kern_sig.c revision 1.204 1 /* $NetBSD: kern_sig.c,v 1.204 2005/04/01 11:59:37 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.204 2005/04/01 11:59:37 yamt Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm.h>
82 #include <uvm/uvm_extern.h>
83
84 static void child_psignal(struct proc *, int);
85 static int build_corename(struct proc *, char *, const char *, size_t);
86 static void ksiginfo_exithook(struct proc *, void *);
87 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94
95 /*
96 * struct sigacts memory pool allocator.
97 */
98
99 static void *
100 sigacts_poolpage_alloc(struct pool *pp, int flags)
101 {
102
103 return (void *)uvm_km_alloc(kernel_map,
104 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
105 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
106 | UVM_KMF_WIRED);
107 }
108
109 static void
110 sigacts_poolpage_free(struct pool *pp, void *v)
111 {
112 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
113 }
114
115 static struct pool_allocator sigactspool_allocator = {
116 sigacts_poolpage_alloc, sigacts_poolpage_free,
117 };
118
119 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
120 &pool_allocator_nointr);
121 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
122
123 /*
124 * Can process p, with pcred pc, send the signal signum to process q?
125 */
126 #define CANSIGNAL(p, pc, q, signum) \
127 ((pc)->pc_ucred->cr_uid == 0 || \
128 (pc)->p_ruid == (q)->p_cred->p_ruid || \
129 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
130 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
131 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
132 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
133
134 /*
135 * Remove and return the first ksiginfo element that matches our requested
136 * signal, or return NULL if one not found.
137 */
138 static ksiginfo_t *
139 ksiginfo_get(struct proc *p, int signo)
140 {
141 ksiginfo_t *ksi;
142 int s;
143
144 s = splsoftclock();
145 simple_lock(&p->p_sigctx.ps_silock);
146 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
147 if (ksi->ksi_signo == signo) {
148 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
149 goto out;
150 }
151 }
152 ksi = NULL;
153 out:
154 simple_unlock(&p->p_sigctx.ps_silock);
155 splx(s);
156 return ksi;
157 }
158
159 /*
160 * Append a new ksiginfo element to the list of pending ksiginfo's, if
161 * we need to (SA_SIGINFO was requested). We replace non RT signals if
162 * they already existed in the queue and we add new entries for RT signals,
163 * or for non RT signals with non-existing entries.
164 */
165 static void
166 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
167 {
168 ksiginfo_t *kp;
169 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
170 int s;
171
172 if ((sa->sa_flags & SA_SIGINFO) == 0)
173 return;
174 /*
175 * If there's no info, don't save it.
176 */
177 if (KSI_EMPTY_P(ksi))
178 return;
179
180 s = splsoftclock();
181 simple_lock(&p->p_sigctx.ps_silock);
182 #ifdef notyet /* XXX: QUEUING */
183 if (ksi->ksi_signo < SIGRTMIN)
184 #endif
185 {
186 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
187 if (kp->ksi_signo == ksi->ksi_signo) {
188 KSI_COPY(ksi, kp);
189 goto out;
190 }
191 }
192 }
193 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
194 if (kp == NULL) {
195 #ifdef DIAGNOSTIC
196 printf("Out of memory allocating siginfo for pid %d\n",
197 p->p_pid);
198 #endif
199 goto out;
200 }
201 *kp = *ksi;
202 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
203 out:
204 simple_unlock(&p->p_sigctx.ps_silock);
205 splx(s);
206 }
207
208 /*
209 * free all pending ksiginfo on exit
210 */
211 static void
212 ksiginfo_exithook(struct proc *p, void *v)
213 {
214 int s;
215
216 s = splsoftclock();
217 simple_lock(&p->p_sigctx.ps_silock);
218 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
219 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
220 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
221 pool_put(&ksiginfo_pool, ksi);
222 }
223 simple_unlock(&p->p_sigctx.ps_silock);
224 splx(s);
225 }
226
227 /*
228 * Initialize signal-related data structures.
229 */
230 void
231 signal_init(void)
232 {
233
234 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
235
236 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
237 sizeof(struct sigacts) > PAGE_SIZE ?
238 &sigactspool_allocator : &pool_allocator_nointr);
239
240 exithook_establish(ksiginfo_exithook, NULL);
241 exechook_establish(ksiginfo_exithook, NULL);
242 }
243
244 /*
245 * Create an initial sigctx structure, using the same signal state
246 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
247 * copy it from parent.
248 */
249 void
250 sigactsinit(struct proc *np, struct proc *pp, int share)
251 {
252 struct sigacts *ps;
253
254 if (share) {
255 np->p_sigacts = pp->p_sigacts;
256 pp->p_sigacts->sa_refcnt++;
257 } else {
258 ps = pool_get(&sigacts_pool, PR_WAITOK);
259 if (pp)
260 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
261 else
262 memset(ps, '\0', sizeof(struct sigacts));
263 ps->sa_refcnt = 1;
264 np->p_sigacts = ps;
265 }
266 }
267
268 /*
269 * Make this process not share its sigctx, maintaining all
270 * signal state.
271 */
272 void
273 sigactsunshare(struct proc *p)
274 {
275 struct sigacts *oldps;
276
277 if (p->p_sigacts->sa_refcnt == 1)
278 return;
279
280 oldps = p->p_sigacts;
281 sigactsinit(p, NULL, 0);
282
283 if (--oldps->sa_refcnt == 0)
284 pool_put(&sigacts_pool, oldps);
285 }
286
287 /*
288 * Release a sigctx structure.
289 */
290 void
291 sigactsfree(struct sigacts *ps)
292 {
293
294 if (--ps->sa_refcnt > 0)
295 return;
296
297 pool_put(&sigacts_pool, ps);
298 }
299
300 int
301 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
302 struct sigaction *osa, const void *tramp, int vers)
303 {
304 struct sigacts *ps;
305 int prop;
306
307 ps = p->p_sigacts;
308 if (signum <= 0 || signum >= NSIG)
309 return (EINVAL);
310
311 /*
312 * Trampoline ABI version 0 is reserved for the legacy
313 * kernel-provided on-stack trampoline. Conversely, if we are
314 * using a non-0 ABI version, we must have a trampoline. Only
315 * validate the vers if a new sigaction was supplied. Emulations
316 * use legacy kernel trampolines with version 0, alternatively
317 * check for that too.
318 */
319 if ((vers != 0 && tramp == NULL) ||
320 #ifdef SIGTRAMP_VALID
321 (nsa != NULL &&
322 ((vers == 0) ?
323 (p->p_emul->e_sigcode == NULL) :
324 !SIGTRAMP_VALID(vers))) ||
325 #endif
326 (vers == 0 && tramp != NULL))
327 return (EINVAL);
328
329 if (osa)
330 *osa = SIGACTION_PS(ps, signum);
331
332 if (nsa) {
333 if (nsa->sa_flags & ~SA_ALLBITS)
334 return (EINVAL);
335
336 prop = sigprop[signum];
337 if (prop & SA_CANTMASK)
338 return (EINVAL);
339
340 (void) splsched(); /* XXXSMP */
341 SIGACTION_PS(ps, signum) = *nsa;
342 ps->sa_sigdesc[signum].sd_tramp = tramp;
343 ps->sa_sigdesc[signum].sd_vers = vers;
344 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
345 if ((prop & SA_NORESET) != 0)
346 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
347 if (signum == SIGCHLD) {
348 if (nsa->sa_flags & SA_NOCLDSTOP)
349 p->p_flag |= P_NOCLDSTOP;
350 else
351 p->p_flag &= ~P_NOCLDSTOP;
352 if (nsa->sa_flags & SA_NOCLDWAIT) {
353 /*
354 * Paranoia: since SA_NOCLDWAIT is implemented
355 * by reparenting the dying child to PID 1 (and
356 * trust it to reap the zombie), PID 1 itself
357 * is forbidden to set SA_NOCLDWAIT.
358 */
359 if (p->p_pid == 1)
360 p->p_flag &= ~P_NOCLDWAIT;
361 else
362 p->p_flag |= P_NOCLDWAIT;
363 } else
364 p->p_flag &= ~P_NOCLDWAIT;
365
366 if (nsa->sa_handler == SIG_IGN) {
367 /*
368 * Paranoia: same as above.
369 */
370 if (p->p_pid == 1)
371 p->p_flag &= ~P_CLDSIGIGN;
372 else
373 p->p_flag |= P_CLDSIGIGN;
374 } else
375 p->p_flag &= ~P_CLDSIGIGN;
376
377 }
378 if ((nsa->sa_flags & SA_NODEFER) == 0)
379 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
380 else
381 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
382 /*
383 * Set bit in p_sigctx.ps_sigignore for signals that are set to
384 * SIG_IGN, and for signals set to SIG_DFL where the default is
385 * to ignore. However, don't put SIGCONT in
386 * p_sigctx.ps_sigignore, as we have to restart the process.
387 */
388 if (nsa->sa_handler == SIG_IGN ||
389 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
390 /* never to be seen again */
391 sigdelset(&p->p_sigctx.ps_siglist, signum);
392 if (signum != SIGCONT) {
393 /* easier in psignal */
394 sigaddset(&p->p_sigctx.ps_sigignore, signum);
395 }
396 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
397 } else {
398 sigdelset(&p->p_sigctx.ps_sigignore, signum);
399 if (nsa->sa_handler == SIG_DFL)
400 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
401 else
402 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
403 }
404 (void) spl0();
405 }
406
407 return (0);
408 }
409
410 #ifdef COMPAT_16
411 /* ARGSUSED */
412 int
413 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
414 {
415 struct compat_16_sys___sigaction14_args /* {
416 syscallarg(int) signum;
417 syscallarg(const struct sigaction *) nsa;
418 syscallarg(struct sigaction *) osa;
419 } */ *uap = v;
420 struct proc *p;
421 struct sigaction nsa, osa;
422 int error;
423
424 if (SCARG(uap, nsa)) {
425 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
426 if (error)
427 return (error);
428 }
429 p = l->l_proc;
430 error = sigaction1(p, SCARG(uap, signum),
431 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
432 NULL, 0);
433 if (error)
434 return (error);
435 if (SCARG(uap, osa)) {
436 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
437 if (error)
438 return (error);
439 }
440 return (0);
441 }
442 #endif
443
444 /* ARGSUSED */
445 int
446 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
447 {
448 struct sys___sigaction_sigtramp_args /* {
449 syscallarg(int) signum;
450 syscallarg(const struct sigaction *) nsa;
451 syscallarg(struct sigaction *) osa;
452 syscallarg(void *) tramp;
453 syscallarg(int) vers;
454 } */ *uap = v;
455 struct proc *p = l->l_proc;
456 struct sigaction nsa, osa;
457 int error;
458
459 if (SCARG(uap, nsa)) {
460 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
461 if (error)
462 return (error);
463 }
464 error = sigaction1(p, SCARG(uap, signum),
465 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
466 SCARG(uap, tramp), SCARG(uap, vers));
467 if (error)
468 return (error);
469 if (SCARG(uap, osa)) {
470 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
471 if (error)
472 return (error);
473 }
474 return (0);
475 }
476
477 /*
478 * Initialize signal state for process 0;
479 * set to ignore signals that are ignored by default and disable the signal
480 * stack.
481 */
482 void
483 siginit(struct proc *p)
484 {
485 struct sigacts *ps;
486 int signum, prop;
487
488 ps = p->p_sigacts;
489 sigemptyset(&contsigmask);
490 sigemptyset(&stopsigmask);
491 sigemptyset(&sigcantmask);
492 for (signum = 1; signum < NSIG; signum++) {
493 prop = sigprop[signum];
494 if (prop & SA_CONT)
495 sigaddset(&contsigmask, signum);
496 if (prop & SA_STOP)
497 sigaddset(&stopsigmask, signum);
498 if (prop & SA_CANTMASK)
499 sigaddset(&sigcantmask, signum);
500 if (prop & SA_IGNORE && signum != SIGCONT)
501 sigaddset(&p->p_sigctx.ps_sigignore, signum);
502 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
503 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
504 }
505 sigemptyset(&p->p_sigctx.ps_sigcatch);
506 p->p_sigctx.ps_sigwaited = NULL;
507 p->p_flag &= ~P_NOCLDSTOP;
508
509 /*
510 * Reset stack state to the user stack.
511 */
512 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
513 p->p_sigctx.ps_sigstk.ss_size = 0;
514 p->p_sigctx.ps_sigstk.ss_sp = 0;
515
516 /* One reference. */
517 ps->sa_refcnt = 1;
518 }
519
520 /*
521 * Reset signals for an exec of the specified process.
522 */
523 void
524 execsigs(struct proc *p)
525 {
526 struct sigacts *ps;
527 int signum, prop;
528
529 sigactsunshare(p);
530
531 ps = p->p_sigacts;
532
533 /*
534 * Reset caught signals. Held signals remain held
535 * through p_sigctx.ps_sigmask (unless they were caught,
536 * and are now ignored by default).
537 */
538 for (signum = 1; signum < NSIG; signum++) {
539 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
540 prop = sigprop[signum];
541 if (prop & SA_IGNORE) {
542 if ((prop & SA_CONT) == 0)
543 sigaddset(&p->p_sigctx.ps_sigignore,
544 signum);
545 sigdelset(&p->p_sigctx.ps_siglist, signum);
546 }
547 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
548 }
549 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
550 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
551 }
552 sigemptyset(&p->p_sigctx.ps_sigcatch);
553 p->p_sigctx.ps_sigwaited = NULL;
554 p->p_flag &= ~P_NOCLDSTOP;
555
556 /*
557 * Reset stack state to the user stack.
558 */
559 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
560 p->p_sigctx.ps_sigstk.ss_size = 0;
561 p->p_sigctx.ps_sigstk.ss_sp = 0;
562 }
563
564 int
565 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
566 {
567
568 if (oss)
569 *oss = p->p_sigctx.ps_sigmask;
570
571 if (nss) {
572 (void)splsched(); /* XXXSMP */
573 switch (how) {
574 case SIG_BLOCK:
575 sigplusset(nss, &p->p_sigctx.ps_sigmask);
576 break;
577 case SIG_UNBLOCK:
578 sigminusset(nss, &p->p_sigctx.ps_sigmask);
579 CHECKSIGS(p);
580 break;
581 case SIG_SETMASK:
582 p->p_sigctx.ps_sigmask = *nss;
583 CHECKSIGS(p);
584 break;
585 default:
586 (void)spl0(); /* XXXSMP */
587 return (EINVAL);
588 }
589 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
590 (void)spl0(); /* XXXSMP */
591 }
592
593 return (0);
594 }
595
596 /*
597 * Manipulate signal mask.
598 * Note that we receive new mask, not pointer,
599 * and return old mask as return value;
600 * the library stub does the rest.
601 */
602 int
603 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
604 {
605 struct sys___sigprocmask14_args /* {
606 syscallarg(int) how;
607 syscallarg(const sigset_t *) set;
608 syscallarg(sigset_t *) oset;
609 } */ *uap = v;
610 struct proc *p;
611 sigset_t nss, oss;
612 int error;
613
614 if (SCARG(uap, set)) {
615 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
616 if (error)
617 return (error);
618 }
619 p = l->l_proc;
620 error = sigprocmask1(p, SCARG(uap, how),
621 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
622 if (error)
623 return (error);
624 if (SCARG(uap, oset)) {
625 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
626 if (error)
627 return (error);
628 }
629 return (0);
630 }
631
632 void
633 sigpending1(struct proc *p, sigset_t *ss)
634 {
635
636 *ss = p->p_sigctx.ps_siglist;
637 sigminusset(&p->p_sigctx.ps_sigmask, ss);
638 }
639
640 /* ARGSUSED */
641 int
642 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
643 {
644 struct sys___sigpending14_args /* {
645 syscallarg(sigset_t *) set;
646 } */ *uap = v;
647 struct proc *p;
648 sigset_t ss;
649
650 p = l->l_proc;
651 sigpending1(p, &ss);
652 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
653 }
654
655 int
656 sigsuspend1(struct proc *p, const sigset_t *ss)
657 {
658 struct sigacts *ps;
659
660 ps = p->p_sigacts;
661 if (ss) {
662 /*
663 * When returning from sigpause, we want
664 * the old mask to be restored after the
665 * signal handler has finished. Thus, we
666 * save it here and mark the sigctx structure
667 * to indicate this.
668 */
669 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
670 p->p_sigctx.ps_flags |= SAS_OLDMASK;
671 (void) splsched(); /* XXXSMP */
672 p->p_sigctx.ps_sigmask = *ss;
673 CHECKSIGS(p);
674 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
675 (void) spl0(); /* XXXSMP */
676 }
677
678 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
679 /* void */;
680
681 /* always return EINTR rather than ERESTART... */
682 return (EINTR);
683 }
684
685 /*
686 * Suspend process until signal, providing mask to be set
687 * in the meantime. Note nonstandard calling convention:
688 * libc stub passes mask, not pointer, to save a copyin.
689 */
690 /* ARGSUSED */
691 int
692 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
693 {
694 struct sys___sigsuspend14_args /* {
695 syscallarg(const sigset_t *) set;
696 } */ *uap = v;
697 struct proc *p;
698 sigset_t ss;
699 int error;
700
701 if (SCARG(uap, set)) {
702 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
703 if (error)
704 return (error);
705 }
706
707 p = l->l_proc;
708 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
709 }
710
711 int
712 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
713 struct sigaltstack *oss)
714 {
715
716 if (oss)
717 *oss = p->p_sigctx.ps_sigstk;
718
719 if (nss) {
720 if (nss->ss_flags & ~SS_ALLBITS)
721 return (EINVAL);
722
723 if (nss->ss_flags & SS_DISABLE) {
724 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
725 return (EINVAL);
726 } else {
727 if (nss->ss_size < MINSIGSTKSZ)
728 return (ENOMEM);
729 }
730 p->p_sigctx.ps_sigstk = *nss;
731 }
732
733 return (0);
734 }
735
736 /* ARGSUSED */
737 int
738 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
739 {
740 struct sys___sigaltstack14_args /* {
741 syscallarg(const struct sigaltstack *) nss;
742 syscallarg(struct sigaltstack *) oss;
743 } */ *uap = v;
744 struct proc *p;
745 struct sigaltstack nss, oss;
746 int error;
747
748 if (SCARG(uap, nss)) {
749 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
750 if (error)
751 return (error);
752 }
753 p = l->l_proc;
754 error = sigaltstack1(p,
755 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
756 if (error)
757 return (error);
758 if (SCARG(uap, oss)) {
759 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
760 if (error)
761 return (error);
762 }
763 return (0);
764 }
765
766 /* ARGSUSED */
767 int
768 sys_kill(struct lwp *l, void *v, register_t *retval)
769 {
770 struct sys_kill_args /* {
771 syscallarg(int) pid;
772 syscallarg(int) signum;
773 } */ *uap = v;
774 struct proc *cp, *p;
775 struct pcred *pc;
776 ksiginfo_t ksi;
777
778 cp = l->l_proc;
779 pc = cp->p_cred;
780 if ((u_int)SCARG(uap, signum) >= NSIG)
781 return (EINVAL);
782 KSI_INIT(&ksi);
783 ksi.ksi_signo = SCARG(uap, signum);
784 ksi.ksi_code = SI_USER;
785 ksi.ksi_pid = cp->p_pid;
786 ksi.ksi_uid = cp->p_ucred->cr_uid;
787 if (SCARG(uap, pid) > 0) {
788 /* kill single process */
789 if ((p = pfind(SCARG(uap, pid))) == NULL)
790 return (ESRCH);
791 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
792 return (EPERM);
793 if (SCARG(uap, signum))
794 kpsignal2(p, &ksi, 1);
795 return (0);
796 }
797 switch (SCARG(uap, pid)) {
798 case -1: /* broadcast signal */
799 return (killpg1(cp, &ksi, 0, 1));
800 case 0: /* signal own process group */
801 return (killpg1(cp, &ksi, 0, 0));
802 default: /* negative explicit process group */
803 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
804 }
805 /* NOTREACHED */
806 }
807
808 /*
809 * Common code for kill process group/broadcast kill.
810 * cp is calling process.
811 */
812 int
813 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
814 {
815 struct proc *p;
816 struct pcred *pc;
817 struct pgrp *pgrp;
818 int nfound;
819 int signum = ksi->ksi_signo;
820
821 pc = cp->p_cred;
822 nfound = 0;
823 if (all) {
824 /*
825 * broadcast
826 */
827 proclist_lock_read();
828 PROCLIST_FOREACH(p, &allproc) {
829 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
830 p == cp || !CANSIGNAL(cp, pc, p, signum))
831 continue;
832 nfound++;
833 if (signum)
834 kpsignal2(p, ksi, 1);
835 }
836 proclist_unlock_read();
837 } else {
838 if (pgid == 0)
839 /*
840 * zero pgid means send to my process group.
841 */
842 pgrp = cp->p_pgrp;
843 else {
844 pgrp = pgfind(pgid);
845 if (pgrp == NULL)
846 return (ESRCH);
847 }
848 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
849 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
850 !CANSIGNAL(cp, pc, p, signum))
851 continue;
852 nfound++;
853 if (signum && P_ZOMBIE(p) == 0)
854 kpsignal2(p, ksi, 1);
855 }
856 }
857 return (nfound ? 0 : ESRCH);
858 }
859
860 /*
861 * Send a signal to a process group.
862 */
863 void
864 gsignal(int pgid, int signum)
865 {
866 ksiginfo_t ksi;
867 KSI_INIT_EMPTY(&ksi);
868 ksi.ksi_signo = signum;
869 kgsignal(pgid, &ksi, NULL);
870 }
871
872 void
873 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
874 {
875 struct pgrp *pgrp;
876
877 if (pgid && (pgrp = pgfind(pgid)))
878 kpgsignal(pgrp, ksi, data, 0);
879 }
880
881 /*
882 * Send a signal to a process group. If checktty is 1,
883 * limit to members which have a controlling terminal.
884 */
885 void
886 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
887 {
888 ksiginfo_t ksi;
889 KSI_INIT_EMPTY(&ksi);
890 ksi.ksi_signo = sig;
891 kpgsignal(pgrp, &ksi, NULL, checkctty);
892 }
893
894 void
895 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
896 {
897 struct proc *p;
898
899 if (pgrp)
900 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
901 if (checkctty == 0 || p->p_flag & P_CONTROLT)
902 kpsignal(p, ksi, data);
903 }
904
905 /*
906 * Send a signal caused by a trap to the current process.
907 * If it will be caught immediately, deliver it with correct code.
908 * Otherwise, post it normally.
909 */
910 void
911 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
912 {
913 struct proc *p;
914 struct sigacts *ps;
915 int signum = ksi->ksi_signo;
916
917 KASSERT(KSI_TRAP_P(ksi));
918
919 p = l->l_proc;
920 ps = p->p_sigacts;
921 if ((p->p_flag & P_TRACED) == 0 &&
922 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
923 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
924 p->p_stats->p_ru.ru_nsignals++;
925 #ifdef KTRACE
926 if (KTRPOINT(p, KTR_PSIG))
927 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
928 &p->p_sigctx.ps_sigmask, ksi);
929 #endif
930 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
931 (void) splsched(); /* XXXSMP */
932 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
933 &p->p_sigctx.ps_sigmask);
934 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
935 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
936 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
937 sigaddset(&p->p_sigctx.ps_sigignore, signum);
938 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
939 }
940 (void) spl0(); /* XXXSMP */
941 } else {
942 p->p_sigctx.ps_lwp = l->l_lid;
943 /* XXX for core dump/debugger */
944 p->p_sigctx.ps_signo = ksi->ksi_signo;
945 p->p_sigctx.ps_code = ksi->ksi_trap;
946 kpsignal2(p, ksi, 1);
947 }
948 }
949
950 /*
951 * Fill in signal information and signal the parent for a child status change.
952 */
953 static void
954 child_psignal(struct proc *p, int dolock)
955 {
956 ksiginfo_t ksi;
957
958 KSI_INIT(&ksi);
959 ksi.ksi_signo = SIGCHLD;
960 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
961 ksi.ksi_pid = p->p_pid;
962 ksi.ksi_uid = p->p_ucred->cr_uid;
963 ksi.ksi_status = p->p_xstat;
964 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
965 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
966 kpsignal2(p->p_pptr, &ksi, dolock);
967 }
968
969 /*
970 * Send the signal to the process. If the signal has an action, the action
971 * is usually performed by the target process rather than the caller; we add
972 * the signal to the set of pending signals for the process.
973 *
974 * Exceptions:
975 * o When a stop signal is sent to a sleeping process that takes the
976 * default action, the process is stopped without awakening it.
977 * o SIGCONT restarts stopped processes (or puts them back to sleep)
978 * regardless of the signal action (eg, blocked or ignored).
979 *
980 * Other ignored signals are discarded immediately.
981 *
982 * XXXSMP: Invoked as psignal() or sched_psignal().
983 */
984 void
985 psignal1(struct proc *p, int signum, int dolock)
986 {
987 ksiginfo_t ksi;
988
989 KSI_INIT_EMPTY(&ksi);
990 ksi.ksi_signo = signum;
991 kpsignal2(p, &ksi, dolock);
992 }
993
994 void
995 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
996 {
997
998 if ((p->p_flag & P_WEXIT) == 0 && data) {
999 size_t fd;
1000 struct filedesc *fdp = p->p_fd;
1001
1002 ksi->ksi_fd = -1;
1003 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1004 struct file *fp = fdp->fd_ofiles[fd];
1005 /* XXX: lock? */
1006 if (fp && fp->f_data == data) {
1007 ksi->ksi_fd = fd;
1008 break;
1009 }
1010 }
1011 }
1012 kpsignal2(p, ksi, dolock);
1013 }
1014
1015 static void
1016 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1017 {
1018 struct lwp *l, *suspended = NULL;
1019 struct sadata_vp *vp;
1020 int s = 0, prop, allsusp;
1021 sig_t action;
1022 int signum = ksi->ksi_signo;
1023
1024 #ifdef DIAGNOSTIC
1025 if (signum <= 0 || signum >= NSIG)
1026 panic("psignal signal number %d", signum);
1027
1028 /* XXXSMP: works, but icky */
1029 if (dolock)
1030 SCHED_ASSERT_UNLOCKED();
1031 else
1032 SCHED_ASSERT_LOCKED();
1033 #endif
1034
1035 /*
1036 * Notify any interested parties in the signal.
1037 */
1038 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1039
1040 prop = sigprop[signum];
1041
1042 /*
1043 * If proc is traced, always give parent a chance.
1044 */
1045 if (p->p_flag & P_TRACED) {
1046 action = SIG_DFL;
1047
1048 /*
1049 * If the process is being traced and the signal is being
1050 * caught, make sure to save any ksiginfo.
1051 */
1052 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1053 ksiginfo_put(p, ksi);
1054 } else {
1055 /*
1056 * If the signal was the result of a trap, reset it
1057 * to default action if it's currently masked, so that it would
1058 * coredump immediatelly instead of spinning repeatedly
1059 * taking the signal.
1060 */
1061 if (KSI_TRAP_P(ksi)
1062 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1063 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1064 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1065 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1066 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1067 SIGACTION(p, signum).sa_handler = SIG_DFL;
1068 }
1069
1070 /*
1071 * If the signal is being ignored,
1072 * then we forget about it immediately.
1073 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1074 * and if it is set to SIG_IGN,
1075 * action will be SIG_DFL here.)
1076 */
1077 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1078 return;
1079 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1080 action = SIG_HOLD;
1081 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1082 action = SIG_CATCH;
1083 else {
1084 action = SIG_DFL;
1085
1086 if (prop & SA_KILL && p->p_nice > NZERO)
1087 p->p_nice = NZERO;
1088
1089 /*
1090 * If sending a tty stop signal to a member of an
1091 * orphaned process group, discard the signal here if
1092 * the action is default; don't stop the process below
1093 * if sleeping, and don't clear any pending SIGCONT.
1094 */
1095 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1096 return;
1097 }
1098 }
1099
1100 if (prop & SA_CONT)
1101 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1102
1103 if (prop & SA_STOP)
1104 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1105
1106 /*
1107 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1108 * please!), check if anything waits on it. If yes, save the
1109 * info into provided ps_sigwaited, and wake-up the waiter.
1110 * The signal won't be processed further here.
1111 */
1112 if ((prop & SA_CANTMASK) == 0
1113 && p->p_sigctx.ps_sigwaited
1114 && sigismember(p->p_sigctx.ps_sigwait, signum)
1115 && p->p_stat != SSTOP) {
1116 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1117 p->p_sigctx.ps_sigwaited = NULL;
1118 if (dolock)
1119 wakeup_one(&p->p_sigctx.ps_sigwait);
1120 else
1121 sched_wakeup(&p->p_sigctx.ps_sigwait);
1122 return;
1123 }
1124
1125 sigaddset(&p->p_sigctx.ps_siglist, signum);
1126
1127 /* CHECKSIGS() is "inlined" here. */
1128 p->p_sigctx.ps_sigcheck = 1;
1129
1130 /*
1131 * Defer further processing for signals which are held,
1132 * except that stopped processes must be continued by SIGCONT.
1133 */
1134 if (action == SIG_HOLD &&
1135 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1136 ksiginfo_put(p, ksi);
1137 return;
1138 }
1139 /* XXXSMP: works, but icky */
1140 if (dolock)
1141 SCHED_LOCK(s);
1142
1143 if (p->p_flag & P_SA) {
1144 allsusp = 0;
1145 l = NULL;
1146 if (p->p_stat == SACTIVE) {
1147 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1148 l = vp->savp_lwp;
1149 KDASSERT(l != NULL);
1150 if (l->l_flag & L_SA_IDLE) {
1151 /* wakeup idle LWP */
1152 goto found;
1153 /*NOTREACHED*/
1154 } else if (l->l_flag & L_SA_YIELD) {
1155 /* idle LWP is already waking up */
1156 goto out;
1157 /*NOTREACHED*/
1158 }
1159 }
1160 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1161 l = vp->savp_lwp;
1162 if (l->l_stat == LSRUN ||
1163 l->l_stat == LSONPROC) {
1164 signotify(p);
1165 goto out;
1166 /*NOTREACHED*/
1167 }
1168 if (l->l_stat == LSSLEEP &&
1169 l->l_flag & L_SINTR) {
1170 /* ok to signal vp lwp */
1171 } else
1172 l = NULL;
1173 }
1174 if (l == NULL)
1175 allsusp = 1;
1176 } else if (p->p_stat == SSTOP) {
1177 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1178 l = vp->savp_lwp;
1179 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1180 break;
1181 l = NULL;
1182 }
1183 }
1184 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1185 /*
1186 * At least one LWP is running or on a run queue.
1187 * The signal will be noticed when one of them returns
1188 * to userspace.
1189 */
1190 signotify(p);
1191 /*
1192 * The signal will be noticed very soon.
1193 */
1194 goto out;
1195 /*NOTREACHED*/
1196 } else {
1197 /*
1198 * Find out if any of the sleeps are interruptable,
1199 * and if all the live LWPs remaining are suspended.
1200 */
1201 allsusp = 1;
1202 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1203 if (l->l_stat == LSSLEEP &&
1204 l->l_flag & L_SINTR)
1205 break;
1206 if (l->l_stat == LSSUSPENDED)
1207 suspended = l;
1208 else if ((l->l_stat != LSZOMB) &&
1209 (l->l_stat != LSDEAD))
1210 allsusp = 0;
1211 }
1212 }
1213
1214 found:
1215 switch (p->p_stat) {
1216 case SACTIVE:
1217
1218 if (l != NULL && (p->p_flag & P_TRACED))
1219 goto run;
1220
1221 /*
1222 * If SIGCONT is default (or ignored) and process is
1223 * asleep, we are finished; the process should not
1224 * be awakened.
1225 */
1226 if ((prop & SA_CONT) && action == SIG_DFL) {
1227 sigdelset(&p->p_sigctx.ps_siglist, signum);
1228 goto done;
1229 }
1230
1231 /*
1232 * When a sleeping process receives a stop
1233 * signal, process immediately if possible.
1234 */
1235 if ((prop & SA_STOP) && action == SIG_DFL) {
1236 /*
1237 * If a child holding parent blocked,
1238 * stopping could cause deadlock.
1239 */
1240 if (p->p_flag & P_PPWAIT) {
1241 goto out;
1242 }
1243 sigdelset(&p->p_sigctx.ps_siglist, signum);
1244 p->p_xstat = signum;
1245 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1246 /*
1247 * XXXSMP: recursive call; don't lock
1248 * the second time around.
1249 */
1250 child_psignal(p, 0);
1251 }
1252 proc_stop(p, 1); /* XXXSMP: recurse? */
1253 goto done;
1254 }
1255
1256 if (l == NULL) {
1257 /*
1258 * Special case: SIGKILL of a process
1259 * which is entirely composed of
1260 * suspended LWPs should succeed. We
1261 * make this happen by unsuspending one of
1262 * them.
1263 */
1264 if (allsusp && (signum == SIGKILL)) {
1265 if (p->p_flag & P_SA) {
1266 /*
1267 * get a suspended lwp from
1268 * the cache to send KILL
1269 * signal
1270 * XXXcl add signal checks at resume points
1271 */
1272 suspended = sa_getcachelwp
1273 (SLIST_FIRST(&p->p_sa->sa_vps));
1274 }
1275 lwp_continue(suspended);
1276 }
1277 goto done;
1278 }
1279 /*
1280 * All other (caught or default) signals
1281 * cause the process to run.
1282 */
1283 goto runfast;
1284 /*NOTREACHED*/
1285 case SSTOP:
1286 /* Process is stopped */
1287 /*
1288 * If traced process is already stopped,
1289 * then no further action is necessary.
1290 */
1291 if (p->p_flag & P_TRACED)
1292 goto done;
1293
1294 /*
1295 * Kill signal always sets processes running,
1296 * if possible.
1297 */
1298 if (signum == SIGKILL) {
1299 l = proc_unstop(p);
1300 if (l)
1301 goto runfast;
1302 goto done;
1303 }
1304
1305 if (prop & SA_CONT) {
1306 /*
1307 * If SIGCONT is default (or ignored),
1308 * we continue the process but don't
1309 * leave the signal in ps_siglist, as
1310 * it has no further action. If
1311 * SIGCONT is held, we continue the
1312 * process and leave the signal in
1313 * ps_siglist. If the process catches
1314 * SIGCONT, let it handle the signal
1315 * itself. If it isn't waiting on an
1316 * event, then it goes back to run
1317 * state. Otherwise, process goes
1318 * back to sleep state.
1319 */
1320 if (action == SIG_DFL)
1321 sigdelset(&p->p_sigctx.ps_siglist,
1322 signum);
1323 l = proc_unstop(p);
1324 if (l && (action == SIG_CATCH))
1325 goto runfast;
1326 goto out;
1327 }
1328
1329 if (prop & SA_STOP) {
1330 /*
1331 * Already stopped, don't need to stop again.
1332 * (If we did the shell could get confused.)
1333 */
1334 sigdelset(&p->p_sigctx.ps_siglist, signum);
1335 goto done;
1336 }
1337
1338 /*
1339 * If a lwp is sleeping interruptibly, then
1340 * wake it up; it will run until the kernel
1341 * boundary, where it will stop in issignal(),
1342 * since p->p_stat is still SSTOP. When the
1343 * process is continued, it will be made
1344 * runnable and can look at the signal.
1345 */
1346 if (l)
1347 goto run;
1348 goto out;
1349 case SIDL:
1350 /* Process is being created by fork */
1351 /* XXX: We are not ready to receive signals yet */
1352 goto done;
1353 default:
1354 /* Else what? */
1355 panic("psignal: Invalid process state %d.", p->p_stat);
1356 }
1357 /*NOTREACHED*/
1358
1359 runfast:
1360 if (action == SIG_CATCH) {
1361 ksiginfo_put(p, ksi);
1362 action = SIG_HOLD;
1363 }
1364 /*
1365 * Raise priority to at least PUSER.
1366 */
1367 if (l->l_priority > PUSER)
1368 l->l_priority = PUSER;
1369 run:
1370 if (action == SIG_CATCH) {
1371 ksiginfo_put(p, ksi);
1372 action = SIG_HOLD;
1373 }
1374
1375 setrunnable(l); /* XXXSMP: recurse? */
1376 out:
1377 if (action == SIG_CATCH)
1378 ksiginfo_put(p, ksi);
1379 done:
1380 /* XXXSMP: works, but icky */
1381 if (dolock)
1382 SCHED_UNLOCK(s);
1383 }
1384
1385 void
1386 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1387 {
1388 struct proc *p = l->l_proc;
1389 struct lwp *le, *li;
1390 siginfo_t *si;
1391 int f;
1392
1393 if (p->p_flag & P_SA) {
1394
1395 /* XXXUPSXXX What if not on sa_vp ? */
1396
1397 f = l->l_flag & L_SA;
1398 l->l_flag &= ~L_SA;
1399 si = pool_get(&siginfo_pool, PR_WAITOK);
1400 si->_info = ksi->ksi_info;
1401 le = li = NULL;
1402 if (KSI_TRAP_P(ksi))
1403 le = l;
1404 else
1405 li = l;
1406 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1407 sizeof(*si), si) != 0) {
1408 pool_put(&siginfo_pool, si);
1409 if (KSI_TRAP_P(ksi))
1410 /* XXX What do we do here?? */;
1411 }
1412 l->l_flag |= f;
1413 return;
1414 }
1415
1416 (*p->p_emul->e_sendsig)(ksi, mask);
1417 }
1418
1419 static __inline int firstsig(const sigset_t *);
1420
1421 static __inline int
1422 firstsig(const sigset_t *ss)
1423 {
1424 int sig;
1425
1426 sig = ffs(ss->__bits[0]);
1427 if (sig != 0)
1428 return (sig);
1429 #if NSIG > 33
1430 sig = ffs(ss->__bits[1]);
1431 if (sig != 0)
1432 return (sig + 32);
1433 #endif
1434 #if NSIG > 65
1435 sig = ffs(ss->__bits[2]);
1436 if (sig != 0)
1437 return (sig + 64);
1438 #endif
1439 #if NSIG > 97
1440 sig = ffs(ss->__bits[3]);
1441 if (sig != 0)
1442 return (sig + 96);
1443 #endif
1444 return (0);
1445 }
1446
1447 /*
1448 * If the current process has received a signal (should be caught or cause
1449 * termination, should interrupt current syscall), return the signal number.
1450 * Stop signals with default action are processed immediately, then cleared;
1451 * they aren't returned. This is checked after each entry to the system for
1452 * a syscall or trap (though this can usually be done without calling issignal
1453 * by checking the pending signal masks in the CURSIG macro.) The normal call
1454 * sequence is
1455 *
1456 * while (signum = CURSIG(curlwp))
1457 * postsig(signum);
1458 */
1459 int
1460 issignal(struct lwp *l)
1461 {
1462 struct proc *p = l->l_proc;
1463 int s = 0, signum, prop;
1464 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1465 sigset_t ss;
1466
1467 /* Bail out if we do not own the virtual processor */
1468 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1469 return 0;
1470
1471 if (p->p_stat == SSTOP) {
1472 /*
1473 * The process is stopped/stopping. Stop ourselves now that
1474 * we're on the kernel/userspace boundary.
1475 */
1476 if (dolock)
1477 SCHED_LOCK(s);
1478 l->l_stat = LSSTOP;
1479 p->p_nrlwps--;
1480 if (p->p_flag & P_TRACED)
1481 goto sigtraceswitch;
1482 else
1483 goto sigswitch;
1484 }
1485 for (;;) {
1486 sigpending1(p, &ss);
1487 if (p->p_flag & P_PPWAIT)
1488 sigminusset(&stopsigmask, &ss);
1489 signum = firstsig(&ss);
1490 if (signum == 0) { /* no signal to send */
1491 p->p_sigctx.ps_sigcheck = 0;
1492 if (locked && dolock)
1493 SCHED_LOCK(s);
1494 return (0);
1495 }
1496 /* take the signal! */
1497 sigdelset(&p->p_sigctx.ps_siglist, signum);
1498
1499 /*
1500 * We should see pending but ignored signals
1501 * only if P_TRACED was on when they were posted.
1502 */
1503 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1504 (p->p_flag & P_TRACED) == 0)
1505 continue;
1506
1507 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1508 /*
1509 * If traced, always stop, and stay
1510 * stopped until released by the debugger.
1511 */
1512 p->p_xstat = signum;
1513
1514 /* Emulation-specific handling of signal trace */
1515 if ((p->p_emul->e_tracesig != NULL) &&
1516 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1517 goto childresumed;
1518
1519 if ((p->p_flag & P_FSTRACE) == 0)
1520 child_psignal(p, dolock);
1521 if (dolock)
1522 SCHED_LOCK(s);
1523 proc_stop(p, 1);
1524 sigtraceswitch:
1525 mi_switch(l, NULL);
1526 SCHED_ASSERT_UNLOCKED();
1527 if (dolock)
1528 splx(s);
1529 else
1530 dolock = 1;
1531
1532 childresumed:
1533 /*
1534 * If we are no longer being traced, or the parent
1535 * didn't give us a signal, look for more signals.
1536 */
1537 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1538 continue;
1539
1540 /*
1541 * If the new signal is being masked, look for other
1542 * signals.
1543 */
1544 signum = p->p_xstat;
1545 p->p_xstat = 0;
1546 /*
1547 * `p->p_sigctx.ps_siglist |= mask' is done
1548 * in setrunnable().
1549 */
1550 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1551 continue;
1552 /* take the signal! */
1553 sigdelset(&p->p_sigctx.ps_siglist, signum);
1554 }
1555
1556 prop = sigprop[signum];
1557
1558 /*
1559 * Decide whether the signal should be returned.
1560 * Return the signal's number, or fall through
1561 * to clear it from the pending mask.
1562 */
1563 switch ((long)SIGACTION(p, signum).sa_handler) {
1564
1565 case (long)SIG_DFL:
1566 /*
1567 * Don't take default actions on system processes.
1568 */
1569 if (p->p_pid <= 1) {
1570 #ifdef DIAGNOSTIC
1571 /*
1572 * Are you sure you want to ignore SIGSEGV
1573 * in init? XXX
1574 */
1575 printf("Process (pid %d) got signal %d\n",
1576 p->p_pid, signum);
1577 #endif
1578 break; /* == ignore */
1579 }
1580 /*
1581 * If there is a pending stop signal to process
1582 * with default action, stop here,
1583 * then clear the signal. However,
1584 * if process is member of an orphaned
1585 * process group, ignore tty stop signals.
1586 */
1587 if (prop & SA_STOP) {
1588 if (p->p_flag & P_TRACED ||
1589 (p->p_pgrp->pg_jobc == 0 &&
1590 prop & SA_TTYSTOP))
1591 break; /* == ignore */
1592 p->p_xstat = signum;
1593 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1594 child_psignal(p, dolock);
1595 if (dolock)
1596 SCHED_LOCK(s);
1597 proc_stop(p, 1);
1598 sigswitch:
1599 mi_switch(l, NULL);
1600 SCHED_ASSERT_UNLOCKED();
1601 if (dolock)
1602 splx(s);
1603 else
1604 dolock = 1;
1605 break;
1606 } else if (prop & SA_IGNORE) {
1607 /*
1608 * Except for SIGCONT, shouldn't get here.
1609 * Default action is to ignore; drop it.
1610 */
1611 break; /* == ignore */
1612 } else
1613 goto keep;
1614 /*NOTREACHED*/
1615
1616 case (long)SIG_IGN:
1617 /*
1618 * Masking above should prevent us ever trying
1619 * to take action on an ignored signal other
1620 * than SIGCONT, unless process is traced.
1621 */
1622 #ifdef DEBUG_ISSIGNAL
1623 if ((prop & SA_CONT) == 0 &&
1624 (p->p_flag & P_TRACED) == 0)
1625 printf("issignal\n");
1626 #endif
1627 break; /* == ignore */
1628
1629 default:
1630 /*
1631 * This signal has an action, let
1632 * postsig() process it.
1633 */
1634 goto keep;
1635 }
1636 }
1637 /* NOTREACHED */
1638
1639 keep:
1640 /* leave the signal for later */
1641 sigaddset(&p->p_sigctx.ps_siglist, signum);
1642 CHECKSIGS(p);
1643 if (locked && dolock)
1644 SCHED_LOCK(s);
1645 return (signum);
1646 }
1647
1648 /*
1649 * Put the argument process into the stopped state and notify the parent
1650 * via wakeup. Signals are handled elsewhere. The process must not be
1651 * on the run queue.
1652 */
1653 void
1654 proc_stop(struct proc *p, int wakeup)
1655 {
1656 struct lwp *l;
1657 struct proc *parent;
1658 struct sadata_vp *vp;
1659
1660 SCHED_ASSERT_LOCKED();
1661
1662 /* XXX lock process LWP state */
1663 p->p_flag &= ~P_WAITED;
1664 p->p_stat = SSTOP;
1665 parent = p->p_pptr;
1666 parent->p_nstopchild++;
1667
1668 if (p->p_flag & P_SA) {
1669 /*
1670 * Only (try to) put the LWP on the VP in stopped
1671 * state.
1672 * All other LWPs will suspend in sa_setwoken()
1673 * because the VP-LWP in stopped state cannot be
1674 * repossessed.
1675 */
1676 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1677 l = vp->savp_lwp;
1678 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1679 l->l_stat = LSSTOP;
1680 p->p_nrlwps--;
1681 } else if (l->l_stat == LSRUN) {
1682 /* Remove LWP from the run queue */
1683 remrunqueue(l);
1684 l->l_stat = LSSTOP;
1685 p->p_nrlwps--;
1686 } else if (l->l_stat == LSSLEEP &&
1687 l->l_flag & L_SA_IDLE) {
1688 l->l_flag &= ~L_SA_IDLE;
1689 l->l_stat = LSSTOP;
1690 }
1691 }
1692 goto out;
1693 }
1694
1695 /*
1696 * Put as many LWP's as possible in stopped state.
1697 * Sleeping ones will notice the stopped state as they try to
1698 * return to userspace.
1699 */
1700
1701 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1702 if (l->l_stat == LSONPROC) {
1703 /* XXX SMP this assumes that a LWP that is LSONPROC
1704 * is curlwp and hence is about to be mi_switched
1705 * away; the only callers of proc_stop() are:
1706 * - psignal
1707 * - issignal()
1708 * For the former, proc_stop() is only called when
1709 * no processes are running, so we don't worry.
1710 * For the latter, proc_stop() is called right
1711 * before mi_switch().
1712 */
1713 l->l_stat = LSSTOP;
1714 p->p_nrlwps--;
1715 } else if (l->l_stat == LSRUN) {
1716 /* Remove LWP from the run queue */
1717 remrunqueue(l);
1718 l->l_stat = LSSTOP;
1719 p->p_nrlwps--;
1720 } else if ((l->l_stat == LSSLEEP) ||
1721 (l->l_stat == LSSUSPENDED) ||
1722 (l->l_stat == LSZOMB) ||
1723 (l->l_stat == LSDEAD)) {
1724 /*
1725 * Don't do anything; let sleeping LWPs
1726 * discover the stopped state of the process
1727 * on their way out of the kernel; otherwise,
1728 * things like NFS threads that sleep with
1729 * locks will block the rest of the system
1730 * from getting any work done.
1731 *
1732 * Suspended/dead/zombie LWPs aren't going
1733 * anywhere, so we don't need to touch them.
1734 */
1735 }
1736 #ifdef DIAGNOSTIC
1737 else {
1738 panic("proc_stop: process %d lwp %d "
1739 "in unstoppable state %d.\n",
1740 p->p_pid, l->l_lid, l->l_stat);
1741 }
1742 #endif
1743 }
1744
1745 out:
1746 /* XXX unlock process LWP state */
1747
1748 if (wakeup)
1749 sched_wakeup((caddr_t)p->p_pptr);
1750 }
1751
1752 /*
1753 * Given a process in state SSTOP, set the state back to SACTIVE and
1754 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1755 *
1756 * If no LWPs ended up runnable (and therefore able to take a signal),
1757 * return a LWP that is sleeping interruptably. The caller can wake
1758 * that LWP up to take a signal.
1759 */
1760 struct lwp *
1761 proc_unstop(struct proc *p)
1762 {
1763 struct lwp *l, *lr = NULL;
1764 struct sadata_vp *vp;
1765 int cantake = 0;
1766
1767 SCHED_ASSERT_LOCKED();
1768
1769 /*
1770 * Our caller wants to be informed if there are only sleeping
1771 * and interruptable LWPs left after we have run so that it
1772 * can invoke setrunnable() if required - return one of the
1773 * interruptable LWPs if this is the case.
1774 */
1775
1776 if (!(p->p_flag & P_WAITED))
1777 p->p_pptr->p_nstopchild--;
1778 p->p_stat = SACTIVE;
1779 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1780 if (l->l_stat == LSRUN) {
1781 lr = NULL;
1782 cantake = 1;
1783 }
1784 if (l->l_stat != LSSTOP)
1785 continue;
1786
1787 if (l->l_wchan != NULL) {
1788 l->l_stat = LSSLEEP;
1789 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1790 lr = l;
1791 cantake = 1;
1792 }
1793 } else {
1794 setrunnable(l);
1795 lr = NULL;
1796 cantake = 1;
1797 }
1798 }
1799 if (p->p_flag & P_SA) {
1800 /* Only consider returning the LWP on the VP. */
1801 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1802 lr = vp->savp_lwp;
1803 if (lr->l_stat == LSSLEEP) {
1804 if (lr->l_flag & L_SA_YIELD) {
1805 setrunnable(lr);
1806 break;
1807 } else if (lr->l_flag & L_SINTR)
1808 return lr;
1809 }
1810 }
1811 return NULL;
1812 }
1813 return lr;
1814 }
1815
1816 /*
1817 * Take the action for the specified signal
1818 * from the current set of pending signals.
1819 */
1820 void
1821 postsig(int signum)
1822 {
1823 struct lwp *l;
1824 struct proc *p;
1825 struct sigacts *ps;
1826 sig_t action;
1827 sigset_t *returnmask;
1828
1829 l = curlwp;
1830 p = l->l_proc;
1831 ps = p->p_sigacts;
1832 #ifdef DIAGNOSTIC
1833 if (signum == 0)
1834 panic("postsig");
1835 #endif
1836
1837 KERNEL_PROC_LOCK(l);
1838
1839 #ifdef MULTIPROCESSOR
1840 /*
1841 * On MP, issignal() can return the same signal to multiple
1842 * LWPs. The LWPs will block above waiting for the kernel
1843 * lock and the first LWP which gets through will then remove
1844 * the signal from ps_siglist. All other LWPs exit here.
1845 */
1846 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1847 KERNEL_PROC_UNLOCK(l);
1848 return;
1849 }
1850 #endif
1851 sigdelset(&p->p_sigctx.ps_siglist, signum);
1852 action = SIGACTION_PS(ps, signum).sa_handler;
1853 if (action == SIG_DFL) {
1854 #ifdef KTRACE
1855 if (KTRPOINT(p, KTR_PSIG))
1856 ktrpsig(p, signum, action,
1857 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1858 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1859 NULL);
1860 #endif
1861 /*
1862 * Default action, where the default is to kill
1863 * the process. (Other cases were ignored above.)
1864 */
1865 sigexit(l, signum);
1866 /* NOTREACHED */
1867 } else {
1868 ksiginfo_t *ksi;
1869 /*
1870 * If we get here, the signal must be caught.
1871 */
1872 #ifdef DIAGNOSTIC
1873 if (action == SIG_IGN ||
1874 sigismember(&p->p_sigctx.ps_sigmask, signum))
1875 panic("postsig action");
1876 #endif
1877 /*
1878 * Set the new mask value and also defer further
1879 * occurrences of this signal.
1880 *
1881 * Special case: user has done a sigpause. Here the
1882 * current mask is not of interest, but rather the
1883 * mask from before the sigpause is what we want
1884 * restored after the signal processing is completed.
1885 */
1886 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1887 returnmask = &p->p_sigctx.ps_oldmask;
1888 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1889 } else
1890 returnmask = &p->p_sigctx.ps_sigmask;
1891 p->p_stats->p_ru.ru_nsignals++;
1892 ksi = ksiginfo_get(p, signum);
1893 #ifdef KTRACE
1894 if (KTRPOINT(p, KTR_PSIG))
1895 ktrpsig(p, signum, action,
1896 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1897 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1898 ksi);
1899 #endif
1900 if (ksi == NULL) {
1901 ksiginfo_t ksi1;
1902 /*
1903 * we did not save any siginfo for this, either
1904 * because the signal was not caught, or because the
1905 * user did not request SA_SIGINFO
1906 */
1907 KSI_INIT_EMPTY(&ksi1);
1908 ksi1.ksi_signo = signum;
1909 kpsendsig(l, &ksi1, returnmask);
1910 } else {
1911 kpsendsig(l, ksi, returnmask);
1912 pool_put(&ksiginfo_pool, ksi);
1913 }
1914 p->p_sigctx.ps_lwp = 0;
1915 p->p_sigctx.ps_code = 0;
1916 p->p_sigctx.ps_signo = 0;
1917 (void) splsched(); /* XXXSMP */
1918 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1919 &p->p_sigctx.ps_sigmask);
1920 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1921 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1922 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1923 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1924 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1925 }
1926 (void) spl0(); /* XXXSMP */
1927 }
1928
1929 KERNEL_PROC_UNLOCK(l);
1930 }
1931
1932 /*
1933 * Kill the current process for stated reason.
1934 */
1935 void
1936 killproc(struct proc *p, const char *why)
1937 {
1938 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1939 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1940 psignal(p, SIGKILL);
1941 }
1942
1943 /*
1944 * Force the current process to exit with the specified signal, dumping core
1945 * if appropriate. We bypass the normal tests for masked and caught signals,
1946 * allowing unrecoverable failures to terminate the process without changing
1947 * signal state. Mark the accounting record with the signal termination.
1948 * If dumping core, save the signal number for the debugger. Calls exit and
1949 * does not return.
1950 */
1951
1952 #if defined(DEBUG)
1953 int kern_logsigexit = 1; /* not static to make public for sysctl */
1954 #else
1955 int kern_logsigexit = 0; /* not static to make public for sysctl */
1956 #endif
1957
1958 static const char logcoredump[] =
1959 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1960 static const char lognocoredump[] =
1961 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1962
1963 /* Wrapper function for use in p_userret */
1964 static void
1965 lwp_coredump_hook(struct lwp *l, void *arg)
1966 {
1967 int s;
1968
1969 /*
1970 * Suspend ourselves, so that the kernel stack and therefore
1971 * the userland registers saved in the trapframe are around
1972 * for coredump() to write them out.
1973 */
1974 KERNEL_PROC_LOCK(l);
1975 l->l_flag &= ~L_DETACHED;
1976 SCHED_LOCK(s);
1977 l->l_stat = LSSUSPENDED;
1978 l->l_proc->p_nrlwps--;
1979 /* XXX NJWLWP check if this makes sense here: */
1980 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1981 mi_switch(l, NULL);
1982 SCHED_ASSERT_UNLOCKED();
1983 splx(s);
1984
1985 lwp_exit(l);
1986 }
1987
1988 void
1989 sigexit(struct lwp *l, int signum)
1990 {
1991 struct proc *p;
1992 #if 0
1993 struct lwp *l2;
1994 #endif
1995 int error, exitsig;
1996
1997 p = l->l_proc;
1998
1999 /*
2000 * Don't permit coredump() or exit1() multiple times
2001 * in the same process.
2002 */
2003 if (p->p_flag & P_WEXIT) {
2004 KERNEL_PROC_UNLOCK(l);
2005 (*p->p_userret)(l, p->p_userret_arg);
2006 }
2007 p->p_flag |= P_WEXIT;
2008 /* We don't want to switch away from exiting. */
2009 /* XXX multiprocessor: stop LWPs on other processors. */
2010 #if 0
2011 if (p->p_flag & P_SA) {
2012 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2013 l2->l_flag &= ~L_SA;
2014 p->p_flag &= ~P_SA;
2015 }
2016 #endif
2017
2018 /* Make other LWPs stick around long enough to be dumped */
2019 p->p_userret = lwp_coredump_hook;
2020 p->p_userret_arg = NULL;
2021
2022 exitsig = signum;
2023 p->p_acflag |= AXSIG;
2024 if (sigprop[signum] & SA_CORE) {
2025 p->p_sigctx.ps_signo = signum;
2026 if ((error = coredump(l, NULL)) == 0)
2027 exitsig |= WCOREFLAG;
2028
2029 if (kern_logsigexit) {
2030 /* XXX What if we ever have really large UIDs? */
2031 int uid = p->p_cred && p->p_ucred ?
2032 (int) p->p_ucred->cr_uid : -1;
2033
2034 if (error)
2035 log(LOG_INFO, lognocoredump, p->p_pid,
2036 p->p_comm, uid, signum, error);
2037 else
2038 log(LOG_INFO, logcoredump, p->p_pid,
2039 p->p_comm, uid, signum);
2040 }
2041
2042 }
2043
2044 exit1(l, W_EXITCODE(0, exitsig));
2045 /* NOTREACHED */
2046 }
2047
2048 /*
2049 * Dump core, into a file named "progname.core" or "core" (depending on the
2050 * value of shortcorename), unless the process was setuid/setgid.
2051 */
2052 int
2053 coredump(struct lwp *l, const char *pattern)
2054 {
2055 struct vnode *vp;
2056 struct proc *p;
2057 struct vmspace *vm;
2058 struct ucred *cred;
2059 struct nameidata nd;
2060 struct vattr vattr;
2061 struct mount *mp;
2062 int error, error1;
2063 char name[MAXPATHLEN];
2064
2065 p = l->l_proc;
2066 vm = p->p_vmspace;
2067 cred = p->p_cred->pc_ucred;
2068
2069 /*
2070 * Make sure the process has not set-id, to prevent data leaks.
2071 */
2072 if (p->p_flag & P_SUGID)
2073 return (EPERM);
2074
2075 /*
2076 * Refuse to core if the data + stack + user size is larger than
2077 * the core dump limit. XXX THIS IS WRONG, because of mapped
2078 * data.
2079 */
2080 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2081 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2082 return (EFBIG); /* better error code? */
2083
2084 restart:
2085 /*
2086 * The core dump will go in the current working directory. Make
2087 * sure that the directory is still there and that the mount flags
2088 * allow us to write core dumps there.
2089 */
2090 vp = p->p_cwdi->cwdi_cdir;
2091 if (vp->v_mount == NULL ||
2092 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2093 return (EPERM);
2094
2095 if (pattern == NULL)
2096 pattern = p->p_limit->pl_corename;
2097 if ((error = build_corename(p, name, pattern, sizeof(name))) != 0)
2098 return error;
2099
2100 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2101 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2102 if (error)
2103 return (error);
2104 vp = nd.ni_vp;
2105
2106 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2107 VOP_UNLOCK(vp, 0);
2108 if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2109 return (error);
2110 if ((error = vn_start_write(NULL, &mp,
2111 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2112 return (error);
2113 goto restart;
2114 }
2115
2116 /* Don't dump to non-regular files or files with links. */
2117 if (vp->v_type != VREG ||
2118 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2119 error = EINVAL;
2120 goto out;
2121 }
2122 VATTR_NULL(&vattr);
2123 vattr.va_size = 0;
2124 VOP_LEASE(vp, p, cred, LEASE_WRITE);
2125 VOP_SETATTR(vp, &vattr, cred, p);
2126 p->p_acflag |= ACORE;
2127
2128 /* Now dump the actual core file. */
2129 error = (*p->p_execsw->es_coredump)(l, vp, cred);
2130 out:
2131 VOP_UNLOCK(vp, 0);
2132 vn_finished_write(mp, 0);
2133 error1 = vn_close(vp, FWRITE, cred, p);
2134 if (error == 0)
2135 error = error1;
2136 return (error);
2137 }
2138
2139 /*
2140 * Nonexistent system call-- signal process (may want to handle it).
2141 * Flag error in case process won't see signal immediately (blocked or ignored).
2142 */
2143 /* ARGSUSED */
2144 int
2145 sys_nosys(struct lwp *l, void *v, register_t *retval)
2146 {
2147 struct proc *p;
2148
2149 p = l->l_proc;
2150 psignal(p, SIGSYS);
2151 return (ENOSYS);
2152 }
2153
2154 static int
2155 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2156 {
2157 const char *s;
2158 char *d, *end;
2159 int i;
2160
2161 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2162 if (*s == '%') {
2163 switch (*(s + 1)) {
2164 case 'n':
2165 i = snprintf(d, end - d, "%s", p->p_comm);
2166 break;
2167 case 'p':
2168 i = snprintf(d, end - d, "%d", p->p_pid);
2169 break;
2170 case 'u':
2171 i = snprintf(d, end - d, "%.*s",
2172 (int)sizeof p->p_pgrp->pg_session->s_login,
2173 p->p_pgrp->pg_session->s_login);
2174 break;
2175 case 't':
2176 i = snprintf(d, end - d, "%ld",
2177 p->p_stats->p_start.tv_sec);
2178 break;
2179 default:
2180 goto copy;
2181 }
2182 d += i;
2183 s++;
2184 } else {
2185 copy: *d = *s;
2186 d++;
2187 }
2188 if (d >= end)
2189 return (ENAMETOOLONG);
2190 }
2191 *d = '\0';
2192 return 0;
2193 }
2194
2195 void
2196 getucontext(struct lwp *l, ucontext_t *ucp)
2197 {
2198 struct proc *p;
2199
2200 p = l->l_proc;
2201
2202 ucp->uc_flags = 0;
2203 ucp->uc_link = l->l_ctxlink;
2204
2205 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2206 ucp->uc_flags |= _UC_SIGMASK;
2207
2208 /*
2209 * The (unsupplied) definition of the `current execution stack'
2210 * in the System V Interface Definition appears to allow returning
2211 * the main context stack.
2212 */
2213 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2214 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2215 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2216 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2217 } else {
2218 /* Simply copy alternate signal execution stack. */
2219 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2220 }
2221 ucp->uc_flags |= _UC_STACK;
2222
2223 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2224 }
2225
2226 /* ARGSUSED */
2227 int
2228 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2229 {
2230 struct sys_getcontext_args /* {
2231 syscallarg(struct __ucontext *) ucp;
2232 } */ *uap = v;
2233 ucontext_t uc;
2234
2235 getucontext(l, &uc);
2236
2237 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2238 }
2239
2240 int
2241 setucontext(struct lwp *l, const ucontext_t *ucp)
2242 {
2243 struct proc *p;
2244 int error;
2245
2246 p = l->l_proc;
2247 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2248 return (error);
2249 l->l_ctxlink = ucp->uc_link;
2250
2251 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2252 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2253
2254 /*
2255 * If there was stack information, update whether or not we are
2256 * still running on an alternate signal stack.
2257 */
2258 if ((ucp->uc_flags & _UC_STACK) != 0) {
2259 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2260 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2261 else
2262 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2263 }
2264
2265 return 0;
2266 }
2267
2268 /* ARGSUSED */
2269 int
2270 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2271 {
2272 struct sys_setcontext_args /* {
2273 syscallarg(const ucontext_t *) ucp;
2274 } */ *uap = v;
2275 ucontext_t uc;
2276 int error;
2277
2278 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2279 exit1(l, W_EXITCODE(0, 0));
2280 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2281 (error = setucontext(l, &uc)) != 0)
2282 return (error);
2283
2284 return (EJUSTRETURN);
2285 }
2286
2287 /*
2288 * sigtimedwait(2) system call, used also for implementation
2289 * of sigwaitinfo() and sigwait().
2290 *
2291 * This only handles single LWP in signal wait. libpthread provides
2292 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2293 */
2294 int
2295 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2296 {
2297 struct sys___sigtimedwait_args /* {
2298 syscallarg(const sigset_t *) set;
2299 syscallarg(siginfo_t *) info;
2300 syscallarg(struct timespec *) timeout;
2301 } */ *uap = v;
2302 sigset_t *waitset, twaitset;
2303 struct proc *p = l->l_proc;
2304 int error, signum, s;
2305 int timo = 0;
2306 struct timeval tvstart;
2307 struct timespec ts;
2308 ksiginfo_t *ksi;
2309
2310 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2311
2312 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2313 FREE(waitset, M_TEMP);
2314 return (error);
2315 }
2316
2317 /*
2318 * Silently ignore SA_CANTMASK signals. psignal1() would
2319 * ignore SA_CANTMASK signals in waitset, we do this
2320 * only for the below siglist check.
2321 */
2322 sigminusset(&sigcantmask, waitset);
2323
2324 /*
2325 * First scan siglist and check if there is signal from
2326 * our waitset already pending.
2327 */
2328 twaitset = *waitset;
2329 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2330 if ((signum = firstsig(&twaitset))) {
2331 /* found pending signal */
2332 sigdelset(&p->p_sigctx.ps_siglist, signum);
2333 ksi = ksiginfo_get(p, signum);
2334 if (!ksi) {
2335 /* No queued siginfo, manufacture one */
2336 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2337 KSI_INIT(ksi);
2338 ksi->ksi_info._signo = signum;
2339 ksi->ksi_info._code = SI_USER;
2340 }
2341
2342 goto sig;
2343 }
2344
2345 /*
2346 * Calculate timeout, if it was specified.
2347 */
2348 if (SCARG(uap, timeout)) {
2349 uint64_t ms;
2350
2351 if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))))
2352 return (error);
2353
2354 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2355 timo = mstohz(ms);
2356 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2357 timo = 1;
2358 if (timo <= 0)
2359 return (EAGAIN);
2360
2361 /*
2362 * Remember current mono_time, it would be used in
2363 * ECANCELED/ERESTART case.
2364 */
2365 s = splclock();
2366 tvstart = mono_time;
2367 splx(s);
2368 }
2369
2370 /*
2371 * Setup ps_sigwait list. Pass pointer to malloced memory
2372 * here; it's not possible to pass pointer to a structure
2373 * on current process's stack, the current process might
2374 * be swapped out at the time the signal would get delivered.
2375 */
2376 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2377 p->p_sigctx.ps_sigwaited = ksi;
2378 p->p_sigctx.ps_sigwait = waitset;
2379
2380 /*
2381 * Wait for signal to arrive. We can either be woken up or
2382 * time out.
2383 */
2384 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2385
2386 /*
2387 * Need to find out if we woke as a result of lwp_wakeup()
2388 * or a signal outside our wait set.
2389 */
2390 if (error == EINTR && p->p_sigctx.ps_sigwaited
2391 && !firstsig(&p->p_sigctx.ps_siglist)) {
2392 /* wakeup via _lwp_wakeup() */
2393 error = ECANCELED;
2394 } else if (!error && p->p_sigctx.ps_sigwaited) {
2395 /* spurious wakeup - arrange for syscall restart */
2396 error = ERESTART;
2397 goto fail;
2398 }
2399
2400 /*
2401 * On error, clear sigwait indication. psignal1() clears it
2402 * in !error case.
2403 */
2404 if (error) {
2405 p->p_sigctx.ps_sigwaited = NULL;
2406
2407 /*
2408 * If the sleep was interrupted (either by signal or wakeup),
2409 * update the timeout and copyout new value back.
2410 * It would be used when the syscall would be restarted
2411 * or called again.
2412 */
2413 if (timo && (error == ERESTART || error == ECANCELED)) {
2414 struct timeval tvnow, tvtimo;
2415 int err;
2416
2417 s = splclock();
2418 tvnow = mono_time;
2419 splx(s);
2420
2421 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2422
2423 /* compute how much time has passed since start */
2424 timersub(&tvnow, &tvstart, &tvnow);
2425 /* substract passed time from timeout */
2426 timersub(&tvtimo, &tvnow, &tvtimo);
2427
2428 if (tvtimo.tv_sec < 0) {
2429 error = EAGAIN;
2430 goto fail;
2431 }
2432
2433 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2434
2435 /* copy updated timeout to userland */
2436 if ((err = copyout(&ts, SCARG(uap, timeout), sizeof(ts)))) {
2437 error = err;
2438 goto fail;
2439 }
2440 }
2441
2442 goto fail;
2443 }
2444
2445 /*
2446 * If a signal from the wait set arrived, copy it to userland.
2447 * Copy only the used part of siginfo, the padding part is
2448 * left unchanged (userland is not supposed to touch it anyway).
2449 */
2450 sig:
2451 error = copyout(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2452
2453 fail:
2454 FREE(waitset, M_TEMP);
2455 pool_put(&ksiginfo_pool, ksi);
2456 p->p_sigctx.ps_sigwait = NULL;
2457
2458 return (error);
2459 }
2460
2461 /*
2462 * Returns true if signal is ignored or masked for passed process.
2463 */
2464 int
2465 sigismasked(struct proc *p, int sig)
2466 {
2467
2468 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2469 sigismember(&p->p_sigctx.ps_sigmask, sig));
2470 }
2471
2472 static int
2473 filt_sigattach(struct knote *kn)
2474 {
2475 struct proc *p = curproc;
2476
2477 kn->kn_ptr.p_proc = p;
2478 kn->kn_flags |= EV_CLEAR; /* automatically set */
2479
2480 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2481
2482 return (0);
2483 }
2484
2485 static void
2486 filt_sigdetach(struct knote *kn)
2487 {
2488 struct proc *p = kn->kn_ptr.p_proc;
2489
2490 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2491 }
2492
2493 /*
2494 * signal knotes are shared with proc knotes, so we apply a mask to
2495 * the hint in order to differentiate them from process hints. This
2496 * could be avoided by using a signal-specific knote list, but probably
2497 * isn't worth the trouble.
2498 */
2499 static int
2500 filt_signal(struct knote *kn, long hint)
2501 {
2502
2503 if (hint & NOTE_SIGNAL) {
2504 hint &= ~NOTE_SIGNAL;
2505
2506 if (kn->kn_id == hint)
2507 kn->kn_data++;
2508 }
2509 return (kn->kn_data != 0);
2510 }
2511
2512 const struct filterops sig_filtops = {
2513 0, filt_sigattach, filt_sigdetach, filt_signal
2514 };
2515