kern_sig.c revision 1.197 1 /* $NetBSD: kern_sig.c,v 1.197 2004/06/08 19:35:30 he Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.197 2004/06/08 19:35:30 he Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm.h>
82 #include <uvm/uvm_extern.h>
83
84 static void child_psignal(struct proc *, int);
85 static int build_corename(struct proc *, char [MAXPATHLEN]);
86 static void ksiginfo_exithook(struct proc *, void *);
87 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask, sigtrapmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94
95 /*
96 * struct sigacts memory pool allocator.
97 */
98
99 static void *
100 sigacts_poolpage_alloc(struct pool *pp, int flags)
101 {
102
103 return (void *)uvm_km_kmemalloc1(kernel_map,
104 uvm.kernel_object, (PAGE_SIZE)*2, (PAGE_SIZE)*2, UVM_UNKNOWN_OFFSET,
105 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
106 }
107
108 static void
109 sigacts_poolpage_free(struct pool *pp, void *v)
110 {
111 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2);
112 }
113
114 static struct pool_allocator sigactspool_allocator = {
115 sigacts_poolpage_alloc, sigacts_poolpage_free,
116 };
117
118 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
119 &pool_allocator_nointr);
120 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
121
122 /*
123 * Can process p, with pcred pc, send the signal signum to process q?
124 */
125 #define CANSIGNAL(p, pc, q, signum) \
126 ((pc)->pc_ucred->cr_uid == 0 || \
127 (pc)->p_ruid == (q)->p_cred->p_ruid || \
128 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
129 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
130 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
131 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
132
133 /*
134 * Remove and return the first ksiginfo element that matches our requested
135 * signal, or return NULL if one not found.
136 */
137 static ksiginfo_t *
138 ksiginfo_get(struct proc *p, int signo)
139 {
140 ksiginfo_t *ksi;
141 int s;
142
143 s = splsoftclock();
144 simple_lock(&p->p_sigctx.ps_silock);
145 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
146 if (ksi->ksi_signo == signo) {
147 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
148 goto out;
149 }
150 }
151 ksi = NULL;
152 out:
153 simple_unlock(&p->p_sigctx.ps_silock);
154 splx(s);
155 return ksi;
156 }
157
158 /*
159 * Append a new ksiginfo element to the list of pending ksiginfo's, if
160 * we need to (SA_SIGINFO was requested). We replace non RT signals if
161 * they already existed in the queue and we add new entries for RT signals,
162 * or for non RT signals with non-existing entries.
163 */
164 static void
165 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
166 {
167 ksiginfo_t *kp;
168 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
169 int s;
170
171 if ((sa->sa_flags & SA_SIGINFO) == 0)
172 return;
173 /*
174 * If there's no info, don't save it.
175 */
176 if (KSI_EMPTY_P(ksi))
177 return;
178
179 s = splsoftclock();
180 simple_lock(&p->p_sigctx.ps_silock);
181 #ifdef notyet /* XXX: QUEUING */
182 if (ksi->ksi_signo < SIGRTMIN)
183 #endif
184 {
185 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
186 if (kp->ksi_signo == ksi->ksi_signo) {
187 KSI_COPY(ksi, kp);
188 goto out;
189 }
190 }
191 }
192 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
193 if (kp == NULL) {
194 #ifdef DIAGNOSTIC
195 printf("Out of memory allocating siginfo for pid %d\n",
196 p->p_pid);
197 #endif
198 goto out;
199 }
200 *kp = *ksi;
201 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
202 out:
203 simple_unlock(&p->p_sigctx.ps_silock);
204 splx(s);
205 }
206
207 /*
208 * free all pending ksiginfo on exit
209 */
210 static void
211 ksiginfo_exithook(struct proc *p, void *v)
212 {
213 int s;
214
215 s = splsoftclock();
216 simple_lock(&p->p_sigctx.ps_silock);
217 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
218 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
219 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
220 pool_put(&ksiginfo_pool, ksi);
221 }
222 simple_unlock(&p->p_sigctx.ps_silock);
223 splx(s);
224 }
225
226 /*
227 * Initialize signal-related data structures.
228 */
229 void
230 signal_init(void)
231 {
232
233 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
234
235 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
236 sizeof(struct sigacts) > PAGE_SIZE ?
237 &sigactspool_allocator : &pool_allocator_nointr);
238
239 exithook_establish(ksiginfo_exithook, NULL);
240 exechook_establish(ksiginfo_exithook, NULL);
241
242 sigaddset(&sigtrapmask, SIGSEGV);
243 sigaddset(&sigtrapmask, SIGBUS);
244 sigaddset(&sigtrapmask, SIGILL);
245 sigaddset(&sigtrapmask, SIGFPE);
246 sigaddset(&sigtrapmask, SIGTRAP);
247 }
248
249 /*
250 * Create an initial sigctx structure, using the same signal state
251 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
252 * copy it from parent.
253 */
254 void
255 sigactsinit(struct proc *np, struct proc *pp, int share)
256 {
257 struct sigacts *ps;
258
259 if (share) {
260 np->p_sigacts = pp->p_sigacts;
261 pp->p_sigacts->sa_refcnt++;
262 } else {
263 ps = pool_get(&sigacts_pool, PR_WAITOK);
264 if (pp)
265 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
266 else
267 memset(ps, '\0', sizeof(struct sigacts));
268 ps->sa_refcnt = 1;
269 np->p_sigacts = ps;
270 }
271 }
272
273 /*
274 * Make this process not share its sigctx, maintaining all
275 * signal state.
276 */
277 void
278 sigactsunshare(struct proc *p)
279 {
280 struct sigacts *oldps;
281
282 if (p->p_sigacts->sa_refcnt == 1)
283 return;
284
285 oldps = p->p_sigacts;
286 sigactsinit(p, NULL, 0);
287
288 if (--oldps->sa_refcnt == 0)
289 pool_put(&sigacts_pool, oldps);
290 }
291
292 /*
293 * Release a sigctx structure.
294 */
295 void
296 sigactsfree(struct sigacts *ps)
297 {
298
299 if (--ps->sa_refcnt > 0)
300 return;
301
302 pool_put(&sigacts_pool, ps);
303 }
304
305 int
306 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
307 struct sigaction *osa, const void *tramp, int vers)
308 {
309 struct sigacts *ps;
310 int prop;
311
312 ps = p->p_sigacts;
313 if (signum <= 0 || signum >= NSIG)
314 return (EINVAL);
315
316 /*
317 * Trampoline ABI version 0 is reserved for the legacy
318 * kernel-provided on-stack trampoline. Conversely, if we are
319 * using a non-0 ABI version, we must have a trampoline. Only
320 * validate the vers if a new sigaction was supplied. Emulations
321 * use legacy kernel trampolines with version 0, alternatively
322 * check for that too.
323 */
324 if ((vers != 0 && tramp == NULL) ||
325 #ifdef SIGTRAMP_VALID
326 (nsa != NULL &&
327 ((vers == 0) ?
328 (p->p_emul->e_sigcode == NULL) :
329 !SIGTRAMP_VALID(vers))) ||
330 #endif
331 (vers == 0 && tramp != NULL))
332 return (EINVAL);
333
334 if (osa)
335 *osa = SIGACTION_PS(ps, signum);
336
337 if (nsa) {
338 if (nsa->sa_flags & ~SA_ALLBITS)
339 return (EINVAL);
340
341 prop = sigprop[signum];
342 if (prop & SA_CANTMASK)
343 return (EINVAL);
344
345 (void) splsched(); /* XXXSMP */
346 SIGACTION_PS(ps, signum) = *nsa;
347 ps->sa_sigdesc[signum].sd_tramp = tramp;
348 ps->sa_sigdesc[signum].sd_vers = vers;
349 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
350 if ((prop & SA_NORESET) != 0)
351 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
352 if (signum == SIGCHLD) {
353 if (nsa->sa_flags & SA_NOCLDSTOP)
354 p->p_flag |= P_NOCLDSTOP;
355 else
356 p->p_flag &= ~P_NOCLDSTOP;
357 if (nsa->sa_flags & SA_NOCLDWAIT) {
358 /*
359 * Paranoia: since SA_NOCLDWAIT is implemented
360 * by reparenting the dying child to PID 1 (and
361 * trust it to reap the zombie), PID 1 itself
362 * is forbidden to set SA_NOCLDWAIT.
363 */
364 if (p->p_pid == 1)
365 p->p_flag &= ~P_NOCLDWAIT;
366 else
367 p->p_flag |= P_NOCLDWAIT;
368 } else
369 p->p_flag &= ~P_NOCLDWAIT;
370 }
371 if ((nsa->sa_flags & SA_NODEFER) == 0)
372 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
373 else
374 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
375 /*
376 * Set bit in p_sigctx.ps_sigignore for signals that are set to
377 * SIG_IGN, and for signals set to SIG_DFL where the default is
378 * to ignore. However, don't put SIGCONT in
379 * p_sigctx.ps_sigignore, as we have to restart the process.
380 */
381 if (nsa->sa_handler == SIG_IGN ||
382 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
383 /* never to be seen again */
384 sigdelset(&p->p_sigctx.ps_siglist, signum);
385 if (signum != SIGCONT) {
386 /* easier in psignal */
387 sigaddset(&p->p_sigctx.ps_sigignore, signum);
388 }
389 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
390 } else {
391 sigdelset(&p->p_sigctx.ps_sigignore, signum);
392 if (nsa->sa_handler == SIG_DFL)
393 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
394 else
395 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
396 }
397 (void) spl0();
398 }
399
400 return (0);
401 }
402
403 #ifdef COMPAT_16
404 /* ARGSUSED */
405 int
406 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
407 {
408 struct compat_16_sys___sigaction14_args /* {
409 syscallarg(int) signum;
410 syscallarg(const struct sigaction *) nsa;
411 syscallarg(struct sigaction *) osa;
412 } */ *uap = v;
413 struct proc *p;
414 struct sigaction nsa, osa;
415 int error;
416
417 if (SCARG(uap, nsa)) {
418 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
419 if (error)
420 return (error);
421 }
422 p = l->l_proc;
423 error = sigaction1(p, SCARG(uap, signum),
424 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
425 NULL, 0);
426 if (error)
427 return (error);
428 if (SCARG(uap, osa)) {
429 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
430 if (error)
431 return (error);
432 }
433 return (0);
434 }
435 #endif
436
437 /* ARGSUSED */
438 int
439 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
440 {
441 struct sys___sigaction_sigtramp_args /* {
442 syscallarg(int) signum;
443 syscallarg(const struct sigaction *) nsa;
444 syscallarg(struct sigaction *) osa;
445 syscallarg(void *) tramp;
446 syscallarg(int) vers;
447 } */ *uap = v;
448 struct proc *p = l->l_proc;
449 struct sigaction nsa, osa;
450 int error;
451
452 if (SCARG(uap, nsa)) {
453 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
454 if (error)
455 return (error);
456 }
457 error = sigaction1(p, SCARG(uap, signum),
458 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
459 SCARG(uap, tramp), SCARG(uap, vers));
460 if (error)
461 return (error);
462 if (SCARG(uap, osa)) {
463 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
464 if (error)
465 return (error);
466 }
467 return (0);
468 }
469
470 /*
471 * Initialize signal state for process 0;
472 * set to ignore signals that are ignored by default and disable the signal
473 * stack.
474 */
475 void
476 siginit(struct proc *p)
477 {
478 struct sigacts *ps;
479 int signum, prop;
480
481 ps = p->p_sigacts;
482 sigemptyset(&contsigmask);
483 sigemptyset(&stopsigmask);
484 sigemptyset(&sigcantmask);
485 for (signum = 1; signum < NSIG; signum++) {
486 prop = sigprop[signum];
487 if (prop & SA_CONT)
488 sigaddset(&contsigmask, signum);
489 if (prop & SA_STOP)
490 sigaddset(&stopsigmask, signum);
491 if (prop & SA_CANTMASK)
492 sigaddset(&sigcantmask, signum);
493 if (prop & SA_IGNORE && signum != SIGCONT)
494 sigaddset(&p->p_sigctx.ps_sigignore, signum);
495 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
496 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
497 }
498 sigemptyset(&p->p_sigctx.ps_sigcatch);
499 p->p_sigctx.ps_sigwaited = NULL;
500 p->p_flag &= ~P_NOCLDSTOP;
501
502 /*
503 * Reset stack state to the user stack.
504 */
505 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
506 p->p_sigctx.ps_sigstk.ss_size = 0;
507 p->p_sigctx.ps_sigstk.ss_sp = 0;
508
509 /* One reference. */
510 ps->sa_refcnt = 1;
511 }
512
513 /*
514 * Reset signals for an exec of the specified process.
515 */
516 void
517 execsigs(struct proc *p)
518 {
519 struct sigacts *ps;
520 int signum, prop;
521
522 sigactsunshare(p);
523
524 ps = p->p_sigacts;
525
526 /*
527 * Reset caught signals. Held signals remain held
528 * through p_sigctx.ps_sigmask (unless they were caught,
529 * and are now ignored by default).
530 */
531 for (signum = 1; signum < NSIG; signum++) {
532 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
533 prop = sigprop[signum];
534 if (prop & SA_IGNORE) {
535 if ((prop & SA_CONT) == 0)
536 sigaddset(&p->p_sigctx.ps_sigignore,
537 signum);
538 sigdelset(&p->p_sigctx.ps_siglist, signum);
539 }
540 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
541 }
542 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
543 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
544 }
545 sigemptyset(&p->p_sigctx.ps_sigcatch);
546 p->p_sigctx.ps_sigwaited = NULL;
547 p->p_flag &= ~P_NOCLDSTOP;
548
549 /*
550 * Reset stack state to the user stack.
551 */
552 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
553 p->p_sigctx.ps_sigstk.ss_size = 0;
554 p->p_sigctx.ps_sigstk.ss_sp = 0;
555 }
556
557 int
558 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
559 {
560
561 if (oss)
562 *oss = p->p_sigctx.ps_sigmask;
563
564 if (nss) {
565 (void)splsched(); /* XXXSMP */
566 switch (how) {
567 case SIG_BLOCK:
568 sigplusset(nss, &p->p_sigctx.ps_sigmask);
569 break;
570 case SIG_UNBLOCK:
571 sigminusset(nss, &p->p_sigctx.ps_sigmask);
572 CHECKSIGS(p);
573 break;
574 case SIG_SETMASK:
575 p->p_sigctx.ps_sigmask = *nss;
576 CHECKSIGS(p);
577 break;
578 default:
579 (void)spl0(); /* XXXSMP */
580 return (EINVAL);
581 }
582 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
583 (void)spl0(); /* XXXSMP */
584 }
585
586 return (0);
587 }
588
589 /*
590 * Manipulate signal mask.
591 * Note that we receive new mask, not pointer,
592 * and return old mask as return value;
593 * the library stub does the rest.
594 */
595 int
596 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
597 {
598 struct sys___sigprocmask14_args /* {
599 syscallarg(int) how;
600 syscallarg(const sigset_t *) set;
601 syscallarg(sigset_t *) oset;
602 } */ *uap = v;
603 struct proc *p;
604 sigset_t nss, oss;
605 int error;
606
607 if (SCARG(uap, set)) {
608 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
609 if (error)
610 return (error);
611 }
612 p = l->l_proc;
613 error = sigprocmask1(p, SCARG(uap, how),
614 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
615 if (error)
616 return (error);
617 if (SCARG(uap, oset)) {
618 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
619 if (error)
620 return (error);
621 }
622 return (0);
623 }
624
625 void
626 sigpending1(struct proc *p, sigset_t *ss)
627 {
628
629 *ss = p->p_sigctx.ps_siglist;
630 sigminusset(&p->p_sigctx.ps_sigmask, ss);
631 }
632
633 /* ARGSUSED */
634 int
635 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
636 {
637 struct sys___sigpending14_args /* {
638 syscallarg(sigset_t *) set;
639 } */ *uap = v;
640 struct proc *p;
641 sigset_t ss;
642
643 p = l->l_proc;
644 sigpending1(p, &ss);
645 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
646 }
647
648 int
649 sigsuspend1(struct proc *p, const sigset_t *ss)
650 {
651 struct sigacts *ps;
652
653 ps = p->p_sigacts;
654 if (ss) {
655 /*
656 * When returning from sigpause, we want
657 * the old mask to be restored after the
658 * signal handler has finished. Thus, we
659 * save it here and mark the sigctx structure
660 * to indicate this.
661 */
662 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
663 p->p_sigctx.ps_flags |= SAS_OLDMASK;
664 (void) splsched(); /* XXXSMP */
665 p->p_sigctx.ps_sigmask = *ss;
666 CHECKSIGS(p);
667 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
668 (void) spl0(); /* XXXSMP */
669 }
670
671 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
672 /* void */;
673
674 /* always return EINTR rather than ERESTART... */
675 return (EINTR);
676 }
677
678 /*
679 * Suspend process until signal, providing mask to be set
680 * in the meantime. Note nonstandard calling convention:
681 * libc stub passes mask, not pointer, to save a copyin.
682 */
683 /* ARGSUSED */
684 int
685 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
686 {
687 struct sys___sigsuspend14_args /* {
688 syscallarg(const sigset_t *) set;
689 } */ *uap = v;
690 struct proc *p;
691 sigset_t ss;
692 int error;
693
694 if (SCARG(uap, set)) {
695 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
696 if (error)
697 return (error);
698 }
699
700 p = l->l_proc;
701 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
702 }
703
704 int
705 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
706 struct sigaltstack *oss)
707 {
708
709 if (oss)
710 *oss = p->p_sigctx.ps_sigstk;
711
712 if (nss) {
713 if (nss->ss_flags & ~SS_ALLBITS)
714 return (EINVAL);
715
716 if (nss->ss_flags & SS_DISABLE) {
717 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
718 return (EINVAL);
719 } else {
720 if (nss->ss_size < MINSIGSTKSZ)
721 return (ENOMEM);
722 }
723 p->p_sigctx.ps_sigstk = *nss;
724 }
725
726 return (0);
727 }
728
729 /* ARGSUSED */
730 int
731 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
732 {
733 struct sys___sigaltstack14_args /* {
734 syscallarg(const struct sigaltstack *) nss;
735 syscallarg(struct sigaltstack *) oss;
736 } */ *uap = v;
737 struct proc *p;
738 struct sigaltstack nss, oss;
739 int error;
740
741 if (SCARG(uap, nss)) {
742 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
743 if (error)
744 return (error);
745 }
746 p = l->l_proc;
747 error = sigaltstack1(p,
748 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
749 if (error)
750 return (error);
751 if (SCARG(uap, oss)) {
752 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
753 if (error)
754 return (error);
755 }
756 return (0);
757 }
758
759 /* ARGSUSED */
760 int
761 sys_kill(struct lwp *l, void *v, register_t *retval)
762 {
763 struct sys_kill_args /* {
764 syscallarg(int) pid;
765 syscallarg(int) signum;
766 } */ *uap = v;
767 struct proc *cp, *p;
768 struct pcred *pc;
769 ksiginfo_t ksi;
770
771 cp = l->l_proc;
772 pc = cp->p_cred;
773 if ((u_int)SCARG(uap, signum) >= NSIG)
774 return (EINVAL);
775 KSI_INIT(&ksi);
776 ksi.ksi_signo = SCARG(uap, signum);
777 ksi.ksi_code = SI_USER;
778 ksi.ksi_pid = cp->p_pid;
779 ksi.ksi_uid = cp->p_ucred->cr_uid;
780 if (SCARG(uap, pid) > 0) {
781 /* kill single process */
782 if ((p = pfind(SCARG(uap, pid))) == NULL)
783 return (ESRCH);
784 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
785 return (EPERM);
786 if (SCARG(uap, signum))
787 kpsignal2(p, &ksi, 1);
788 return (0);
789 }
790 switch (SCARG(uap, pid)) {
791 case -1: /* broadcast signal */
792 return (killpg1(cp, &ksi, 0, 1));
793 case 0: /* signal own process group */
794 return (killpg1(cp, &ksi, 0, 0));
795 default: /* negative explicit process group */
796 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
797 }
798 /* NOTREACHED */
799 }
800
801 /*
802 * Common code for kill process group/broadcast kill.
803 * cp is calling process.
804 */
805 int
806 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
807 {
808 struct proc *p;
809 struct pcred *pc;
810 struct pgrp *pgrp;
811 int nfound;
812 int signum = ksi->ksi_signo;
813
814 pc = cp->p_cred;
815 nfound = 0;
816 if (all) {
817 /*
818 * broadcast
819 */
820 proclist_lock_read();
821 LIST_FOREACH(p, &allproc, p_list) {
822 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
823 p == cp || !CANSIGNAL(cp, pc, p, signum))
824 continue;
825 nfound++;
826 if (signum)
827 kpsignal2(p, ksi, 1);
828 }
829 proclist_unlock_read();
830 } else {
831 if (pgid == 0)
832 /*
833 * zero pgid means send to my process group.
834 */
835 pgrp = cp->p_pgrp;
836 else {
837 pgrp = pgfind(pgid);
838 if (pgrp == NULL)
839 return (ESRCH);
840 }
841 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
842 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
843 !CANSIGNAL(cp, pc, p, signum))
844 continue;
845 nfound++;
846 if (signum && P_ZOMBIE(p) == 0)
847 kpsignal2(p, ksi, 1);
848 }
849 }
850 return (nfound ? 0 : ESRCH);
851 }
852
853 /*
854 * Send a signal to a process group.
855 */
856 void
857 gsignal(int pgid, int signum)
858 {
859 ksiginfo_t ksi;
860 KSI_INIT_EMPTY(&ksi);
861 ksi.ksi_signo = signum;
862 kgsignal(pgid, &ksi, NULL);
863 }
864
865 void
866 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
867 {
868 struct pgrp *pgrp;
869
870 if (pgid && (pgrp = pgfind(pgid)))
871 kpgsignal(pgrp, ksi, data, 0);
872 }
873
874 /*
875 * Send a signal to a process group. If checktty is 1,
876 * limit to members which have a controlling terminal.
877 */
878 void
879 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
880 {
881 ksiginfo_t ksi;
882 KSI_INIT_EMPTY(&ksi);
883 ksi.ksi_signo = sig;
884 kpgsignal(pgrp, &ksi, NULL, checkctty);
885 }
886
887 void
888 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
889 {
890 struct proc *p;
891
892 if (pgrp)
893 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
894 if (checkctty == 0 || p->p_flag & P_CONTROLT)
895 kpsignal(p, ksi, data);
896 }
897
898 /*
899 * Send a signal caused by a trap to the current process.
900 * If it will be caught immediately, deliver it with correct code.
901 * Otherwise, post it normally.
902 */
903 void
904 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
905 {
906 struct proc *p;
907 struct sigacts *ps;
908 int signum = ksi->ksi_signo;
909
910 KASSERT(KSI_TRAP_P(ksi));
911
912 p = l->l_proc;
913 ps = p->p_sigacts;
914 if ((p->p_flag & P_TRACED) == 0 &&
915 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
916 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
917 p->p_stats->p_ru.ru_nsignals++;
918 #ifdef KTRACE
919 if (KTRPOINT(p, KTR_PSIG))
920 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
921 &p->p_sigctx.ps_sigmask, ksi);
922 #endif
923 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
924 (void) splsched(); /* XXXSMP */
925 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
926 &p->p_sigctx.ps_sigmask);
927 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
928 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
929 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
930 sigaddset(&p->p_sigctx.ps_sigignore, signum);
931 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
932 }
933 (void) spl0(); /* XXXSMP */
934 } else {
935 p->p_sigctx.ps_lwp = l->l_lid;
936 /* XXX for core dump/debugger */
937 p->p_sigctx.ps_signo = ksi->ksi_signo;
938 p->p_sigctx.ps_code = ksi->ksi_trap;
939 kpsignal2(p, ksi, 1);
940 }
941 }
942
943 /*
944 * Fill in signal information and signal the parent for a child status change.
945 */
946 static void
947 child_psignal(struct proc *p, int dolock)
948 {
949 ksiginfo_t ksi;
950
951 KSI_INIT(&ksi);
952 ksi.ksi_signo = SIGCHLD;
953 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
954 ksi.ksi_pid = p->p_pid;
955 ksi.ksi_uid = p->p_ucred->cr_uid;
956 ksi.ksi_status = p->p_xstat;
957 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
958 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
959 kpsignal2(p->p_pptr, &ksi, dolock);
960 }
961
962 /*
963 * Send the signal to the process. If the signal has an action, the action
964 * is usually performed by the target process rather than the caller; we add
965 * the signal to the set of pending signals for the process.
966 *
967 * Exceptions:
968 * o When a stop signal is sent to a sleeping process that takes the
969 * default action, the process is stopped without awakening it.
970 * o SIGCONT restarts stopped processes (or puts them back to sleep)
971 * regardless of the signal action (eg, blocked or ignored).
972 *
973 * Other ignored signals are discarded immediately.
974 *
975 * XXXSMP: Invoked as psignal() or sched_psignal().
976 */
977 void
978 psignal1(struct proc *p, int signum, int dolock)
979 {
980 ksiginfo_t ksi;
981
982 KSI_INIT_EMPTY(&ksi);
983 ksi.ksi_signo = signum;
984 kpsignal2(p, &ksi, dolock);
985 }
986
987 void
988 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
989 {
990
991 if ((p->p_flag & P_WEXIT) == 0 && data) {
992 size_t fd;
993 struct filedesc *fdp = p->p_fd;
994
995 ksi->ksi_fd = -1;
996 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
997 struct file *fp = fdp->fd_ofiles[fd];
998 /* XXX: lock? */
999 if (fp && fp->f_data == data) {
1000 ksi->ksi_fd = fd;
1001 break;
1002 }
1003 }
1004 }
1005 kpsignal2(p, ksi, dolock);
1006 }
1007
1008 static void
1009 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1010 {
1011 struct lwp *l, *suspended = NULL;
1012 struct sadata_vp *vp;
1013 int s = 0, prop, allsusp;
1014 sig_t action;
1015 int signum = ksi->ksi_signo;
1016
1017 #ifdef DIAGNOSTIC
1018 if (signum <= 0 || signum >= NSIG)
1019 panic("psignal signal number %d", signum);
1020
1021 /* XXXSMP: works, but icky */
1022 if (dolock)
1023 SCHED_ASSERT_UNLOCKED();
1024 else
1025 SCHED_ASSERT_LOCKED();
1026 #endif
1027
1028 /*
1029 * Notify any interested parties in the signal.
1030 */
1031 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1032
1033 prop = sigprop[signum];
1034
1035 /*
1036 * If proc is traced, always give parent a chance.
1037 */
1038 action = SIG_DFL;
1039 if ((p->p_flag & P_TRACED) == 0) {
1040 if (KSI_TRAP_P(ksi)) {
1041 /*
1042 * If the signal was the result of a trap, only catch
1043 * the signal if it isn't masked and there is a
1044 * non-default non-ignore handler installed for it.
1045 * Otherwise take the default action.
1046 */
1047 if (!sigismember(&p->p_sigctx.ps_sigmask, signum) &&
1048 sigismember(&p->p_sigctx.ps_sigcatch, signum))
1049 action = SIG_CATCH;
1050 /*
1051 * If we are to take the default action, reset the
1052 * signal back to its defaults.
1053 */
1054 if (action == SIG_DFL) {
1055 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1056 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1057 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1058 SIGACTION(p, signum).sa_handler = SIG_DFL;
1059 }
1060 } else {
1061 /*
1062 * If the signal is being ignored,
1063 * then we forget about it immediately.
1064 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1065 * and if it is set to SIG_IGN,
1066 * action will be SIG_DFL here.)
1067 */
1068 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1069 return;
1070 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1071 action = SIG_HOLD;
1072 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1073 action = SIG_CATCH;
1074 }
1075 if (action == SIG_DFL) {
1076 if (prop & SA_KILL && p->p_nice > NZERO)
1077 p->p_nice = NZERO;
1078
1079 /*
1080 * If sending a tty stop signal to a member of an
1081 * orphaned process group, discard the signal here if
1082 * the action is default; don't stop the process below
1083 * if sleeping, and don't clear any pending SIGCONT.
1084 */
1085 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1086 return;
1087 }
1088 } else {
1089 /*
1090 * If the process is being traced and the signal is being
1091 * caught, make sure to save any ksiginfo.
1092 */
1093 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1094 ksiginfo_put(p, ksi);
1095 }
1096
1097 if (prop & SA_CONT)
1098 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1099
1100 if (prop & SA_STOP)
1101 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1102
1103 /*
1104 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1105 * please!), check if anything waits on it. If yes, save the
1106 * info into provided ps_sigwaited, and wake-up the waiter.
1107 * The signal won't be processed further here.
1108 */
1109 if ((prop & SA_CANTMASK) == 0
1110 && p->p_sigctx.ps_sigwaited
1111 && sigismember(p->p_sigctx.ps_sigwait, signum)
1112 && p->p_stat != SSTOP) {
1113 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1114 p->p_sigctx.ps_sigwaited = NULL;
1115 if (dolock)
1116 wakeup_one(&p->p_sigctx.ps_sigwait);
1117 else
1118 sched_wakeup(&p->p_sigctx.ps_sigwait);
1119 return;
1120 }
1121
1122 sigaddset(&p->p_sigctx.ps_siglist, signum);
1123
1124 /* CHECKSIGS() is "inlined" here. */
1125 p->p_sigctx.ps_sigcheck = 1;
1126
1127 /*
1128 * Defer further processing for signals which are held,
1129 * except that stopped processes must be continued by SIGCONT.
1130 */
1131 if (action == SIG_HOLD &&
1132 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1133 ksiginfo_put(p, ksi);
1134 return;
1135 }
1136 /* XXXSMP: works, but icky */
1137 if (dolock)
1138 SCHED_LOCK(s);
1139
1140 if (p->p_flag & P_SA) {
1141 allsusp = 0;
1142 l = NULL;
1143 if (p->p_stat == SACTIVE) {
1144 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1145 l = vp->savp_lwp;
1146 KDASSERT(l != NULL);
1147 if (l->l_flag & L_SA_IDLE) {
1148 /* wakeup idle LWP */
1149 goto found;
1150 /*NOTREACHED*/
1151 } else if (l->l_flag & L_SA_YIELD) {
1152 /* idle LWP is already waking up */
1153 goto out;
1154 /*NOTREACHED*/
1155 }
1156 }
1157 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1158 l = vp->savp_lwp;
1159 if (l->l_stat == LSRUN ||
1160 l->l_stat == LSONPROC) {
1161 signotify(p);
1162 goto out;
1163 /*NOTREACHED*/
1164 }
1165 if (l->l_stat == LSSLEEP &&
1166 l->l_flag & L_SINTR) {
1167 /* ok to signal vp lwp */
1168 } else
1169 l = NULL;
1170 }
1171 if (l == NULL)
1172 allsusp = 1;
1173 } else if (p->p_stat == SSTOP) {
1174 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1175 l = vp->savp_lwp;
1176 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1177 break;
1178 l = NULL;
1179 }
1180 }
1181 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1182 /*
1183 * At least one LWP is running or on a run queue.
1184 * The signal will be noticed when one of them returns
1185 * to userspace.
1186 */
1187 signotify(p);
1188 /*
1189 * The signal will be noticed very soon.
1190 */
1191 goto out;
1192 /*NOTREACHED*/
1193 } else {
1194 /*
1195 * Find out if any of the sleeps are interruptable,
1196 * and if all the live LWPs remaining are suspended.
1197 */
1198 allsusp = 1;
1199 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1200 if (l->l_stat == LSSLEEP &&
1201 l->l_flag & L_SINTR)
1202 break;
1203 if (l->l_stat == LSSUSPENDED)
1204 suspended = l;
1205 else if ((l->l_stat != LSZOMB) &&
1206 (l->l_stat != LSDEAD))
1207 allsusp = 0;
1208 }
1209 }
1210
1211 found:
1212 switch (p->p_stat) {
1213 case SACTIVE:
1214
1215 if (l != NULL && (p->p_flag & P_TRACED))
1216 goto run;
1217
1218 /*
1219 * If SIGCONT is default (or ignored) and process is
1220 * asleep, we are finished; the process should not
1221 * be awakened.
1222 */
1223 if ((prop & SA_CONT) && action == SIG_DFL) {
1224 sigdelset(&p->p_sigctx.ps_siglist, signum);
1225 goto done;
1226 }
1227
1228 /*
1229 * When a sleeping process receives a stop
1230 * signal, process immediately if possible.
1231 */
1232 if ((prop & SA_STOP) && action == SIG_DFL) {
1233 /*
1234 * If a child holding parent blocked,
1235 * stopping could cause deadlock.
1236 */
1237 if (p->p_flag & P_PPWAIT) {
1238 goto out;
1239 }
1240 sigdelset(&p->p_sigctx.ps_siglist, signum);
1241 p->p_xstat = signum;
1242 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1243 /*
1244 * XXXSMP: recursive call; don't lock
1245 * the second time around.
1246 */
1247 child_psignal(p, 0);
1248 }
1249 proc_stop(p, 1); /* XXXSMP: recurse? */
1250 goto done;
1251 }
1252
1253 if (l == NULL) {
1254 /*
1255 * Special case: SIGKILL of a process
1256 * which is entirely composed of
1257 * suspended LWPs should succeed. We
1258 * make this happen by unsuspending one of
1259 * them.
1260 */
1261 if (allsusp && (signum == SIGKILL)) {
1262 if (p->p_flag & P_SA) {
1263 /*
1264 * get a suspended lwp from
1265 * the cache to send KILL
1266 * signal
1267 * XXXcl add signal checks at resume points
1268 */
1269 suspended = sa_getcachelwp
1270 (SLIST_FIRST(&p->p_sa->sa_vps));
1271 }
1272 lwp_continue(suspended);
1273 }
1274 goto done;
1275 }
1276 /*
1277 * All other (caught or default) signals
1278 * cause the process to run.
1279 */
1280 goto runfast;
1281 /*NOTREACHED*/
1282 case SSTOP:
1283 /* Process is stopped */
1284 /*
1285 * If traced process is already stopped,
1286 * then no further action is necessary.
1287 */
1288 if (p->p_flag & P_TRACED)
1289 goto done;
1290
1291 /*
1292 * Kill signal always sets processes running,
1293 * if possible.
1294 */
1295 if (signum == SIGKILL) {
1296 l = proc_unstop(p);
1297 if (l)
1298 goto runfast;
1299 goto done;
1300 }
1301
1302 if (prop & SA_CONT) {
1303 /*
1304 * If SIGCONT is default (or ignored),
1305 * we continue the process but don't
1306 * leave the signal in ps_siglist, as
1307 * it has no further action. If
1308 * SIGCONT is held, we continue the
1309 * process and leave the signal in
1310 * ps_siglist. If the process catches
1311 * SIGCONT, let it handle the signal
1312 * itself. If it isn't waiting on an
1313 * event, then it goes back to run
1314 * state. Otherwise, process goes
1315 * back to sleep state.
1316 */
1317 if (action == SIG_DFL)
1318 sigdelset(&p->p_sigctx.ps_siglist,
1319 signum);
1320 l = proc_unstop(p);
1321 if (l && (action == SIG_CATCH))
1322 goto runfast;
1323 goto out;
1324 }
1325
1326 if (prop & SA_STOP) {
1327 /*
1328 * Already stopped, don't need to stop again.
1329 * (If we did the shell could get confused.)
1330 */
1331 sigdelset(&p->p_sigctx.ps_siglist, signum);
1332 goto done;
1333 }
1334
1335 /*
1336 * If a lwp is sleeping interruptibly, then
1337 * wake it up; it will run until the kernel
1338 * boundary, where it will stop in issignal(),
1339 * since p->p_stat is still SSTOP. When the
1340 * process is continued, it will be made
1341 * runnable and can look at the signal.
1342 */
1343 if (l)
1344 goto run;
1345 goto out;
1346 case SIDL:
1347 /* Process is being created by fork */
1348 /* XXX: We are not ready to receive signals yet */
1349 goto done;
1350 default:
1351 /* Else what? */
1352 panic("psignal: Invalid process state %d.", p->p_stat);
1353 }
1354 /*NOTREACHED*/
1355
1356 runfast:
1357 if (action == SIG_CATCH) {
1358 ksiginfo_put(p, ksi);
1359 action = SIG_HOLD;
1360 }
1361 /*
1362 * Raise priority to at least PUSER.
1363 */
1364 if (l->l_priority > PUSER)
1365 l->l_priority = PUSER;
1366 run:
1367 if (action == SIG_CATCH) {
1368 ksiginfo_put(p, ksi);
1369 action = SIG_HOLD;
1370 }
1371
1372 setrunnable(l); /* XXXSMP: recurse? */
1373 out:
1374 if (action == SIG_CATCH)
1375 ksiginfo_put(p, ksi);
1376 done:
1377 /* XXXSMP: works, but icky */
1378 if (dolock)
1379 SCHED_UNLOCK(s);
1380 }
1381
1382 void
1383 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1384 {
1385 struct proc *p = l->l_proc;
1386 struct lwp *le, *li;
1387 siginfo_t *si;
1388 int f;
1389
1390 if (p->p_flag & P_SA) {
1391
1392 /* XXXUPSXXX What if not on sa_vp ? */
1393
1394 f = l->l_flag & L_SA;
1395 l->l_flag &= ~L_SA;
1396 si = pool_get(&siginfo_pool, PR_WAITOK);
1397 si->_info = ksi->ksi_info;
1398 le = li = NULL;
1399 if (KSI_TRAP_P(ksi))
1400 le = l;
1401 else
1402 li = l;
1403
1404 sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1405 sizeof(siginfo_t), si);
1406 l->l_flag |= f;
1407 return;
1408 }
1409
1410 (*p->p_emul->e_sendsig)(ksi, mask);
1411 }
1412
1413 static __inline int firstsig(const sigset_t *);
1414
1415 static __inline int
1416 firstsig(const sigset_t *ss)
1417 {
1418 int sig;
1419
1420 sig = ffs(ss->__bits[0]);
1421 if (sig != 0)
1422 return (sig);
1423 #if NSIG > 33
1424 sig = ffs(ss->__bits[1]);
1425 if (sig != 0)
1426 return (sig + 32);
1427 #endif
1428 #if NSIG > 65
1429 sig = ffs(ss->__bits[2]);
1430 if (sig != 0)
1431 return (sig + 64);
1432 #endif
1433 #if NSIG > 97
1434 sig = ffs(ss->__bits[3]);
1435 if (sig != 0)
1436 return (sig + 96);
1437 #endif
1438 return (0);
1439 }
1440
1441 /*
1442 * If the current process has received a signal (should be caught or cause
1443 * termination, should interrupt current syscall), return the signal number.
1444 * Stop signals with default action are processed immediately, then cleared;
1445 * they aren't returned. This is checked after each entry to the system for
1446 * a syscall or trap (though this can usually be done without calling issignal
1447 * by checking the pending signal masks in the CURSIG macro.) The normal call
1448 * sequence is
1449 *
1450 * while (signum = CURSIG(curlwp))
1451 * postsig(signum);
1452 */
1453 int
1454 issignal(struct lwp *l)
1455 {
1456 struct proc *p = l->l_proc;
1457 int s = 0, signum, prop;
1458 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1459 sigset_t ss;
1460
1461 /* Bail out if we do not own the virtual processor */
1462 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1463 return 0;
1464
1465 if (p->p_stat == SSTOP) {
1466 /*
1467 * The process is stopped/stopping. Stop ourselves now that
1468 * we're on the kernel/userspace boundary.
1469 */
1470 if (dolock)
1471 SCHED_LOCK(s);
1472 l->l_stat = LSSTOP;
1473 p->p_nrlwps--;
1474 if (p->p_flag & P_TRACED)
1475 goto sigtraceswitch;
1476 else
1477 goto sigswitch;
1478 }
1479 for (;;) {
1480 sigpending1(p, &ss);
1481 if (p->p_flag & P_PPWAIT)
1482 sigminusset(&stopsigmask, &ss);
1483 signum = firstsig(&ss);
1484 if (signum == 0) { /* no signal to send */
1485 p->p_sigctx.ps_sigcheck = 0;
1486 if (locked && dolock)
1487 SCHED_LOCK(s);
1488 return (0);
1489 }
1490 /* take the signal! */
1491 sigdelset(&p->p_sigctx.ps_siglist, signum);
1492
1493 /*
1494 * We should see pending but ignored signals
1495 * only if P_TRACED was on when they were posted.
1496 */
1497 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1498 (p->p_flag & P_TRACED) == 0)
1499 continue;
1500
1501 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1502 /*
1503 * If traced, always stop, and stay
1504 * stopped until released by the debugger.
1505 */
1506 p->p_xstat = signum;
1507
1508 /* Emulation-specific handling of signal trace */
1509 if ((p->p_emul->e_tracesig != NULL) &&
1510 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1511 goto childresumed;
1512
1513 if ((p->p_flag & P_FSTRACE) == 0)
1514 child_psignal(p, dolock);
1515 if (dolock)
1516 SCHED_LOCK(s);
1517 proc_stop(p, 1);
1518 sigtraceswitch:
1519 mi_switch(l, NULL);
1520 SCHED_ASSERT_UNLOCKED();
1521 if (dolock)
1522 splx(s);
1523 else
1524 dolock = 1;
1525
1526 childresumed:
1527 /*
1528 * If we are no longer being traced, or the parent
1529 * didn't give us a signal, look for more signals.
1530 */
1531 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1532 continue;
1533
1534 /*
1535 * If the new signal is being masked, look for other
1536 * signals.
1537 */
1538 signum = p->p_xstat;
1539 p->p_xstat = 0;
1540 /*
1541 * `p->p_sigctx.ps_siglist |= mask' is done
1542 * in setrunnable().
1543 */
1544 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1545 continue;
1546 /* take the signal! */
1547 sigdelset(&p->p_sigctx.ps_siglist, signum);
1548 }
1549
1550 prop = sigprop[signum];
1551
1552 /*
1553 * Decide whether the signal should be returned.
1554 * Return the signal's number, or fall through
1555 * to clear it from the pending mask.
1556 */
1557 switch ((long)SIGACTION(p, signum).sa_handler) {
1558
1559 case (long)SIG_DFL:
1560 /*
1561 * Don't take default actions on system processes.
1562 */
1563 if (p->p_pid <= 1) {
1564 #ifdef DIAGNOSTIC
1565 /*
1566 * Are you sure you want to ignore SIGSEGV
1567 * in init? XXX
1568 */
1569 printf("Process (pid %d) got signal %d\n",
1570 p->p_pid, signum);
1571 #endif
1572 break; /* == ignore */
1573 }
1574 /*
1575 * If there is a pending stop signal to process
1576 * with default action, stop here,
1577 * then clear the signal. However,
1578 * if process is member of an orphaned
1579 * process group, ignore tty stop signals.
1580 */
1581 if (prop & SA_STOP) {
1582 if (p->p_flag & P_TRACED ||
1583 (p->p_pgrp->pg_jobc == 0 &&
1584 prop & SA_TTYSTOP))
1585 break; /* == ignore */
1586 p->p_xstat = signum;
1587 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1588 child_psignal(p, dolock);
1589 if (dolock)
1590 SCHED_LOCK(s);
1591 proc_stop(p, 1);
1592 sigswitch:
1593 mi_switch(l, NULL);
1594 SCHED_ASSERT_UNLOCKED();
1595 if (dolock)
1596 splx(s);
1597 else
1598 dolock = 1;
1599 break;
1600 } else if (prop & SA_IGNORE) {
1601 /*
1602 * Except for SIGCONT, shouldn't get here.
1603 * Default action is to ignore; drop it.
1604 */
1605 break; /* == ignore */
1606 } else
1607 goto keep;
1608 /*NOTREACHED*/
1609
1610 case (long)SIG_IGN:
1611 /*
1612 * Masking above should prevent us ever trying
1613 * to take action on an ignored signal other
1614 * than SIGCONT, unless process is traced.
1615 */
1616 #ifdef DEBUG_ISSIGNAL
1617 if ((prop & SA_CONT) == 0 &&
1618 (p->p_flag & P_TRACED) == 0)
1619 printf("issignal\n");
1620 #endif
1621 break; /* == ignore */
1622
1623 default:
1624 /*
1625 * This signal has an action, let
1626 * postsig() process it.
1627 */
1628 goto keep;
1629 }
1630 }
1631 /* NOTREACHED */
1632
1633 keep:
1634 /* leave the signal for later */
1635 sigaddset(&p->p_sigctx.ps_siglist, signum);
1636 CHECKSIGS(p);
1637 if (locked && dolock)
1638 SCHED_LOCK(s);
1639 return (signum);
1640 }
1641
1642 /*
1643 * Put the argument process into the stopped state and notify the parent
1644 * via wakeup. Signals are handled elsewhere. The process must not be
1645 * on the run queue.
1646 */
1647 void
1648 proc_stop(struct proc *p, int wakeup)
1649 {
1650 struct lwp *l;
1651 struct proc *parent;
1652 struct sadata_vp *vp;
1653
1654 SCHED_ASSERT_LOCKED();
1655
1656 /* XXX lock process LWP state */
1657 p->p_flag &= ~P_WAITED;
1658 p->p_stat = SSTOP;
1659 parent = p->p_pptr;
1660 parent->p_nstopchild++;
1661
1662 if (p->p_flag & P_SA) {
1663 /*
1664 * Only (try to) put the LWP on the VP in stopped
1665 * state.
1666 * All other LWPs will suspend in sa_setwoken()
1667 * because the VP-LWP in stopped state cannot be
1668 * repossessed.
1669 */
1670 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1671 l = vp->savp_lwp;
1672 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1673 l->l_stat = LSSTOP;
1674 p->p_nrlwps--;
1675 } else if (l->l_stat == LSRUN) {
1676 /* Remove LWP from the run queue */
1677 remrunqueue(l);
1678 l->l_stat = LSSTOP;
1679 p->p_nrlwps--;
1680 } else if (l->l_stat == LSSLEEP &&
1681 l->l_flag & L_SA_IDLE) {
1682 l->l_flag &= ~L_SA_IDLE;
1683 l->l_stat = LSSTOP;
1684 }
1685 }
1686 goto out;
1687 }
1688
1689 /*
1690 * Put as many LWP's as possible in stopped state.
1691 * Sleeping ones will notice the stopped state as they try to
1692 * return to userspace.
1693 */
1694
1695 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1696 if (l->l_stat == LSONPROC) {
1697 /* XXX SMP this assumes that a LWP that is LSONPROC
1698 * is curlwp and hence is about to be mi_switched
1699 * away; the only callers of proc_stop() are:
1700 * - psignal
1701 * - issignal()
1702 * For the former, proc_stop() is only called when
1703 * no processes are running, so we don't worry.
1704 * For the latter, proc_stop() is called right
1705 * before mi_switch().
1706 */
1707 l->l_stat = LSSTOP;
1708 p->p_nrlwps--;
1709 } else if (l->l_stat == LSRUN) {
1710 /* Remove LWP from the run queue */
1711 remrunqueue(l);
1712 l->l_stat = LSSTOP;
1713 p->p_nrlwps--;
1714 } else if ((l->l_stat == LSSLEEP) ||
1715 (l->l_stat == LSSUSPENDED) ||
1716 (l->l_stat == LSZOMB) ||
1717 (l->l_stat == LSDEAD)) {
1718 /*
1719 * Don't do anything; let sleeping LWPs
1720 * discover the stopped state of the process
1721 * on their way out of the kernel; otherwise,
1722 * things like NFS threads that sleep with
1723 * locks will block the rest of the system
1724 * from getting any work done.
1725 *
1726 * Suspended/dead/zombie LWPs aren't going
1727 * anywhere, so we don't need to touch them.
1728 */
1729 }
1730 #ifdef DIAGNOSTIC
1731 else {
1732 panic("proc_stop: process %d lwp %d "
1733 "in unstoppable state %d.\n",
1734 p->p_pid, l->l_lid, l->l_stat);
1735 }
1736 #endif
1737 }
1738
1739 out:
1740 /* XXX unlock process LWP state */
1741
1742 if (wakeup)
1743 sched_wakeup((caddr_t)p->p_pptr);
1744 }
1745
1746 /*
1747 * Given a process in state SSTOP, set the state back to SACTIVE and
1748 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1749 *
1750 * If no LWPs ended up runnable (and therefore able to take a signal),
1751 * return a LWP that is sleeping interruptably. The caller can wake
1752 * that LWP up to take a signal.
1753 */
1754 struct lwp *
1755 proc_unstop(struct proc *p)
1756 {
1757 struct lwp *l, *lr = NULL;
1758 struct sadata_vp *vp;
1759 int cantake = 0;
1760
1761 SCHED_ASSERT_LOCKED();
1762
1763 /*
1764 * Our caller wants to be informed if there are only sleeping
1765 * and interruptable LWPs left after we have run so that it
1766 * can invoke setrunnable() if required - return one of the
1767 * interruptable LWPs if this is the case.
1768 */
1769
1770 if (!(p->p_flag & P_WAITED))
1771 p->p_pptr->p_nstopchild--;
1772 p->p_stat = SACTIVE;
1773 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1774 if (l->l_stat == LSRUN) {
1775 lr = NULL;
1776 cantake = 1;
1777 }
1778 if (l->l_stat != LSSTOP)
1779 continue;
1780
1781 if (l->l_wchan != NULL) {
1782 l->l_stat = LSSLEEP;
1783 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1784 lr = l;
1785 cantake = 1;
1786 }
1787 } else {
1788 setrunnable(l);
1789 lr = NULL;
1790 cantake = 1;
1791 }
1792 }
1793 if (p->p_flag & P_SA) {
1794 /* Only consider returning the LWP on the VP. */
1795 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1796 lr = vp->savp_lwp;
1797 if (lr->l_stat == LSSLEEP) {
1798 if (lr->l_flag & L_SA_YIELD) {
1799 setrunnable(lr);
1800 break;
1801 } else if (lr->l_flag & L_SINTR)
1802 return lr;
1803 }
1804 }
1805 return NULL;
1806 }
1807 return lr;
1808 }
1809
1810 /*
1811 * Take the action for the specified signal
1812 * from the current set of pending signals.
1813 */
1814 void
1815 postsig(int signum)
1816 {
1817 struct lwp *l;
1818 struct proc *p;
1819 struct sigacts *ps;
1820 sig_t action;
1821 sigset_t *returnmask;
1822
1823 l = curlwp;
1824 p = l->l_proc;
1825 ps = p->p_sigacts;
1826 #ifdef DIAGNOSTIC
1827 if (signum == 0)
1828 panic("postsig");
1829 #endif
1830
1831 KERNEL_PROC_LOCK(l);
1832
1833 #ifdef MULTIPROCESSOR
1834 /*
1835 * On MP, issignal() can return the same signal to multiple
1836 * LWPs. The LWPs will block above waiting for the kernel
1837 * lock and the first LWP which gets through will then remove
1838 * the signal from ps_siglist. All other LWPs exit here.
1839 */
1840 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1841 KERNEL_PROC_UNLOCK(l);
1842 return;
1843 }
1844 #endif
1845 sigdelset(&p->p_sigctx.ps_siglist, signum);
1846 action = SIGACTION_PS(ps, signum).sa_handler;
1847 if (action == SIG_DFL) {
1848 #ifdef KTRACE
1849 if (KTRPOINT(p, KTR_PSIG))
1850 ktrpsig(p, signum, action,
1851 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1852 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1853 NULL);
1854 #endif
1855 /*
1856 * Default action, where the default is to kill
1857 * the process. (Other cases were ignored above.)
1858 */
1859 sigexit(l, signum);
1860 /* NOTREACHED */
1861 } else {
1862 ksiginfo_t *ksi;
1863 /*
1864 * If we get here, the signal must be caught.
1865 */
1866 #ifdef DIAGNOSTIC
1867 if (action == SIG_IGN ||
1868 sigismember(&p->p_sigctx.ps_sigmask, signum))
1869 panic("postsig action");
1870 #endif
1871 /*
1872 * Set the new mask value and also defer further
1873 * occurrences of this signal.
1874 *
1875 * Special case: user has done a sigpause. Here the
1876 * current mask is not of interest, but rather the
1877 * mask from before the sigpause is what we want
1878 * restored after the signal processing is completed.
1879 */
1880 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1881 returnmask = &p->p_sigctx.ps_oldmask;
1882 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1883 } else
1884 returnmask = &p->p_sigctx.ps_sigmask;
1885 p->p_stats->p_ru.ru_nsignals++;
1886 ksi = ksiginfo_get(p, signum);
1887 #ifdef KTRACE
1888 if (KTRPOINT(p, KTR_PSIG))
1889 ktrpsig(p, signum, action,
1890 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1891 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1892 ksi);
1893 #endif
1894 if (ksi == NULL) {
1895 ksiginfo_t ksi1;
1896 /*
1897 * we did not save any siginfo for this, either
1898 * because the signal was not caught, or because the
1899 * user did not request SA_SIGINFO
1900 */
1901 KSI_INIT_EMPTY(&ksi1);
1902 ksi1.ksi_signo = signum;
1903 kpsendsig(l, &ksi1, returnmask);
1904 } else {
1905 kpsendsig(l, ksi, returnmask);
1906 pool_put(&ksiginfo_pool, ksi);
1907 }
1908 p->p_sigctx.ps_lwp = 0;
1909 p->p_sigctx.ps_code = 0;
1910 p->p_sigctx.ps_signo = 0;
1911 (void) splsched(); /* XXXSMP */
1912 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1913 &p->p_sigctx.ps_sigmask);
1914 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1915 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1916 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1917 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1918 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1919 }
1920 (void) spl0(); /* XXXSMP */
1921 }
1922
1923 KERNEL_PROC_UNLOCK(l);
1924 }
1925
1926 /*
1927 * Kill the current process for stated reason.
1928 */
1929 void
1930 killproc(struct proc *p, const char *why)
1931 {
1932 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1933 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1934 psignal(p, SIGKILL);
1935 }
1936
1937 /*
1938 * Force the current process to exit with the specified signal, dumping core
1939 * if appropriate. We bypass the normal tests for masked and caught signals,
1940 * allowing unrecoverable failures to terminate the process without changing
1941 * signal state. Mark the accounting record with the signal termination.
1942 * If dumping core, save the signal number for the debugger. Calls exit and
1943 * does not return.
1944 */
1945
1946 #if defined(DEBUG)
1947 int kern_logsigexit = 1; /* not static to make public for sysctl */
1948 #else
1949 int kern_logsigexit = 0; /* not static to make public for sysctl */
1950 #endif
1951
1952 static const char logcoredump[] =
1953 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1954 static const char lognocoredump[] =
1955 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1956
1957 /* Wrapper function for use in p_userret */
1958 static void
1959 lwp_coredump_hook(struct lwp *l, void *arg)
1960 {
1961 int s;
1962
1963 /*
1964 * Suspend ourselves, so that the kernel stack and therefore
1965 * the userland registers saved in the trapframe are around
1966 * for coredump() to write them out.
1967 */
1968 KERNEL_PROC_LOCK(l);
1969 l->l_flag &= ~L_DETACHED;
1970 SCHED_LOCK(s);
1971 l->l_stat = LSSUSPENDED;
1972 l->l_proc->p_nrlwps--;
1973 /* XXX NJWLWP check if this makes sense here: */
1974 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1975 mi_switch(l, NULL);
1976 SCHED_ASSERT_UNLOCKED();
1977 splx(s);
1978
1979 lwp_exit(l);
1980 }
1981
1982 void
1983 sigexit(struct lwp *l, int signum)
1984 {
1985 struct proc *p;
1986 #if 0
1987 struct lwp *l2;
1988 #endif
1989 int error, exitsig;
1990
1991 p = l->l_proc;
1992
1993 /*
1994 * Don't permit coredump() or exit1() multiple times
1995 * in the same process.
1996 */
1997 if (p->p_flag & P_WEXIT) {
1998 KERNEL_PROC_UNLOCK(l);
1999 (*p->p_userret)(l, p->p_userret_arg);
2000 }
2001 p->p_flag |= P_WEXIT;
2002 /* We don't want to switch away from exiting. */
2003 /* XXX multiprocessor: stop LWPs on other processors. */
2004 #if 0
2005 if (p->p_flag & P_SA) {
2006 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2007 l2->l_flag &= ~L_SA;
2008 p->p_flag &= ~P_SA;
2009 }
2010 #endif
2011
2012 /* Make other LWPs stick around long enough to be dumped */
2013 p->p_userret = lwp_coredump_hook;
2014 p->p_userret_arg = NULL;
2015
2016 exitsig = signum;
2017 p->p_acflag |= AXSIG;
2018 if (sigprop[signum] & SA_CORE) {
2019 p->p_sigctx.ps_signo = signum;
2020 if ((error = coredump(l)) == 0)
2021 exitsig |= WCOREFLAG;
2022
2023 if (kern_logsigexit) {
2024 /* XXX What if we ever have really large UIDs? */
2025 int uid = p->p_cred && p->p_ucred ?
2026 (int) p->p_ucred->cr_uid : -1;
2027
2028 if (error)
2029 log(LOG_INFO, lognocoredump, p->p_pid,
2030 p->p_comm, uid, signum, error);
2031 else
2032 log(LOG_INFO, logcoredump, p->p_pid,
2033 p->p_comm, uid, signum);
2034 }
2035
2036 }
2037
2038 exit1(l, W_EXITCODE(0, exitsig));
2039 /* NOTREACHED */
2040 }
2041
2042 /*
2043 * Dump core, into a file named "progname.core" or "core" (depending on the
2044 * value of shortcorename), unless the process was setuid/setgid.
2045 */
2046 int
2047 coredump(struct lwp *l)
2048 {
2049 struct vnode *vp;
2050 struct proc *p;
2051 struct vmspace *vm;
2052 struct ucred *cred;
2053 struct nameidata nd;
2054 struct vattr vattr;
2055 struct mount *mp;
2056 int error, error1;
2057 char name[MAXPATHLEN];
2058
2059 p = l->l_proc;
2060 vm = p->p_vmspace;
2061 cred = p->p_cred->pc_ucred;
2062
2063 /*
2064 * Make sure the process has not set-id, to prevent data leaks.
2065 */
2066 if (p->p_flag & P_SUGID)
2067 return (EPERM);
2068
2069 /*
2070 * Refuse to core if the data + stack + user size is larger than
2071 * the core dump limit. XXX THIS IS WRONG, because of mapped
2072 * data.
2073 */
2074 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2075 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2076 return (EFBIG); /* better error code? */
2077
2078 restart:
2079 /*
2080 * The core dump will go in the current working directory. Make
2081 * sure that the directory is still there and that the mount flags
2082 * allow us to write core dumps there.
2083 */
2084 vp = p->p_cwdi->cwdi_cdir;
2085 if (vp->v_mount == NULL ||
2086 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2087 return (EPERM);
2088
2089 error = build_corename(p, name);
2090 if (error)
2091 return error;
2092
2093 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2094 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2095 if (error)
2096 return (error);
2097 vp = nd.ni_vp;
2098
2099 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2100 VOP_UNLOCK(vp, 0);
2101 if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2102 return (error);
2103 if ((error = vn_start_write(NULL, &mp,
2104 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2105 return (error);
2106 goto restart;
2107 }
2108
2109 /* Don't dump to non-regular files or files with links. */
2110 if (vp->v_type != VREG ||
2111 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2112 error = EINVAL;
2113 goto out;
2114 }
2115 VATTR_NULL(&vattr);
2116 vattr.va_size = 0;
2117 VOP_LEASE(vp, p, cred, LEASE_WRITE);
2118 VOP_SETATTR(vp, &vattr, cred, p);
2119 p->p_acflag |= ACORE;
2120
2121 /* Now dump the actual core file. */
2122 error = (*p->p_execsw->es_coredump)(l, vp, cred);
2123 out:
2124 VOP_UNLOCK(vp, 0);
2125 vn_finished_write(mp, 0);
2126 error1 = vn_close(vp, FWRITE, cred, p);
2127 if (error == 0)
2128 error = error1;
2129 return (error);
2130 }
2131
2132 /*
2133 * Nonexistent system call-- signal process (may want to handle it).
2134 * Flag error in case process won't see signal immediately (blocked or ignored).
2135 */
2136 /* ARGSUSED */
2137 int
2138 sys_nosys(struct lwp *l, void *v, register_t *retval)
2139 {
2140 struct proc *p;
2141
2142 p = l->l_proc;
2143 psignal(p, SIGSYS);
2144 return (ENOSYS);
2145 }
2146
2147 static int
2148 build_corename(struct proc *p, char dst[MAXPATHLEN])
2149 {
2150 const char *s;
2151 char *d, *end;
2152 int i;
2153
2154 for (s = p->p_limit->pl_corename, d = dst, end = d + MAXPATHLEN;
2155 *s != '\0'; s++) {
2156 if (*s == '%') {
2157 switch (*(s + 1)) {
2158 case 'n':
2159 i = snprintf(d, end - d, "%s", p->p_comm);
2160 break;
2161 case 'p':
2162 i = snprintf(d, end - d, "%d", p->p_pid);
2163 break;
2164 case 'u':
2165 i = snprintf(d, end - d, "%.*s",
2166 (int)sizeof p->p_pgrp->pg_session->s_login,
2167 p->p_pgrp->pg_session->s_login);
2168 break;
2169 case 't':
2170 i = snprintf(d, end - d, "%ld",
2171 p->p_stats->p_start.tv_sec);
2172 break;
2173 default:
2174 goto copy;
2175 }
2176 d += i;
2177 s++;
2178 } else {
2179 copy: *d = *s;
2180 d++;
2181 }
2182 if (d >= end)
2183 return (ENAMETOOLONG);
2184 }
2185 *d = '\0';
2186 return 0;
2187 }
2188
2189 void
2190 getucontext(struct lwp *l, ucontext_t *ucp)
2191 {
2192 struct proc *p;
2193
2194 p = l->l_proc;
2195
2196 ucp->uc_flags = 0;
2197 ucp->uc_link = l->l_ctxlink;
2198
2199 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2200 ucp->uc_flags |= _UC_SIGMASK;
2201
2202 /*
2203 * The (unsupplied) definition of the `current execution stack'
2204 * in the System V Interface Definition appears to allow returning
2205 * the main context stack.
2206 */
2207 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2208 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2209 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2210 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2211 } else {
2212 /* Simply copy alternate signal execution stack. */
2213 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2214 }
2215 ucp->uc_flags |= _UC_STACK;
2216
2217 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2218 }
2219
2220 /* ARGSUSED */
2221 int
2222 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2223 {
2224 struct sys_getcontext_args /* {
2225 syscallarg(struct __ucontext *) ucp;
2226 } */ *uap = v;
2227 ucontext_t uc;
2228
2229 getucontext(l, &uc);
2230
2231 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2232 }
2233
2234 int
2235 setucontext(struct lwp *l, const ucontext_t *ucp)
2236 {
2237 struct proc *p;
2238 int error;
2239
2240 p = l->l_proc;
2241 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2242 return (error);
2243 l->l_ctxlink = ucp->uc_link;
2244
2245 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2246 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2247
2248 /*
2249 * If there was stack information, update whether or not we are
2250 * still running on an alternate signal stack.
2251 */
2252 if ((ucp->uc_flags & _UC_STACK) != 0) {
2253 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2254 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2255 else
2256 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2257 }
2258
2259 return 0;
2260 }
2261
2262 /* ARGSUSED */
2263 int
2264 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2265 {
2266 struct sys_setcontext_args /* {
2267 syscallarg(const ucontext_t *) ucp;
2268 } */ *uap = v;
2269 ucontext_t uc;
2270 int error;
2271
2272 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2273 exit1(l, W_EXITCODE(0, 0));
2274 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2275 (error = setucontext(l, &uc)) != 0)
2276 return (error);
2277
2278 return (EJUSTRETURN);
2279 }
2280
2281 /*
2282 * sigtimedwait(2) system call, used also for implementation
2283 * of sigwaitinfo() and sigwait().
2284 *
2285 * This only handles single LWP in signal wait. libpthread provides
2286 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2287 */
2288 int
2289 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2290 {
2291 struct sys___sigtimedwait_args /* {
2292 syscallarg(const sigset_t *) set;
2293 syscallarg(siginfo_t *) info;
2294 syscallarg(struct timespec *) timeout;
2295 } */ *uap = v;
2296 sigset_t *waitset, twaitset;
2297 struct proc *p = l->l_proc;
2298 int error, signum, s;
2299 int timo = 0;
2300 struct timeval tvstart;
2301 struct timespec ts;
2302 ksiginfo_t *ksi;
2303
2304 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2305
2306 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2307 FREE(waitset, M_TEMP);
2308 return (error);
2309 }
2310
2311 /*
2312 * Silently ignore SA_CANTMASK signals. psignal1() would
2313 * ignore SA_CANTMASK signals in waitset, we do this
2314 * only for the below siglist check.
2315 */
2316 sigminusset(&sigcantmask, waitset);
2317
2318 /*
2319 * First scan siglist and check if there is signal from
2320 * our waitset already pending.
2321 */
2322 twaitset = *waitset;
2323 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2324 if ((signum = firstsig(&twaitset))) {
2325 /* found pending signal */
2326 sigdelset(&p->p_sigctx.ps_siglist, signum);
2327 ksi = ksiginfo_get(p, signum);
2328 if (!ksi) {
2329 /* No queued siginfo, manufacture one */
2330 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2331 KSI_INIT(ksi);
2332 ksi->ksi_info._signo = signum;
2333 ksi->ksi_info._code = SI_USER;
2334 }
2335
2336 goto sig;
2337 }
2338
2339 /*
2340 * Calculate timeout, if it was specified.
2341 */
2342 if (SCARG(uap, timeout)) {
2343 uint64_t ms;
2344
2345 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2346 return (error);
2347
2348 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2349 timo = mstohz(ms);
2350 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2351 timo = 1;
2352 if (timo <= 0)
2353 return (EAGAIN);
2354
2355 /*
2356 * Remember current mono_time, it would be used in
2357 * ECANCELED/ERESTART case.
2358 */
2359 s = splclock();
2360 tvstart = mono_time;
2361 splx(s);
2362 }
2363
2364 /*
2365 * Setup ps_sigwait list. Pass pointer to malloced memory
2366 * here; it's not possible to pass pointer to a structure
2367 * on current process's stack, the current process might
2368 * be swapped out at the time the signal would get delivered.
2369 */
2370 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2371 p->p_sigctx.ps_sigwaited = ksi;
2372 p->p_sigctx.ps_sigwait = waitset;
2373
2374 /*
2375 * Wait for signal to arrive. We can either be woken up or
2376 * time out.
2377 */
2378 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2379
2380 /*
2381 * Need to find out if we woke as a result of lwp_wakeup()
2382 * or a signal outside our wait set.
2383 */
2384 if (error == EINTR && p->p_sigctx.ps_sigwaited
2385 && !firstsig(&p->p_sigctx.ps_siglist)) {
2386 /* wakeup via _lwp_wakeup() */
2387 error = ECANCELED;
2388 } else if (!error && p->p_sigctx.ps_sigwaited) {
2389 /* spurious wakeup - arrange for syscall restart */
2390 error = ERESTART;
2391 goto fail;
2392 }
2393
2394 /*
2395 * On error, clear sigwait indication. psignal1() clears it
2396 * in !error case.
2397 */
2398 if (error) {
2399 p->p_sigctx.ps_sigwaited = NULL;
2400
2401 /*
2402 * If the sleep was interrupted (either by signal or wakeup),
2403 * update the timeout and copyout new value back.
2404 * It would be used when the syscall would be restarted
2405 * or called again.
2406 */
2407 if (timo && (error == ERESTART || error == ECANCELED)) {
2408 struct timeval tvnow, tvtimo;
2409 int err;
2410
2411 s = splclock();
2412 tvnow = mono_time;
2413 splx(s);
2414
2415 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2416
2417 /* compute how much time has passed since start */
2418 timersub(&tvnow, &tvstart, &tvnow);
2419 /* substract passed time from timeout */
2420 timersub(&tvtimo, &tvnow, &tvtimo);
2421
2422 if (tvtimo.tv_sec < 0) {
2423 error = EAGAIN;
2424 goto fail;
2425 }
2426
2427 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2428
2429 /* copy updated timeout to userland */
2430 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
2431 error = err;
2432 goto fail;
2433 }
2434 }
2435
2436 goto fail;
2437 }
2438
2439 /*
2440 * If a signal from the wait set arrived, copy it to userland.
2441 * Copy only the used part of siginfo, the padding part is
2442 * left unchanged (userland is not supposed to touch it anyway).
2443 */
2444 sig:
2445 error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2446
2447 fail:
2448 FREE(waitset, M_TEMP);
2449 pool_put(&ksiginfo_pool, ksi);
2450 p->p_sigctx.ps_sigwait = NULL;
2451
2452 return (error);
2453 }
2454
2455 /*
2456 * Returns true if signal is ignored or masked for passed process.
2457 */
2458 int
2459 sigismasked(struct proc *p, int sig)
2460 {
2461
2462 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2463 sigismember(&p->p_sigctx.ps_sigmask, sig));
2464 }
2465
2466 static int
2467 filt_sigattach(struct knote *kn)
2468 {
2469 struct proc *p = curproc;
2470
2471 kn->kn_ptr.p_proc = p;
2472 kn->kn_flags |= EV_CLEAR; /* automatically set */
2473
2474 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2475
2476 return (0);
2477 }
2478
2479 static void
2480 filt_sigdetach(struct knote *kn)
2481 {
2482 struct proc *p = kn->kn_ptr.p_proc;
2483
2484 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2485 }
2486
2487 /*
2488 * signal knotes are shared with proc knotes, so we apply a mask to
2489 * the hint in order to differentiate them from process hints. This
2490 * could be avoided by using a signal-specific knote list, but probably
2491 * isn't worth the trouble.
2492 */
2493 static int
2494 filt_signal(struct knote *kn, long hint)
2495 {
2496
2497 if (hint & NOTE_SIGNAL) {
2498 hint &= ~NOTE_SIGNAL;
2499
2500 if (kn->kn_id == hint)
2501 kn->kn_data++;
2502 }
2503 return (kn->kn_data != 0);
2504 }
2505
2506 const struct filterops sig_filtops = {
2507 0, filt_sigattach, filt_sigdetach, filt_signal
2508 };
2509