);
    763 		return (0);
    764 	}
    765 	switch (SCARG(uap, pid)) {
    766 	case -1:		/* broadcast signal */
    767 		return (killpg1(cp, &ksi, 0, 1));
    768 	case 0:			/* signal own process group */
    769 		return (killpg1(cp, &ksi, 0, 0));
    770 	default:		/* negative explicit process group */
    771 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    772 	}
    773 	/* NOTREACHED */
    774 }
    775 
    776 /*
    777  * Common code for kill process group/broadcast kill.
    778  * cp is calling process.
    779  */
    780 int
    781 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    782 {
    783 	struct proc	*p;
    784 	struct pcred	*pc;
    785 	struct pgrp	*pgrp;
    786 	int		nfound;
    787 	int		signum = ksi->ksi_signo;
    788 
    789 	pc = cp->p_cred;
    790 	nfound = 0;
    791 	if (all) {
    792 		/*
    793 		 * broadcast
    794 		 */
    795 		proclist_lock_read();
    796 		LIST_FOREACH(p, &allproc, p_list) {
    797 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    798 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    799 				continue;
    800 			nfound++;
    801 			if (signum)
    802 				kpsignal2(p, ksi, 1);
    803 		}
    804 		proclist_unlock_read();
    805 	} else {
    806 		if (pgid == 0)
    807 			/*
    808 			 * zero pgid means send to my process group.
    809 			 */
    810 			pgrp = cp->p_pgrp;
    811 		else {
    812 			pgrp = pgfind(pgid);
    813 			if (pgrp == NULL)
    814 				return (ESRCH);
    815 		}
    816 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    817 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    818 			    !CANSIGNAL(cp, pc, p, signum))
    819 				continue;
    820 			nfound++;
    821 			if (signum && P_ZOMBIE(p) == 0)
    822 				kpsignal2(p, ksi, 1);
    823 		}
    824 	}
    825 	return (nfound ? 0 : ESRCH);
    826 }
    827 
    828 /*
    829  * Send a signal to a process group.
    830  */
    831 void
    832 gsignal(int pgid, int signum)
    833 {
    834 	ksiginfo_t ksi;
    835 	KSI_INIT_EMPTY(&ksi);
    836 	ksi.ksi_signo = signum;
    837 	kgsignal(pgid, &ksi, NULL);
    838 }
    839 
    840 void
    841 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    842 {
    843 	struct pgrp *pgrp;
    844 
    845 	if (pgid && (pgrp = pgfind(pgid)))
    846 		kpgsignal(pgrp, ksi, data, 0);
    847 }
    848 
    849 /*
    850  * Send a signal to a process group. If checktty is 1,
    851  * limit to members which have a controlling terminal.
    852  */
    853 void
    854 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    855 {
    856 	ksiginfo_t ksi;
    857 	KSI_INIT_EMPTY(&ksi);
    858 	ksi.ksi_signo = sig;
    859 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    860 }
    861 
    862 void
    863 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    864 {
    865 	struct proc *p;
    866 
    867 	if (pgrp)
    868 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    869 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    870 				kpsignal(p, ksi, data);
    871 }
    872 
    873 /*
    874  * Send a signal caused by a trap to the current process.
    875  * If it will be caught immediately, deliver it with correct code.
    876  * Otherwise, post it normally.
    877  */
    878 void
    879 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    880 {
    881 	struct proc	*p;
    882 	struct sigacts	*ps;
    883 	int signum = ksi->ksi_signo;
    884 
    885 	KASSERT(KSI_TRAP_P(ksi));
    886 
    887 	p = l->l_proc;
    888 	ps = p->p_sigacts;
    889 	if ((p->p_flag & P_TRACED) == 0 &&
    890 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    891 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    892 		p->p_stats->p_ru.ru_nsignals++;
    893 #ifdef KTRACE
    894 		if (KTRPOINT(p, KTR_PSIG))
    895 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    896 			    &p->p_sigctx.ps_sigmask, ksi);
    897 #endif
    898 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    899 		(void) splsched();	/* XXXSMP */
    900 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    901 		    &p->p_sigctx.ps_sigmask);
    902 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    903 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    904 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    905 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    906 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    907 		}
    908 		(void) spl0();		/* XXXSMP */
    909 	} else {
    910 		p->p_sigctx.ps_lwp = l->l_lid;
    911 		/* XXX for core dump/debugger */
    912 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    913 		p->p_sigctx.ps_code = ksi->ksi_trap;
    914 		kpsignal2(p, ksi, 1);
    915 	}
    916 }
    917 
    918 /*
    919  * Fill in signal information and signal the parent for a child status change.
    920  */
    921 static void
    922 child_psignal(struct proc *p, int dolock)
    923 {
    924 	ksiginfo_t ksi;
    925 
    926 	KSI_INIT(&ksi);
    927 	ksi.ksi_signo = SIGCHLD;
    928 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    929 	ksi.ksi_pid = p->p_pid;
    930 	ksi.ksi_uid = p->p_ucred->cr_uid;
    931 	ksi.ksi_status = p->p_xstat;
    932 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    933 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    934 	kpsignal2(p->p_pptr, &ksi, dolock);
    935 }
    936 
    937 /*
    938  * Send the signal to the process.  If the signal has an action, the action
    939  * is usually performed by the target process rather than the caller; we add
    940  * the signal to the set of pending signals for the process.
    941  *
    942  * Exceptions:
    943  *   o When a stop signal is sent to a sleeping process that takes the
    944  *     default action, the process is stopped without awakening it.
    945  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    946  *     regardless of the signal action (eg, blocked or ignored).
    947  *
    948  * Other ignored signals are discarded immediately.
    949  *
    950  * XXXSMP: Invoked as psignal() or sched_psignal().
    951  */
    952 void
    953 psignal1(struct proc *p, int signum, int dolock)
    954 {
    955 	ksiginfo_t ksi;
    956 
    957 	KSI_INIT_EMPTY(&ksi);
    958 	ksi.ksi_signo = signum;
    959 	kpsignal2(p, &ksi, dolock);
    960 }
    961 
    962 void
    963 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
    964 {
    965 
    966 	if ((p->p_flag & P_WEXIT) == 0 && data) {
    967 		size_t fd;
    968 		struct filedesc *fdp = p->p_fd;
    969 
    970 		ksi->ksi_fd = -1;
    971 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    972 			struct file *fp = fdp->fd_ofiles[fd];
    973 			/* XXX: lock? */
    974 			if (fp && fp->f_data == data) {
    975 				ksi->ksi_fd = fd;
    976 				break;
    977 			}
    978 		}
    979 	}
    980 	kpsignal2(p, ksi, dolock);
    981 }
    982 
    983 static void
    984 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
    985 {
    986 	struct lwp *l, *suspended = NULL;
    987 	struct sadata_vp *vp;
    988 	int	s = 0, prop, allsusp;
    989 	sig_t	action;
    990 	int	signum = ksi->ksi_signo;
    991 
    992 #ifdef DIAGNOSTIC
    993 	if (signum <= 0 || signum >= NSIG)
    994 		panic("psignal signal number %d", signum);
    995 
    996 	/* XXXSMP: works, but icky */
    997 	if (dolock)
    998 		SCHED_ASSERT_UNLOCKED();
    999 	else
   1000 		SCHED_ASSERT_LOCKED();
   1001 #endif
   1002 
   1003 	/*
   1004 	 * Notify any interested parties in the signal.
   1005 	 */
   1006 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
   1007 
   1008 	prop = sigprop[signum];
   1009 
   1010 	/*
   1011 	 * If proc is traced, always give parent a chance.
   1012 	 */
   1013 	action = SIG_DFL;
   1014 	if ((p->p_flag & P_TRACED) == 0) {
   1015 		if (KSI_TRAP_P(ksi)) {
   1016 			/*
   1017 			 * If the signal was the result of a trap, only catch
   1018 			 * the signal if it isn't masked and there is a
   1019 			 * non-default non-ignore handler installed for it.
   1020 			 * Otherwise take the default action.
   1021 			 */
   1022 			if (!sigismember(&p->p_sigctx.ps_sigmask, signum) &&
   1023 			    sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1024 				action = SIG_CATCH;
   1025 			/*
   1026 			 * If we are to take the default action, reset the
   1027 			 * signal back to its defaults.
   1028 			 */
   1029 			if (action == SIG_DFL) {
   1030 				sigdelset(&p->p_sigctx.ps_sigignore, signum);
   1031 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1032 				sigdelset(&p->p_sigctx.ps_sigmask, signum);
   1033 				SIGACTION(p, signum).sa_handler = SIG_DFL;
   1034 			}
   1035 		} else {
   1036 			/*
   1037 			 * If the signal is being ignored,
   1038 			 * then we forget about it immediately.
   1039 			 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1040 			 * and if it is set to SIG_IGN,
   1041 			 * action will be SIG_DFL here.)
   1042 			 */
   1043 			if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1044 				return;
   1045 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1046 				action = SIG_HOLD;
   1047 			else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1048 				action = SIG_CATCH;
   1049 		}
   1050 		if (action == SIG_DFL) {
   1051 			if (prop & SA_KILL && p->p_nice > NZERO)
   1052 				p->p_nice = NZERO;
   1053 
   1054 			/*
   1055 			 * If sending a tty stop signal to a member of an
   1056 			 * orphaned process group, discard the signal here if
   1057 			 * the action is default; don't stop the process below
   1058 			 * if sleeping, and don't clear any pending SIGCONT.
   1059 			 */
   1060 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1061 				return;
   1062 		}
   1063 	} else {
   1064 		/*
   1065 		 * If the process is being traced and the signal is being
   1066 		 * caught, make sure to save any ksiginfo.
   1067 		 */
   1068 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1069 			ksiginfo_put(p, ksi);
   1070 	}
   1071 
   1072 	if (prop & SA_CONT)
   1073 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1074 
   1075 	if (prop & SA_STOP)
   1076 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1077 
   1078 	/*
   1079 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1080 	 * please!), check if anything waits on it. If yes, save the
   1081 	 * info into provided ps_sigwaited, and wake-up the waiter.
   1082 	 * The signal won't be processed further here.
   1083 	 */
   1084 	if ((prop & SA_CANTMASK) == 0
   1085 	    && p->p_sigctx.ps_sigwaited
   1086 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
   1087 	    && p->p_stat != SSTOP) {
   1088 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
   1089 		p->p_sigctx.ps_sigwaited = NULL;
   1090 		if (dolock)
   1091 			wakeup_one(&p->p_sigctx.ps_sigwait);
   1092 		else
   1093 			sched_wakeup(&p->p_sigctx.ps_sigwait);
   1094 		return;
   1095 	}
   1096 
   1097 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1098 
   1099 	/* CHECKSIGS() is "inlined" here. */
   1100 	p->p_sigctx.ps_sigcheck = 1;
   1101 
   1102 	/*
   1103 	 * Defer further processing for signals which are held,
   1104 	 * except that stopped processes must be continued by SIGCONT.
   1105 	 */
   1106 	if (action == SIG_HOLD &&
   1107 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1108 		ksiginfo_put(p, ksi);
   1109 		return;
   1110 	}
   1111 	/* XXXSMP: works, but icky */
   1112 	if (dolock)
   1113 		SCHED_LOCK(s);
   1114 
   1115 	if (p->p_flag & P_SA) {
   1116 		allsusp = 0;
   1117 		l = NULL;
   1118 		if (p->p_stat == SACTIVE) {
   1119 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1120 				l = vp->savp_lwp;
   1121 				KDASSERT(l != NULL);
   1122 				if (l->l_flag & L_SA_IDLE) {
   1123 					/* wakeup idle LWP */
   1124 					goto found;
   1125 					/*NOTREACHED*/
   1126 				} else if (l->l_flag & L_SA_YIELD) {
   1127 					/* idle LWP is already waking up */
   1128 					goto out;
   1129 					/*NOTREACHED*/
   1130 				}
   1131 			}
   1132 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1133 				l = vp->savp_lwp;
   1134 				if (l->l_stat == LSRUN ||
   1135 				    l->l_stat == LSONPROC) {
   1136 					signotify(p);
   1137 					goto out;
   1138 					/*NOTREACHED*/
   1139 				}
   1140 				if (l->l_stat == LSSLEEP &&
   1141 				    l->l_flag & L_SINTR) {
   1142 					/* ok to signal vp lwp */
   1143 				} else
   1144 					l = NULL;
   1145 			}
   1146 			if (l == NULL)
   1147 				allsusp = 1;
   1148 		} else if (p->p_stat == SSTOP) {
   1149 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1150 				l = vp->savp_lwp;
   1151 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
   1152 					break;
   1153 				l = NULL;
   1154 			}
   1155 		}
   1156 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
   1157 		/*
   1158 		 * At least one LWP is running or on a run queue.
   1159 		 * The signal will be noticed when one of them returns
   1160 		 * to userspace.
   1161 		 */
   1162 		signotify(p);
   1163 		/*
   1164 		 * The signal will be noticed very soon.
   1165 		 */
   1166 		goto out;
   1167 		/*NOTREACHED*/
   1168 	} else {
   1169 		/*
   1170 		 * Find out if any of the sleeps are interruptable,
   1171 		 * and if all the live LWPs remaining are suspended.
   1172 		 */
   1173 		allsusp = 1;
   1174 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1175 			if (l->l_stat == LSSLEEP &&
   1176 			    l->l_flag & L_SINTR)
   1177 				break;
   1178 			if (l->l_stat == LSSUSPENDED)
   1179 				suspended = l;
   1180 			else if ((l->l_stat != LSZOMB) &&
   1181 			    (l->l_stat != LSDEAD))
   1182 				allsusp = 0;
   1183 		}
   1184 	}
   1185 
   1186  found:
   1187 	switch (p->p_stat) {
   1188 	case SACTIVE:
   1189 
   1190 		if (l != NULL && (p->p_flag & P_TRACED))
   1191 			goto run;
   1192 
   1193 		/*
   1194 		 * If SIGCONT is default (or ignored) and process is
   1195 		 * asleep, we are finished; the process should not
   1196 		 * be awakened.
   1197 		 */
   1198 		if ((prop & SA_CONT) && action == SIG_DFL) {
   1199 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1200 			goto done;
   1201 		}
   1202 
   1203 		/*
   1204 		 * When a sleeping process receives a stop
   1205 		 * signal, process immediately if possible.
   1206 		 */
   1207 		if ((prop & SA_STOP) && action == SIG_DFL) {
   1208 			/*
   1209 			 * If a child holding parent blocked,
   1210 			 * stopping could cause deadlock.
   1211 			 */
   1212 			if (p->p_flag & P_PPWAIT) {
   1213 				goto out;
   1214 			}
   1215 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1216 			p->p_xstat = signum;
   1217 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1218 				/*
   1219 				 * XXXSMP: recursive call; don't lock
   1220 				 * the second time around.
   1221 				 */
   1222 				child_psignal(p, 0);
   1223 			}
   1224 			proc_stop(p, 1);	/* XXXSMP: recurse? */
   1225 			goto done;
   1226 		}
   1227 
   1228 		if (l == NULL) {
   1229 			/*
   1230 			 * Special case: SIGKILL of a process
   1231 			 * which is entirely composed of
   1232 			 * suspended LWPs should succeed. We
   1233 			 * make this happen by unsuspending one of
   1234 			 * them.
   1235 			 */
   1236 			if (allsusp && (signum == SIGKILL)) {
   1237 				if (p->p_flag & P_SA) {
   1238 					/*
   1239 					 * get a suspended lwp from
   1240 					 * the cache to send KILL
   1241 					 * signal
   1242 					 * XXXcl add signal checks at resume points
   1243 					 */
   1244 					suspended = sa_getcachelwp
   1245 						(SLIST_FIRST(&p->p_sa->sa_vps));
   1246 				}
   1247 				lwp_continue(suspended);
   1248 			}
   1249 			goto done;
   1250 		}
   1251 		/*
   1252 		 * All other (caught or default) signals
   1253 		 * cause the process to run.
   1254 		 */
   1255 		goto runfast;
   1256 		/*NOTREACHED*/
   1257 	case SSTOP:
   1258 		/* Process is stopped */
   1259 		/*
   1260 		 * If traced process is already stopped,
   1261 		 * then no further action is necessary.
   1262 		 */
   1263 		if (p->p_flag & P_TRACED)
   1264 			goto done;
   1265 
   1266 		/*
   1267 		 * Kill signal always sets processes running,
   1268 		 * if possible.
   1269 		 */
   1270 		if (signum == SIGKILL) {
   1271 			l = proc_unstop(p);
   1272 			if (l)
   1273 				goto runfast;
   1274 			goto done;
   1275 		}
   1276 
   1277 		if (prop & SA_CONT) {
   1278 			/*
   1279 			 * If SIGCONT is default (or ignored),
   1280 			 * we continue the process but don't
   1281 			 * leave the signal in ps_siglist, as
   1282 			 * it has no further action.  If
   1283 			 * SIGCONT is held, we continue the
   1284 			 * process and leave the signal in
   1285 			 * ps_siglist.  If the process catches
   1286 			 * SIGCONT, let it handle the signal
   1287 			 * itself.  If it isn't waiting on an
   1288 			 * event, then it goes back to run
   1289 			 * state.  Otherwise, process goes
   1290 			 * back to sleep state.
   1291 			 */
   1292 			if (action == SIG_DFL)
   1293 				sigdelset(&p->p_sigctx.ps_siglist,
   1294 				    signum);
   1295 			l = proc_unstop(p);
   1296 			if (l && (action == SIG_CATCH))
   1297 				goto runfast;
   1298 			goto out;
   1299 		}
   1300 
   1301 		if (prop & SA_STOP) {
   1302 			/*
   1303 			 * Already stopped, don't need to stop again.
   1304 			 * (If we did the shell could get confused.)
   1305 			 */
   1306 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1307 			goto done;
   1308 		}
   1309 
   1310 		/*
   1311 		 * If a lwp is sleeping interruptibly, then
   1312 		 * wake it up; it will run until the kernel
   1313 		 * boundary, where it will stop in issignal(),
   1314 		 * since p->p_stat is still SSTOP. When the
   1315 		 * process is continued, it will be made
   1316 		 * runnable and can look at the signal.
   1317 		 */
   1318 		if (l)
   1319 			goto run;
   1320 		goto out;
   1321 	case SIDL:
   1322 		/* Process is being created by fork */
   1323 		/* XXX: We are not ready to receive signals yet */
   1324 		goto done;
   1325 	default:
   1326 		/* Else what? */
   1327 		panic("psignal: Invalid process state %d.", p->p_stat);
   1328 	}
   1329 	/*NOTREACHED*/
   1330 
   1331  runfast:
   1332 	if (action == SIG_CATCH) {
   1333 		ksiginfo_put(p, ksi);
   1334 		action = SIG_HOLD;
   1335 	}
   1336 	/*
   1337 	 * Raise priority to at least PUSER.
   1338 	 */
   1339 	if (l->l_priority > PUSER)
   1340 		l->l_priority = PUSER;
   1341  run:
   1342 	if (action == SIG_CATCH) {
   1343 		ksiginfo_put(p, ksi);
   1344 		action = SIG_HOLD;
   1345 	}
   1346 
   1347 	setrunnable(l);		/* XXXSMP: recurse? */
   1348  out:
   1349 	if (action == SIG_CATCH)
   1350 		ksiginfo_put(p, ksi);
   1351  done:
   1352 	/* XXXSMP: works, but icky */
   1353 	if (dolock)
   1354 		SCHED_UNLOCK(s);
   1355 }
   1356 
   1357 void
   1358 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1359 {
   1360 	struct proc *p = l->l_proc;
   1361 	struct lwp *le, *li;
   1362 	siginfo_t *si;
   1363 	int f;
   1364 
   1365 	if (p->p_flag & P_SA) {
   1366 
   1367 		/* XXXUPSXXX What if not on sa_vp ? */
   1368 
   1369 		f = l->l_flag & L_SA;
   1370 		l->l_flag &= ~L_SA;
   1371 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1372 		si->_info = ksi->ksi_info;
   1373 		le = li = NULL;
   1374 		if (KSI_TRAP_P(ksi))
   1375 			le = l;
   1376 		else
   1377 			li = l;
   1378 
   1379 		sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1380 			    sizeof(siginfo_t), si);
   1381 		l->l_flag |= f;
   1382 		return;
   1383 	}
   1384 
   1385 	(*p->p_emul->e_sendsig)(ksi, mask);
   1386 }
   1387 
   1388 static __inline int firstsig(const sigset_t *);
   1389 
   1390 static __inline int
   1391 firstsig(const sigset_t *ss)
   1392 {
   1393 	int sig;
   1394 
   1395 	sig = ffs(ss->__bits[0]);
   1396 	if (sig != 0)
   1397 		return (sig);
   1398 #if NSIG > 33
   1399 	sig = ffs(ss->__bits[1]);
   1400 	if (sig != 0)
   1401 		return (sig + 32);
   1402 #endif
   1403 #if NSIG > 65
   1404 	sig = ffs(ss->__bits[2]);
   1405 	if (sig != 0)
   1406 		return (sig + 64);
   1407 #endif
   1408 #if NSIG > 97
   1409 	sig = ffs(ss->__bits[3]);
   1410 	if (sig != 0)
   1411 		return (sig + 96);
   1412 #endif
   1413 	return (0);
   1414 }
   1415 
   1416 /*
   1417  * If the current process has received a signal (should be caught or cause
   1418  * termination, should interrupt current syscall), return the signal number.
   1419  * Stop signals with default action are processed immediately, then cleared;
   1420  * they aren't returned.  This is checked after each entry to the system for
   1421  * a syscall or trap (though this can usually be done without calling issignal
   1422  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1423  * sequence is
   1424  *
   1425  *	while (signum = CURSIG(curlwp))
   1426  *		postsig(signum);
   1427  */
   1428 int
   1429 issignal(struct lwp *l)
   1430 {
   1431 	struct proc	*p = l->l_proc;
   1432 	int		s = 0, signum, prop;
   1433 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1434 	sigset_t	ss;
   1435 
   1436 	/* Bail out if we do not own the virtual processor */
   1437 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
   1438 		return 0;
   1439 
   1440 	if (p->p_stat == SSTOP) {
   1441 		/*
   1442 		 * The process is stopped/stopping. Stop ourselves now that
   1443 		 * we're on the kernel/userspace boundary.
   1444 		 */
   1445 		if (dolock)
   1446 			SCHED_LOCK(s);
   1447 		l->l_stat = LSSTOP;
   1448 		p->p_nrlwps--;
   1449 		if (p->p_flag & P_TRACED)
   1450 			goto sigtraceswitch;
   1451 		else
   1452 			goto sigswitch;
   1453 	}
   1454 	for (;;) {
   1455 		sigpending1(p, &ss);
   1456 		if (p->p_flag & P_PPWAIT)
   1457 			sigminusset(&stopsigmask, &ss);
   1458 		signum = firstsig(&ss);
   1459 		if (signum == 0) {		 	/* no signal to send */
   1460 			p->p_sigctx.ps_sigcheck = 0;
   1461 			if (locked && dolock)
   1462 				SCHED_LOCK(s);
   1463 			return (0);
   1464 		}
   1465 							/* take the signal! */
   1466 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1467 
   1468 		/*
   1469 		 * We should see pending but ignored signals
   1470 		 * only if P_TRACED was on when they were posted.
   1471 		 */
   1472 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1473 		    (p->p_flag & P_TRACED) == 0)
   1474 			continue;
   1475 
   1476 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1477 			/*
   1478 			 * If traced, always stop, and stay
   1479 			 * stopped until released by the debugger.
   1480 			 */
   1481 			p->p_xstat = signum;
   1482 
   1483 			/* Emulation-specific handling of signal trace */
   1484 			if ((p->p_emul->e_tracesig != NULL) &&
   1485 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
   1486 				goto childresumed;
   1487 
   1488 			if ((p->p_flag & P_FSTRACE) == 0)
   1489 				child_psignal(p, dolock);
   1490 			if (dolock)
   1491 				SCHED_LOCK(s);
   1492 			proc_stop(p, 1);
   1493 		sigtraceswitch:
   1494 			mi_switch(l, NULL);
   1495 			SCHED_ASSERT_UNLOCKED();
   1496 			if (dolock)
   1497 				splx(s);
   1498 			else
   1499 				dolock = 1;
   1500 
   1501 		childresumed:
   1502 			/*
   1503 			 * If we are no longer being traced, or the parent
   1504 			 * didn't give us a signal, look for more signals.
   1505 			 */
   1506 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1507 				continue;
   1508 
   1509 			/*
   1510 			 * If the new signal is being masked, look for other
   1511 			 * signals.
   1512 			 */
   1513 			signum = p->p_xstat;
   1514 			p->p_xstat = 0;
   1515 			/*
   1516 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1517 			 * in setrunnable().
   1518 			 */
   1519 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1520 				continue;
   1521 							/* take the signal! */
   1522 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1523 		}
   1524 
   1525 		prop = sigprop[signum];
   1526 
   1527 		/*
   1528 		 * Decide whether the signal should be returned.
   1529 		 * Return the signal's number, or fall through
   1530 		 * to clear it from the pending mask.
   1531 		 */
   1532 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1533 
   1534 		case (long)SIG_DFL:
   1535 			/*
   1536 			 * Don't take default actions on system processes.
   1537 			 */
   1538 			if (p->p_pid <= 1) {
   1539 #ifdef DIAGNOSTIC
   1540 				/*
   1541 				 * Are you sure you want to ignore SIGSEGV
   1542 				 * in init? XXX
   1543 				 */
   1544 				printf("Process (pid %d) got signal %d\n",
   1545 				    p->p_pid, signum);
   1546 #endif
   1547 				break;		/* == ignore */
   1548 			}
   1549 			/*
   1550 			 * If there is a pending stop signal to process
   1551 			 * with default action, stop here,
   1552 			 * then clear the signal.  However,
   1553 			 * if process is member of an orphaned
   1554 			 * process group, ignore tty stop signals.
   1555 			 */
   1556 			if (prop & SA_STOP) {
   1557 				if (p->p_flag & P_TRACED ||
   1558 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1559 				    prop & SA_TTYSTOP))
   1560 					break;	/* == ignore */
   1561 				p->p_xstat = signum;
   1562 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1563 					child_psignal(p, dolock);
   1564 				if (dolock)
   1565 					SCHED_LOCK(s);
   1566 				proc_stop(p, 1);
   1567 			sigswitch:
   1568 				mi_switch(l, NULL);
   1569 				SCHED_ASSERT_UNLOCKED();
   1570 				if (dolock)
   1571 					splx(s);
   1572 				else
   1573 					dolock = 1;
   1574 				break;
   1575 			} else if (prop & SA_IGNORE) {
   1576 				/*
   1577 				 * Except for SIGCONT, shouldn't get here.
   1578 				 * Default action is to ignore; drop it.
   1579 				 */
   1580 				break;		/* == ignore */
   1581 			} else
   1582 				goto keep;
   1583 			/*NOTREACHED*/
   1584 
   1585 		case (long)SIG_IGN:
   1586 			/*
   1587 			 * Masking above should prevent us ever trying
   1588 			 * to take action on an ignored signal other
   1589 			 * than SIGCONT, unless process is traced.
   1590 			 */
   1591 #ifdef DEBUG_ISSIGNAL
   1592 			if ((prop & SA_CONT) == 0 &&
   1593 			    (p->p_flag & P_TRACED) == 0)
   1594 				printf("issignal\n");
   1595 #endif
   1596 			break;		/* == ignore */
   1597 
   1598 		default:
   1599 			/*
   1600 			 * This signal has an action, let
   1601 			 * postsig() process it.
   1602 			 */
   1603 			goto keep;
   1604 		}
   1605 	}
   1606 	/* NOTREACHED */
   1607 
   1608  keep:
   1609 						/* leave the signal for later */
   1610 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1611 	CHECKSIGS(p);
   1612 	if (locked && dolock)
   1613 		SCHED_LOCK(s);
   1614 	return (signum);
   1615 }
   1616 
   1617 /*
   1618  * Put the argument process into the stopped state and notify the parent
   1619  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1620  * on the run queue.
   1621  */
   1622 void
   1623 proc_stop(struct proc *p, int wakeup)
   1624 {
   1625 	struct lwp *l;
   1626 	struct proc *parent;
   1627 	struct sadata_vp *vp;
   1628 
   1629 	SCHED_ASSERT_LOCKED();
   1630 
   1631 	/* XXX lock process LWP state */
   1632 	p->p_flag &= ~P_WAITED;
   1633 	p->p_stat = SSTOP;
   1634 	parent = p->p_pptr;
   1635 	parent->p_nstopchild++;
   1636 
   1637 	if (p->p_flag & P_SA) {
   1638 		/*
   1639 		 * Only (try to) put the LWP on the VP in stopped
   1640 		 * state.
   1641 		 * All other LWPs will suspend in sa_setwoken()
   1642 		 * because the VP-LWP in stopped state cannot be
   1643 		 * repossessed.
   1644 		 */
   1645 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1646 			l = vp->savp_lwp;
   1647 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
   1648 				l->l_stat = LSSTOP;
   1649 				p->p_nrlwps--;
   1650 			} else if (l->l_stat == LSRUN) {
   1651 				/* Remove LWP from the run queue */
   1652 				remrunqueue(l);
   1653 				l->l_stat = LSSTOP;
   1654 				p->p_nrlwps--;
   1655 			} else if (l->l_stat == LSSLEEP &&
   1656 			    l->l_flag & L_SA_IDLE) {
   1657 				l->l_flag &= ~L_SA_IDLE;
   1658 				l->l_stat = LSSTOP;
   1659 			}
   1660 		}
   1661 		goto out;
   1662 	}
   1663 
   1664 	/*
   1665 	 * Put as many LWP's as possible in stopped state.
   1666 	 * Sleeping ones will notice the stopped state as they try to
   1667 	 * return to userspace.
   1668 	 */
   1669 
   1670 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1671 		if (l->l_stat == LSONPROC) {
   1672 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1673 			 * is curlwp and hence is about to be mi_switched
   1674 			 * away; the only callers of proc_stop() are:
   1675 			 * - psignal
   1676 			 * - issignal()
   1677 			 * For the former, proc_stop() is only called when
   1678 			 * no processes are running, so we don't worry.
   1679 			 * For the latter, proc_stop() is called right
   1680 			 * before mi_switch().
   1681 			 */
   1682 			l->l_stat = LSSTOP;
   1683 			p->p_nrlwps--;
   1684 		} else if (l->l_stat == LSRUN) {
   1685 			/* Remove LWP from the run queue */
   1686 			remrunqueue(l);
   1687 			l->l_stat = LSSTOP;
   1688 			p->p_nrlwps--;
   1689 		} else if ((l->l_stat == LSSLEEP) ||
   1690 		    (l->l_stat == LSSUSPENDED) ||
   1691 		    (l->l_stat == LSZOMB) ||
   1692 		    (l->l_stat == LSDEAD)) {
   1693 			/*
   1694 			 * Don't do anything; let sleeping LWPs
   1695 			 * discover the stopped state of the process
   1696 			 * on their way out of the kernel; otherwise,
   1697 			 * things like NFS threads that sleep with
   1698 			 * locks will block the rest of the system
   1699 			 * from getting any work done.
   1700 			 *
   1701 			 * Suspended/dead/zombie LWPs aren't going
   1702 			 * anywhere, so we don't need to touch them.
   1703 			 */
   1704 		}
   1705 #ifdef DIAGNOSTIC
   1706 		else {
   1707 			panic("proc_stop: process %d lwp %d "
   1708 			      "in unstoppable state %d.\n",
   1709 			    p->p_pid, l->l_lid, l->l_stat);
   1710 		}
   1711 #endif
   1712 	}
   1713 
   1714  out:
   1715 	/* XXX unlock process LWP state */
   1716 
   1717 	if (wakeup)
   1718 		sched_wakeup((caddr_t)p->p_pptr);
   1719 }
   1720 
   1721 /*
   1722  * Given a process in state SSTOP, set the state back to SACTIVE and
   1723  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1724  *
   1725  * If no LWPs ended up runnable (and therefore able to take a signal),
   1726  * return a LWP that is sleeping interruptably. The caller can wake
   1727  * that LWP up to take a signal.
   1728  */
   1729 struct lwp *
   1730 proc_unstop(struct proc *p)
   1731 {
   1732 	struct lwp *l, *lr = NULL;
   1733 	struct sadata_vp *vp;
   1734 	int cantake = 0;
   1735 
   1736 	SCHED_ASSERT_LOCKED();
   1737 
   1738 	/*
   1739 	 * Our caller wants to be informed if there are only sleeping
   1740 	 * and interruptable LWPs left after we have run so that it
   1741 	 * can invoke setrunnable() if required - return one of the
   1742 	 * interruptable LWPs if this is the case.
   1743 	 */
   1744 
   1745 	if (!(p->p_flag & P_WAITED))
   1746 		p->p_pptr->p_nstopchild--;
   1747 	p->p_stat = SACTIVE;
   1748 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1749 		if (l->l_stat == LSRUN) {
   1750 			lr = NULL;
   1751 			cantake = 1;
   1752 		}
   1753 		if (l->l_stat != LSSTOP)
   1754 			continue;
   1755 
   1756 		if (l->l_wchan != NULL) {
   1757 			l->l_stat = LSSLEEP;
   1758 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1759 				lr = l;
   1760 				cantake = 1;
   1761 			}
   1762 		} else {
   1763 			setrunnable(l);
   1764 			lr = NULL;
   1765 			cantake = 1;
   1766 		}
   1767 	}
   1768 	if (p->p_flag & P_SA) {
   1769 		/* Only consider returning the LWP on the VP. */
   1770 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1771 			lr = vp->savp_lwp;
   1772 			if (lr->l_stat == LSSLEEP) {
   1773 				if (lr->l_flag & L_SA_YIELD) {
   1774 					setrunnable(lr);
   1775 					break;
   1776 				} else if (lr->l_flag & L_SINTR)
   1777 					return lr;
   1778 			}
   1779 		}
   1780 		return NULL;
   1781 	}
   1782 	return lr;
   1783 }
   1784 
   1785 /*
   1786  * Take the action for the specified signal
   1787  * from the current set of pending signals.
   1788  */
   1789 void
   1790 postsig(int signum)
   1791 {
   1792 	struct lwp *l;
   1793 	struct proc	*p;
   1794 	struct sigacts	*ps;
   1795 	sig_t		action;
   1796 	sigset_t	*returnmask;
   1797 
   1798 	l = curlwp;
   1799 	p = l->l_proc;
   1800 	ps = p->p_sigacts;
   1801 #ifdef DIAGNOSTIC
   1802 	if (signum == 0)
   1803 		panic("postsig");
   1804 #endif
   1805 
   1806 	KERNEL_PROC_LOCK(l);
   1807 
   1808 #ifdef MULTIPROCESSOR
   1809 	/*
   1810 	 * On MP, issignal() can return the same signal to multiple
   1811 	 * LWPs.  The LWPs will block above waiting for the kernel
   1812 	 * lock and the first LWP which gets through will then remove
   1813 	 * the signal from ps_siglist.  All other LWPs exit here.
   1814 	 */
   1815 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
   1816 		KERNEL_PROC_UNLOCK(l);
   1817 		return;
   1818 	}
   1819 #endif
   1820 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1821 	action = SIGACTION_PS(ps, signum).sa_handler;
   1822 	if (action == SIG_DFL) {
   1823 #ifdef KTRACE
   1824 		if (KTRPOINT(p, KTR_PSIG))
   1825 			ktrpsig(p, signum, action,
   1826 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1827 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1828 			    NULL);
   1829 #endif
   1830 		/*
   1831 		 * Default action, where the default is to kill
   1832 		 * the process.  (Other cases were ignored above.)
   1833 		 */
   1834 		sigexit(l, signum);
   1835 		/* NOTREACHED */
   1836 	} else {
   1837 		ksiginfo_t *ksi;
   1838 		/*
   1839 		 * If we get here, the signal must be caught.
   1840 		 */
   1841 #ifdef DIAGNOSTIC
   1842 		if (action == SIG_IGN ||
   1843 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1844 			panic("postsig action");
   1845 #endif
   1846 		/*
   1847 		 * Set the new mask value and also defer further
   1848 		 * occurrences of this signal.
   1849 		 *
   1850 		 * Special case: user has done a sigpause.  Here the
   1851 		 * current mask is not of interest, but rather the
   1852 		 * mask from before the sigpause is what we want
   1853 		 * restored after the signal processing is completed.
   1854 		 */
   1855 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1856 			returnmask = &p->p_sigctx.ps_oldmask;
   1857 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1858 		} else
   1859 			returnmask = &p->p_sigctx.ps_sigmask;
   1860 		p->p_stats->p_ru.ru_nsignals++;
   1861 		ksi = ksiginfo_get(p, signum);
   1862 #ifdef KTRACE
   1863 		if (KTRPOINT(p, KTR_PSIG))
   1864 			ktrpsig(p, signum, action,
   1865 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1866 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1867 			    ksi);
   1868 #endif
   1869 		if (ksi == NULL) {
   1870 			ksiginfo_t ksi1;
   1871 			/*
   1872 			 * we did not save any siginfo for this, either
   1873 			 * because the signal was not caught, or because the
   1874 			 * user did not request SA_SIGINFO
   1875 			 */
   1876 			KSI_INIT_EMPTY(&ksi1);
   1877 			ksi1.ksi_signo = signum;
   1878 			kpsendsig(l, &ksi1, returnmask);
   1879 		} else {
   1880 			kpsendsig(l, ksi, returnmask);
   1881 			pool_put(&ksiginfo_pool, ksi);
   1882 		}
   1883 		p->p_sigctx.ps_lwp = 0;
   1884 		p->p_sigctx.ps_code = 0;
   1885 		p->p_sigctx.ps_signo = 0;
   1886 		(void) splsched();	/* XXXSMP */
   1887 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1888 		    &p->p_sigctx.ps_sigmask);
   1889 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1890 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1891 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1892 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1893 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1894 		}
   1895 		(void) spl0();		/* XXXSMP */
   1896 	}
   1897 
   1898 	KERNEL_PROC_UNLOCK(l);
   1899 }
   1900 
   1901 /*
   1902  * Kill the current process for stated reason.
   1903  */
   1904 void
   1905 killproc(struct proc *p, const char *why)
   1906 {
   1907 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1908 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1909 	psignal(p, SIGKILL);
   1910 }
   1911 
   1912 /*
   1913  * Force the current process to exit with the specified signal, dumping core
   1914  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1915  * allowing unrecoverable failures to terminate the process without changing
   1916  * signal state.  Mark the accounting record with the signal termination.
   1917  * If dumping core, save the signal number for the debugger.  Calls exit and
   1918  * does not return.
   1919  */
   1920 
   1921 #if defined(DEBUG)
   1922 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1923 #else
   1924 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1925 #endif
   1926 
   1927 static	const char logcoredump[] =
   1928 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1929 static	const char lognocoredump[] =
   1930 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1931 
   1932 /* Wrapper function for use in p_userret */
   1933 static void
   1934 lwp_coredump_hook(struct lwp *l, void *arg)
   1935 {
   1936 	int s;
   1937 
   1938 	/*
   1939 	 * Suspend ourselves, so that the kernel stack and therefore
   1940 	 * the userland registers saved in the trapframe are around
   1941 	 * for coredump() to write them out.
   1942 	 */
   1943 	KERNEL_PROC_LOCK(l);
   1944 	l->l_flag &= ~L_DETACHED;
   1945 	SCHED_LOCK(s);
   1946 	l->l_stat = LSSUSPENDED;
   1947 	l->l_proc->p_nrlwps--;
   1948 	/* XXX NJWLWP check if this makes sense here: */
   1949 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1950 	mi_switch(l, NULL);
   1951 	SCHED_ASSERT_UNLOCKED();
   1952 	splx(s);
   1953 
   1954 	lwp_exit(l);
   1955 }
   1956 
   1957 void
   1958 sigexit(struct lwp *l, int signum)
   1959 {
   1960 	struct proc	*p;
   1961 #if 0
   1962 	struct lwp	*l2;
   1963 #endif
   1964 	int		error, exitsig;
   1965 
   1966 	p = l->l_proc;
   1967 
   1968 	/*
   1969 	 * Don't permit coredump() or exit1() multiple times
   1970 	 * in the same process.
   1971 	 */
   1972 	if (p->p_flag & P_WEXIT) {
   1973 		KERNEL_PROC_UNLOCK(l);
   1974 		(*p->p_userret)(l, p->p_userret_arg);
   1975 	}
   1976 	p->p_flag |= P_WEXIT;
   1977 	/* We don't want to switch away from exiting. */
   1978 	/* XXX multiprocessor: stop LWPs on other processors. */
   1979 #if 0
   1980 	if (p->p_flag & P_SA) {
   1981 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1982 		    l2->l_flag &= ~L_SA;
   1983 		p->p_flag &= ~P_SA;
   1984 	}
   1985 #endif
   1986 
   1987 	/* Make other LWPs stick around long enough to be dumped */
   1988 	p->p_userret = lwp_coredump_hook;
   1989 	p->p_userret_arg = NULL;
   1990 
   1991 	exitsig = signum;
   1992 	p->p_acflag |= AXSIG;
   1993 	if (sigprop[signum] & SA_CORE) {
   1994 		p->p_sigctx.ps_signo = signum;
   1995 		if ((error = coredump(l)) == 0)
   1996 			exitsig |= WCOREFLAG;
   1997 
   1998 		if (kern_logsigexit) {
   1999 			/* XXX What if we ever have really large UIDs? */
   2000 			int uid = p->p_cred && p->p_ucred ?
   2001 				(int) p->p_ucred->cr_uid : -1;
   2002 
   2003 			if (error)
   2004 				log(LOG_INFO, lognocoredump, p->p_pid,
   2005 				    p->p_comm, uid, signum, error);
   2006 			else
   2007 				log(LOG_INFO, logcoredump, p->p_pid,
   2008 				    p->p_comm, uid, signum);
   2009 		}
   2010 
   2011 	}
   2012 
   2013 	exit1(l, W_EXITCODE(0, exitsig));
   2014 	/* NOTREACHED */
   2015 }
   2016 
   2017 /*
   2018  * Dump core, into a file named "progname.core" or "core" (depending on the
   2019  * value of shortcorename), unless the process was setuid/setgid.
   2020  */
   2021 int
   2022 coredump(struct lwp *l)
   2023 {
   2024 	struct vnode		*vp;
   2025 	struct proc		*p;
   2026 	struct vmspace		*vm;
   2027 	struct ucred		*cred;
   2028 	struct nameidata	nd;
   2029 	struct vattr		vattr;
   2030 	struct mount		*mp;
   2031 	int			error, error1;
   2032 	char			name[MAXPATHLEN];
   2033 
   2034 	p = l->l_proc;
   2035 	vm = p->p_vmspace;
   2036 	cred = p->p_cred->pc_ucred;
   2037 
   2038 	/*
   2039 	 * Make sure the process has not set-id, to prevent data leaks.
   2040 	 */
   2041 	if (p->p_flag & P_SUGID)
   2042 		return (EPERM);
   2043 
   2044 	/*
   2045 	 * Refuse to core if the data + stack + user size is larger than
   2046 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   2047 	 * data.
   2048 	 */
   2049 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   2050 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   2051 		return (EFBIG);		/* better error code? */
   2052 
   2053 restart:
   2054 	/*
   2055 	 * The core dump will go in the current working directory.  Make
   2056 	 * sure that the directory is still there and that the mount flags
   2057 	 * allow us to write core dumps there.
   2058 	 */
   2059 	vp = p->p_cwdi->cwdi_cdir;
   2060 	if (vp->v_mount == NULL ||
   2061 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   2062 		return (EPERM);
   2063 
   2064 	error = build_corename(p, name);
   2065 	if (error)
   2066 		return error;
   2067 
   2068 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   2069 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   2070 	if (error)
   2071 		return (error);
   2072 	vp = nd.ni_vp;
   2073 
   2074 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
   2075 		VOP_UNLOCK(vp, 0);
   2076 		if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
   2077 			return (error);
   2078 		if ((error = vn_start_write(NULL, &mp,
   2079 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
   2080 			return (error);
   2081 		goto restart;
   2082 	}
   2083 
   2084 	/* Don't dump to non-regular files or files with links. */
   2085 	if (vp->v_type != VREG ||
   2086 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   2087 		error = EINVAL;
   2088 		goto out;
   2089 	}
   2090 	VATTR_NULL(&vattr);
   2091 	vattr.va_size = 0;
   2092 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   2093 	VOP_SETATTR(vp, &vattr, cred, p);
   2094 	p->p_acflag |= ACORE;
   2095 
   2096 	/* Now dump the actual core file. */
   2097 	error = (*p->p_execsw->es_coredump)(l, vp, cred);
   2098  out:
   2099 	VOP_UNLOCK(vp, 0);
   2100 	vn_finished_write(mp, 0);
   2101 	error1 = vn_close(vp, FWRITE, cred, p);
   2102 	if (error == 0)
   2103 		error = error1;
   2104 	return (error);
   2105 }
   2106 
   2107 /*
   2108  * Nonexistent system call-- signal process (may want to handle it).
   2109  * Flag error in case process won't see signal immediately (blocked or ignored).
   2110  */
   2111 /* ARGSUSED */
   2112 int
   2113 sys_nosys(struct lwp *l, void *v, register_t *retval)
   2114 {
   2115 	struct proc 	*p;
   2116 
   2117 	p = l->l_proc;
   2118 	psignal(p, SIGSYS);
   2119 	return (ENOSYS);
   2120 }
   2121 
   2122 static int
   2123 build_corename(struct proc *p, char dst[MAXPATHLEN])
   2124 {
   2125 	const char	*s;
   2126 	char		*d, *end;
   2127 	int		i;
   2128 
   2129 	for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
   2130 	    *s != '\0'; s++) {
   2131 		if (*s == '%') {
   2132 			switch (*(s + 1)) {
   2133 			case 'n':
   2134 				i = snprintf(d, end - d, "%s", p->p_comm);
   2135 				break;
   2136 			case 'p':
   2137 				i = snprintf(d, end - d, "%d", p->p_pid);
   2138 				break;
   2139 			case 'u':
   2140 				i = snprintf(d, end - d, "%.*s",
   2141 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2142 				    p->p_pgrp->pg_session->s_login);
   2143 				break;
   2144 			case 't':
   2145 				i = snprintf(d, end - d, "%ld",
   2146 				    p->p_stats->p_start.tv_sec);
   2147 				break;
   2148 			default:
   2149 				goto copy;
   2150 			}
   2151 			d += i;
   2152 			s++;
   2153 		} else {
   2154  copy:			*d = *s;
   2155 			d++;
   2156 		}
   2157 		if (d >= end)
   2158 			return (ENAMETOOLONG);
   2159 	}
   2160 	*d = '\0';
   2161 	return 0;
   2162 }
   2163 
   2164 void
   2165 getucontext(struct lwp *l, ucontext_t *ucp)
   2166 {
   2167 	struct proc	*p;
   2168 
   2169 	p = l->l_proc;
   2170 
   2171 	ucp->uc_flags = 0;
   2172 	ucp->uc_link = l->l_ctxlink;
   2173 
   2174 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2175 	ucp->uc_flags |= _UC_SIGMASK;
   2176 
   2177 	/*
   2178 	 * The (unsupplied) definition of the `current execution stack'
   2179 	 * in the System V Interface Definition appears to allow returning
   2180 	 * the main context stack.
   2181 	 */
   2182 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2183 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2184 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2185 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2186 	} else {
   2187 		/* Simply copy alternate signal execution stack. */
   2188 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2189 	}
   2190 	ucp->uc_flags |= _UC_STACK;
   2191 
   2192 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2193 }
   2194 
   2195 /* ARGSUSED */
   2196 int
   2197 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2198 {
   2199 	struct sys_getcontext_args /* {
   2200 		syscallarg(struct __ucontext *) ucp;
   2201 	} */ *uap = v;
   2202 	ucontext_t uc;
   2203 
   2204 	getucontext(l, &uc);
   2205 
   2206 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2207 }
   2208 
   2209 int
   2210 setucontext(struct lwp *l, const ucontext_t *ucp)
   2211 {
   2212 	struct proc	*p;
   2213 	int		error;
   2214 
   2215 	p = l->l_proc;
   2216 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2217 		return (error);
   2218 	l->l_ctxlink = ucp->uc_link;
   2219 
   2220 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2221 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2222 
   2223 	/*
   2224 	 * If there was stack information, update whether or not we are
   2225 	 * still running on an alternate signal stack.
   2226 	 */
   2227 	if ((ucp->uc_flags & _UC_STACK) != 0) {
   2228 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
   2229 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   2230 		else
   2231 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   2232 	}
   2233 
   2234 	return 0;
   2235 }
   2236 
   2237 /* ARGSUSED */
   2238 int
   2239 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2240 {
   2241 	struct sys_setcontext_args /* {
   2242 		syscallarg(const ucontext_t *) ucp;
   2243 	} */ *uap = v;
   2244 	ucontext_t uc;
   2245 	int error;
   2246 
   2247 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2248 		exit1(l, W_EXITCODE(0, 0));
   2249 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2250 	    (error = setucontext(l, &uc)) != 0)
   2251 		return (error);
   2252 
   2253 	return (EJUSTRETURN);
   2254 }
   2255 
   2256 /*
   2257  * sigtimedwait(2) system call, used also for implementation
   2258  * of sigwaitinfo() and sigwait().
   2259  *
   2260  * This only handles single LWP in signal wait. libpthread provides
   2261  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2262  */
   2263 int
   2264 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2265 {
   2266 	struct sys___sigtimedwait_args /* {
   2267 		syscallarg(const sigset_t *) set;
   2268 		syscallarg(siginfo_t *) info;
   2269 		syscallarg(struct timespec *) timeout;
   2270 	} */ *uap = v;
   2271 	sigset_t *waitset, twaitset;
   2272 	struct proc *p = l->l_proc;
   2273 	int error, signum, s;
   2274 	int timo = 0;
   2275 	struct timeval tvstart;
   2276 	struct timespec ts;
   2277 	ksiginfo_t *ksi;
   2278 
   2279 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
   2280 
   2281 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
   2282 		FREE(waitset, M_TEMP);
   2283 		return (error);
   2284 	}
   2285 
   2286 	/*
   2287 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2288 	 * ignore SA_CANTMASK signals in waitset, we do this
   2289 	 * only for the below siglist check.
   2290 	 */
   2291 	sigminusset(&sigcantmask, waitset);
   2292 
   2293 	/*
   2294 	 * First scan siglist and check if there is signal from
   2295 	 * our waitset already pending.
   2296 	 */
   2297 	twaitset = *waitset;
   2298 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2299 	if ((signum = firstsig(&twaitset))) {
   2300 		/* found pending signal */
   2301 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2302 		ksi = ksiginfo_get(p, signum);
   2303 		if (!ksi) {
   2304 			/* No queued siginfo, manufacture one */
   2305 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2306 			KSI_INIT(ksi);
   2307 			ksi->ksi_info._signo = signum;
   2308 			ksi->ksi_info._code = SI_USER;
   2309 		}
   2310 
   2311 		goto sig;
   2312 	}
   2313 
   2314 	/*
   2315 	 * Calculate timeout, if it was specified.
   2316 	 */
   2317 	if (SCARG(uap, timeout)) {
   2318 		uint64_t ms;
   2319 
   2320 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
   2321 			return (error);
   2322 
   2323 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2324 		timo = mstohz(ms);
   2325 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2326 			timo = 1;
   2327 		if (timo <= 0)
   2328 			return (EAGAIN);
   2329 
   2330 		/*
   2331 		 * Remember current mono_time, it would be used in
   2332 		 * ECANCELED/ERESTART case.
   2333 		 */
   2334 		s = splclock();
   2335 		tvstart = mono_time;
   2336 		splx(s);
   2337 	}
   2338 
   2339 	/*
   2340 	 * Setup ps_sigwait list. Pass pointer to malloced memory
   2341 	 * here; it's not possible to pass pointer to a structure
   2342 	 * on current process's stack, the current process might
   2343 	 * be swapped out at the time the signal would get delivered.
   2344 	 */
   2345 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2346 	p->p_sigctx.ps_sigwaited = ksi;
   2347 	p->p_sigctx.ps_sigwait = waitset;
   2348 
   2349 	/*
   2350 	 * Wait for signal to arrive. We can either be woken up or
   2351 	 * time out.
   2352 	 */
   2353 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2354 
   2355 	/*
   2356 	 * Need to find out if we woke as a result of lwp_wakeup()
   2357 	 * or a signal outside our wait set.
   2358 	 */
   2359 	if (error == EINTR && p->p_sigctx.ps_sigwaited
   2360 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
   2361 		/* wakeup via _lwp_wakeup() */
   2362 		error = ECANCELED;
   2363 	} else if (!error && p->p_sigctx.ps_sigwaited) {
   2364 		/* spurious wakeup - arrange for syscall restart */
   2365 		error = ERESTART;
   2366 		goto fail;
   2367 	}
   2368 
   2369 	/*
   2370 	 * On error, clear sigwait indication. psignal1() clears it
   2371 	 * in !error case.
   2372 	 */
   2373 	if (error) {
   2374 		p->p_sigctx.ps_sigwaited = NULL;
   2375 
   2376 		/*
   2377 		 * If the sleep was interrupted (either by signal or wakeup),
   2378 		 * update the timeout and copyout new value back.
   2379 		 * It would be used when the syscall would be restarted
   2380 		 * or called again.
   2381 		 */
   2382 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2383 			struct timeval tvnow, tvtimo;
   2384 			int err;
   2385 
   2386 			s = splclock();
   2387 			tvnow = mono_time;
   2388 			splx(s);
   2389 
   2390 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2391 
   2392 			/* compute how much time has passed since start */
   2393 			timersub(&tvnow, &tvstart, &tvnow);
   2394 			/* substract passed time from timeout */
   2395 			timersub(&tvtimo, &tvnow, &tvtimo);
   2396 
   2397 			if (tvtimo.tv_sec < 0) {
   2398 				error = EAGAIN;
   2399 				goto fail;
   2400 			}
   2401 
   2402 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2403 
   2404 			/* copy updated timeout to userland */
   2405 			if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
   2406 				error = err;
   2407 				goto fail;
   2408 			}
   2409 		}
   2410 
   2411 		goto fail;
   2412 	}
   2413 
   2414 	/*
   2415 	 * If a signal from the wait set arrived, copy it to userland.
   2416 	 * Copy only the used part of siginfo, the padding part is
   2417 	 * left unchanged (userland is not supposed to touch it anyway).
   2418 	 */
   2419  sig:
   2420 	error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
   2421 
   2422  fail:
   2423 	FREE(waitset, M_TEMP);
   2424 	pool_put(&ksiginfo_pool, ksi);
   2425 	p->p_sigctx.ps_sigwait = NULL;
   2426 
   2427 	return (error);
   2428 }
   2429 
   2430 /*
   2431  * Returns true if signal is ignored or masked for passed process.
   2432  */
   2433 int
   2434 sigismasked(struct proc *p, int sig)
   2435 {
   2436 
   2437 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2438 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2439 }
   2440 
   2441 static int
   2442 filt_sigattach(struct knote *kn)
   2443 {
   2444 	struct proc *p = curproc;
   2445 
   2446 	kn->kn_ptr.p_proc = p;
   2447 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2448 
   2449 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2450 
   2451 	return (0);
   2452 }
   2453 
   2454 static void
   2455 filt_sigdetach(struct knote *kn)
   2456 {
   2457 	struct proc *p = kn->kn_ptr.p_proc;
   2458 
   2459 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2460 }
   2461 
   2462 /*
   2463  * signal knotes are shared with proc knotes, so we apply a mask to
   2464  * the hint in order to differentiate them from process hints.  This
   2465  * could be avoided by using a signal-specific knote list, but probably
   2466  * isn't worth the trouble.
   2467  */
   2468 static int
   2469 filt_signal(struct knote *kn, long hint)
   2470 {
   2471 
   2472 	if (hint & NOTE_SIGNAL) {
   2473 		hint &= ~NOTE_SIGNAL;
   2474 
   2475 		if (kn->kn_id == hint)
   2476 			kn->kn_data++;
   2477 	}
   2478 	return (kn->kn_data != 0);
   2479 }
   2480 
   2481 const struct filterops sig_filtops = {
   2482 	0, filt_sigattach, filt_sigdetach, filt_signal
   2483 };
   2484