kern_sig.c revision 1.194 1 /* $NetBSD: kern_sig.c,v 1.194 2004/04/25 16:42:41 simonb Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.194 2004/04/25 16:42:41 simonb Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm_extern.h>
82
83 static void child_psignal(struct proc *, int);
84 static int build_corename(struct proc *, char [MAXPATHLEN]);
85 static void ksiginfo_exithook(struct proc *, void *);
86 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
87 static ksiginfo_t *ksiginfo_get(struct proc *, int);
88 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
89
90 sigset_t contsigmask, stopsigmask, sigcantmask, sigtrapmask;
91
92 POOL_INIT(sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
93 &pool_allocator_nointr);
94 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
95 &pool_allocator_nointr);
96 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
97
98 /*
99 * Can process p, with pcred pc, send the signal signum to process q?
100 */
101 #define CANSIGNAL(p, pc, q, signum) \
102 ((pc)->pc_ucred->cr_uid == 0 || \
103 (pc)->p_ruid == (q)->p_cred->p_ruid || \
104 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
105 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
106 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
107 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
108
109 /*
110 * Remove and return the first ksiginfo element that matches our requested
111 * signal, or return NULL if one not found.
112 */
113 static ksiginfo_t *
114 ksiginfo_get(struct proc *p, int signo)
115 {
116 ksiginfo_t *ksi;
117 int s;
118
119 s = splsoftclock();
120 simple_lock(&p->p_sigctx.ps_silock);
121 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
122 if (ksi->ksi_signo == signo) {
123 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
124 goto out;
125 }
126 }
127 ksi = NULL;
128 out:
129 simple_unlock(&p->p_sigctx.ps_silock);
130 splx(s);
131 return ksi;
132 }
133
134 /*
135 * Append a new ksiginfo element to the list of pending ksiginfo's, if
136 * we need to (SA_SIGINFO was requested). We replace non RT signals if
137 * they already existed in the queue and we add new entries for RT signals,
138 * or for non RT signals with non-existing entries.
139 */
140 static void
141 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
142 {
143 ksiginfo_t *kp;
144 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
145 int s;
146
147 if ((sa->sa_flags & SA_SIGINFO) == 0)
148 return;
149 /*
150 * If there's no info, don't save it.
151 */
152 if (KSI_EMPTY_P(ksi))
153 return;
154
155 s = splsoftclock();
156 simple_lock(&p->p_sigctx.ps_silock);
157 #ifdef notyet /* XXX: QUEUING */
158 if (ksi->ksi_signo < SIGRTMIN)
159 #endif
160 {
161 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
162 if (kp->ksi_signo == ksi->ksi_signo) {
163 KSI_COPY(ksi, kp);
164 goto out;
165 }
166 }
167 }
168 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
169 if (kp == NULL) {
170 #ifdef DIAGNOSTIC
171 printf("Out of memory allocating siginfo for pid %d\n",
172 p->p_pid);
173 #endif
174 goto out;
175 }
176 *kp = *ksi;
177 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
178 out:
179 simple_unlock(&p->p_sigctx.ps_silock);
180 splx(s);
181 }
182
183 /*
184 * free all pending ksiginfo on exit
185 */
186 static void
187 ksiginfo_exithook(struct proc *p, void *v)
188 {
189 int s;
190
191 s = splsoftclock();
192 simple_lock(&p->p_sigctx.ps_silock);
193 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
194 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
195 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
196 pool_put(&ksiginfo_pool, ksi);
197 }
198 simple_unlock(&p->p_sigctx.ps_silock);
199 splx(s);
200 }
201
202 /*
203 * Initialize signal-related data structures.
204 */
205 void
206 signal_init(void)
207 {
208
209 exithook_establish(ksiginfo_exithook, NULL);
210 exechook_establish(ksiginfo_exithook, NULL);
211
212 sigaddset(&sigtrapmask, SIGSEGV);
213 sigaddset(&sigtrapmask, SIGBUS);
214 sigaddset(&sigtrapmask, SIGILL);
215 sigaddset(&sigtrapmask, SIGFPE);
216 sigaddset(&sigtrapmask, SIGTRAP);
217 }
218
219 /*
220 * Create an initial sigctx structure, using the same signal state
221 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
222 * copy it from parent.
223 */
224 void
225 sigactsinit(struct proc *np, struct proc *pp, int share)
226 {
227 struct sigacts *ps;
228
229 if (share) {
230 np->p_sigacts = pp->p_sigacts;
231 pp->p_sigacts->sa_refcnt++;
232 } else {
233 ps = pool_get(&sigacts_pool, PR_WAITOK);
234 if (pp)
235 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
236 else
237 memset(ps, '\0', sizeof(struct sigacts));
238 ps->sa_refcnt = 1;
239 np->p_sigacts = ps;
240 }
241 }
242
243 /*
244 * Make this process not share its sigctx, maintaining all
245 * signal state.
246 */
247 void
248 sigactsunshare(struct proc *p)
249 {
250 struct sigacts *oldps;
251
252 if (p->p_sigacts->sa_refcnt == 1)
253 return;
254
255 oldps = p->p_sigacts;
256 sigactsinit(p, NULL, 0);
257
258 if (--oldps->sa_refcnt == 0)
259 pool_put(&sigacts_pool, oldps);
260 }
261
262 /*
263 * Release a sigctx structure.
264 */
265 void
266 sigactsfree(struct proc *p)
267 {
268 struct sigacts *ps;
269
270 ps = p->p_sigacts;
271 if (--ps->sa_refcnt > 0)
272 return;
273
274 pool_put(&sigacts_pool, ps);
275 }
276
277 int
278 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
279 struct sigaction *osa, const void *tramp, int vers)
280 {
281 struct sigacts *ps;
282 int prop;
283
284 ps = p->p_sigacts;
285 if (signum <= 0 || signum >= NSIG)
286 return (EINVAL);
287
288 /*
289 * Trampoline ABI version 0 is reserved for the legacy
290 * kernel-provided on-stack trampoline. Conversely, if we are
291 * using a non-0 ABI version, we must have a trampoline. Only
292 * validate the vers if a new sigaction was supplied. Emulations
293 * use legacy kernel trampolines with version 0, alternatively
294 * check for that too.
295 */
296 if ((vers != 0 && tramp == NULL) ||
297 #ifdef SIGTRAMP_VALID
298 (nsa != NULL &&
299 ((vers == 0) ?
300 (p->p_emul->e_sigcode == NULL) :
301 !SIGTRAMP_VALID(vers))) ||
302 #endif
303 (vers == 0 && tramp != NULL))
304 return (EINVAL);
305
306 if (osa)
307 *osa = SIGACTION_PS(ps, signum);
308
309 if (nsa) {
310 if (nsa->sa_flags & ~SA_ALLBITS)
311 return (EINVAL);
312
313 prop = sigprop[signum];
314 if (prop & SA_CANTMASK)
315 return (EINVAL);
316
317 (void) splsched(); /* XXXSMP */
318 SIGACTION_PS(ps, signum) = *nsa;
319 ps->sa_sigdesc[signum].sd_tramp = tramp;
320 ps->sa_sigdesc[signum].sd_vers = vers;
321 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
322 if ((prop & SA_NORESET) != 0)
323 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
324 if (signum == SIGCHLD) {
325 if (nsa->sa_flags & SA_NOCLDSTOP)
326 p->p_flag |= P_NOCLDSTOP;
327 else
328 p->p_flag &= ~P_NOCLDSTOP;
329 if (nsa->sa_flags & SA_NOCLDWAIT) {
330 /*
331 * Paranoia: since SA_NOCLDWAIT is implemented
332 * by reparenting the dying child to PID 1 (and
333 * trust it to reap the zombie), PID 1 itself
334 * is forbidden to set SA_NOCLDWAIT.
335 */
336 if (p->p_pid == 1)
337 p->p_flag &= ~P_NOCLDWAIT;
338 else
339 p->p_flag |= P_NOCLDWAIT;
340 } else
341 p->p_flag &= ~P_NOCLDWAIT;
342 }
343 if ((nsa->sa_flags & SA_NODEFER) == 0)
344 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
345 else
346 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
347 /*
348 * Set bit in p_sigctx.ps_sigignore for signals that are set to
349 * SIG_IGN, and for signals set to SIG_DFL where the default is
350 * to ignore. However, don't put SIGCONT in
351 * p_sigctx.ps_sigignore, as we have to restart the process.
352 */
353 if (nsa->sa_handler == SIG_IGN ||
354 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
355 /* never to be seen again */
356 sigdelset(&p->p_sigctx.ps_siglist, signum);
357 if (signum != SIGCONT) {
358 /* easier in psignal */
359 sigaddset(&p->p_sigctx.ps_sigignore, signum);
360 }
361 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
362 } else {
363 sigdelset(&p->p_sigctx.ps_sigignore, signum);
364 if (nsa->sa_handler == SIG_DFL)
365 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
366 else
367 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
368 }
369 (void) spl0();
370 }
371
372 return (0);
373 }
374
375 #ifdef COMPAT_16
376 /* ARGSUSED */
377 int
378 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
379 {
380 struct compat_16_sys___sigaction14_args /* {
381 syscallarg(int) signum;
382 syscallarg(const struct sigaction *) nsa;
383 syscallarg(struct sigaction *) osa;
384 } */ *uap = v;
385 struct proc *p;
386 struct sigaction nsa, osa;
387 int error;
388
389 if (SCARG(uap, nsa)) {
390 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
391 if (error)
392 return (error);
393 }
394 p = l->l_proc;
395 error = sigaction1(p, SCARG(uap, signum),
396 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
397 NULL, 0);
398 if (error)
399 return (error);
400 if (SCARG(uap, osa)) {
401 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
402 if (error)
403 return (error);
404 }
405 return (0);
406 }
407 #endif
408
409 /* ARGSUSED */
410 int
411 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
412 {
413 struct sys___sigaction_sigtramp_args /* {
414 syscallarg(int) signum;
415 syscallarg(const struct sigaction *) nsa;
416 syscallarg(struct sigaction *) osa;
417 syscallarg(void *) tramp;
418 syscallarg(int) vers;
419 } */ *uap = v;
420 struct proc *p = l->l_proc;
421 struct sigaction nsa, osa;
422 int error;
423
424 if (SCARG(uap, nsa)) {
425 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
426 if (error)
427 return (error);
428 }
429 error = sigaction1(p, SCARG(uap, signum),
430 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
431 SCARG(uap, tramp), SCARG(uap, vers));
432 if (error)
433 return (error);
434 if (SCARG(uap, osa)) {
435 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
436 if (error)
437 return (error);
438 }
439 return (0);
440 }
441
442 /*
443 * Initialize signal state for process 0;
444 * set to ignore signals that are ignored by default and disable the signal
445 * stack.
446 */
447 void
448 siginit(struct proc *p)
449 {
450 struct sigacts *ps;
451 int signum, prop;
452
453 ps = p->p_sigacts;
454 sigemptyset(&contsigmask);
455 sigemptyset(&stopsigmask);
456 sigemptyset(&sigcantmask);
457 for (signum = 1; signum < NSIG; signum++) {
458 prop = sigprop[signum];
459 if (prop & SA_CONT)
460 sigaddset(&contsigmask, signum);
461 if (prop & SA_STOP)
462 sigaddset(&stopsigmask, signum);
463 if (prop & SA_CANTMASK)
464 sigaddset(&sigcantmask, signum);
465 if (prop & SA_IGNORE && signum != SIGCONT)
466 sigaddset(&p->p_sigctx.ps_sigignore, signum);
467 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
468 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
469 }
470 sigemptyset(&p->p_sigctx.ps_sigcatch);
471 p->p_sigctx.ps_sigwaited = NULL;
472 p->p_flag &= ~P_NOCLDSTOP;
473
474 /*
475 * Reset stack state to the user stack.
476 */
477 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
478 p->p_sigctx.ps_sigstk.ss_size = 0;
479 p->p_sigctx.ps_sigstk.ss_sp = 0;
480
481 /* One reference. */
482 ps->sa_refcnt = 1;
483 }
484
485 /*
486 * Reset signals for an exec of the specified process.
487 */
488 void
489 execsigs(struct proc *p)
490 {
491 struct sigacts *ps;
492 int signum, prop;
493
494 sigactsunshare(p);
495
496 ps = p->p_sigacts;
497
498 /*
499 * Reset caught signals. Held signals remain held
500 * through p_sigctx.ps_sigmask (unless they were caught,
501 * and are now ignored by default).
502 */
503 for (signum = 1; signum < NSIG; signum++) {
504 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
505 prop = sigprop[signum];
506 if (prop & SA_IGNORE) {
507 if ((prop & SA_CONT) == 0)
508 sigaddset(&p->p_sigctx.ps_sigignore,
509 signum);
510 sigdelset(&p->p_sigctx.ps_siglist, signum);
511 }
512 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
513 }
514 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
515 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
516 }
517 sigemptyset(&p->p_sigctx.ps_sigcatch);
518 p->p_sigctx.ps_sigwaited = NULL;
519 p->p_flag &= ~P_NOCLDSTOP;
520
521 /*
522 * Reset stack state to the user stack.
523 */
524 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
525 p->p_sigctx.ps_sigstk.ss_size = 0;
526 p->p_sigctx.ps_sigstk.ss_sp = 0;
527 }
528
529 int
530 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
531 {
532
533 if (oss)
534 *oss = p->p_sigctx.ps_sigmask;
535
536 if (nss) {
537 (void)splsched(); /* XXXSMP */
538 switch (how) {
539 case SIG_BLOCK:
540 sigplusset(nss, &p->p_sigctx.ps_sigmask);
541 break;
542 case SIG_UNBLOCK:
543 sigminusset(nss, &p->p_sigctx.ps_sigmask);
544 CHECKSIGS(p);
545 break;
546 case SIG_SETMASK:
547 p->p_sigctx.ps_sigmask = *nss;
548 CHECKSIGS(p);
549 break;
550 default:
551 (void)spl0(); /* XXXSMP */
552 return (EINVAL);
553 }
554 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
555 (void)spl0(); /* XXXSMP */
556 }
557
558 return (0);
559 }
560
561 /*
562 * Manipulate signal mask.
563 * Note that we receive new mask, not pointer,
564 * and return old mask as return value;
565 * the library stub does the rest.
566 */
567 int
568 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
569 {
570 struct sys___sigprocmask14_args /* {
571 syscallarg(int) how;
572 syscallarg(const sigset_t *) set;
573 syscallarg(sigset_t *) oset;
574 } */ *uap = v;
575 struct proc *p;
576 sigset_t nss, oss;
577 int error;
578
579 if (SCARG(uap, set)) {
580 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
581 if (error)
582 return (error);
583 }
584 p = l->l_proc;
585 error = sigprocmask1(p, SCARG(uap, how),
586 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
587 if (error)
588 return (error);
589 if (SCARG(uap, oset)) {
590 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
591 if (error)
592 return (error);
593 }
594 return (0);
595 }
596
597 void
598 sigpending1(struct proc *p, sigset_t *ss)
599 {
600
601 *ss = p->p_sigctx.ps_siglist;
602 sigminusset(&p->p_sigctx.ps_sigmask, ss);
603 }
604
605 /* ARGSUSED */
606 int
607 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
608 {
609 struct sys___sigpending14_args /* {
610 syscallarg(sigset_t *) set;
611 } */ *uap = v;
612 struct proc *p;
613 sigset_t ss;
614
615 p = l->l_proc;
616 sigpending1(p, &ss);
617 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
618 }
619
620 int
621 sigsuspend1(struct proc *p, const sigset_t *ss)
622 {
623 struct sigacts *ps;
624
625 ps = p->p_sigacts;
626 if (ss) {
627 /*
628 * When returning from sigpause, we want
629 * the old mask to be restored after the
630 * signal handler has finished. Thus, we
631 * save it here and mark the sigctx structure
632 * to indicate this.
633 */
634 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
635 p->p_sigctx.ps_flags |= SAS_OLDMASK;
636 (void) splsched(); /* XXXSMP */
637 p->p_sigctx.ps_sigmask = *ss;
638 CHECKSIGS(p);
639 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
640 (void) spl0(); /* XXXSMP */
641 }
642
643 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
644 /* void */;
645
646 /* always return EINTR rather than ERESTART... */
647 return (EINTR);
648 }
649
650 /*
651 * Suspend process until signal, providing mask to be set
652 * in the meantime. Note nonstandard calling convention:
653 * libc stub passes mask, not pointer, to save a copyin.
654 */
655 /* ARGSUSED */
656 int
657 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
658 {
659 struct sys___sigsuspend14_args /* {
660 syscallarg(const sigset_t *) set;
661 } */ *uap = v;
662 struct proc *p;
663 sigset_t ss;
664 int error;
665
666 if (SCARG(uap, set)) {
667 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
668 if (error)
669 return (error);
670 }
671
672 p = l->l_proc;
673 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
674 }
675
676 int
677 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
678 struct sigaltstack *oss)
679 {
680
681 if (oss)
682 *oss = p->p_sigctx.ps_sigstk;
683
684 if (nss) {
685 if (nss->ss_flags & ~SS_ALLBITS)
686 return (EINVAL);
687
688 if (nss->ss_flags & SS_DISABLE) {
689 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
690 return (EINVAL);
691 } else {
692 if (nss->ss_size < MINSIGSTKSZ)
693 return (ENOMEM);
694 }
695 p->p_sigctx.ps_sigstk = *nss;
696 }
697
698 return (0);
699 }
700
701 /* ARGSUSED */
702 int
703 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
704 {
705 struct sys___sigaltstack14_args /* {
706 syscallarg(const struct sigaltstack *) nss;
707 syscallarg(struct sigaltstack *) oss;
708 } */ *uap = v;
709 struct proc *p;
710 struct sigaltstack nss, oss;
711 int error;
712
713 if (SCARG(uap, nss)) {
714 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
715 if (error)
716 return (error);
717 }
718 p = l->l_proc;
719 error = sigaltstack1(p,
720 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
721 if (error)
722 return (error);
723 if (SCARG(uap, oss)) {
724 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
725 if (error)
726 return (error);
727 }
728 return (0);
729 }
730
731 /* ARGSUSED */
732 int
733 sys_kill(struct lwp *l, void *v, register_t *retval)
734 {
735 struct sys_kill_args /* {
736 syscallarg(int) pid;
737 syscallarg(int) signum;
738 } */ *uap = v;
739 struct proc *cp, *p;
740 struct pcred *pc;
741 ksiginfo_t ksi;
742
743 cp = l->l_proc;
744 pc = cp->p_cred;
745 if ((u_int)SCARG(uap, signum) >= NSIG)
746 return (EINVAL);
747 KSI_INIT(&ksi);
748 ksi.ksi_signo = SCARG(uap, signum);
749 ksi.ksi_code = SI_USER;
750 ksi.ksi_pid = cp->p_pid;
751 ksi.ksi_uid = cp->p_ucred->cr_uid;
752 if (SCARG(uap, pid) > 0) {
753 /* kill single process */
754 if ((p = pfind(SCARG(uap, pid))) == NULL)
755 return (ESRCH);
756 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
757 return (EPERM);
758 if (SCARG(uap, signum))
759 kpsignal2(p, &ksi, 1);
760 return (0);
761 }
762 switch (SCARG(uap, pid)) {
763 case -1: /* broadcast signal */
764 return (killpg1(cp, &ksi, 0, 1));
765 case 0: /* signal own process group */
766 return (killpg1(cp, &ksi, 0, 0));
767 default: /* negative explicit process group */
768 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
769 }
770 /* NOTREACHED */
771 }
772
773 /*
774 * Common code for kill process group/broadcast kill.
775 * cp is calling process.
776 */
777 int
778 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
779 {
780 struct proc *p;
781 struct pcred *pc;
782 struct pgrp *pgrp;
783 int nfound;
784 int signum = ksi->ksi_signo;
785
786 pc = cp->p_cred;
787 nfound = 0;
788 if (all) {
789 /*
790 * broadcast
791 */
792 proclist_lock_read();
793 LIST_FOREACH(p, &allproc, p_list) {
794 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
795 p == cp || !CANSIGNAL(cp, pc, p, signum))
796 continue;
797 nfound++;
798 if (signum)
799 kpsignal2(p, ksi, 1);
800 }
801 proclist_unlock_read();
802 } else {
803 if (pgid == 0)
804 /*
805 * zero pgid means send to my process group.
806 */
807 pgrp = cp->p_pgrp;
808 else {
809 pgrp = pgfind(pgid);
810 if (pgrp == NULL)
811 return (ESRCH);
812 }
813 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
814 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
815 !CANSIGNAL(cp, pc, p, signum))
816 continue;
817 nfound++;
818 if (signum && P_ZOMBIE(p) == 0)
819 kpsignal2(p, ksi, 1);
820 }
821 }
822 return (nfound ? 0 : ESRCH);
823 }
824
825 /*
826 * Send a signal to a process group.
827 */
828 void
829 gsignal(int pgid, int signum)
830 {
831 ksiginfo_t ksi;
832 KSI_INIT_EMPTY(&ksi);
833 ksi.ksi_signo = signum;
834 kgsignal(pgid, &ksi, NULL);
835 }
836
837 void
838 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
839 {
840 struct pgrp *pgrp;
841
842 if (pgid && (pgrp = pgfind(pgid)))
843 kpgsignal(pgrp, ksi, data, 0);
844 }
845
846 /*
847 * Send a signal to a process group. If checktty is 1,
848 * limit to members which have a controlling terminal.
849 */
850 void
851 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
852 {
853 ksiginfo_t ksi;
854 KSI_INIT_EMPTY(&ksi);
855 ksi.ksi_signo = sig;
856 kpgsignal(pgrp, &ksi, NULL, checkctty);
857 }
858
859 void
860 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
861 {
862 struct proc *p;
863
864 if (pgrp)
865 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
866 if (checkctty == 0 || p->p_flag & P_CONTROLT)
867 kpsignal(p, ksi, data);
868 }
869
870 /*
871 * Send a signal caused by a trap to the current process.
872 * If it will be caught immediately, deliver it with correct code.
873 * Otherwise, post it normally.
874 */
875 void
876 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
877 {
878 struct proc *p;
879 struct sigacts *ps;
880 int signum = ksi->ksi_signo;
881
882 KASSERT(KSI_TRAP_P(ksi));
883
884 p = l->l_proc;
885 ps = p->p_sigacts;
886 if ((p->p_flag & P_TRACED) == 0 &&
887 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
888 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
889 p->p_stats->p_ru.ru_nsignals++;
890 #ifdef KTRACE
891 if (KTRPOINT(p, KTR_PSIG))
892 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
893 &p->p_sigctx.ps_sigmask, ksi);
894 #endif
895 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
896 (void) splsched(); /* XXXSMP */
897 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
898 &p->p_sigctx.ps_sigmask);
899 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
900 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
901 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
902 sigaddset(&p->p_sigctx.ps_sigignore, signum);
903 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
904 }
905 (void) spl0(); /* XXXSMP */
906 } else {
907 p->p_sigctx.ps_lwp = l->l_lid;
908 /* XXX for core dump/debugger */
909 p->p_sigctx.ps_signo = ksi->ksi_signo;
910 p->p_sigctx.ps_code = ksi->ksi_trap;
911 kpsignal2(p, ksi, 1);
912 }
913 }
914
915 /*
916 * Fill in signal information and signal the parent for a child status change.
917 */
918 static void
919 child_psignal(struct proc *p, int dolock)
920 {
921 ksiginfo_t ksi;
922
923 KSI_INIT(&ksi);
924 ksi.ksi_signo = SIGCHLD;
925 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
926 ksi.ksi_pid = p->p_pid;
927 ksi.ksi_uid = p->p_ucred->cr_uid;
928 ksi.ksi_status = p->p_xstat;
929 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
930 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
931 kpsignal2(p->p_pptr, &ksi, dolock);
932 }
933
934 /*
935 * Send the signal to the process. If the signal has an action, the action
936 * is usually performed by the target process rather than the caller; we add
937 * the signal to the set of pending signals for the process.
938 *
939 * Exceptions:
940 * o When a stop signal is sent to a sleeping process that takes the
941 * default action, the process is stopped without awakening it.
942 * o SIGCONT restarts stopped processes (or puts them back to sleep)
943 * regardless of the signal action (eg, blocked or ignored).
944 *
945 * Other ignored signals are discarded immediately.
946 *
947 * XXXSMP: Invoked as psignal() or sched_psignal().
948 */
949 void
950 psignal1(struct proc *p, int signum, int dolock)
951 {
952 ksiginfo_t ksi;
953
954 KSI_INIT_EMPTY(&ksi);
955 ksi.ksi_signo = signum;
956 kpsignal2(p, &ksi, dolock);
957 }
958
959 void
960 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
961 {
962
963 if ((p->p_flag & P_WEXIT) == 0 && data) {
964 size_t fd;
965 struct filedesc *fdp = p->p_fd;
966
967 ksi->ksi_fd = -1;
968 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
969 struct file *fp = fdp->fd_ofiles[fd];
970 /* XXX: lock? */
971 if (fp && fp->f_data == data) {
972 ksi->ksi_fd = fd;
973 break;
974 }
975 }
976 }
977 kpsignal2(p, ksi, dolock);
978 }
979
980 static void
981 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
982 {
983 struct lwp *l, *suspended = NULL;
984 struct sadata_vp *vp;
985 int s = 0, prop, allsusp;
986 sig_t action;
987 int signum = ksi->ksi_signo;
988
989 #ifdef DIAGNOSTIC
990 if (signum <= 0 || signum >= NSIG)
991 panic("psignal signal number %d", signum);
992
993 /* XXXSMP: works, but icky */
994 if (dolock)
995 SCHED_ASSERT_UNLOCKED();
996 else
997 SCHED_ASSERT_LOCKED();
998 #endif
999
1000 /*
1001 * Notify any interested parties in the signal.
1002 */
1003 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1004
1005 prop = sigprop[signum];
1006
1007 /*
1008 * If proc is traced, always give parent a chance.
1009 */
1010 action = SIG_DFL;
1011 if ((p->p_flag & P_TRACED) == 0) {
1012 if (KSI_TRAP_P(ksi)) {
1013 /*
1014 * If the signal was the result of a trap, only catch
1015 * the signal if it isn't masked and there is a
1016 * non-default non-ignore handler installed for it.
1017 * Otherwise take the default action.
1018 */
1019 if (!sigismember(&p->p_sigctx.ps_sigmask, signum) &&
1020 sigismember(&p->p_sigctx.ps_sigcatch, signum))
1021 action = SIG_CATCH;
1022 /*
1023 * If we are to take the default action, reset the
1024 * signal back to its defaults.
1025 */
1026 if (action == SIG_DFL) {
1027 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1028 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1029 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1030 SIGACTION(p, signum).sa_handler = SIG_DFL;
1031 }
1032 } else {
1033 /*
1034 * If the signal is being ignored,
1035 * then we forget about it immediately.
1036 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1037 * and if it is set to SIG_IGN,
1038 * action will be SIG_DFL here.)
1039 */
1040 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1041 return;
1042 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1043 action = SIG_HOLD;
1044 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1045 action = SIG_CATCH;
1046 }
1047 if (action == SIG_DFL) {
1048 if (prop & SA_KILL && p->p_nice > NZERO)
1049 p->p_nice = NZERO;
1050
1051 /*
1052 * If sending a tty stop signal to a member of an
1053 * orphaned process group, discard the signal here if
1054 * the action is default; don't stop the process below
1055 * if sleeping, and don't clear any pending SIGCONT.
1056 */
1057 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1058 return;
1059 }
1060 } else {
1061 /*
1062 * If the process is being traced and the signal is being
1063 * caught, make sure to save any ksiginfo.
1064 */
1065 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1066 ksiginfo_put(p, ksi);
1067 }
1068
1069 if (prop & SA_CONT)
1070 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1071
1072 if (prop & SA_STOP)
1073 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1074
1075 /*
1076 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1077 * please!), check if anything waits on it. If yes, save the
1078 * info into provided ps_sigwaited, and wake-up the waiter.
1079 * The signal won't be processed further here.
1080 */
1081 if ((prop & SA_CANTMASK) == 0
1082 && p->p_sigctx.ps_sigwaited
1083 && sigismember(p->p_sigctx.ps_sigwait, signum)
1084 && p->p_stat != SSTOP) {
1085 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1086 p->p_sigctx.ps_sigwaited = NULL;
1087 if (dolock)
1088 wakeup_one(&p->p_sigctx.ps_sigwait);
1089 else
1090 sched_wakeup(&p->p_sigctx.ps_sigwait);
1091 return;
1092 }
1093
1094 sigaddset(&p->p_sigctx.ps_siglist, signum);
1095
1096 /* CHECKSIGS() is "inlined" here. */
1097 p->p_sigctx.ps_sigcheck = 1;
1098
1099 /*
1100 * Defer further processing for signals which are held,
1101 * except that stopped processes must be continued by SIGCONT.
1102 */
1103 if (action == SIG_HOLD &&
1104 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1105 ksiginfo_put(p, ksi);
1106 return;
1107 }
1108 /* XXXSMP: works, but icky */
1109 if (dolock)
1110 SCHED_LOCK(s);
1111
1112 if (p->p_flag & P_SA) {
1113 allsusp = 0;
1114 l = NULL;
1115 if (p->p_stat == SACTIVE) {
1116 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1117 l = vp->savp_lwp;
1118 KDASSERT(l != NULL);
1119 if (l->l_flag & L_SA_IDLE) {
1120 /* wakeup idle LWP */
1121 goto found;
1122 /*NOTREACHED*/
1123 } else if (l->l_flag & L_SA_YIELD) {
1124 /* idle LWP is already waking up */
1125 goto out;
1126 /*NOTREACHED*/
1127 }
1128 }
1129 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1130 l = vp->savp_lwp;
1131 if (l->l_stat == LSRUN ||
1132 l->l_stat == LSONPROC) {
1133 signotify(p);
1134 goto out;
1135 /*NOTREACHED*/
1136 }
1137 if (l->l_stat == LSSLEEP &&
1138 l->l_flag & L_SINTR) {
1139 /* ok to signal vp lwp */
1140 } else
1141 l = NULL;
1142 }
1143 if (l == NULL)
1144 allsusp = 1;
1145 } else if (p->p_stat == SSTOP) {
1146 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1147 l = vp->savp_lwp;
1148 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1149 break;
1150 l = NULL;
1151 }
1152 }
1153 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1154 /*
1155 * At least one LWP is running or on a run queue.
1156 * The signal will be noticed when one of them returns
1157 * to userspace.
1158 */
1159 signotify(p);
1160 /*
1161 * The signal will be noticed very soon.
1162 */
1163 goto out;
1164 /*NOTREACHED*/
1165 } else {
1166 /*
1167 * Find out if any of the sleeps are interruptable,
1168 * and if all the live LWPs remaining are suspended.
1169 */
1170 allsusp = 1;
1171 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1172 if (l->l_stat == LSSLEEP &&
1173 l->l_flag & L_SINTR)
1174 break;
1175 if (l->l_stat == LSSUSPENDED)
1176 suspended = l;
1177 else if ((l->l_stat != LSZOMB) &&
1178 (l->l_stat != LSDEAD))
1179 allsusp = 0;
1180 }
1181 }
1182
1183 found:
1184 switch (p->p_stat) {
1185 case SACTIVE:
1186
1187 if (l != NULL && (p->p_flag & P_TRACED))
1188 goto run;
1189
1190 /*
1191 * If SIGCONT is default (or ignored) and process is
1192 * asleep, we are finished; the process should not
1193 * be awakened.
1194 */
1195 if ((prop & SA_CONT) && action == SIG_DFL) {
1196 sigdelset(&p->p_sigctx.ps_siglist, signum);
1197 goto done;
1198 }
1199
1200 /*
1201 * When a sleeping process receives a stop
1202 * signal, process immediately if possible.
1203 */
1204 if ((prop & SA_STOP) && action == SIG_DFL) {
1205 /*
1206 * If a child holding parent blocked,
1207 * stopping could cause deadlock.
1208 */
1209 if (p->p_flag & P_PPWAIT) {
1210 goto out;
1211 }
1212 sigdelset(&p->p_sigctx.ps_siglist, signum);
1213 p->p_xstat = signum;
1214 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1215 /*
1216 * XXXSMP: recursive call; don't lock
1217 * the second time around.
1218 */
1219 child_psignal(p, 0);
1220 }
1221 proc_stop(p, 1); /* XXXSMP: recurse? */
1222 goto done;
1223 }
1224
1225 if (l == NULL) {
1226 /*
1227 * Special case: SIGKILL of a process
1228 * which is entirely composed of
1229 * suspended LWPs should succeed. We
1230 * make this happen by unsuspending one of
1231 * them.
1232 */
1233 if (allsusp && (signum == SIGKILL)) {
1234 if (p->p_flag & P_SA) {
1235 /*
1236 * get a suspended lwp from
1237 * the cache to send KILL
1238 * signal
1239 * XXXcl add signal checks at resume points
1240 */
1241 suspended = sa_getcachelwp
1242 (SLIST_FIRST(&p->p_sa->sa_vps));
1243 }
1244 lwp_continue(suspended);
1245 }
1246 goto done;
1247 }
1248 /*
1249 * All other (caught or default) signals
1250 * cause the process to run.
1251 */
1252 goto runfast;
1253 /*NOTREACHED*/
1254 case SSTOP:
1255 /* Process is stopped */
1256 /*
1257 * If traced process is already stopped,
1258 * then no further action is necessary.
1259 */
1260 if (p->p_flag & P_TRACED)
1261 goto done;
1262
1263 /*
1264 * Kill signal always sets processes running,
1265 * if possible.
1266 */
1267 if (signum == SIGKILL) {
1268 l = proc_unstop(p);
1269 if (l)
1270 goto runfast;
1271 goto done;
1272 }
1273
1274 if (prop & SA_CONT) {
1275 /*
1276 * If SIGCONT is default (or ignored),
1277 * we continue the process but don't
1278 * leave the signal in ps_siglist, as
1279 * it has no further action. If
1280 * SIGCONT is held, we continue the
1281 * process and leave the signal in
1282 * ps_siglist. If the process catches
1283 * SIGCONT, let it handle the signal
1284 * itself. If it isn't waiting on an
1285 * event, then it goes back to run
1286 * state. Otherwise, process goes
1287 * back to sleep state.
1288 */
1289 if (action == SIG_DFL)
1290 sigdelset(&p->p_sigctx.ps_siglist,
1291 signum);
1292 l = proc_unstop(p);
1293 if (l && (action == SIG_CATCH))
1294 goto runfast;
1295 goto out;
1296 }
1297
1298 if (prop & SA_STOP) {
1299 /*
1300 * Already stopped, don't need to stop again.
1301 * (If we did the shell could get confused.)
1302 */
1303 sigdelset(&p->p_sigctx.ps_siglist, signum);
1304 goto done;
1305 }
1306
1307 /*
1308 * If a lwp is sleeping interruptibly, then
1309 * wake it up; it will run until the kernel
1310 * boundary, where it will stop in issignal(),
1311 * since p->p_stat is still SSTOP. When the
1312 * process is continued, it will be made
1313 * runnable and can look at the signal.
1314 */
1315 if (l)
1316 goto run;
1317 goto out;
1318 case SIDL:
1319 /* Process is being created by fork */
1320 /* XXX: We are not ready to receive signals yet */
1321 goto done;
1322 default:
1323 /* Else what? */
1324 panic("psignal: Invalid process state %d.", p->p_stat);
1325 }
1326 /*NOTREACHED*/
1327
1328 runfast:
1329 if (action == SIG_CATCH) {
1330 ksiginfo_put(p, ksi);
1331 action = SIG_HOLD;
1332 }
1333 /*
1334 * Raise priority to at least PUSER.
1335 */
1336 if (l->l_priority > PUSER)
1337 l->l_priority = PUSER;
1338 run:
1339 if (action == SIG_CATCH) {
1340 ksiginfo_put(p, ksi);
1341 action = SIG_HOLD;
1342 }
1343
1344 setrunnable(l); /* XXXSMP: recurse? */
1345 out:
1346 if (action == SIG_CATCH)
1347 ksiginfo_put(p, ksi);
1348 done:
1349 /* XXXSMP: works, but icky */
1350 if (dolock)
1351 SCHED_UNLOCK(s);
1352 }
1353
1354 void
1355 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1356 {
1357 struct proc *p = l->l_proc;
1358 struct lwp *le, *li;
1359 siginfo_t *si;
1360 int f;
1361
1362 if (p->p_flag & P_SA) {
1363
1364 /* XXXUPSXXX What if not on sa_vp ? */
1365
1366 f = l->l_flag & L_SA;
1367 l->l_flag &= ~L_SA;
1368 si = pool_get(&siginfo_pool, PR_WAITOK);
1369 si->_info = ksi->ksi_info;
1370 le = li = NULL;
1371 if (KSI_TRAP_P(ksi))
1372 le = l;
1373 else
1374 li = l;
1375
1376 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1377 sizeof(siginfo_t), si);
1378 l->l_flag |= f;
1379 return;
1380 }
1381
1382 (*p->p_emul->e_sendsig)(ksi, mask);
1383 }
1384
1385 static __inline int firstsig(const sigset_t *);
1386
1387 static __inline int
1388 firstsig(const sigset_t *ss)
1389 {
1390 int sig;
1391
1392 sig = ffs(ss->__bits[0]);
1393 if (sig != 0)
1394 return (sig);
1395 #if NSIG > 33
1396 sig = ffs(ss->__bits[1]);
1397 if (sig != 0)
1398 return (sig + 32);
1399 #endif
1400 #if NSIG > 65
1401 sig = ffs(ss->__bits[2]);
1402 if (sig != 0)
1403 return (sig + 64);
1404 #endif
1405 #if NSIG > 97
1406 sig = ffs(ss->__bits[3]);
1407 if (sig != 0)
1408 return (sig + 96);
1409 #endif
1410 return (0);
1411 }
1412
1413 /*
1414 * If the current process has received a signal (should be caught or cause
1415 * termination, should interrupt current syscall), return the signal number.
1416 * Stop signals with default action are processed immediately, then cleared;
1417 * they aren't returned. This is checked after each entry to the system for
1418 * a syscall or trap (though this can usually be done without calling issignal
1419 * by checking the pending signal masks in the CURSIG macro.) The normal call
1420 * sequence is
1421 *
1422 * while (signum = CURSIG(curlwp))
1423 * postsig(signum);
1424 */
1425 int
1426 issignal(struct lwp *l)
1427 {
1428 struct proc *p = l->l_proc;
1429 int s = 0, signum, prop;
1430 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1431 sigset_t ss;
1432
1433 /* Bail out if we do not own the virtual processor */
1434 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1435 return 0;
1436
1437 if (p->p_stat == SSTOP) {
1438 /*
1439 * The process is stopped/stopping. Stop ourselves now that
1440 * we're on the kernel/userspace boundary.
1441 */
1442 if (dolock)
1443 SCHED_LOCK(s);
1444 l->l_stat = LSSTOP;
1445 p->p_nrlwps--;
1446 if (p->p_flag & P_TRACED)
1447 goto sigtraceswitch;
1448 else
1449 goto sigswitch;
1450 }
1451 for (;;) {
1452 sigpending1(p, &ss);
1453 if (p->p_flag & P_PPWAIT)
1454 sigminusset(&stopsigmask, &ss);
1455 signum = firstsig(&ss);
1456 if (signum == 0) { /* no signal to send */
1457 p->p_sigctx.ps_sigcheck = 0;
1458 if (locked && dolock)
1459 SCHED_LOCK(s);
1460 return (0);
1461 }
1462 /* take the signal! */
1463 sigdelset(&p->p_sigctx.ps_siglist, signum);
1464
1465 /*
1466 * We should see pending but ignored signals
1467 * only if P_TRACED was on when they were posted.
1468 */
1469 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1470 (p->p_flag & P_TRACED) == 0)
1471 continue;
1472
1473 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1474 /*
1475 * If traced, always stop, and stay
1476 * stopped until released by the debugger.
1477 */
1478 p->p_xstat = signum;
1479
1480 /* Emulation-specific handling of signal trace */
1481 if ((p->p_emul->e_tracesig != NULL) &&
1482 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1483 goto childresumed;
1484
1485 if ((p->p_flag & P_FSTRACE) == 0)
1486 child_psignal(p, dolock);
1487 if (dolock)
1488 SCHED_LOCK(s);
1489 proc_stop(p, 1);
1490 sigtraceswitch:
1491 mi_switch(l, NULL);
1492 SCHED_ASSERT_UNLOCKED();
1493 if (dolock)
1494 splx(s);
1495 else
1496 dolock = 1;
1497
1498 childresumed:
1499 /*
1500 * If we are no longer being traced, or the parent
1501 * didn't give us a signal, look for more signals.
1502 */
1503 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1504 continue;
1505
1506 /*
1507 * If the new signal is being masked, look for other
1508 * signals.
1509 */
1510 signum = p->p_xstat;
1511 p->p_xstat = 0;
1512 /*
1513 * `p->p_sigctx.ps_siglist |= mask' is done
1514 * in setrunnable().
1515 */
1516 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1517 continue;
1518 /* take the signal! */
1519 sigdelset(&p->p_sigctx.ps_siglist, signum);
1520 }
1521
1522 prop = sigprop[signum];
1523
1524 /*
1525 * Decide whether the signal should be returned.
1526 * Return the signal's number, or fall through
1527 * to clear it from the pending mask.
1528 */
1529 switch ((long)SIGACTION(p, signum).sa_handler) {
1530
1531 case (long)SIG_DFL:
1532 /*
1533 * Don't take default actions on system processes.
1534 */
1535 if (p->p_pid <= 1) {
1536 #ifdef DIAGNOSTIC
1537 /*
1538 * Are you sure you want to ignore SIGSEGV
1539 * in init? XXX
1540 */
1541 printf("Process (pid %d) got signal %d\n",
1542 p->p_pid, signum);
1543 #endif
1544 break; /* == ignore */
1545 }
1546 /*
1547 * If there is a pending stop signal to process
1548 * with default action, stop here,
1549 * then clear the signal. However,
1550 * if process is member of an orphaned
1551 * process group, ignore tty stop signals.
1552 */
1553 if (prop & SA_STOP) {
1554 if (p->p_flag & P_TRACED ||
1555 (p->p_pgrp->pg_jobc == 0 &&
1556 prop & SA_TTYSTOP))
1557 break; /* == ignore */
1558 p->p_xstat = signum;
1559 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1560 child_psignal(p, dolock);
1561 if (dolock)
1562 SCHED_LOCK(s);
1563 proc_stop(p, 1);
1564 sigswitch:
1565 mi_switch(l, NULL);
1566 SCHED_ASSERT_UNLOCKED();
1567 if (dolock)
1568 splx(s);
1569 else
1570 dolock = 1;
1571 break;
1572 } else if (prop & SA_IGNORE) {
1573 /*
1574 * Except for SIGCONT, shouldn't get here.
1575 * Default action is to ignore; drop it.
1576 */
1577 break; /* == ignore */
1578 } else
1579 goto keep;
1580 /*NOTREACHED*/
1581
1582 case (long)SIG_IGN:
1583 /*
1584 * Masking above should prevent us ever trying
1585 * to take action on an ignored signal other
1586 * than SIGCONT, unless process is traced.
1587 */
1588 #ifdef DEBUG_ISSIGNAL
1589 if ((prop & SA_CONT) == 0 &&
1590 (p->p_flag & P_TRACED) == 0)
1591 printf("issignal\n");
1592 #endif
1593 break; /* == ignore */
1594
1595 default:
1596 /*
1597 * This signal has an action, let
1598 * postsig() process it.
1599 */
1600 goto keep;
1601 }
1602 }
1603 /* NOTREACHED */
1604
1605 keep:
1606 /* leave the signal for later */
1607 sigaddset(&p->p_sigctx.ps_siglist, signum);
1608 CHECKSIGS(p);
1609 if (locked && dolock)
1610 SCHED_LOCK(s);
1611 return (signum);
1612 }
1613
1614 /*
1615 * Put the argument process into the stopped state and notify the parent
1616 * via wakeup. Signals are handled elsewhere. The process must not be
1617 * on the run queue.
1618 */
1619 void
1620 proc_stop(struct proc *p, int wakeup)
1621 {
1622 struct lwp *l;
1623 struct proc *parent;
1624 struct sadata_vp *vp;
1625
1626 SCHED_ASSERT_LOCKED();
1627
1628 /* XXX lock process LWP state */
1629 p->p_flag &= ~P_WAITED;
1630 p->p_stat = SSTOP;
1631 parent = p->p_pptr;
1632 parent->p_nstopchild++;
1633
1634 if (p->p_flag & P_SA) {
1635 /*
1636 * Only (try to) put the LWP on the VP in stopped
1637 * state.
1638 * All other LWPs will suspend in sa_setwoken()
1639 * because the VP-LWP in stopped state cannot be
1640 * repossessed.
1641 */
1642 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1643 l = vp->savp_lwp;
1644 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1645 l->l_stat = LSSTOP;
1646 p->p_nrlwps--;
1647 } else if (l->l_stat == LSRUN) {
1648 /* Remove LWP from the run queue */
1649 remrunqueue(l);
1650 l->l_stat = LSSTOP;
1651 p->p_nrlwps--;
1652 } else if (l->l_stat == LSSLEEP &&
1653 l->l_flag & L_SA_IDLE) {
1654 l->l_flag &= ~L_SA_IDLE;
1655 l->l_stat = LSSTOP;
1656 }
1657 }
1658 goto out;
1659 }
1660
1661 /*
1662 * Put as many LWP's as possible in stopped state.
1663 * Sleeping ones will notice the stopped state as they try to
1664 * return to userspace.
1665 */
1666
1667 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1668 if (l->l_stat == LSONPROC) {
1669 /* XXX SMP this assumes that a LWP that is LSONPROC
1670 * is curlwp and hence is about to be mi_switched
1671 * away; the only callers of proc_stop() are:
1672 * - psignal
1673 * - issignal()
1674 * For the former, proc_stop() is only called when
1675 * no processes are running, so we don't worry.
1676 * For the latter, proc_stop() is called right
1677 * before mi_switch().
1678 */
1679 l->l_stat = LSSTOP;
1680 p->p_nrlwps--;
1681 } else if (l->l_stat == LSRUN) {
1682 /* Remove LWP from the run queue */
1683 remrunqueue(l);
1684 l->l_stat = LSSTOP;
1685 p->p_nrlwps--;
1686 } else if ((l->l_stat == LSSLEEP) ||
1687 (l->l_stat == LSSUSPENDED) ||
1688 (l->l_stat == LSZOMB) ||
1689 (l->l_stat == LSDEAD)) {
1690 /*
1691 * Don't do anything; let sleeping LWPs
1692 * discover the stopped state of the process
1693 * on their way out of the kernel; otherwise,
1694 * things like NFS threads that sleep with
1695 * locks will block the rest of the system
1696 * from getting any work done.
1697 *
1698 * Suspended/dead/zombie LWPs aren't going
1699 * anywhere, so we don't need to touch them.
1700 */
1701 }
1702 #ifdef DIAGNOSTIC
1703 else {
1704 panic("proc_stop: process %d lwp %d "
1705 "in unstoppable state %d.\n",
1706 p->p_pid, l->l_lid, l->l_stat);
1707 }
1708 #endif
1709 }
1710
1711 out:
1712 /* XXX unlock process LWP state */
1713
1714 if (wakeup)
1715 sched_wakeup((caddr_t)p->p_pptr);
1716 }
1717
1718 /*
1719 * Given a process in state SSTOP, set the state back to SACTIVE and
1720 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1721 *
1722 * If no LWPs ended up runnable (and therefore able to take a signal),
1723 * return a LWP that is sleeping interruptably. The caller can wake
1724 * that LWP up to take a signal.
1725 */
1726 struct lwp *
1727 proc_unstop(struct proc *p)
1728 {
1729 struct lwp *l, *lr = NULL;
1730 struct sadata_vp *vp;
1731 int cantake = 0;
1732
1733 SCHED_ASSERT_LOCKED();
1734
1735 /*
1736 * Our caller wants to be informed if there are only sleeping
1737 * and interruptable LWPs left after we have run so that it
1738 * can invoke setrunnable() if required - return one of the
1739 * interruptable LWPs if this is the case.
1740 */
1741
1742 if (!(p->p_flag & P_WAITED))
1743 p->p_pptr->p_nstopchild--;
1744 p->p_stat = SACTIVE;
1745 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1746 if (l->l_stat == LSRUN) {
1747 lr = NULL;
1748 cantake = 1;
1749 }
1750 if (l->l_stat != LSSTOP)
1751 continue;
1752
1753 if (l->l_wchan != NULL) {
1754 l->l_stat = LSSLEEP;
1755 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1756 lr = l;
1757 cantake = 1;
1758 }
1759 } else {
1760 setrunnable(l);
1761 lr = NULL;
1762 cantake = 1;
1763 }
1764 }
1765 if (p->p_flag & P_SA) {
1766 /* Only consider returning the LWP on the VP. */
1767 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1768 lr = vp->savp_lwp;
1769 if (lr->l_stat == LSSLEEP) {
1770 if (lr->l_flag & L_SA_YIELD) {
1771 setrunnable(lr);
1772 break;
1773 } else if (lr->l_flag & L_SINTR)
1774 return lr;
1775 }
1776 }
1777 return NULL;
1778 }
1779 return lr;
1780 }
1781
1782 /*
1783 * Take the action for the specified signal
1784 * from the current set of pending signals.
1785 */
1786 void
1787 postsig(int signum)
1788 {
1789 struct lwp *l;
1790 struct proc *p;
1791 struct sigacts *ps;
1792 sig_t action;
1793 sigset_t *returnmask;
1794
1795 l = curlwp;
1796 p = l->l_proc;
1797 ps = p->p_sigacts;
1798 #ifdef DIAGNOSTIC
1799 if (signum == 0)
1800 panic("postsig");
1801 #endif
1802
1803 KERNEL_PROC_LOCK(l);
1804
1805 #ifdef MULTIPROCESSOR
1806 /*
1807 * On MP, issignal() can return the same signal to multiple
1808 * LWPs. The LWPs will block above waiting for the kernel
1809 * lock and the first LWP which gets through will then remove
1810 * the signal from ps_siglist. All other LWPs exit here.
1811 */
1812 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1813 KERNEL_PROC_UNLOCK(l);
1814 return;
1815 }
1816 #endif
1817 sigdelset(&p->p_sigctx.ps_siglist, signum);
1818 action = SIGACTION_PS(ps, signum).sa_handler;
1819 if (action == SIG_DFL) {
1820 #ifdef KTRACE
1821 if (KTRPOINT(p, KTR_PSIG))
1822 ktrpsig(p, signum, action,
1823 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1824 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1825 NULL);
1826 #endif
1827 /*
1828 * Default action, where the default is to kill
1829 * the process. (Other cases were ignored above.)
1830 */
1831 sigexit(l, signum);
1832 /* NOTREACHED */
1833 } else {
1834 ksiginfo_t *ksi;
1835 /*
1836 * If we get here, the signal must be caught.
1837 */
1838 #ifdef DIAGNOSTIC
1839 if (action == SIG_IGN ||
1840 sigismember(&p->p_sigctx.ps_sigmask, signum))
1841 panic("postsig action");
1842 #endif
1843 /*
1844 * Set the new mask value and also defer further
1845 * occurrences of this signal.
1846 *
1847 * Special case: user has done a sigpause. Here the
1848 * current mask is not of interest, but rather the
1849 * mask from before the sigpause is what we want
1850 * restored after the signal processing is completed.
1851 */
1852 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1853 returnmask = &p->p_sigctx.ps_oldmask;
1854 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1855 } else
1856 returnmask = &p->p_sigctx.ps_sigmask;
1857 p->p_stats->p_ru.ru_nsignals++;
1858 ksi = ksiginfo_get(p, signum);
1859 #ifdef KTRACE
1860 if (KTRPOINT(p, KTR_PSIG))
1861 ktrpsig(p, signum, action,
1862 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1863 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1864 ksi);
1865 #endif
1866 if (ksi == NULL) {
1867 ksiginfo_t ksi1;
1868 /*
1869 * we did not save any siginfo for this, either
1870 * because the signal was not caught, or because the
1871 * user did not request SA_SIGINFO
1872 */
1873 KSI_INIT_EMPTY(&ksi1);
1874 ksi1.ksi_signo = signum;
1875 kpsendsig(l, &ksi1, returnmask);
1876 } else {
1877 kpsendsig(l, ksi, returnmask);
1878 pool_put(&ksiginfo_pool, ksi);
1879 }
1880 p->p_sigctx.ps_lwp = 0;
1881 p->p_sigctx.ps_code = 0;
1882 p->p_sigctx.ps_signo = 0;
1883 (void) splsched(); /* XXXSMP */
1884 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1885 &p->p_sigctx.ps_sigmask);
1886 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1887 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1888 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1889 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1890 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1891 }
1892 (void) spl0(); /* XXXSMP */
1893 }
1894
1895 KERNEL_PROC_UNLOCK(l);
1896 }
1897
1898 /*
1899 * Kill the current process for stated reason.
1900 */
1901 void
1902 killproc(struct proc *p, const char *why)
1903 {
1904 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1905 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1906 psignal(p, SIGKILL);
1907 }
1908
1909 /*
1910 * Force the current process to exit with the specified signal, dumping core
1911 * if appropriate. We bypass the normal tests for masked and caught signals,
1912 * allowing unrecoverable failures to terminate the process without changing
1913 * signal state. Mark the accounting record with the signal termination.
1914 * If dumping core, save the signal number for the debugger. Calls exit and
1915 * does not return.
1916 */
1917
1918 #if defined(DEBUG)
1919 int kern_logsigexit = 1; /* not static to make public for sysctl */
1920 #else
1921 int kern_logsigexit = 0; /* not static to make public for sysctl */
1922 #endif
1923
1924 static const char logcoredump[] =
1925 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1926 static const char lognocoredump[] =
1927 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1928
1929 /* Wrapper function for use in p_userret */
1930 static void
1931 lwp_coredump_hook(struct lwp *l, void *arg)
1932 {
1933 int s;
1934
1935 /*
1936 * Suspend ourselves, so that the kernel stack and therefore
1937 * the userland registers saved in the trapframe are around
1938 * for coredump() to write them out.
1939 */
1940 KERNEL_PROC_LOCK(l);
1941 l->l_flag &= ~L_DETACHED;
1942 SCHED_LOCK(s);
1943 l->l_stat = LSSUSPENDED;
1944 l->l_proc->p_nrlwps--;
1945 /* XXX NJWLWP check if this makes sense here: */
1946 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1947 mi_switch(l, NULL);
1948 SCHED_ASSERT_UNLOCKED();
1949 splx(s);
1950
1951 lwp_exit(l);
1952 }
1953
1954 void
1955 sigexit(struct lwp *l, int signum)
1956 {
1957 struct proc *p;
1958 #if 0
1959 struct lwp *l2;
1960 #endif
1961 int error, exitsig;
1962
1963 p = l->l_proc;
1964
1965 /*
1966 * Don't permit coredump() or exit1() multiple times
1967 * in the same process.
1968 */
1969 if (p->p_flag & P_WEXIT) {
1970 KERNEL_PROC_UNLOCK(l);
1971 (*p->p_userret)(l, p->p_userret_arg);
1972 }
1973 p->p_flag |= P_WEXIT;
1974 /* We don't want to switch away from exiting. */
1975 /* XXX multiprocessor: stop LWPs on other processors. */
1976 #if 0
1977 if (p->p_flag & P_SA) {
1978 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1979 l2->l_flag &= ~L_SA;
1980 p->p_flag &= ~P_SA;
1981 }
1982 #endif
1983
1984 /* Make other LWPs stick around long enough to be dumped */
1985 p->p_userret = lwp_coredump_hook;
1986 p->p_userret_arg = NULL;
1987
1988 exitsig = signum;
1989 p->p_acflag |= AXSIG;
1990 if (sigprop[signum] & SA_CORE) {
1991 p->p_sigctx.ps_signo = signum;
1992 if ((error = coredump(l)) == 0)
1993 exitsig |= WCOREFLAG;
1994
1995 if (kern_logsigexit) {
1996 /* XXX What if we ever have really large UIDs? */
1997 int uid = p->p_cred && p->p_ucred ?
1998 (int) p->p_ucred->cr_uid : -1;
1999
2000 if (error)
2001 log(LOG_INFO, lognocoredump, p->p_pid,
2002 p->p_comm, uid, signum, error);
2003 else
2004 log(LOG_INFO, logcoredump, p->p_pid,
2005 p->p_comm, uid, signum);
2006 }
2007
2008 }
2009
2010 exit1(l, W_EXITCODE(0, exitsig));
2011 /* NOTREACHED */
2012 }
2013
2014 /*
2015 * Dump core, into a file named "progname.core" or "core" (depending on the
2016 * value of shortcorename), unless the process was setuid/setgid.
2017 */
2018 int
2019 coredump(struct lwp *l)
2020 {
2021 struct vnode *vp;
2022 struct proc *p;
2023 struct vmspace *vm;
2024 struct ucred *cred;
2025 struct nameidata nd;
2026 struct vattr vattr;
2027 struct mount *mp;
2028 int error, error1;
2029 char name[MAXPATHLEN];
2030
2031 p = l->l_proc;
2032 vm = p->p_vmspace;
2033 cred = p->p_cred->pc_ucred;
2034
2035 /*
2036 * Make sure the process has not set-id, to prevent data leaks.
2037 */
2038 if (p->p_flag & P_SUGID)
2039 return (EPERM);
2040
2041 /*
2042 * Refuse to core if the data + stack + user size is larger than
2043 * the core dump limit. XXX THIS IS WRONG, because of mapped
2044 * data.
2045 */
2046 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2047 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2048 return (EFBIG); /* better error code? */
2049
2050 restart:
2051 /*
2052 * The core dump will go in the current working directory. Make
2053 * sure that the directory is still there and that the mount flags
2054 * allow us to write core dumps there.
2055 */
2056 vp = p->p_cwdi->cwdi_cdir;
2057 if (vp->v_mount == NULL ||
2058 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2059 return (EPERM);
2060
2061 error = build_corename(p, name);
2062 if (error)
2063 return error;
2064
2065 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2066 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2067 if (error)
2068 return (error);
2069 vp = nd.ni_vp;
2070
2071 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2072 VOP_UNLOCK(vp, 0);
2073 if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2074 return (error);
2075 if ((error = vn_start_write(NULL, &mp,
2076 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2077 return (error);
2078 goto restart;
2079 }
2080
2081 /* Don't dump to non-regular files or files with links. */
2082 if (vp->v_type != VREG ||
2083 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2084 error = EINVAL;
2085 goto out;
2086 }
2087 VATTR_NULL(&vattr);
2088 vattr.va_size = 0;
2089 VOP_LEASE(vp, p, cred, LEASE_WRITE);
2090 VOP_SETATTR(vp, &vattr, cred, p);
2091 p->p_acflag |= ACORE;
2092
2093 /* Now dump the actual core file. */
2094 error = (*p->p_execsw->es_coredump)(l, vp, cred);
2095 out:
2096 VOP_UNLOCK(vp, 0);
2097 vn_finished_write(mp, 0);
2098 error1 = vn_close(vp, FWRITE, cred, p);
2099 if (error == 0)
2100 error = error1;
2101 return (error);
2102 }
2103
2104 /*
2105 * Nonexistent system call-- signal process (may want to handle it).
2106 * Flag error in case process won't see signal immediately (blocked or ignored).
2107 */
2108 /* ARGSUSED */
2109 int
2110 sys_nosys(struct lwp *l, void *v, register_t *retval)
2111 {
2112 struct proc *p;
2113
2114 p = l->l_proc;
2115 psignal(p, SIGSYS);
2116 return (ENOSYS);
2117 }
2118
2119 static int
2120 build_corename(struct proc *p, char dst[MAXPATHLEN])
2121 {
2122 const char *s;
2123 char *d, *end;
2124 int i;
2125
2126 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
2127 *s != '\0'; s++) {
2128 if (*s == '%') {
2129 switch (*(s + 1)) {
2130 case 'n':
2131 i = snprintf(d, end - d, "%s", p->p_comm);
2132 break;
2133 case 'p':
2134 i = snprintf(d, end - d, "%d", p->p_pid);
2135 break;
2136 case 'u':
2137 i = snprintf(d, end - d, "%.*s",
2138 (int)sizeof p->p_pgrp->pg_session->s_login,
2139 p->p_pgrp->pg_session->s_login);
2140 break;
2141 case 't':
2142 i = snprintf(d, end - d, "%ld",
2143 p->p_stats->p_start.tv_sec);
2144 break;
2145 default:
2146 goto copy;
2147 }
2148 d += i;
2149 s++;
2150 } else {
2151 copy: *d = *s;
2152 d++;
2153 }
2154 if (d >= end)
2155 return (ENAMETOOLONG);
2156 }
2157 *d = '\0';
2158 return 0;
2159 }
2160
2161 void
2162 getucontext(struct lwp *l, ucontext_t *ucp)
2163 {
2164 struct proc *p;
2165
2166 p = l->l_proc;
2167
2168 ucp->uc_flags = 0;
2169 ucp->uc_link = l->l_ctxlink;
2170
2171 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2172 ucp->uc_flags |= _UC_SIGMASK;
2173
2174 /*
2175 * The (unsupplied) definition of the `current execution stack'
2176 * in the System V Interface Definition appears to allow returning
2177 * the main context stack.
2178 */
2179 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2180 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2181 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2182 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2183 } else {
2184 /* Simply copy alternate signal execution stack. */
2185 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2186 }
2187 ucp->uc_flags |= _UC_STACK;
2188
2189 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2190 }
2191
2192 /* ARGSUSED */
2193 int
2194 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2195 {
2196 struct sys_getcontext_args /* {
2197 syscallarg(struct __ucontext *) ucp;
2198 } */ *uap = v;
2199 ucontext_t uc;
2200
2201 getucontext(l, &uc);
2202
2203 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2204 }
2205
2206 int
2207 setucontext(struct lwp *l, const ucontext_t *ucp)
2208 {
2209 struct proc *p;
2210 int error;
2211
2212 p = l->l_proc;
2213 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2214 return (error);
2215 l->l_ctxlink = ucp->uc_link;
2216
2217 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2218 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2219
2220 /*
2221 * If there was stack information, update whether or not we are
2222 * still running on an alternate signal stack.
2223 */
2224 if ((ucp->uc_flags & _UC_STACK) != 0) {
2225 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2226 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2227 else
2228 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2229 }
2230
2231 return 0;
2232 }
2233
2234 /* ARGSUSED */
2235 int
2236 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2237 {
2238 struct sys_setcontext_args /* {
2239 syscallarg(const ucontext_t *) ucp;
2240 } */ *uap = v;
2241 ucontext_t uc;
2242 int error;
2243
2244 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2245 exit1(l, W_EXITCODE(0, 0));
2246 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2247 (error = setucontext(l, &uc)) != 0)
2248 return (error);
2249
2250 return (EJUSTRETURN);
2251 }
2252
2253 /*
2254 * sigtimedwait(2) system call, used also for implementation
2255 * of sigwaitinfo() and sigwait().
2256 *
2257 * This only handles single LWP in signal wait. libpthread provides
2258 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2259 */
2260 int
2261 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2262 {
2263 struct sys___sigtimedwait_args /* {
2264 syscallarg(const sigset_t *) set;
2265 syscallarg(siginfo_t *) info;
2266 syscallarg(struct timespec *) timeout;
2267 } */ *uap = v;
2268 sigset_t *waitset, twaitset;
2269 struct proc *p = l->l_proc;
2270 int error, signum, s;
2271 int timo = 0;
2272 struct timeval tvstart;
2273 struct timespec ts;
2274 ksiginfo_t *ksi;
2275
2276 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2277
2278 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2279 FREE(waitset, M_TEMP);
2280 return (error);
2281 }
2282
2283 /*
2284 * Silently ignore SA_CANTMASK signals. psignal1() would
2285 * ignore SA_CANTMASK signals in waitset, we do this
2286 * only for the below siglist check.
2287 */
2288 sigminusset(&sigcantmask, waitset);
2289
2290 /*
2291 * First scan siglist and check if there is signal from
2292 * our waitset already pending.
2293 */
2294 twaitset = *waitset;
2295 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2296 if ((signum = firstsig(&twaitset))) {
2297 /* found pending signal */
2298 sigdelset(&p->p_sigctx.ps_siglist, signum);
2299 ksi = ksiginfo_get(p, signum);
2300 if (!ksi) {
2301 /* No queued siginfo, manufacture one */
2302 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2303 KSI_INIT(ksi);
2304 ksi->ksi_info._signo = signum;
2305 ksi->ksi_info._code = SI_USER;
2306 }
2307
2308 goto sig;
2309 }
2310
2311 /*
2312 * Calculate timeout, if it was specified.
2313 */
2314 if (SCARG(uap, timeout)) {
2315 uint64_t ms;
2316
2317 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2318 return (error);
2319
2320 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2321 timo = mstohz(ms);
2322 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2323 timo = 1;
2324 if (timo <= 0)
2325 return (EAGAIN);
2326
2327 /*
2328 * Remember current mono_time, it would be used in
2329 * ECANCELED/ERESTART case.
2330 */
2331 s = splclock();
2332 tvstart = mono_time;
2333 splx(s);
2334 }
2335
2336 /*
2337 * Setup ps_sigwait list. Pass pointer to malloced memory
2338 * here; it's not possible to pass pointer to a structure
2339 * on current process's stack, the current process might
2340 * be swapped out at the time the signal would get delivered.
2341 */
2342 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2343 p->p_sigctx.ps_sigwaited = ksi;
2344 p->p_sigctx.ps_sigwait = waitset;
2345
2346 /*
2347 * Wait for signal to arrive. We can either be woken up or
2348 * time out.
2349 */
2350 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2351
2352 /*
2353 * Need to find out if we woke as a result of lwp_wakeup()
2354 * or a signal outside our wait set.
2355 */
2356 if (error == EINTR && p->p_sigctx.ps_sigwaited
2357 && !firstsig(&p->p_sigctx.ps_siglist)) {
2358 /* wakeup via _lwp_wakeup() */
2359 error = ECANCELED;
2360 } else if (!error && p->p_sigctx.ps_sigwaited) {
2361 /* spurious wakeup - arrange for syscall restart */
2362 error = ERESTART;
2363 goto fail;
2364 }
2365
2366 /*
2367 * On error, clear sigwait indication. psignal1() clears it
2368 * in !error case.
2369 */
2370 if (error) {
2371 p->p_sigctx.ps_sigwaited = NULL;
2372
2373 /*
2374 * If the sleep was interrupted (either by signal or wakeup),
2375 * update the timeout and copyout new value back.
2376 * It would be used when the syscall would be restarted
2377 * or called again.
2378 */
2379 if (timo && (error == ERESTART || error == ECANCELED)) {
2380 struct timeval tvnow, tvtimo;
2381 int err;
2382
2383 s = splclock();
2384 tvnow = mono_time;
2385 splx(s);
2386
2387 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2388
2389 /* compute how much time has passed since start */
2390 timersub(&tvnow, &tvstart, &tvnow);
2391 /* substract passed time from timeout */
2392 timersub(&tvtimo, &tvnow, &tvtimo);
2393
2394 if (tvtimo.tv_sec < 0) {
2395 error = EAGAIN;
2396 goto fail;
2397 }
2398
2399 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2400
2401 /* copy updated timeout to userland */
2402 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
2403 error = err;
2404 goto fail;
2405 }
2406 }
2407
2408 goto fail;
2409 }
2410
2411 /*
2412 * If a signal from the wait set arrived, copy it to userland.
2413 * Copy only the used part of siginfo, the padding part is
2414 * left unchanged (userland is not supposed to touch it anyway).
2415 */
2416 sig:
2417 error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2418
2419 fail:
2420 FREE(waitset, M_TEMP);
2421 pool_put(&ksiginfo_pool, ksi);
2422 p->p_sigctx.ps_sigwait = NULL;
2423
2424 return (error);
2425 }
2426
2427 /*
2428 * Returns true if signal is ignored or masked for passed process.
2429 */
2430 int
2431 sigismasked(struct proc *p, int sig)
2432 {
2433
2434 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2435 sigismember(&p->p_sigctx.ps_sigmask, sig));
2436 }
2437
2438 static int
2439 filt_sigattach(struct knote *kn)
2440 {
2441 struct proc *p = curproc;
2442
2443 kn->kn_ptr.p_proc = p;
2444 kn->kn_flags |= EV_CLEAR; /* automatically set */
2445
2446 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2447
2448 return (0);
2449 }
2450
2451 static void
2452 filt_sigdetach(struct knote *kn)
2453 {
2454 struct proc *p = kn->kn_ptr.p_proc;
2455
2456 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2457 }
2458
2459 /*
2460 * signal knotes are shared with proc knotes, so we apply a mask to
2461 * the hint in order to differentiate them from process hints. This
2462 * could be avoided by using a signal-specific knote list, but probably
2463 * isn't worth the trouble.
2464 */
2465 static int
2466 filt_signal(struct knote *kn, long hint)
2467 {
2468
2469 if (hint & NOTE_SIGNAL) {
2470 hint &= ~NOTE_SIGNAL;
2471
2472 if (kn->kn_id == hint)
2473 kn->kn_data++;
2474 }
2475 return (kn->kn_data != 0);
2476 }
2477
2478 const struct filterops sig_filtops = {
2479 0, filt_sigattach, filt_sigdetach, filt_signal
2480 };
2481