Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.208
      1 /*	$NetBSD: kern_sig.c,v 1.208 2005/07/23 22:02:13 cube Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.208 2005/07/23 22:02:13 cube Exp $");
     41 
     42 #include "opt_ktrace.h"
     43 #include "opt_compat_sunos.h"
     44 #include "opt_compat_netbsd.h"
     45 #include "opt_compat_netbsd32.h"
     46 
     47 #define	SIGPROP		/* include signal properties table */
     48 #include <sys/param.h>
     49 #include <sys/signalvar.h>
     50 #include <sys/resourcevar.h>
     51 #include <sys/namei.h>
     52 #include <sys/vnode.h>
     53 #include <sys/proc.h>
     54 #include <sys/systm.h>
     55 #include <sys/timeb.h>
     56 #include <sys/times.h>
     57 #include <sys/buf.h>
     58 #include <sys/acct.h>
     59 #include <sys/file.h>
     60 #include <sys/kernel.h>
     61 #include <sys/wait.h>
     62 #include <sys/ktrace.h>
     63 #include <sys/syslog.h>
     64 #include <sys/stat.h>
     65 #include <sys/core.h>
     66 #include <sys/filedesc.h>
     67 #include <sys/malloc.h>
     68 #include <sys/pool.h>
     69 #include <sys/ucontext.h>
     70 #include <sys/sa.h>
     71 #include <sys/savar.h>
     72 #include <sys/exec.h>
     73 
     74 #include <sys/mount.h>
     75 #include <sys/syscallargs.h>
     76 
     77 #include <machine/cpu.h>
     78 
     79 #include <sys/user.h>		/* for coredump */
     80 
     81 #include <uvm/uvm.h>
     82 #include <uvm/uvm_extern.h>
     83 
     84 static void	child_psignal(struct proc *, int);
     85 static int	build_corename(struct proc *, char *, const char *, size_t);
     86 static void	ksiginfo_exithook(struct proc *, void *);
     87 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
     88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
     89 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
     90 
     91 sigset_t	contsigmask, stopsigmask, sigcantmask;
     92 
     93 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
     94 
     95 /*
     96  * struct sigacts memory pool allocator.
     97  */
     98 
     99 static void *
    100 sigacts_poolpage_alloc(struct pool *pp, int flags)
    101 {
    102 
    103 	return (void *)uvm_km_alloc(kernel_map,
    104 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    105 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    106 	    | UVM_KMF_WIRED);
    107 }
    108 
    109 static void
    110 sigacts_poolpage_free(struct pool *pp, void *v)
    111 {
    112         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    113 }
    114 
    115 static struct pool_allocator sigactspool_allocator = {
    116         sigacts_poolpage_alloc, sigacts_poolpage_free,
    117 };
    118 
    119 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    120     &pool_allocator_nointr);
    121 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
    122 
    123 /*
    124  * Can process p, with pcred pc, send the signal signum to process q?
    125  */
    126 #define	CANSIGNAL(p, pc, q, signum) \
    127 	((pc)->pc_ucred->cr_uid == 0 || \
    128 	    (pc)->p_ruid == (q)->p_cred->p_ruid || \
    129 	    (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
    130 	    (pc)->p_ruid == (q)->p_ucred->cr_uid || \
    131 	    (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
    132 	    ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
    133 
    134 /*
    135  * Remove and return the first ksiginfo element that matches our requested
    136  * signal, or return NULL if one not found.
    137  */
    138 static ksiginfo_t *
    139 ksiginfo_get(struct proc *p, int signo)
    140 {
    141 	ksiginfo_t *ksi;
    142 	int s;
    143 
    144 	s = splsoftclock();
    145 	simple_lock(&p->p_sigctx.ps_silock);
    146 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    147 		if (ksi->ksi_signo == signo) {
    148 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    149 			goto out;
    150 		}
    151 	}
    152 	ksi = NULL;
    153 out:
    154 	simple_unlock(&p->p_sigctx.ps_silock);
    155 	splx(s);
    156 	return ksi;
    157 }
    158 
    159 /*
    160  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    161  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    162  * they already existed in the queue and we add new entries for RT signals,
    163  * or for non RT signals with non-existing entries.
    164  */
    165 static void
    166 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
    167 {
    168 	ksiginfo_t *kp;
    169 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    170 	int s;
    171 
    172 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    173 		return;
    174 	/*
    175 	 * If there's no info, don't save it.
    176 	 */
    177 	if (KSI_EMPTY_P(ksi))
    178 		return;
    179 
    180 	s = splsoftclock();
    181 	simple_lock(&p->p_sigctx.ps_silock);
    182 #ifdef notyet	/* XXX: QUEUING */
    183 	if (ksi->ksi_signo < SIGRTMIN)
    184 #endif
    185 	{
    186 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    187 			if (kp->ksi_signo == ksi->ksi_signo) {
    188 				KSI_COPY(ksi, kp);
    189 				goto out;
    190 			}
    191 		}
    192 	}
    193 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
    194 	if (kp == NULL) {
    195 #ifdef DIAGNOSTIC
    196 		printf("Out of memory allocating siginfo for pid %d\n",
    197 		    p->p_pid);
    198 #endif
    199 		goto out;
    200 	}
    201 	*kp = *ksi;
    202 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    203 out:
    204 	simple_unlock(&p->p_sigctx.ps_silock);
    205 	splx(s);
    206 }
    207 
    208 /*
    209  * free all pending ksiginfo on exit
    210  */
    211 static void
    212 ksiginfo_exithook(struct proc *p, void *v)
    213 {
    214 	int s;
    215 
    216 	s = splsoftclock();
    217 	simple_lock(&p->p_sigctx.ps_silock);
    218 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    219 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    220 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    221 		pool_put(&ksiginfo_pool, ksi);
    222 	}
    223 	simple_unlock(&p->p_sigctx.ps_silock);
    224 	splx(s);
    225 }
    226 
    227 /*
    228  * Initialize signal-related data structures.
    229  */
    230 void
    231 signal_init(void)
    232 {
    233 
    234 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    235 
    236 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    237 	    sizeof(struct sigacts) > PAGE_SIZE ?
    238 	    &sigactspool_allocator : &pool_allocator_nointr);
    239 
    240 	exithook_establish(ksiginfo_exithook, NULL);
    241 	exechook_establish(ksiginfo_exithook, NULL);
    242 }
    243 
    244 /*
    245  * Create an initial sigctx structure, using the same signal state
    246  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    247  * copy it from parent.
    248  */
    249 void
    250 sigactsinit(struct proc *np, struct proc *pp, int share)
    251 {
    252 	struct sigacts *ps;
    253 
    254 	if (share) {
    255 		np->p_sigacts = pp->p_sigacts;
    256 		pp->p_sigacts->sa_refcnt++;
    257 	} else {
    258 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    259 		if (pp)
    260 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    261 		else
    262 			memset(ps, '\0', sizeof(struct sigacts));
    263 		ps->sa_refcnt = 1;
    264 		np->p_sigacts = ps;
    265 	}
    266 }
    267 
    268 /*
    269  * Make this process not share its sigctx, maintaining all
    270  * signal state.
    271  */
    272 void
    273 sigactsunshare(struct proc *p)
    274 {
    275 	struct sigacts *oldps;
    276 
    277 	if (p->p_sigacts->sa_refcnt == 1)
    278 		return;
    279 
    280 	oldps = p->p_sigacts;
    281 	sigactsinit(p, NULL, 0);
    282 
    283 	if (--oldps->sa_refcnt == 0)
    284 		pool_put(&sigacts_pool, oldps);
    285 }
    286 
    287 /*
    288  * Release a sigctx structure.
    289  */
    290 void
    291 sigactsfree(struct sigacts *ps)
    292 {
    293 
    294 	if (--ps->sa_refcnt > 0)
    295 		return;
    296 
    297 	pool_put(&sigacts_pool, ps);
    298 }
    299 
    300 int
    301 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    302 	struct sigaction *osa, const void *tramp, int vers)
    303 {
    304 	struct sigacts	*ps;
    305 	int		prop;
    306 
    307 	ps = p->p_sigacts;
    308 	if (signum <= 0 || signum >= NSIG)
    309 		return (EINVAL);
    310 
    311 	/*
    312 	 * Trampoline ABI version 0 is reserved for the legacy
    313 	 * kernel-provided on-stack trampoline.  Conversely, if we are
    314 	 * using a non-0 ABI version, we must have a trampoline.  Only
    315 	 * validate the vers if a new sigaction was supplied. Emulations
    316 	 * use legacy kernel trampolines with version 0, alternatively
    317 	 * check for that too.
    318 	 */
    319 	if ((vers != 0 && tramp == NULL) ||
    320 #ifdef SIGTRAMP_VALID
    321 	    (nsa != NULL &&
    322 	    ((vers == 0) ?
    323 		(p->p_emul->e_sigcode == NULL) :
    324 		!SIGTRAMP_VALID(vers))) ||
    325 #endif
    326 	    (vers == 0 && tramp != NULL))
    327 		return (EINVAL);
    328 
    329 	if (osa)
    330 		*osa = SIGACTION_PS(ps, signum);
    331 
    332 	if (nsa) {
    333 		if (nsa->sa_flags & ~SA_ALLBITS)
    334 			return (EINVAL);
    335 
    336 		prop = sigprop[signum];
    337 		if (prop & SA_CANTMASK)
    338 			return (EINVAL);
    339 
    340 		(void) splsched();	/* XXXSMP */
    341 		SIGACTION_PS(ps, signum) = *nsa;
    342 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    343 		ps->sa_sigdesc[signum].sd_vers = vers;
    344 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    345 		if ((prop & SA_NORESET) != 0)
    346 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    347 		if (signum == SIGCHLD) {
    348 			if (nsa->sa_flags & SA_NOCLDSTOP)
    349 				p->p_flag |= P_NOCLDSTOP;
    350 			else
    351 				p->p_flag &= ~P_NOCLDSTOP;
    352 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    353 				/*
    354 				 * Paranoia: since SA_NOCLDWAIT is implemented
    355 				 * by reparenting the dying child to PID 1 (and
    356 				 * trust it to reap the zombie), PID 1 itself
    357 				 * is forbidden to set SA_NOCLDWAIT.
    358 				 */
    359 				if (p->p_pid == 1)
    360 					p->p_flag &= ~P_NOCLDWAIT;
    361 				else
    362 					p->p_flag |= P_NOCLDWAIT;
    363 			} else
    364 				p->p_flag &= ~P_NOCLDWAIT;
    365 
    366 			if (nsa->sa_handler == SIG_IGN) {
    367 				/*
    368 				 * Paranoia: same as above.
    369 				 */
    370 				if (p->p_pid == 1)
    371 					p->p_flag &= ~P_CLDSIGIGN;
    372 				else
    373 					p->p_flag |= P_CLDSIGIGN;
    374 			} else
    375 				p->p_flag &= ~P_CLDSIGIGN;
    376 
    377 		}
    378 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    379 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    380 		else
    381 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    382 		/*
    383 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    384 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    385 		 * to ignore. However, don't put SIGCONT in
    386 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    387 	 	 */
    388 		if (nsa->sa_handler == SIG_IGN ||
    389 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    390 						/* never to be seen again */
    391 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    392 			if (signum != SIGCONT) {
    393 						/* easier in psignal */
    394 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    395 			}
    396 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    397 		} else {
    398 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    399 			if (nsa->sa_handler == SIG_DFL)
    400 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    401 			else
    402 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    403 		}
    404 		(void) spl0();
    405 	}
    406 
    407 	return (0);
    408 }
    409 
    410 #ifdef COMPAT_16
    411 /* ARGSUSED */
    412 int
    413 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    414 {
    415 	struct compat_16_sys___sigaction14_args /* {
    416 		syscallarg(int)				signum;
    417 		syscallarg(const struct sigaction *)	nsa;
    418 		syscallarg(struct sigaction *)		osa;
    419 	} */ *uap = v;
    420 	struct proc		*p;
    421 	struct sigaction	nsa, osa;
    422 	int			error;
    423 
    424 	if (SCARG(uap, nsa)) {
    425 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    426 		if (error)
    427 			return (error);
    428 	}
    429 	p = l->l_proc;
    430 	error = sigaction1(p, SCARG(uap, signum),
    431 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    432 	    NULL, 0);
    433 	if (error)
    434 		return (error);
    435 	if (SCARG(uap, osa)) {
    436 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    437 		if (error)
    438 			return (error);
    439 	}
    440 	return (0);
    441 }
    442 #endif
    443 
    444 /* ARGSUSED */
    445 int
    446 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    447 {
    448 	struct sys___sigaction_sigtramp_args /* {
    449 		syscallarg(int)				signum;
    450 		syscallarg(const struct sigaction *)	nsa;
    451 		syscallarg(struct sigaction *)		osa;
    452 		syscallarg(void *)			tramp;
    453 		syscallarg(int)				vers;
    454 	} */ *uap = v;
    455 	struct proc *p = l->l_proc;
    456 	struct sigaction nsa, osa;
    457 	int error;
    458 
    459 	if (SCARG(uap, nsa)) {
    460 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    461 		if (error)
    462 			return (error);
    463 	}
    464 	error = sigaction1(p, SCARG(uap, signum),
    465 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    466 	    SCARG(uap, tramp), SCARG(uap, vers));
    467 	if (error)
    468 		return (error);
    469 	if (SCARG(uap, osa)) {
    470 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    471 		if (error)
    472 			return (error);
    473 	}
    474 	return (0);
    475 }
    476 
    477 /*
    478  * Initialize signal state for process 0;
    479  * set to ignore signals that are ignored by default and disable the signal
    480  * stack.
    481  */
    482 void
    483 siginit(struct proc *p)
    484 {
    485 	struct sigacts	*ps;
    486 	int		signum, prop;
    487 
    488 	ps = p->p_sigacts;
    489 	sigemptyset(&contsigmask);
    490 	sigemptyset(&stopsigmask);
    491 	sigemptyset(&sigcantmask);
    492 	for (signum = 1; signum < NSIG; signum++) {
    493 		prop = sigprop[signum];
    494 		if (prop & SA_CONT)
    495 			sigaddset(&contsigmask, signum);
    496 		if (prop & SA_STOP)
    497 			sigaddset(&stopsigmask, signum);
    498 		if (prop & SA_CANTMASK)
    499 			sigaddset(&sigcantmask, signum);
    500 		if (prop & SA_IGNORE && signum != SIGCONT)
    501 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    502 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    503 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    504 	}
    505 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    506 	p->p_sigctx.ps_sigwaited = NULL;
    507 	p->p_flag &= ~P_NOCLDSTOP;
    508 
    509 	/*
    510 	 * Reset stack state to the user stack.
    511 	 */
    512 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    513 	p->p_sigctx.ps_sigstk.ss_size = 0;
    514 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    515 
    516 	/* One reference. */
    517 	ps->sa_refcnt = 1;
    518 }
    519 
    520 /*
    521  * Reset signals for an exec of the specified process.
    522  */
    523 void
    524 execsigs(struct proc *p)
    525 {
    526 	struct sigacts	*ps;
    527 	int		signum, prop;
    528 
    529 	sigactsunshare(p);
    530 
    531 	ps = p->p_sigacts;
    532 
    533 	/*
    534 	 * Reset caught signals.  Held signals remain held
    535 	 * through p_sigctx.ps_sigmask (unless they were caught,
    536 	 * and are now ignored by default).
    537 	 */
    538 	for (signum = 1; signum < NSIG; signum++) {
    539 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    540 			prop = sigprop[signum];
    541 			if (prop & SA_IGNORE) {
    542 				if ((prop & SA_CONT) == 0)
    543 					sigaddset(&p->p_sigctx.ps_sigignore,
    544 					    signum);
    545 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    546 			}
    547 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    548 		}
    549 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    550 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    551 	}
    552 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    553 	p->p_sigctx.ps_sigwaited = NULL;
    554 
    555 	/*
    556 	 * Reset no zombies if child dies flag as Solaris does.
    557 	 */
    558 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
    559 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    560 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    561 
    562 	/*
    563 	 * Reset stack state to the user stack.
    564 	 */
    565 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    566 	p->p_sigctx.ps_sigstk.ss_size = 0;
    567 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    568 }
    569 
    570 int
    571 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    572 {
    573 
    574 	if (oss)
    575 		*oss = p->p_sigctx.ps_sigmask;
    576 
    577 	if (nss) {
    578 		(void)splsched();	/* XXXSMP */
    579 		switch (how) {
    580 		case SIG_BLOCK:
    581 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    582 			break;
    583 		case SIG_UNBLOCK:
    584 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    585 			CHECKSIGS(p);
    586 			break;
    587 		case SIG_SETMASK:
    588 			p->p_sigctx.ps_sigmask = *nss;
    589 			CHECKSIGS(p);
    590 			break;
    591 		default:
    592 			(void)spl0();	/* XXXSMP */
    593 			return (EINVAL);
    594 		}
    595 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    596 		(void)spl0();		/* XXXSMP */
    597 	}
    598 
    599 	return (0);
    600 }
    601 
    602 /*
    603  * Manipulate signal mask.
    604  * Note that we receive new mask, not pointer,
    605  * and return old mask as return value;
    606  * the library stub does the rest.
    607  */
    608 int
    609 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    610 {
    611 	struct sys___sigprocmask14_args /* {
    612 		syscallarg(int)			how;
    613 		syscallarg(const sigset_t *)	set;
    614 		syscallarg(sigset_t *)		oset;
    615 	} */ *uap = v;
    616 	struct proc	*p;
    617 	sigset_t	nss, oss;
    618 	int		error;
    619 
    620 	if (SCARG(uap, set)) {
    621 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    622 		if (error)
    623 			return (error);
    624 	}
    625 	p = l->l_proc;
    626 	error = sigprocmask1(p, SCARG(uap, how),
    627 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    628 	if (error)
    629 		return (error);
    630 	if (SCARG(uap, oset)) {
    631 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    632 		if (error)
    633 			return (error);
    634 	}
    635 	return (0);
    636 }
    637 
    638 void
    639 sigpending1(struct proc *p, sigset_t *ss)
    640 {
    641 
    642 	*ss = p->p_sigctx.ps_siglist;
    643 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    644 }
    645 
    646 /* ARGSUSED */
    647 int
    648 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    649 {
    650 	struct sys___sigpending14_args /* {
    651 		syscallarg(sigset_t *)	set;
    652 	} */ *uap = v;
    653 	struct proc	*p;
    654 	sigset_t	ss;
    655 
    656 	p = l->l_proc;
    657 	sigpending1(p, &ss);
    658 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    659 }
    660 
    661 int
    662 sigsuspend1(struct proc *p, const sigset_t *ss)
    663 {
    664 	struct sigacts *ps;
    665 
    666 	ps = p->p_sigacts;
    667 	if (ss) {
    668 		/*
    669 		 * When returning from sigpause, we want
    670 		 * the old mask to be restored after the
    671 		 * signal handler has finished.  Thus, we
    672 		 * save it here and mark the sigctx structure
    673 		 * to indicate this.
    674 		 */
    675 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    676 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    677 		(void) splsched();	/* XXXSMP */
    678 		p->p_sigctx.ps_sigmask = *ss;
    679 		CHECKSIGS(p);
    680 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    681 		(void) spl0();		/* XXXSMP */
    682 	}
    683 
    684 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    685 		/* void */;
    686 
    687 	/* always return EINTR rather than ERESTART... */
    688 	return (EINTR);
    689 }
    690 
    691 /*
    692  * Suspend process until signal, providing mask to be set
    693  * in the meantime.  Note nonstandard calling convention:
    694  * libc stub passes mask, not pointer, to save a copyin.
    695  */
    696 /* ARGSUSED */
    697 int
    698 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    699 {
    700 	struct sys___sigsuspend14_args /* {
    701 		syscallarg(const sigset_t *)	set;
    702 	} */ *uap = v;
    703 	struct proc	*p;
    704 	sigset_t	ss;
    705 	int		error;
    706 
    707 	if (SCARG(uap, set)) {
    708 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    709 		if (error)
    710 			return (error);
    711 	}
    712 
    713 	p = l->l_proc;
    714 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    715 }
    716 
    717 int
    718 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    719 	struct sigaltstack *oss)
    720 {
    721 
    722 	if (oss)
    723 		*oss = p->p_sigctx.ps_sigstk;
    724 
    725 	if (nss) {
    726 		if (nss->ss_flags & ~SS_ALLBITS)
    727 			return (EINVAL);
    728 
    729 		if (nss->ss_flags & SS_DISABLE) {
    730 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    731 				return (EINVAL);
    732 		} else {
    733 			if (nss->ss_size < MINSIGSTKSZ)
    734 				return (ENOMEM);
    735 		}
    736 		p->p_sigctx.ps_sigstk = *nss;
    737 	}
    738 
    739 	return (0);
    740 }
    741 
    742 /* ARGSUSED */
    743 int
    744 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    745 {
    746 	struct sys___sigaltstack14_args /* {
    747 		syscallarg(const struct sigaltstack *)	nss;
    748 		syscallarg(struct sigaltstack *)	oss;
    749 	} */ *uap = v;
    750 	struct proc		*p;
    751 	struct sigaltstack	nss, oss;
    752 	int			error;
    753 
    754 	if (SCARG(uap, nss)) {
    755 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    756 		if (error)
    757 			return (error);
    758 	}
    759 	p = l->l_proc;
    760 	error = sigaltstack1(p,
    761 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    762 	if (error)
    763 		return (error);
    764 	if (SCARG(uap, oss)) {
    765 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    766 		if (error)
    767 			return (error);
    768 	}
    769 	return (0);
    770 }
    771 
    772 /* ARGSUSED */
    773 int
    774 sys_kill(struct lwp *l, void *v, register_t *retval)
    775 {
    776 	struct sys_kill_args /* {
    777 		syscallarg(int)	pid;
    778 		syscallarg(int)	signum;
    779 	} */ *uap = v;
    780 	struct proc	*cp, *p;
    781 	struct pcred	*pc;
    782 	ksiginfo_t	ksi;
    783 
    784 	cp = l->l_proc;
    785 	pc = cp->p_cred;
    786 	if ((u_int)SCARG(uap, signum) >= NSIG)
    787 		return (EINVAL);
    788 	KSI_INIT(&ksi);
    789 	ksi.ksi_signo = SCARG(uap, signum);
    790 	ksi.ksi_code = SI_USER;
    791 	ksi.ksi_pid = cp->p_pid;
    792 	ksi.ksi_uid = cp->p_ucred->cr_uid;
    793 	if (SCARG(uap, pid) > 0) {
    794 		/* kill single process */
    795 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    796 			return (ESRCH);
    797 		if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
    798 			return (EPERM);
    799 		if (SCARG(uap, signum))
    800 			kpsignal2(p, &ksi, 1);
    801 		return (0);
    802 	}
    803 	switch (SCARG(uap, pid)) {
    804 	case -1:		/* broadcast signal */
    805 		return (killpg1(cp, &ksi, 0, 1));
    806 	case 0:			/* signal own process group */
    807 		return (killpg1(cp, &ksi, 0, 0));
    808 	default:		/* negative explicit process group */
    809 		return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
    810 	}
    811 	/* NOTREACHED */
    812 }
    813 
    814 /*
    815  * Common code for kill process group/broadcast kill.
    816  * cp is calling process.
    817  */
    818 int
    819 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
    820 {
    821 	struct proc	*p;
    822 	struct pcred	*pc;
    823 	struct pgrp	*pgrp;
    824 	int		nfound;
    825 	int		signum = ksi->ksi_signo;
    826 
    827 	pc = cp->p_cred;
    828 	nfound = 0;
    829 	if (all) {
    830 		/*
    831 		 * broadcast
    832 		 */
    833 		proclist_lock_read();
    834 		PROCLIST_FOREACH(p, &allproc) {
    835 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    836 			    p == cp || !CANSIGNAL(cp, pc, p, signum))
    837 				continue;
    838 			nfound++;
    839 			if (signum)
    840 				kpsignal2(p, ksi, 1);
    841 		}
    842 		proclist_unlock_read();
    843 	} else {
    844 		if (pgid == 0)
    845 			/*
    846 			 * zero pgid means send to my process group.
    847 			 */
    848 			pgrp = cp->p_pgrp;
    849 		else {
    850 			pgrp = pgfind(pgid);
    851 			if (pgrp == NULL)
    852 				return (ESRCH);
    853 		}
    854 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    855 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    856 			    !CANSIGNAL(cp, pc, p, signum))
    857 				continue;
    858 			nfound++;
    859 			if (signum && P_ZOMBIE(p) == 0)
    860 				kpsignal2(p, ksi, 1);
    861 		}
    862 	}
    863 	return (nfound ? 0 : ESRCH);
    864 }
    865 
    866 /*
    867  * Send a signal to a process group.
    868  */
    869 void
    870 gsignal(int pgid, int signum)
    871 {
    872 	ksiginfo_t ksi;
    873 	KSI_INIT_EMPTY(&ksi);
    874 	ksi.ksi_signo = signum;
    875 	kgsignal(pgid, &ksi, NULL);
    876 }
    877 
    878 void
    879 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    880 {
    881 	struct pgrp *pgrp;
    882 
    883 	if (pgid && (pgrp = pgfind(pgid)))
    884 		kpgsignal(pgrp, ksi, data, 0);
    885 }
    886 
    887 /*
    888  * Send a signal to a process group. If checktty is 1,
    889  * limit to members which have a controlling terminal.
    890  */
    891 void
    892 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    893 {
    894 	ksiginfo_t ksi;
    895 	KSI_INIT_EMPTY(&ksi);
    896 	ksi.ksi_signo = sig;
    897 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    898 }
    899 
    900 void
    901 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    902 {
    903 	struct proc *p;
    904 
    905 	if (pgrp)
    906 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    907 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    908 				kpsignal(p, ksi, data);
    909 }
    910 
    911 /*
    912  * Send a signal caused by a trap to the current process.
    913  * If it will be caught immediately, deliver it with correct code.
    914  * Otherwise, post it normally.
    915  */
    916 void
    917 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    918 {
    919 	struct proc	*p;
    920 	struct sigacts	*ps;
    921 	int signum = ksi->ksi_signo;
    922 
    923 	KASSERT(KSI_TRAP_P(ksi));
    924 
    925 	p = l->l_proc;
    926 	ps = p->p_sigacts;
    927 	if ((p->p_flag & P_TRACED) == 0 &&
    928 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    929 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    930 		p->p_stats->p_ru.ru_nsignals++;
    931 #ifdef KTRACE
    932 		if (KTRPOINT(p, KTR_PSIG))
    933 			ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
    934 			    &p->p_sigctx.ps_sigmask, ksi);
    935 #endif
    936 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    937 		(void) splsched();	/* XXXSMP */
    938 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    939 		    &p->p_sigctx.ps_sigmask);
    940 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    941 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    942 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    943 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    944 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    945 		}
    946 		(void) spl0();		/* XXXSMP */
    947 	} else {
    948 		p->p_sigctx.ps_lwp = l->l_lid;
    949 		/* XXX for core dump/debugger */
    950 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    951 		p->p_sigctx.ps_code = ksi->ksi_trap;
    952 		kpsignal2(p, ksi, 1);
    953 	}
    954 }
    955 
    956 /*
    957  * Fill in signal information and signal the parent for a child status change.
    958  */
    959 static void
    960 child_psignal(struct proc *p, int dolock)
    961 {
    962 	ksiginfo_t ksi;
    963 
    964 	KSI_INIT(&ksi);
    965 	ksi.ksi_signo = SIGCHLD;
    966 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    967 	ksi.ksi_pid = p->p_pid;
    968 	ksi.ksi_uid = p->p_ucred->cr_uid;
    969 	ksi.ksi_status = p->p_xstat;
    970 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    971 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    972 	kpsignal2(p->p_pptr, &ksi, dolock);
    973 }
    974 
    975 /*
    976  * Send the signal to the process.  If the signal has an action, the action
    977  * is usually performed by the target process rather than the caller; we add
    978  * the signal to the set of pending signals for the process.
    979  *
    980  * Exceptions:
    981  *   o When a stop signal is sent to a sleeping process that takes the
    982  *     default action, the process is stopped without awakening it.
    983  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    984  *     regardless of the signal action (eg, blocked or ignored).
    985  *
    986  * Other ignored signals are discarded immediately.
    987  *
    988  * XXXSMP: Invoked as psignal() or sched_psignal().
    989  */
    990 void
    991 psignal1(struct proc *p, int signum, int dolock)
    992 {
    993 	ksiginfo_t ksi;
    994 
    995 	KSI_INIT_EMPTY(&ksi);
    996 	ksi.ksi_signo = signum;
    997 	kpsignal2(p, &ksi, dolock);
    998 }
    999 
   1000 void
   1001 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
   1002 {
   1003 
   1004 	if ((p->p_flag & P_WEXIT) == 0 && data) {
   1005 		size_t fd;
   1006 		struct filedesc *fdp = p->p_fd;
   1007 
   1008 		ksi->ksi_fd = -1;
   1009 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
   1010 			struct file *fp = fdp->fd_ofiles[fd];
   1011 			/* XXX: lock? */
   1012 			if (fp && fp->f_data == data) {
   1013 				ksi->ksi_fd = fd;
   1014 				break;
   1015 			}
   1016 		}
   1017 	}
   1018 	kpsignal2(p, ksi, dolock);
   1019 }
   1020 
   1021 static void
   1022 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
   1023 {
   1024 	struct lwp *l, *suspended = NULL;
   1025 	struct sadata_vp *vp;
   1026 	int	s = 0, prop, allsusp;
   1027 	sig_t	action;
   1028 	int	signum = ksi->ksi_signo;
   1029 
   1030 #ifdef DIAGNOSTIC
   1031 	if (signum <= 0 || signum >= NSIG)
   1032 		panic("psignal signal number %d", signum);
   1033 
   1034 	/* XXXSMP: works, but icky */
   1035 	if (dolock)
   1036 		SCHED_ASSERT_UNLOCKED();
   1037 	else
   1038 		SCHED_ASSERT_LOCKED();
   1039 #endif
   1040 
   1041 	/*
   1042 	 * Notify any interested parties in the signal.
   1043 	 */
   1044 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
   1045 
   1046 	prop = sigprop[signum];
   1047 
   1048 	/*
   1049 	 * If proc is traced, always give parent a chance.
   1050 	 */
   1051 	if (p->p_flag & P_TRACED) {
   1052 		action = SIG_DFL;
   1053 
   1054 		/*
   1055 		 * If the process is being traced and the signal is being
   1056 		 * caught, make sure to save any ksiginfo.
   1057 		 */
   1058 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1059 			ksiginfo_put(p, ksi);
   1060 	} else {
   1061 		/*
   1062 		 * If the signal was the result of a trap, reset it
   1063 		 * to default action if it's currently masked, so that it would
   1064 		 * coredump immediatelly instead of spinning repeatedly
   1065 		 * taking the signal.
   1066 		 */
   1067 		if (KSI_TRAP_P(ksi)
   1068 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
   1069 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
   1070 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
   1071 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1072 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
   1073 			SIGACTION(p, signum).sa_handler = SIG_DFL;
   1074 		}
   1075 
   1076 		/*
   1077 		 * If the signal is being ignored,
   1078 		 * then we forget about it immediately.
   1079 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1080 		 * and if it is set to SIG_IGN,
   1081 		 * action will be SIG_DFL here.)
   1082 		 */
   1083 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1084 			return;
   1085 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1086 			action = SIG_HOLD;
   1087 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1088 			action = SIG_CATCH;
   1089 		else {
   1090 			action = SIG_DFL;
   1091 
   1092 			if (prop & SA_KILL && p->p_nice > NZERO)
   1093 				p->p_nice = NZERO;
   1094 
   1095 			/*
   1096 			 * If sending a tty stop signal to a member of an
   1097 			 * orphaned process group, discard the signal here if
   1098 			 * the action is default; don't stop the process below
   1099 			 * if sleeping, and don't clear any pending SIGCONT.
   1100 			 */
   1101 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1102 				return;
   1103 		}
   1104 	}
   1105 
   1106 	if (prop & SA_CONT)
   1107 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1108 
   1109 	if (prop & SA_STOP)
   1110 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1111 
   1112 	/*
   1113 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1114 	 * please!), check if anything waits on it. If yes, save the
   1115 	 * info into provided ps_sigwaited, and wake-up the waiter.
   1116 	 * The signal won't be processed further here.
   1117 	 */
   1118 	if ((prop & SA_CANTMASK) == 0
   1119 	    && p->p_sigctx.ps_sigwaited
   1120 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
   1121 	    && p->p_stat != SSTOP) {
   1122 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
   1123 		p->p_sigctx.ps_sigwaited = NULL;
   1124 		if (dolock)
   1125 			wakeup_one(&p->p_sigctx.ps_sigwait);
   1126 		else
   1127 			sched_wakeup(&p->p_sigctx.ps_sigwait);
   1128 		return;
   1129 	}
   1130 
   1131 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1132 
   1133 	/* CHECKSIGS() is "inlined" here. */
   1134 	p->p_sigctx.ps_sigcheck = 1;
   1135 
   1136 	/*
   1137 	 * Defer further processing for signals which are held,
   1138 	 * except that stopped processes must be continued by SIGCONT.
   1139 	 */
   1140 	if (action == SIG_HOLD &&
   1141 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1142 		ksiginfo_put(p, ksi);
   1143 		return;
   1144 	}
   1145 	/* XXXSMP: works, but icky */
   1146 	if (dolock)
   1147 		SCHED_LOCK(s);
   1148 
   1149 	if (p->p_flag & P_SA) {
   1150 		allsusp = 0;
   1151 		l = NULL;
   1152 		if (p->p_stat == SACTIVE) {
   1153 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1154 				l = vp->savp_lwp;
   1155 				KDASSERT(l != NULL);
   1156 				if (l->l_flag & L_SA_IDLE) {
   1157 					/* wakeup idle LWP */
   1158 					goto found;
   1159 					/*NOTREACHED*/
   1160 				} else if (l->l_flag & L_SA_YIELD) {
   1161 					/* idle LWP is already waking up */
   1162 					goto out;
   1163 					/*NOTREACHED*/
   1164 				}
   1165 			}
   1166 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1167 				l = vp->savp_lwp;
   1168 				if (l->l_stat == LSRUN ||
   1169 				    l->l_stat == LSONPROC) {
   1170 					signotify(p);
   1171 					goto out;
   1172 					/*NOTREACHED*/
   1173 				}
   1174 				if (l->l_stat == LSSLEEP &&
   1175 				    l->l_flag & L_SINTR) {
   1176 					/* ok to signal vp lwp */
   1177 				} else
   1178 					l = NULL;
   1179 			}
   1180 			if (l == NULL)
   1181 				allsusp = 1;
   1182 		} else if (p->p_stat == SSTOP) {
   1183 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1184 				l = vp->savp_lwp;
   1185 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
   1186 					break;
   1187 				l = NULL;
   1188 			}
   1189 		}
   1190 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
   1191 		/*
   1192 		 * At least one LWP is running or on a run queue.
   1193 		 * The signal will be noticed when one of them returns
   1194 		 * to userspace.
   1195 		 */
   1196 		signotify(p);
   1197 		/*
   1198 		 * The signal will be noticed very soon.
   1199 		 */
   1200 		goto out;
   1201 		/*NOTREACHED*/
   1202 	} else {
   1203 		/*
   1204 		 * Find out if any of the sleeps are interruptable,
   1205 		 * and if all the live LWPs remaining are suspended.
   1206 		 */
   1207 		allsusp = 1;
   1208 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1209 			if (l->l_stat == LSSLEEP &&
   1210 			    l->l_flag & L_SINTR)
   1211 				break;
   1212 			if (l->l_stat == LSSUSPENDED)
   1213 				suspended = l;
   1214 			else if ((l->l_stat != LSZOMB) &&
   1215 			    (l->l_stat != LSDEAD))
   1216 				allsusp = 0;
   1217 		}
   1218 	}
   1219 
   1220  found:
   1221 	switch (p->p_stat) {
   1222 	case SACTIVE:
   1223 
   1224 		if (l != NULL && (p->p_flag & P_TRACED))
   1225 			goto run;
   1226 
   1227 		/*
   1228 		 * If SIGCONT is default (or ignored) and process is
   1229 		 * asleep, we are finished; the process should not
   1230 		 * be awakened.
   1231 		 */
   1232 		if ((prop & SA_CONT) && action == SIG_DFL) {
   1233 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1234 			goto done;
   1235 		}
   1236 
   1237 		/*
   1238 		 * When a sleeping process receives a stop
   1239 		 * signal, process immediately if possible.
   1240 		 */
   1241 		if ((prop & SA_STOP) && action == SIG_DFL) {
   1242 			/*
   1243 			 * If a child holding parent blocked,
   1244 			 * stopping could cause deadlock.
   1245 			 */
   1246 			if (p->p_flag & P_PPWAIT) {
   1247 				goto out;
   1248 			}
   1249 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1250 			p->p_xstat = signum;
   1251 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1252 				/*
   1253 				 * XXXSMP: recursive call; don't lock
   1254 				 * the second time around.
   1255 				 */
   1256 				child_psignal(p, 0);
   1257 			}
   1258 			proc_stop(p, 1);	/* XXXSMP: recurse? */
   1259 			goto done;
   1260 		}
   1261 
   1262 		if (l == NULL) {
   1263 			/*
   1264 			 * Special case: SIGKILL of a process
   1265 			 * which is entirely composed of
   1266 			 * suspended LWPs should succeed. We
   1267 			 * make this happen by unsuspending one of
   1268 			 * them.
   1269 			 */
   1270 			if (allsusp && (signum == SIGKILL)) {
   1271 				if (p->p_flag & P_SA) {
   1272 					/*
   1273 					 * get a suspended lwp from
   1274 					 * the cache to send KILL
   1275 					 * signal
   1276 					 * XXXcl add signal checks at resume points
   1277 					 */
   1278 					suspended = sa_getcachelwp
   1279 						(SLIST_FIRST(&p->p_sa->sa_vps));
   1280 				}
   1281 				lwp_continue(suspended);
   1282 			}
   1283 			goto done;
   1284 		}
   1285 		/*
   1286 		 * All other (caught or default) signals
   1287 		 * cause the process to run.
   1288 		 */
   1289 		goto runfast;
   1290 		/*NOTREACHED*/
   1291 	case SSTOP:
   1292 		/* Process is stopped */
   1293 		/*
   1294 		 * If traced process is already stopped,
   1295 		 * then no further action is necessary.
   1296 		 */
   1297 		if (p->p_flag & P_TRACED)
   1298 			goto done;
   1299 
   1300 		/*
   1301 		 * Kill signal always sets processes running,
   1302 		 * if possible.
   1303 		 */
   1304 		if (signum == SIGKILL) {
   1305 			l = proc_unstop(p);
   1306 			if (l)
   1307 				goto runfast;
   1308 			goto done;
   1309 		}
   1310 
   1311 		if (prop & SA_CONT) {
   1312 			/*
   1313 			 * If SIGCONT is default (or ignored),
   1314 			 * we continue the process but don't
   1315 			 * leave the signal in ps_siglist, as
   1316 			 * it has no further action.  If
   1317 			 * SIGCONT is held, we continue the
   1318 			 * process and leave the signal in
   1319 			 * ps_siglist.  If the process catches
   1320 			 * SIGCONT, let it handle the signal
   1321 			 * itself.  If it isn't waiting on an
   1322 			 * event, then it goes back to run
   1323 			 * state.  Otherwise, process goes
   1324 			 * back to sleep state.
   1325 			 */
   1326 			if (action == SIG_DFL)
   1327 				sigdelset(&p->p_sigctx.ps_siglist,
   1328 				    signum);
   1329 			l = proc_unstop(p);
   1330 			if (l && (action == SIG_CATCH))
   1331 				goto runfast;
   1332 			goto out;
   1333 		}
   1334 
   1335 		if (prop & SA_STOP) {
   1336 			/*
   1337 			 * Already stopped, don't need to stop again.
   1338 			 * (If we did the shell could get confused.)
   1339 			 */
   1340 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1341 			goto done;
   1342 		}
   1343 
   1344 		/*
   1345 		 * If a lwp is sleeping interruptibly, then
   1346 		 * wake it up; it will run until the kernel
   1347 		 * boundary, where it will stop in issignal(),
   1348 		 * since p->p_stat is still SSTOP. When the
   1349 		 * process is continued, it will be made
   1350 		 * runnable and can look at the signal.
   1351 		 */
   1352 		if (l)
   1353 			goto run;
   1354 		goto out;
   1355 	case SIDL:
   1356 		/* Process is being created by fork */
   1357 		/* XXX: We are not ready to receive signals yet */
   1358 		goto done;
   1359 	default:
   1360 		/* Else what? */
   1361 		panic("psignal: Invalid process state %d.", p->p_stat);
   1362 	}
   1363 	/*NOTREACHED*/
   1364 
   1365  runfast:
   1366 	if (action == SIG_CATCH) {
   1367 		ksiginfo_put(p, ksi);
   1368 		action = SIG_HOLD;
   1369 	}
   1370 	/*
   1371 	 * Raise priority to at least PUSER.
   1372 	 */
   1373 	if (l->l_priority > PUSER)
   1374 		l->l_priority = PUSER;
   1375  run:
   1376 	if (action == SIG_CATCH) {
   1377 		ksiginfo_put(p, ksi);
   1378 		action = SIG_HOLD;
   1379 	}
   1380 
   1381 	setrunnable(l);		/* XXXSMP: recurse? */
   1382  out:
   1383 	if (action == SIG_CATCH)
   1384 		ksiginfo_put(p, ksi);
   1385  done:
   1386 	/* XXXSMP: works, but icky */
   1387 	if (dolock)
   1388 		SCHED_UNLOCK(s);
   1389 }
   1390 
   1391 void
   1392 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1393 {
   1394 	struct proc *p = l->l_proc;
   1395 	struct lwp *le, *li;
   1396 	siginfo_t *si;
   1397 	int f;
   1398 
   1399 	if (p->p_flag & P_SA) {
   1400 
   1401 		/* XXXUPSXXX What if not on sa_vp ? */
   1402 
   1403 		f = l->l_flag & L_SA;
   1404 		l->l_flag &= ~L_SA;
   1405 		si = pool_get(&siginfo_pool, PR_WAITOK);
   1406 		si->_info = ksi->ksi_info;
   1407 		le = li = NULL;
   1408 		if (KSI_TRAP_P(ksi))
   1409 			le = l;
   1410 		else
   1411 			li = l;
   1412 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1413 		    sizeof(*si), si) != 0) {
   1414 			pool_put(&siginfo_pool, si);
   1415 			if (KSI_TRAP_P(ksi))
   1416 				/* XXX What do we do here?? */;
   1417 		}
   1418 		l->l_flag |= f;
   1419 		return;
   1420 	}
   1421 
   1422 	(*p->p_emul->e_sendsig)(ksi, mask);
   1423 }
   1424 
   1425 static __inline int firstsig(const sigset_t *);
   1426 
   1427 static __inline int
   1428 firstsig(const sigset_t *ss)
   1429 {
   1430 	int sig;
   1431 
   1432 	sig = ffs(ss->__bits[0]);
   1433 	if (sig != 0)
   1434 		return (sig);
   1435 #if NSIG > 33
   1436 	sig = ffs(ss->__bits[1]);
   1437 	if (sig != 0)
   1438 		return (sig + 32);
   1439 #endif
   1440 #if NSIG > 65
   1441 	sig = ffs(ss->__bits[2]);
   1442 	if (sig != 0)
   1443 		return (sig + 64);
   1444 #endif
   1445 #if NSIG > 97
   1446 	sig = ffs(ss->__bits[3]);
   1447 	if (sig != 0)
   1448 		return (sig + 96);
   1449 #endif
   1450 	return (0);
   1451 }
   1452 
   1453 /*
   1454  * If the current process has received a signal (should be caught or cause
   1455  * termination, should interrupt current syscall), return the signal number.
   1456  * Stop signals with default action are processed immediately, then cleared;
   1457  * they aren't returned.  This is checked after each entry to the system for
   1458  * a syscall or trap (though this can usually be done without calling issignal
   1459  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1460  * sequence is
   1461  *
   1462  *	while (signum = CURSIG(curlwp))
   1463  *		postsig(signum);
   1464  */
   1465 int
   1466 issignal(struct lwp *l)
   1467 {
   1468 	struct proc	*p = l->l_proc;
   1469 	int		s = 0, signum, prop;
   1470 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1471 	sigset_t	ss;
   1472 
   1473 	/* Bail out if we do not own the virtual processor */
   1474 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
   1475 		return 0;
   1476 
   1477 	if (p->p_stat == SSTOP) {
   1478 		/*
   1479 		 * The process is stopped/stopping. Stop ourselves now that
   1480 		 * we're on the kernel/userspace boundary.
   1481 		 */
   1482 		if (dolock)
   1483 			SCHED_LOCK(s);
   1484 		l->l_stat = LSSTOP;
   1485 		p->p_nrlwps--;
   1486 		if (p->p_flag & P_TRACED)
   1487 			goto sigtraceswitch;
   1488 		else
   1489 			goto sigswitch;
   1490 	}
   1491 	for (;;) {
   1492 		sigpending1(p, &ss);
   1493 		if (p->p_flag & P_PPWAIT)
   1494 			sigminusset(&stopsigmask, &ss);
   1495 		signum = firstsig(&ss);
   1496 		if (signum == 0) {		 	/* no signal to send */
   1497 			p->p_sigctx.ps_sigcheck = 0;
   1498 			if (locked && dolock)
   1499 				SCHED_LOCK(s);
   1500 			return (0);
   1501 		}
   1502 							/* take the signal! */
   1503 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1504 
   1505 		/*
   1506 		 * We should see pending but ignored signals
   1507 		 * only if P_TRACED was on when they were posted.
   1508 		 */
   1509 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1510 		    (p->p_flag & P_TRACED) == 0)
   1511 			continue;
   1512 
   1513 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1514 			/*
   1515 			 * If traced, always stop, and stay
   1516 			 * stopped until released by the debugger.
   1517 			 */
   1518 			p->p_xstat = signum;
   1519 
   1520 			/* Emulation-specific handling of signal trace */
   1521 			if ((p->p_emul->e_tracesig != NULL) &&
   1522 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
   1523 				goto childresumed;
   1524 
   1525 			if ((p->p_flag & P_FSTRACE) == 0)
   1526 				child_psignal(p, dolock);
   1527 			if (dolock)
   1528 				SCHED_LOCK(s);
   1529 			proc_stop(p, 1);
   1530 		sigtraceswitch:
   1531 			mi_switch(l, NULL);
   1532 			SCHED_ASSERT_UNLOCKED();
   1533 			if (dolock)
   1534 				splx(s);
   1535 			else
   1536 				dolock = 1;
   1537 
   1538 		childresumed:
   1539 			/*
   1540 			 * If we are no longer being traced, or the parent
   1541 			 * didn't give us a signal, look for more signals.
   1542 			 */
   1543 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1544 				continue;
   1545 
   1546 			/*
   1547 			 * If the new signal is being masked, look for other
   1548 			 * signals.
   1549 			 */
   1550 			signum = p->p_xstat;
   1551 			p->p_xstat = 0;
   1552 			/*
   1553 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1554 			 * in setrunnable().
   1555 			 */
   1556 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1557 				continue;
   1558 							/* take the signal! */
   1559 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1560 		}
   1561 
   1562 		prop = sigprop[signum];
   1563 
   1564 		/*
   1565 		 * Decide whether the signal should be returned.
   1566 		 * Return the signal's number, or fall through
   1567 		 * to clear it from the pending mask.
   1568 		 */
   1569 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1570 
   1571 		case (long)SIG_DFL:
   1572 			/*
   1573 			 * Don't take default actions on system processes.
   1574 			 */
   1575 			if (p->p_pid <= 1) {
   1576 #ifdef DIAGNOSTIC
   1577 				/*
   1578 				 * Are you sure you want to ignore SIGSEGV
   1579 				 * in init? XXX
   1580 				 */
   1581 				printf("Process (pid %d) got signal %d\n",
   1582 				    p->p_pid, signum);
   1583 #endif
   1584 				break;		/* == ignore */
   1585 			}
   1586 			/*
   1587 			 * If there is a pending stop signal to process
   1588 			 * with default action, stop here,
   1589 			 * then clear the signal.  However,
   1590 			 * if process is member of an orphaned
   1591 			 * process group, ignore tty stop signals.
   1592 			 */
   1593 			if (prop & SA_STOP) {
   1594 				if (p->p_flag & P_TRACED ||
   1595 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1596 				    prop & SA_TTYSTOP))
   1597 					break;	/* == ignore */
   1598 				p->p_xstat = signum;
   1599 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1600 					child_psignal(p, dolock);
   1601 				if (dolock)
   1602 					SCHED_LOCK(s);
   1603 				proc_stop(p, 1);
   1604 			sigswitch:
   1605 				mi_switch(l, NULL);
   1606 				SCHED_ASSERT_UNLOCKED();
   1607 				if (dolock)
   1608 					splx(s);
   1609 				else
   1610 					dolock = 1;
   1611 				break;
   1612 			} else if (prop & SA_IGNORE) {
   1613 				/*
   1614 				 * Except for SIGCONT, shouldn't get here.
   1615 				 * Default action is to ignore; drop it.
   1616 				 */
   1617 				break;		/* == ignore */
   1618 			} else
   1619 				goto keep;
   1620 			/*NOTREACHED*/
   1621 
   1622 		case (long)SIG_IGN:
   1623 			/*
   1624 			 * Masking above should prevent us ever trying
   1625 			 * to take action on an ignored signal other
   1626 			 * than SIGCONT, unless process is traced.
   1627 			 */
   1628 #ifdef DEBUG_ISSIGNAL
   1629 			if ((prop & SA_CONT) == 0 &&
   1630 			    (p->p_flag & P_TRACED) == 0)
   1631 				printf("issignal\n");
   1632 #endif
   1633 			break;		/* == ignore */
   1634 
   1635 		default:
   1636 			/*
   1637 			 * This signal has an action, let
   1638 			 * postsig() process it.
   1639 			 */
   1640 			goto keep;
   1641 		}
   1642 	}
   1643 	/* NOTREACHED */
   1644 
   1645  keep:
   1646 						/* leave the signal for later */
   1647 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1648 	CHECKSIGS(p);
   1649 	if (locked && dolock)
   1650 		SCHED_LOCK(s);
   1651 	return (signum);
   1652 }
   1653 
   1654 /*
   1655  * Put the argument process into the stopped state and notify the parent
   1656  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1657  * on the run queue.
   1658  */
   1659 void
   1660 proc_stop(struct proc *p, int dowakeup)
   1661 {
   1662 	struct lwp *l;
   1663 	struct proc *parent;
   1664 	struct sadata_vp *vp;
   1665 
   1666 	SCHED_ASSERT_LOCKED();
   1667 
   1668 	/* XXX lock process LWP state */
   1669 	p->p_flag &= ~P_WAITED;
   1670 	p->p_stat = SSTOP;
   1671 	parent = p->p_pptr;
   1672 	parent->p_nstopchild++;
   1673 
   1674 	if (p->p_flag & P_SA) {
   1675 		/*
   1676 		 * Only (try to) put the LWP on the VP in stopped
   1677 		 * state.
   1678 		 * All other LWPs will suspend in sa_setwoken()
   1679 		 * because the VP-LWP in stopped state cannot be
   1680 		 * repossessed.
   1681 		 */
   1682 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1683 			l = vp->savp_lwp;
   1684 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
   1685 				l->l_stat = LSSTOP;
   1686 				p->p_nrlwps--;
   1687 			} else if (l->l_stat == LSRUN) {
   1688 				/* Remove LWP from the run queue */
   1689 				remrunqueue(l);
   1690 				l->l_stat = LSSTOP;
   1691 				p->p_nrlwps--;
   1692 			} else if (l->l_stat == LSSLEEP &&
   1693 			    l->l_flag & L_SA_IDLE) {
   1694 				l->l_flag &= ~L_SA_IDLE;
   1695 				l->l_stat = LSSTOP;
   1696 			}
   1697 		}
   1698 		goto out;
   1699 	}
   1700 
   1701 	/*
   1702 	 * Put as many LWP's as possible in stopped state.
   1703 	 * Sleeping ones will notice the stopped state as they try to
   1704 	 * return to userspace.
   1705 	 */
   1706 
   1707 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1708 		if (l->l_stat == LSONPROC) {
   1709 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1710 			 * is curlwp and hence is about to be mi_switched
   1711 			 * away; the only callers of proc_stop() are:
   1712 			 * - psignal
   1713 			 * - issignal()
   1714 			 * For the former, proc_stop() is only called when
   1715 			 * no processes are running, so we don't worry.
   1716 			 * For the latter, proc_stop() is called right
   1717 			 * before mi_switch().
   1718 			 */
   1719 			l->l_stat = LSSTOP;
   1720 			p->p_nrlwps--;
   1721 		} else if (l->l_stat == LSRUN) {
   1722 			/* Remove LWP from the run queue */
   1723 			remrunqueue(l);
   1724 			l->l_stat = LSSTOP;
   1725 			p->p_nrlwps--;
   1726 		} else if ((l->l_stat == LSSLEEP) ||
   1727 		    (l->l_stat == LSSUSPENDED) ||
   1728 		    (l->l_stat == LSZOMB) ||
   1729 		    (l->l_stat == LSDEAD)) {
   1730 			/*
   1731 			 * Don't do anything; let sleeping LWPs
   1732 			 * discover the stopped state of the process
   1733 			 * on their way out of the kernel; otherwise,
   1734 			 * things like NFS threads that sleep with
   1735 			 * locks will block the rest of the system
   1736 			 * from getting any work done.
   1737 			 *
   1738 			 * Suspended/dead/zombie LWPs aren't going
   1739 			 * anywhere, so we don't need to touch them.
   1740 			 */
   1741 		}
   1742 #ifdef DIAGNOSTIC
   1743 		else {
   1744 			panic("proc_stop: process %d lwp %d "
   1745 			      "in unstoppable state %d.\n",
   1746 			    p->p_pid, l->l_lid, l->l_stat);
   1747 		}
   1748 #endif
   1749 	}
   1750 
   1751  out:
   1752 	/* XXX unlock process LWP state */
   1753 
   1754 	if (dowakeup)
   1755 		sched_wakeup((caddr_t)p->p_pptr);
   1756 }
   1757 
   1758 /*
   1759  * Given a process in state SSTOP, set the state back to SACTIVE and
   1760  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1761  *
   1762  * If no LWPs ended up runnable (and therefore able to take a signal),
   1763  * return a LWP that is sleeping interruptably. The caller can wake
   1764  * that LWP up to take a signal.
   1765  */
   1766 struct lwp *
   1767 proc_unstop(struct proc *p)
   1768 {
   1769 	struct lwp *l, *lr = NULL;
   1770 	struct sadata_vp *vp;
   1771 	int cantake = 0;
   1772 
   1773 	SCHED_ASSERT_LOCKED();
   1774 
   1775 	/*
   1776 	 * Our caller wants to be informed if there are only sleeping
   1777 	 * and interruptable LWPs left after we have run so that it
   1778 	 * can invoke setrunnable() if required - return one of the
   1779 	 * interruptable LWPs if this is the case.
   1780 	 */
   1781 
   1782 	if (!(p->p_flag & P_WAITED))
   1783 		p->p_pptr->p_nstopchild--;
   1784 	p->p_stat = SACTIVE;
   1785 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1786 		if (l->l_stat == LSRUN) {
   1787 			lr = NULL;
   1788 			cantake = 1;
   1789 		}
   1790 		if (l->l_stat != LSSTOP)
   1791 			continue;
   1792 
   1793 		if (l->l_wchan != NULL) {
   1794 			l->l_stat = LSSLEEP;
   1795 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1796 				lr = l;
   1797 				cantake = 1;
   1798 			}
   1799 		} else {
   1800 			setrunnable(l);
   1801 			lr = NULL;
   1802 			cantake = 1;
   1803 		}
   1804 	}
   1805 	if (p->p_flag & P_SA) {
   1806 		/* Only consider returning the LWP on the VP. */
   1807 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1808 			lr = vp->savp_lwp;
   1809 			if (lr->l_stat == LSSLEEP) {
   1810 				if (lr->l_flag & L_SA_YIELD) {
   1811 					setrunnable(lr);
   1812 					break;
   1813 				} else if (lr->l_flag & L_SINTR)
   1814 					return lr;
   1815 			}
   1816 		}
   1817 		return NULL;
   1818 	}
   1819 	return lr;
   1820 }
   1821 
   1822 /*
   1823  * Take the action for the specified signal
   1824  * from the current set of pending signals.
   1825  */
   1826 void
   1827 postsig(int signum)
   1828 {
   1829 	struct lwp *l;
   1830 	struct proc	*p;
   1831 	struct sigacts	*ps;
   1832 	sig_t		action;
   1833 	sigset_t	*returnmask;
   1834 
   1835 	l = curlwp;
   1836 	p = l->l_proc;
   1837 	ps = p->p_sigacts;
   1838 #ifdef DIAGNOSTIC
   1839 	if (signum == 0)
   1840 		panic("postsig");
   1841 #endif
   1842 
   1843 	KERNEL_PROC_LOCK(l);
   1844 
   1845 #ifdef MULTIPROCESSOR
   1846 	/*
   1847 	 * On MP, issignal() can return the same signal to multiple
   1848 	 * LWPs.  The LWPs will block above waiting for the kernel
   1849 	 * lock and the first LWP which gets through will then remove
   1850 	 * the signal from ps_siglist.  All other LWPs exit here.
   1851 	 */
   1852 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
   1853 		KERNEL_PROC_UNLOCK(l);
   1854 		return;
   1855 	}
   1856 #endif
   1857 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1858 	action = SIGACTION_PS(ps, signum).sa_handler;
   1859 	if (action == SIG_DFL) {
   1860 #ifdef KTRACE
   1861 		if (KTRPOINT(p, KTR_PSIG))
   1862 			ktrpsig(p, signum, action,
   1863 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1864 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1865 			    NULL);
   1866 #endif
   1867 		/*
   1868 		 * Default action, where the default is to kill
   1869 		 * the process.  (Other cases were ignored above.)
   1870 		 */
   1871 		sigexit(l, signum);
   1872 		/* NOTREACHED */
   1873 	} else {
   1874 		ksiginfo_t *ksi;
   1875 		/*
   1876 		 * If we get here, the signal must be caught.
   1877 		 */
   1878 #ifdef DIAGNOSTIC
   1879 		if (action == SIG_IGN ||
   1880 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1881 			panic("postsig action");
   1882 #endif
   1883 		/*
   1884 		 * Set the new mask value and also defer further
   1885 		 * occurrences of this signal.
   1886 		 *
   1887 		 * Special case: user has done a sigpause.  Here the
   1888 		 * current mask is not of interest, but rather the
   1889 		 * mask from before the sigpause is what we want
   1890 		 * restored after the signal processing is completed.
   1891 		 */
   1892 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1893 			returnmask = &p->p_sigctx.ps_oldmask;
   1894 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1895 		} else
   1896 			returnmask = &p->p_sigctx.ps_sigmask;
   1897 		p->p_stats->p_ru.ru_nsignals++;
   1898 		ksi = ksiginfo_get(p, signum);
   1899 #ifdef KTRACE
   1900 		if (KTRPOINT(p, KTR_PSIG))
   1901 			ktrpsig(p, signum, action,
   1902 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1903 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1904 			    ksi);
   1905 #endif
   1906 		if (ksi == NULL) {
   1907 			ksiginfo_t ksi1;
   1908 			/*
   1909 			 * we did not save any siginfo for this, either
   1910 			 * because the signal was not caught, or because the
   1911 			 * user did not request SA_SIGINFO
   1912 			 */
   1913 			KSI_INIT_EMPTY(&ksi1);
   1914 			ksi1.ksi_signo = signum;
   1915 			kpsendsig(l, &ksi1, returnmask);
   1916 		} else {
   1917 			kpsendsig(l, ksi, returnmask);
   1918 			pool_put(&ksiginfo_pool, ksi);
   1919 		}
   1920 		p->p_sigctx.ps_lwp = 0;
   1921 		p->p_sigctx.ps_code = 0;
   1922 		p->p_sigctx.ps_signo = 0;
   1923 		(void) splsched();	/* XXXSMP */
   1924 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1925 		    &p->p_sigctx.ps_sigmask);
   1926 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1927 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1928 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1929 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1930 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1931 		}
   1932 		(void) spl0();		/* XXXSMP */
   1933 	}
   1934 
   1935 	KERNEL_PROC_UNLOCK(l);
   1936 }
   1937 
   1938 /*
   1939  * Kill the current process for stated reason.
   1940  */
   1941 void
   1942 killproc(struct proc *p, const char *why)
   1943 {
   1944 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1945 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1946 	psignal(p, SIGKILL);
   1947 }
   1948 
   1949 /*
   1950  * Force the current process to exit with the specified signal, dumping core
   1951  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1952  * allowing unrecoverable failures to terminate the process without changing
   1953  * signal state.  Mark the accounting record with the signal termination.
   1954  * If dumping core, save the signal number for the debugger.  Calls exit and
   1955  * does not return.
   1956  */
   1957 
   1958 #if defined(DEBUG)
   1959 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1960 #else
   1961 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1962 #endif
   1963 
   1964 static	const char logcoredump[] =
   1965 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1966 static	const char lognocoredump[] =
   1967 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1968 
   1969 /* Wrapper function for use in p_userret */
   1970 static void
   1971 lwp_coredump_hook(struct lwp *l, void *arg)
   1972 {
   1973 	int s;
   1974 
   1975 	/*
   1976 	 * Suspend ourselves, so that the kernel stack and therefore
   1977 	 * the userland registers saved in the trapframe are around
   1978 	 * for coredump() to write them out.
   1979 	 */
   1980 	KERNEL_PROC_LOCK(l);
   1981 	l->l_flag &= ~L_DETACHED;
   1982 	SCHED_LOCK(s);
   1983 	l->l_stat = LSSUSPENDED;
   1984 	l->l_proc->p_nrlwps--;
   1985 	/* XXX NJWLWP check if this makes sense here: */
   1986 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1987 	mi_switch(l, NULL);
   1988 	SCHED_ASSERT_UNLOCKED();
   1989 	splx(s);
   1990 
   1991 	lwp_exit(l);
   1992 }
   1993 
   1994 void
   1995 sigexit(struct lwp *l, int signum)
   1996 {
   1997 	struct proc	*p;
   1998 #if 0
   1999 	struct lwp	*l2;
   2000 #endif
   2001 	int		error, exitsig;
   2002 
   2003 	p = l->l_proc;
   2004 
   2005 	/*
   2006 	 * Don't permit coredump() or exit1() multiple times
   2007 	 * in the same process.
   2008 	 */
   2009 	if (p->p_flag & P_WEXIT) {
   2010 		KERNEL_PROC_UNLOCK(l);
   2011 		(*p->p_userret)(l, p->p_userret_arg);
   2012 	}
   2013 	p->p_flag |= P_WEXIT;
   2014 	/* We don't want to switch away from exiting. */
   2015 	/* XXX multiprocessor: stop LWPs on other processors. */
   2016 #if 0
   2017 	if (p->p_flag & P_SA) {
   2018 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   2019 		    l2->l_flag &= ~L_SA;
   2020 		p->p_flag &= ~P_SA;
   2021 	}
   2022 #endif
   2023 
   2024 	/* Make other LWPs stick around long enough to be dumped */
   2025 	p->p_userret = lwp_coredump_hook;
   2026 	p->p_userret_arg = NULL;
   2027 
   2028 	exitsig = signum;
   2029 	p->p_acflag |= AXSIG;
   2030 	if (sigprop[signum] & SA_CORE) {
   2031 		p->p_sigctx.ps_signo = signum;
   2032 		if ((error = coredump(l, NULL)) == 0)
   2033 			exitsig |= WCOREFLAG;
   2034 
   2035 		if (kern_logsigexit) {
   2036 			/* XXX What if we ever have really large UIDs? */
   2037 			int uid = p->p_cred && p->p_ucred ?
   2038 				(int) p->p_ucred->cr_uid : -1;
   2039 
   2040 			if (error)
   2041 				log(LOG_INFO, lognocoredump, p->p_pid,
   2042 				    p->p_comm, uid, signum, error);
   2043 			else
   2044 				log(LOG_INFO, logcoredump, p->p_pid,
   2045 				    p->p_comm, uid, signum);
   2046 		}
   2047 
   2048 	}
   2049 
   2050 	exit1(l, W_EXITCODE(0, exitsig));
   2051 	/* NOTREACHED */
   2052 }
   2053 
   2054 struct coredump_iostate {
   2055 	struct proc *io_proc;
   2056 	struct vnode *io_vp;
   2057 	struct ucred *io_cred;
   2058 	off_t io_offset;
   2059 };
   2060 
   2061 int
   2062 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
   2063 {
   2064 	struct coredump_iostate *io = cookie;
   2065 	int error;
   2066 
   2067 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
   2068 	    io->io_offset, segflg,
   2069 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
   2070 	    segflg == UIO_USERSPACE ? io->io_proc : NULL);
   2071 	if (error)
   2072 		return (error);
   2073 
   2074 	io->io_offset += len;
   2075 	return (0);
   2076 }
   2077 
   2078 /*
   2079  * Dump core, into a file named "progname.core" or "core" (depending on the
   2080  * value of shortcorename), unless the process was setuid/setgid.
   2081  */
   2082 int
   2083 coredump(struct lwp *l, const char *pattern)
   2084 {
   2085 	struct vnode		*vp;
   2086 	struct proc		*p;
   2087 	struct vmspace		*vm;
   2088 	struct ucred		*cred;
   2089 	struct nameidata	nd;
   2090 	struct vattr		vattr;
   2091 	struct mount		*mp;
   2092 	struct coredump_iostate	io;
   2093 	int			error, error1;
   2094 	char			name[MAXPATHLEN];
   2095 
   2096 	p = l->l_proc;
   2097 	vm = p->p_vmspace;
   2098 	cred = p->p_cred->pc_ucred;
   2099 
   2100 	/*
   2101 	 * Make sure the process has not set-id, to prevent data leaks.
   2102 	 */
   2103 	if (p->p_flag & P_SUGID)
   2104 		return (EPERM);
   2105 
   2106 	/*
   2107 	 * Refuse to core if the data + stack + user size is larger than
   2108 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   2109 	 * data.
   2110 	 */
   2111 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   2112 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   2113 		return (EFBIG);		/* better error code? */
   2114 
   2115 restart:
   2116 	/*
   2117 	 * The core dump will go in the current working directory.  Make
   2118 	 * sure that the directory is still there and that the mount flags
   2119 	 * allow us to write core dumps there.
   2120 	 */
   2121 	vp = p->p_cwdi->cwdi_cdir;
   2122 	if (vp->v_mount == NULL ||
   2123 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
   2124 		return (EPERM);
   2125 
   2126 	if (pattern == NULL)
   2127 		pattern = p->p_limit->pl_corename;
   2128 	if ((error = build_corename(p, name, pattern, sizeof(name))) != 0)
   2129 		return error;
   2130 
   2131 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
   2132 	error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
   2133 	if (error)
   2134 		return (error);
   2135 	vp = nd.ni_vp;
   2136 
   2137 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
   2138 		VOP_UNLOCK(vp, 0);
   2139 		if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
   2140 			return (error);
   2141 		if ((error = vn_start_write(NULL, &mp,
   2142 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
   2143 			return (error);
   2144 		goto restart;
   2145 	}
   2146 
   2147 	/* Don't dump to non-regular files or files with links. */
   2148 	if (vp->v_type != VREG ||
   2149 	    VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
   2150 		error = EINVAL;
   2151 		goto out;
   2152 	}
   2153 	VATTR_NULL(&vattr);
   2154 	vattr.va_size = 0;
   2155 	VOP_LEASE(vp, p, cred, LEASE_WRITE);
   2156 	VOP_SETATTR(vp, &vattr, cred, p);
   2157 	p->p_acflag |= ACORE;
   2158 
   2159 	io.io_proc = p;
   2160 	io.io_vp = vp;
   2161 	io.io_cred = cred;
   2162 	io.io_offset = 0;
   2163 
   2164 	/* Now dump the actual core file. */
   2165 	error = (*p->p_execsw->es_coredump)(l, &io);
   2166  out:
   2167 	VOP_UNLOCK(vp, 0);
   2168 	vn_finished_write(mp, 0);
   2169 	error1 = vn_close(vp, FWRITE, cred, p);
   2170 	if (error == 0)
   2171 		error = error1;
   2172 	return (error);
   2173 }
   2174 
   2175 /*
   2176  * Nonexistent system call-- signal process (may want to handle it).
   2177  * Flag error in case process won't see signal immediately (blocked or ignored).
   2178  */
   2179 /* ARGSUSED */
   2180 int
   2181 sys_nosys(struct lwp *l, void *v, register_t *retval)
   2182 {
   2183 	struct proc 	*p;
   2184 
   2185 	p = l->l_proc;
   2186 	psignal(p, SIGSYS);
   2187 	return (ENOSYS);
   2188 }
   2189 
   2190 static int
   2191 build_corename(struct proc *p, char *dst, const char *src, size_t len)
   2192 {
   2193 	const char	*s;
   2194 	char		*d, *end;
   2195 	int		i;
   2196 
   2197 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
   2198 		if (*s == '%') {
   2199 			switch (*(s + 1)) {
   2200 			case 'n':
   2201 				i = snprintf(d, end - d, "%s", p->p_comm);
   2202 				break;
   2203 			case 'p':
   2204 				i = snprintf(d, end - d, "%d", p->p_pid);
   2205 				break;
   2206 			case 'u':
   2207 				i = snprintf(d, end - d, "%.*s",
   2208 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2209 				    p->p_pgrp->pg_session->s_login);
   2210 				break;
   2211 			case 't':
   2212 				i = snprintf(d, end - d, "%ld",
   2213 				    p->p_stats->p_start.tv_sec);
   2214 				break;
   2215 			default:
   2216 				goto copy;
   2217 			}
   2218 			d += i;
   2219 			s++;
   2220 		} else {
   2221  copy:			*d = *s;
   2222 			d++;
   2223 		}
   2224 		if (d >= end)
   2225 			return (ENAMETOOLONG);
   2226 	}
   2227 	*d = '\0';
   2228 	return 0;
   2229 }
   2230 
   2231 void
   2232 getucontext(struct lwp *l, ucontext_t *ucp)
   2233 {
   2234 	struct proc	*p;
   2235 
   2236 	p = l->l_proc;
   2237 
   2238 	ucp->uc_flags = 0;
   2239 	ucp->uc_link = l->l_ctxlink;
   2240 
   2241 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2242 	ucp->uc_flags |= _UC_SIGMASK;
   2243 
   2244 	/*
   2245 	 * The (unsupplied) definition of the `current execution stack'
   2246 	 * in the System V Interface Definition appears to allow returning
   2247 	 * the main context stack.
   2248 	 */
   2249 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2250 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2251 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2252 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2253 	} else {
   2254 		/* Simply copy alternate signal execution stack. */
   2255 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2256 	}
   2257 	ucp->uc_flags |= _UC_STACK;
   2258 
   2259 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2260 }
   2261 
   2262 /* ARGSUSED */
   2263 int
   2264 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2265 {
   2266 	struct sys_getcontext_args /* {
   2267 		syscallarg(struct __ucontext *) ucp;
   2268 	} */ *uap = v;
   2269 	ucontext_t uc;
   2270 
   2271 	getucontext(l, &uc);
   2272 
   2273 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2274 }
   2275 
   2276 int
   2277 setucontext(struct lwp *l, const ucontext_t *ucp)
   2278 {
   2279 	struct proc	*p;
   2280 	int		error;
   2281 
   2282 	p = l->l_proc;
   2283 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2284 		return (error);
   2285 	l->l_ctxlink = ucp->uc_link;
   2286 
   2287 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2288 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2289 
   2290 	/*
   2291 	 * If there was stack information, update whether or not we are
   2292 	 * still running on an alternate signal stack.
   2293 	 */
   2294 	if ((ucp->uc_flags & _UC_STACK) != 0) {
   2295 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
   2296 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   2297 		else
   2298 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   2299 	}
   2300 
   2301 	return 0;
   2302 }
   2303 
   2304 /* ARGSUSED */
   2305 int
   2306 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2307 {
   2308 	struct sys_setcontext_args /* {
   2309 		syscallarg(const ucontext_t *) ucp;
   2310 	} */ *uap = v;
   2311 	ucontext_t uc;
   2312 	int error;
   2313 
   2314 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2315 		exit1(l, W_EXITCODE(0, 0));
   2316 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2317 	    (error = setucontext(l, &uc)) != 0)
   2318 		return (error);
   2319 
   2320 	return (EJUSTRETURN);
   2321 }
   2322 
   2323 /*
   2324  * sigtimedwait(2) system call, used also for implementation
   2325  * of sigwaitinfo() and sigwait().
   2326  *
   2327  * This only handles single LWP in signal wait. libpthread provides
   2328  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2329  */
   2330 int
   2331 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2332 {
   2333 	return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
   2334 }
   2335 
   2336 int
   2337 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
   2338     copyinout_t put_info, copyinout_t fetch_timeout, copyinout_t put_timeout)
   2339 {
   2340 	struct sys___sigtimedwait_args /* {
   2341 		syscallarg(const sigset_t *) set;
   2342 		syscallarg(siginfo_t *) info;
   2343 		syscallarg(struct timespec *) timeout;
   2344 	} */ *uap = v;
   2345 	sigset_t *waitset, twaitset;
   2346 	struct proc *p = l->l_proc;
   2347 	int error, signum, s;
   2348 	int timo = 0;
   2349 	struct timeval tvstart;
   2350 	struct timespec ts;
   2351 	ksiginfo_t *ksi;
   2352 
   2353 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
   2354 
   2355 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
   2356 		FREE(waitset, M_TEMP);
   2357 		return (error);
   2358 	}
   2359 
   2360 	/*
   2361 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2362 	 * ignore SA_CANTMASK signals in waitset, we do this
   2363 	 * only for the below siglist check.
   2364 	 */
   2365 	sigminusset(&sigcantmask, waitset);
   2366 
   2367 	/*
   2368 	 * First scan siglist and check if there is signal from
   2369 	 * our waitset already pending.
   2370 	 */
   2371 	twaitset = *waitset;
   2372 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2373 	if ((signum = firstsig(&twaitset))) {
   2374 		/* found pending signal */
   2375 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2376 		ksi = ksiginfo_get(p, signum);
   2377 		if (!ksi) {
   2378 			/* No queued siginfo, manufacture one */
   2379 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2380 			KSI_INIT(ksi);
   2381 			ksi->ksi_info._signo = signum;
   2382 			ksi->ksi_info._code = SI_USER;
   2383 		}
   2384 
   2385 		goto sig;
   2386 	}
   2387 
   2388 	/*
   2389 	 * Calculate timeout, if it was specified.
   2390 	 */
   2391 	if (SCARG(uap, timeout)) {
   2392 		uint64_t ms;
   2393 
   2394 		if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
   2395 			return (error);
   2396 
   2397 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2398 		timo = mstohz(ms);
   2399 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2400 			timo = 1;
   2401 		if (timo <= 0)
   2402 			return (EAGAIN);
   2403 
   2404 		/*
   2405 		 * Remember current mono_time, it would be used in
   2406 		 * ECANCELED/ERESTART case.
   2407 		 */
   2408 		s = splclock();
   2409 		tvstart = mono_time;
   2410 		splx(s);
   2411 	}
   2412 
   2413 	/*
   2414 	 * Setup ps_sigwait list. Pass pointer to malloced memory
   2415 	 * here; it's not possible to pass pointer to a structure
   2416 	 * on current process's stack, the current process might
   2417 	 * be swapped out at the time the signal would get delivered.
   2418 	 */
   2419 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2420 	p->p_sigctx.ps_sigwaited = ksi;
   2421 	p->p_sigctx.ps_sigwait = waitset;
   2422 
   2423 	/*
   2424 	 * Wait for signal to arrive. We can either be woken up or
   2425 	 * time out.
   2426 	 */
   2427 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2428 
   2429 	/*
   2430 	 * Need to find out if we woke as a result of lwp_wakeup()
   2431 	 * or a signal outside our wait set.
   2432 	 */
   2433 	if (error == EINTR && p->p_sigctx.ps_sigwaited
   2434 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
   2435 		/* wakeup via _lwp_wakeup() */
   2436 		error = ECANCELED;
   2437 	} else if (!error && p->p_sigctx.ps_sigwaited) {
   2438 		/* spurious wakeup - arrange for syscall restart */
   2439 		error = ERESTART;
   2440 		goto fail;
   2441 	}
   2442 
   2443 	/*
   2444 	 * On error, clear sigwait indication. psignal1() clears it
   2445 	 * in !error case.
   2446 	 */
   2447 	if (error) {
   2448 		p->p_sigctx.ps_sigwaited = NULL;
   2449 
   2450 		/*
   2451 		 * If the sleep was interrupted (either by signal or wakeup),
   2452 		 * update the timeout and copyout new value back.
   2453 		 * It would be used when the syscall would be restarted
   2454 		 * or called again.
   2455 		 */
   2456 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2457 			struct timeval tvnow, tvtimo;
   2458 			int err;
   2459 
   2460 			s = splclock();
   2461 			tvnow = mono_time;
   2462 			splx(s);
   2463 
   2464 			TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
   2465 
   2466 			/* compute how much time has passed since start */
   2467 			timersub(&tvnow, &tvstart, &tvnow);
   2468 			/* substract passed time from timeout */
   2469 			timersub(&tvtimo, &tvnow, &tvtimo);
   2470 
   2471 			if (tvtimo.tv_sec < 0) {
   2472 				error = EAGAIN;
   2473 				goto fail;
   2474 			}
   2475 
   2476 			TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
   2477 
   2478 			/* copy updated timeout to userland */
   2479 			if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
   2480 			    sizeof(ts)))) {
   2481 				error = err;
   2482 				goto fail;
   2483 			}
   2484 		}
   2485 
   2486 		goto fail;
   2487 	}
   2488 
   2489 	/*
   2490 	 * If a signal from the wait set arrived, copy it to userland.
   2491 	 * Copy only the used part of siginfo, the padding part is
   2492 	 * left unchanged (userland is not supposed to touch it anyway).
   2493 	 */
   2494  sig:
   2495 	return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
   2496 
   2497  fail:
   2498 	FREE(waitset, M_TEMP);
   2499 	pool_put(&ksiginfo_pool, ksi);
   2500 	p->p_sigctx.ps_sigwait = NULL;
   2501 
   2502 	return (error);
   2503 }
   2504 
   2505 /*
   2506  * Returns true if signal is ignored or masked for passed process.
   2507  */
   2508 int
   2509 sigismasked(struct proc *p, int sig)
   2510 {
   2511 
   2512 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2513 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2514 }
   2515 
   2516 static int
   2517 filt_sigattach(struct knote *kn)
   2518 {
   2519 	struct proc *p = curproc;
   2520 
   2521 	kn->kn_ptr.p_proc = p;
   2522 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2523 
   2524 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2525 
   2526 	return (0);
   2527 }
   2528 
   2529 static void
   2530 filt_sigdetach(struct knote *kn)
   2531 {
   2532 	struct proc *p = kn->kn_ptr.p_proc;
   2533 
   2534 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2535 }
   2536 
   2537 /*
   2538  * signal knotes are shared with proc knotes, so we apply a mask to
   2539  * the hint in order to differentiate them from process hints.  This
   2540  * could be avoided by using a signal-specific knote list, but probably
   2541  * isn't worth the trouble.
   2542  */
   2543 static int
   2544 filt_signal(struct knote *kn, long hint)
   2545 {
   2546 
   2547 	if (hint & NOTE_SIGNAL) {
   2548 		hint &= ~NOTE_SIGNAL;
   2549 
   2550 		if (kn->kn_id == hint)
   2551 			kn->kn_data++;
   2552 	}
   2553 	return (kn->kn_data != 0);
   2554 }
   2555 
   2556 const struct filterops sig_filtops = {
   2557 	0, filt_sigattach, filt_sigdetach, filt_signal
   2558 };
   2559