kern_sig.c revision 1.208 1 /* $NetBSD: kern_sig.c,v 1.208 2005/07/23 22:02:13 cube Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.208 2005/07/23 22:02:13 cube Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm.h>
82 #include <uvm/uvm_extern.h>
83
84 static void child_psignal(struct proc *, int);
85 static int build_corename(struct proc *, char *, const char *, size_t);
86 static void ksiginfo_exithook(struct proc *, void *);
87 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94
95 /*
96 * struct sigacts memory pool allocator.
97 */
98
99 static void *
100 sigacts_poolpage_alloc(struct pool *pp, int flags)
101 {
102
103 return (void *)uvm_km_alloc(kernel_map,
104 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
105 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
106 | UVM_KMF_WIRED);
107 }
108
109 static void
110 sigacts_poolpage_free(struct pool *pp, void *v)
111 {
112 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
113 }
114
115 static struct pool_allocator sigactspool_allocator = {
116 sigacts_poolpage_alloc, sigacts_poolpage_free,
117 };
118
119 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
120 &pool_allocator_nointr);
121 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
122
123 /*
124 * Can process p, with pcred pc, send the signal signum to process q?
125 */
126 #define CANSIGNAL(p, pc, q, signum) \
127 ((pc)->pc_ucred->cr_uid == 0 || \
128 (pc)->p_ruid == (q)->p_cred->p_ruid || \
129 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
130 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
131 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
132 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
133
134 /*
135 * Remove and return the first ksiginfo element that matches our requested
136 * signal, or return NULL if one not found.
137 */
138 static ksiginfo_t *
139 ksiginfo_get(struct proc *p, int signo)
140 {
141 ksiginfo_t *ksi;
142 int s;
143
144 s = splsoftclock();
145 simple_lock(&p->p_sigctx.ps_silock);
146 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
147 if (ksi->ksi_signo == signo) {
148 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
149 goto out;
150 }
151 }
152 ksi = NULL;
153 out:
154 simple_unlock(&p->p_sigctx.ps_silock);
155 splx(s);
156 return ksi;
157 }
158
159 /*
160 * Append a new ksiginfo element to the list of pending ksiginfo's, if
161 * we need to (SA_SIGINFO was requested). We replace non RT signals if
162 * they already existed in the queue and we add new entries for RT signals,
163 * or for non RT signals with non-existing entries.
164 */
165 static void
166 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
167 {
168 ksiginfo_t *kp;
169 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
170 int s;
171
172 if ((sa->sa_flags & SA_SIGINFO) == 0)
173 return;
174 /*
175 * If there's no info, don't save it.
176 */
177 if (KSI_EMPTY_P(ksi))
178 return;
179
180 s = splsoftclock();
181 simple_lock(&p->p_sigctx.ps_silock);
182 #ifdef notyet /* XXX: QUEUING */
183 if (ksi->ksi_signo < SIGRTMIN)
184 #endif
185 {
186 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
187 if (kp->ksi_signo == ksi->ksi_signo) {
188 KSI_COPY(ksi, kp);
189 goto out;
190 }
191 }
192 }
193 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
194 if (kp == NULL) {
195 #ifdef DIAGNOSTIC
196 printf("Out of memory allocating siginfo for pid %d\n",
197 p->p_pid);
198 #endif
199 goto out;
200 }
201 *kp = *ksi;
202 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
203 out:
204 simple_unlock(&p->p_sigctx.ps_silock);
205 splx(s);
206 }
207
208 /*
209 * free all pending ksiginfo on exit
210 */
211 static void
212 ksiginfo_exithook(struct proc *p, void *v)
213 {
214 int s;
215
216 s = splsoftclock();
217 simple_lock(&p->p_sigctx.ps_silock);
218 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
219 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
220 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
221 pool_put(&ksiginfo_pool, ksi);
222 }
223 simple_unlock(&p->p_sigctx.ps_silock);
224 splx(s);
225 }
226
227 /*
228 * Initialize signal-related data structures.
229 */
230 void
231 signal_init(void)
232 {
233
234 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
235
236 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
237 sizeof(struct sigacts) > PAGE_SIZE ?
238 &sigactspool_allocator : &pool_allocator_nointr);
239
240 exithook_establish(ksiginfo_exithook, NULL);
241 exechook_establish(ksiginfo_exithook, NULL);
242 }
243
244 /*
245 * Create an initial sigctx structure, using the same signal state
246 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
247 * copy it from parent.
248 */
249 void
250 sigactsinit(struct proc *np, struct proc *pp, int share)
251 {
252 struct sigacts *ps;
253
254 if (share) {
255 np->p_sigacts = pp->p_sigacts;
256 pp->p_sigacts->sa_refcnt++;
257 } else {
258 ps = pool_get(&sigacts_pool, PR_WAITOK);
259 if (pp)
260 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
261 else
262 memset(ps, '\0', sizeof(struct sigacts));
263 ps->sa_refcnt = 1;
264 np->p_sigacts = ps;
265 }
266 }
267
268 /*
269 * Make this process not share its sigctx, maintaining all
270 * signal state.
271 */
272 void
273 sigactsunshare(struct proc *p)
274 {
275 struct sigacts *oldps;
276
277 if (p->p_sigacts->sa_refcnt == 1)
278 return;
279
280 oldps = p->p_sigacts;
281 sigactsinit(p, NULL, 0);
282
283 if (--oldps->sa_refcnt == 0)
284 pool_put(&sigacts_pool, oldps);
285 }
286
287 /*
288 * Release a sigctx structure.
289 */
290 void
291 sigactsfree(struct sigacts *ps)
292 {
293
294 if (--ps->sa_refcnt > 0)
295 return;
296
297 pool_put(&sigacts_pool, ps);
298 }
299
300 int
301 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
302 struct sigaction *osa, const void *tramp, int vers)
303 {
304 struct sigacts *ps;
305 int prop;
306
307 ps = p->p_sigacts;
308 if (signum <= 0 || signum >= NSIG)
309 return (EINVAL);
310
311 /*
312 * Trampoline ABI version 0 is reserved for the legacy
313 * kernel-provided on-stack trampoline. Conversely, if we are
314 * using a non-0 ABI version, we must have a trampoline. Only
315 * validate the vers if a new sigaction was supplied. Emulations
316 * use legacy kernel trampolines with version 0, alternatively
317 * check for that too.
318 */
319 if ((vers != 0 && tramp == NULL) ||
320 #ifdef SIGTRAMP_VALID
321 (nsa != NULL &&
322 ((vers == 0) ?
323 (p->p_emul->e_sigcode == NULL) :
324 !SIGTRAMP_VALID(vers))) ||
325 #endif
326 (vers == 0 && tramp != NULL))
327 return (EINVAL);
328
329 if (osa)
330 *osa = SIGACTION_PS(ps, signum);
331
332 if (nsa) {
333 if (nsa->sa_flags & ~SA_ALLBITS)
334 return (EINVAL);
335
336 prop = sigprop[signum];
337 if (prop & SA_CANTMASK)
338 return (EINVAL);
339
340 (void) splsched(); /* XXXSMP */
341 SIGACTION_PS(ps, signum) = *nsa;
342 ps->sa_sigdesc[signum].sd_tramp = tramp;
343 ps->sa_sigdesc[signum].sd_vers = vers;
344 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
345 if ((prop & SA_NORESET) != 0)
346 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
347 if (signum == SIGCHLD) {
348 if (nsa->sa_flags & SA_NOCLDSTOP)
349 p->p_flag |= P_NOCLDSTOP;
350 else
351 p->p_flag &= ~P_NOCLDSTOP;
352 if (nsa->sa_flags & SA_NOCLDWAIT) {
353 /*
354 * Paranoia: since SA_NOCLDWAIT is implemented
355 * by reparenting the dying child to PID 1 (and
356 * trust it to reap the zombie), PID 1 itself
357 * is forbidden to set SA_NOCLDWAIT.
358 */
359 if (p->p_pid == 1)
360 p->p_flag &= ~P_NOCLDWAIT;
361 else
362 p->p_flag |= P_NOCLDWAIT;
363 } else
364 p->p_flag &= ~P_NOCLDWAIT;
365
366 if (nsa->sa_handler == SIG_IGN) {
367 /*
368 * Paranoia: same as above.
369 */
370 if (p->p_pid == 1)
371 p->p_flag &= ~P_CLDSIGIGN;
372 else
373 p->p_flag |= P_CLDSIGIGN;
374 } else
375 p->p_flag &= ~P_CLDSIGIGN;
376
377 }
378 if ((nsa->sa_flags & SA_NODEFER) == 0)
379 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
380 else
381 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
382 /*
383 * Set bit in p_sigctx.ps_sigignore for signals that are set to
384 * SIG_IGN, and for signals set to SIG_DFL where the default is
385 * to ignore. However, don't put SIGCONT in
386 * p_sigctx.ps_sigignore, as we have to restart the process.
387 */
388 if (nsa->sa_handler == SIG_IGN ||
389 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
390 /* never to be seen again */
391 sigdelset(&p->p_sigctx.ps_siglist, signum);
392 if (signum != SIGCONT) {
393 /* easier in psignal */
394 sigaddset(&p->p_sigctx.ps_sigignore, signum);
395 }
396 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
397 } else {
398 sigdelset(&p->p_sigctx.ps_sigignore, signum);
399 if (nsa->sa_handler == SIG_DFL)
400 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
401 else
402 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
403 }
404 (void) spl0();
405 }
406
407 return (0);
408 }
409
410 #ifdef COMPAT_16
411 /* ARGSUSED */
412 int
413 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
414 {
415 struct compat_16_sys___sigaction14_args /* {
416 syscallarg(int) signum;
417 syscallarg(const struct sigaction *) nsa;
418 syscallarg(struct sigaction *) osa;
419 } */ *uap = v;
420 struct proc *p;
421 struct sigaction nsa, osa;
422 int error;
423
424 if (SCARG(uap, nsa)) {
425 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
426 if (error)
427 return (error);
428 }
429 p = l->l_proc;
430 error = sigaction1(p, SCARG(uap, signum),
431 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
432 NULL, 0);
433 if (error)
434 return (error);
435 if (SCARG(uap, osa)) {
436 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
437 if (error)
438 return (error);
439 }
440 return (0);
441 }
442 #endif
443
444 /* ARGSUSED */
445 int
446 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
447 {
448 struct sys___sigaction_sigtramp_args /* {
449 syscallarg(int) signum;
450 syscallarg(const struct sigaction *) nsa;
451 syscallarg(struct sigaction *) osa;
452 syscallarg(void *) tramp;
453 syscallarg(int) vers;
454 } */ *uap = v;
455 struct proc *p = l->l_proc;
456 struct sigaction nsa, osa;
457 int error;
458
459 if (SCARG(uap, nsa)) {
460 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
461 if (error)
462 return (error);
463 }
464 error = sigaction1(p, SCARG(uap, signum),
465 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
466 SCARG(uap, tramp), SCARG(uap, vers));
467 if (error)
468 return (error);
469 if (SCARG(uap, osa)) {
470 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
471 if (error)
472 return (error);
473 }
474 return (0);
475 }
476
477 /*
478 * Initialize signal state for process 0;
479 * set to ignore signals that are ignored by default and disable the signal
480 * stack.
481 */
482 void
483 siginit(struct proc *p)
484 {
485 struct sigacts *ps;
486 int signum, prop;
487
488 ps = p->p_sigacts;
489 sigemptyset(&contsigmask);
490 sigemptyset(&stopsigmask);
491 sigemptyset(&sigcantmask);
492 for (signum = 1; signum < NSIG; signum++) {
493 prop = sigprop[signum];
494 if (prop & SA_CONT)
495 sigaddset(&contsigmask, signum);
496 if (prop & SA_STOP)
497 sigaddset(&stopsigmask, signum);
498 if (prop & SA_CANTMASK)
499 sigaddset(&sigcantmask, signum);
500 if (prop & SA_IGNORE && signum != SIGCONT)
501 sigaddset(&p->p_sigctx.ps_sigignore, signum);
502 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
503 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
504 }
505 sigemptyset(&p->p_sigctx.ps_sigcatch);
506 p->p_sigctx.ps_sigwaited = NULL;
507 p->p_flag &= ~P_NOCLDSTOP;
508
509 /*
510 * Reset stack state to the user stack.
511 */
512 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
513 p->p_sigctx.ps_sigstk.ss_size = 0;
514 p->p_sigctx.ps_sigstk.ss_sp = 0;
515
516 /* One reference. */
517 ps->sa_refcnt = 1;
518 }
519
520 /*
521 * Reset signals for an exec of the specified process.
522 */
523 void
524 execsigs(struct proc *p)
525 {
526 struct sigacts *ps;
527 int signum, prop;
528
529 sigactsunshare(p);
530
531 ps = p->p_sigacts;
532
533 /*
534 * Reset caught signals. Held signals remain held
535 * through p_sigctx.ps_sigmask (unless they were caught,
536 * and are now ignored by default).
537 */
538 for (signum = 1; signum < NSIG; signum++) {
539 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
540 prop = sigprop[signum];
541 if (prop & SA_IGNORE) {
542 if ((prop & SA_CONT) == 0)
543 sigaddset(&p->p_sigctx.ps_sigignore,
544 signum);
545 sigdelset(&p->p_sigctx.ps_siglist, signum);
546 }
547 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
548 }
549 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
550 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
551 }
552 sigemptyset(&p->p_sigctx.ps_sigcatch);
553 p->p_sigctx.ps_sigwaited = NULL;
554
555 /*
556 * Reset no zombies if child dies flag as Solaris does.
557 */
558 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
559 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
560 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
561
562 /*
563 * Reset stack state to the user stack.
564 */
565 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
566 p->p_sigctx.ps_sigstk.ss_size = 0;
567 p->p_sigctx.ps_sigstk.ss_sp = 0;
568 }
569
570 int
571 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
572 {
573
574 if (oss)
575 *oss = p->p_sigctx.ps_sigmask;
576
577 if (nss) {
578 (void)splsched(); /* XXXSMP */
579 switch (how) {
580 case SIG_BLOCK:
581 sigplusset(nss, &p->p_sigctx.ps_sigmask);
582 break;
583 case SIG_UNBLOCK:
584 sigminusset(nss, &p->p_sigctx.ps_sigmask);
585 CHECKSIGS(p);
586 break;
587 case SIG_SETMASK:
588 p->p_sigctx.ps_sigmask = *nss;
589 CHECKSIGS(p);
590 break;
591 default:
592 (void)spl0(); /* XXXSMP */
593 return (EINVAL);
594 }
595 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
596 (void)spl0(); /* XXXSMP */
597 }
598
599 return (0);
600 }
601
602 /*
603 * Manipulate signal mask.
604 * Note that we receive new mask, not pointer,
605 * and return old mask as return value;
606 * the library stub does the rest.
607 */
608 int
609 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
610 {
611 struct sys___sigprocmask14_args /* {
612 syscallarg(int) how;
613 syscallarg(const sigset_t *) set;
614 syscallarg(sigset_t *) oset;
615 } */ *uap = v;
616 struct proc *p;
617 sigset_t nss, oss;
618 int error;
619
620 if (SCARG(uap, set)) {
621 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
622 if (error)
623 return (error);
624 }
625 p = l->l_proc;
626 error = sigprocmask1(p, SCARG(uap, how),
627 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
628 if (error)
629 return (error);
630 if (SCARG(uap, oset)) {
631 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
632 if (error)
633 return (error);
634 }
635 return (0);
636 }
637
638 void
639 sigpending1(struct proc *p, sigset_t *ss)
640 {
641
642 *ss = p->p_sigctx.ps_siglist;
643 sigminusset(&p->p_sigctx.ps_sigmask, ss);
644 }
645
646 /* ARGSUSED */
647 int
648 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
649 {
650 struct sys___sigpending14_args /* {
651 syscallarg(sigset_t *) set;
652 } */ *uap = v;
653 struct proc *p;
654 sigset_t ss;
655
656 p = l->l_proc;
657 sigpending1(p, &ss);
658 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
659 }
660
661 int
662 sigsuspend1(struct proc *p, const sigset_t *ss)
663 {
664 struct sigacts *ps;
665
666 ps = p->p_sigacts;
667 if (ss) {
668 /*
669 * When returning from sigpause, we want
670 * the old mask to be restored after the
671 * signal handler has finished. Thus, we
672 * save it here and mark the sigctx structure
673 * to indicate this.
674 */
675 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
676 p->p_sigctx.ps_flags |= SAS_OLDMASK;
677 (void) splsched(); /* XXXSMP */
678 p->p_sigctx.ps_sigmask = *ss;
679 CHECKSIGS(p);
680 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
681 (void) spl0(); /* XXXSMP */
682 }
683
684 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
685 /* void */;
686
687 /* always return EINTR rather than ERESTART... */
688 return (EINTR);
689 }
690
691 /*
692 * Suspend process until signal, providing mask to be set
693 * in the meantime. Note nonstandard calling convention:
694 * libc stub passes mask, not pointer, to save a copyin.
695 */
696 /* ARGSUSED */
697 int
698 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
699 {
700 struct sys___sigsuspend14_args /* {
701 syscallarg(const sigset_t *) set;
702 } */ *uap = v;
703 struct proc *p;
704 sigset_t ss;
705 int error;
706
707 if (SCARG(uap, set)) {
708 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
709 if (error)
710 return (error);
711 }
712
713 p = l->l_proc;
714 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
715 }
716
717 int
718 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
719 struct sigaltstack *oss)
720 {
721
722 if (oss)
723 *oss = p->p_sigctx.ps_sigstk;
724
725 if (nss) {
726 if (nss->ss_flags & ~SS_ALLBITS)
727 return (EINVAL);
728
729 if (nss->ss_flags & SS_DISABLE) {
730 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
731 return (EINVAL);
732 } else {
733 if (nss->ss_size < MINSIGSTKSZ)
734 return (ENOMEM);
735 }
736 p->p_sigctx.ps_sigstk = *nss;
737 }
738
739 return (0);
740 }
741
742 /* ARGSUSED */
743 int
744 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
745 {
746 struct sys___sigaltstack14_args /* {
747 syscallarg(const struct sigaltstack *) nss;
748 syscallarg(struct sigaltstack *) oss;
749 } */ *uap = v;
750 struct proc *p;
751 struct sigaltstack nss, oss;
752 int error;
753
754 if (SCARG(uap, nss)) {
755 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
756 if (error)
757 return (error);
758 }
759 p = l->l_proc;
760 error = sigaltstack1(p,
761 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
762 if (error)
763 return (error);
764 if (SCARG(uap, oss)) {
765 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
766 if (error)
767 return (error);
768 }
769 return (0);
770 }
771
772 /* ARGSUSED */
773 int
774 sys_kill(struct lwp *l, void *v, register_t *retval)
775 {
776 struct sys_kill_args /* {
777 syscallarg(int) pid;
778 syscallarg(int) signum;
779 } */ *uap = v;
780 struct proc *cp, *p;
781 struct pcred *pc;
782 ksiginfo_t ksi;
783
784 cp = l->l_proc;
785 pc = cp->p_cred;
786 if ((u_int)SCARG(uap, signum) >= NSIG)
787 return (EINVAL);
788 KSI_INIT(&ksi);
789 ksi.ksi_signo = SCARG(uap, signum);
790 ksi.ksi_code = SI_USER;
791 ksi.ksi_pid = cp->p_pid;
792 ksi.ksi_uid = cp->p_ucred->cr_uid;
793 if (SCARG(uap, pid) > 0) {
794 /* kill single process */
795 if ((p = pfind(SCARG(uap, pid))) == NULL)
796 return (ESRCH);
797 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
798 return (EPERM);
799 if (SCARG(uap, signum))
800 kpsignal2(p, &ksi, 1);
801 return (0);
802 }
803 switch (SCARG(uap, pid)) {
804 case -1: /* broadcast signal */
805 return (killpg1(cp, &ksi, 0, 1));
806 case 0: /* signal own process group */
807 return (killpg1(cp, &ksi, 0, 0));
808 default: /* negative explicit process group */
809 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
810 }
811 /* NOTREACHED */
812 }
813
814 /*
815 * Common code for kill process group/broadcast kill.
816 * cp is calling process.
817 */
818 int
819 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
820 {
821 struct proc *p;
822 struct pcred *pc;
823 struct pgrp *pgrp;
824 int nfound;
825 int signum = ksi->ksi_signo;
826
827 pc = cp->p_cred;
828 nfound = 0;
829 if (all) {
830 /*
831 * broadcast
832 */
833 proclist_lock_read();
834 PROCLIST_FOREACH(p, &allproc) {
835 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
836 p == cp || !CANSIGNAL(cp, pc, p, signum))
837 continue;
838 nfound++;
839 if (signum)
840 kpsignal2(p, ksi, 1);
841 }
842 proclist_unlock_read();
843 } else {
844 if (pgid == 0)
845 /*
846 * zero pgid means send to my process group.
847 */
848 pgrp = cp->p_pgrp;
849 else {
850 pgrp = pgfind(pgid);
851 if (pgrp == NULL)
852 return (ESRCH);
853 }
854 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
855 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
856 !CANSIGNAL(cp, pc, p, signum))
857 continue;
858 nfound++;
859 if (signum && P_ZOMBIE(p) == 0)
860 kpsignal2(p, ksi, 1);
861 }
862 }
863 return (nfound ? 0 : ESRCH);
864 }
865
866 /*
867 * Send a signal to a process group.
868 */
869 void
870 gsignal(int pgid, int signum)
871 {
872 ksiginfo_t ksi;
873 KSI_INIT_EMPTY(&ksi);
874 ksi.ksi_signo = signum;
875 kgsignal(pgid, &ksi, NULL);
876 }
877
878 void
879 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
880 {
881 struct pgrp *pgrp;
882
883 if (pgid && (pgrp = pgfind(pgid)))
884 kpgsignal(pgrp, ksi, data, 0);
885 }
886
887 /*
888 * Send a signal to a process group. If checktty is 1,
889 * limit to members which have a controlling terminal.
890 */
891 void
892 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
893 {
894 ksiginfo_t ksi;
895 KSI_INIT_EMPTY(&ksi);
896 ksi.ksi_signo = sig;
897 kpgsignal(pgrp, &ksi, NULL, checkctty);
898 }
899
900 void
901 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
902 {
903 struct proc *p;
904
905 if (pgrp)
906 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
907 if (checkctty == 0 || p->p_flag & P_CONTROLT)
908 kpsignal(p, ksi, data);
909 }
910
911 /*
912 * Send a signal caused by a trap to the current process.
913 * If it will be caught immediately, deliver it with correct code.
914 * Otherwise, post it normally.
915 */
916 void
917 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
918 {
919 struct proc *p;
920 struct sigacts *ps;
921 int signum = ksi->ksi_signo;
922
923 KASSERT(KSI_TRAP_P(ksi));
924
925 p = l->l_proc;
926 ps = p->p_sigacts;
927 if ((p->p_flag & P_TRACED) == 0 &&
928 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
929 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
930 p->p_stats->p_ru.ru_nsignals++;
931 #ifdef KTRACE
932 if (KTRPOINT(p, KTR_PSIG))
933 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
934 &p->p_sigctx.ps_sigmask, ksi);
935 #endif
936 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
937 (void) splsched(); /* XXXSMP */
938 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
939 &p->p_sigctx.ps_sigmask);
940 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
941 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
942 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
943 sigaddset(&p->p_sigctx.ps_sigignore, signum);
944 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
945 }
946 (void) spl0(); /* XXXSMP */
947 } else {
948 p->p_sigctx.ps_lwp = l->l_lid;
949 /* XXX for core dump/debugger */
950 p->p_sigctx.ps_signo = ksi->ksi_signo;
951 p->p_sigctx.ps_code = ksi->ksi_trap;
952 kpsignal2(p, ksi, 1);
953 }
954 }
955
956 /*
957 * Fill in signal information and signal the parent for a child status change.
958 */
959 static void
960 child_psignal(struct proc *p, int dolock)
961 {
962 ksiginfo_t ksi;
963
964 KSI_INIT(&ksi);
965 ksi.ksi_signo = SIGCHLD;
966 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
967 ksi.ksi_pid = p->p_pid;
968 ksi.ksi_uid = p->p_ucred->cr_uid;
969 ksi.ksi_status = p->p_xstat;
970 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
971 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
972 kpsignal2(p->p_pptr, &ksi, dolock);
973 }
974
975 /*
976 * Send the signal to the process. If the signal has an action, the action
977 * is usually performed by the target process rather than the caller; we add
978 * the signal to the set of pending signals for the process.
979 *
980 * Exceptions:
981 * o When a stop signal is sent to a sleeping process that takes the
982 * default action, the process is stopped without awakening it.
983 * o SIGCONT restarts stopped processes (or puts them back to sleep)
984 * regardless of the signal action (eg, blocked or ignored).
985 *
986 * Other ignored signals are discarded immediately.
987 *
988 * XXXSMP: Invoked as psignal() or sched_psignal().
989 */
990 void
991 psignal1(struct proc *p, int signum, int dolock)
992 {
993 ksiginfo_t ksi;
994
995 KSI_INIT_EMPTY(&ksi);
996 ksi.ksi_signo = signum;
997 kpsignal2(p, &ksi, dolock);
998 }
999
1000 void
1001 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1002 {
1003
1004 if ((p->p_flag & P_WEXIT) == 0 && data) {
1005 size_t fd;
1006 struct filedesc *fdp = p->p_fd;
1007
1008 ksi->ksi_fd = -1;
1009 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1010 struct file *fp = fdp->fd_ofiles[fd];
1011 /* XXX: lock? */
1012 if (fp && fp->f_data == data) {
1013 ksi->ksi_fd = fd;
1014 break;
1015 }
1016 }
1017 }
1018 kpsignal2(p, ksi, dolock);
1019 }
1020
1021 static void
1022 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1023 {
1024 struct lwp *l, *suspended = NULL;
1025 struct sadata_vp *vp;
1026 int s = 0, prop, allsusp;
1027 sig_t action;
1028 int signum = ksi->ksi_signo;
1029
1030 #ifdef DIAGNOSTIC
1031 if (signum <= 0 || signum >= NSIG)
1032 panic("psignal signal number %d", signum);
1033
1034 /* XXXSMP: works, but icky */
1035 if (dolock)
1036 SCHED_ASSERT_UNLOCKED();
1037 else
1038 SCHED_ASSERT_LOCKED();
1039 #endif
1040
1041 /*
1042 * Notify any interested parties in the signal.
1043 */
1044 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1045
1046 prop = sigprop[signum];
1047
1048 /*
1049 * If proc is traced, always give parent a chance.
1050 */
1051 if (p->p_flag & P_TRACED) {
1052 action = SIG_DFL;
1053
1054 /*
1055 * If the process is being traced and the signal is being
1056 * caught, make sure to save any ksiginfo.
1057 */
1058 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1059 ksiginfo_put(p, ksi);
1060 } else {
1061 /*
1062 * If the signal was the result of a trap, reset it
1063 * to default action if it's currently masked, so that it would
1064 * coredump immediatelly instead of spinning repeatedly
1065 * taking the signal.
1066 */
1067 if (KSI_TRAP_P(ksi)
1068 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1069 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1070 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1071 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1072 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1073 SIGACTION(p, signum).sa_handler = SIG_DFL;
1074 }
1075
1076 /*
1077 * If the signal is being ignored,
1078 * then we forget about it immediately.
1079 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1080 * and if it is set to SIG_IGN,
1081 * action will be SIG_DFL here.)
1082 */
1083 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1084 return;
1085 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1086 action = SIG_HOLD;
1087 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1088 action = SIG_CATCH;
1089 else {
1090 action = SIG_DFL;
1091
1092 if (prop & SA_KILL && p->p_nice > NZERO)
1093 p->p_nice = NZERO;
1094
1095 /*
1096 * If sending a tty stop signal to a member of an
1097 * orphaned process group, discard the signal here if
1098 * the action is default; don't stop the process below
1099 * if sleeping, and don't clear any pending SIGCONT.
1100 */
1101 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1102 return;
1103 }
1104 }
1105
1106 if (prop & SA_CONT)
1107 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1108
1109 if (prop & SA_STOP)
1110 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1111
1112 /*
1113 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1114 * please!), check if anything waits on it. If yes, save the
1115 * info into provided ps_sigwaited, and wake-up the waiter.
1116 * The signal won't be processed further here.
1117 */
1118 if ((prop & SA_CANTMASK) == 0
1119 && p->p_sigctx.ps_sigwaited
1120 && sigismember(p->p_sigctx.ps_sigwait, signum)
1121 && p->p_stat != SSTOP) {
1122 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1123 p->p_sigctx.ps_sigwaited = NULL;
1124 if (dolock)
1125 wakeup_one(&p->p_sigctx.ps_sigwait);
1126 else
1127 sched_wakeup(&p->p_sigctx.ps_sigwait);
1128 return;
1129 }
1130
1131 sigaddset(&p->p_sigctx.ps_siglist, signum);
1132
1133 /* CHECKSIGS() is "inlined" here. */
1134 p->p_sigctx.ps_sigcheck = 1;
1135
1136 /*
1137 * Defer further processing for signals which are held,
1138 * except that stopped processes must be continued by SIGCONT.
1139 */
1140 if (action == SIG_HOLD &&
1141 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1142 ksiginfo_put(p, ksi);
1143 return;
1144 }
1145 /* XXXSMP: works, but icky */
1146 if (dolock)
1147 SCHED_LOCK(s);
1148
1149 if (p->p_flag & P_SA) {
1150 allsusp = 0;
1151 l = NULL;
1152 if (p->p_stat == SACTIVE) {
1153 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1154 l = vp->savp_lwp;
1155 KDASSERT(l != NULL);
1156 if (l->l_flag & L_SA_IDLE) {
1157 /* wakeup idle LWP */
1158 goto found;
1159 /*NOTREACHED*/
1160 } else if (l->l_flag & L_SA_YIELD) {
1161 /* idle LWP is already waking up */
1162 goto out;
1163 /*NOTREACHED*/
1164 }
1165 }
1166 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1167 l = vp->savp_lwp;
1168 if (l->l_stat == LSRUN ||
1169 l->l_stat == LSONPROC) {
1170 signotify(p);
1171 goto out;
1172 /*NOTREACHED*/
1173 }
1174 if (l->l_stat == LSSLEEP &&
1175 l->l_flag & L_SINTR) {
1176 /* ok to signal vp lwp */
1177 } else
1178 l = NULL;
1179 }
1180 if (l == NULL)
1181 allsusp = 1;
1182 } else if (p->p_stat == SSTOP) {
1183 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1184 l = vp->savp_lwp;
1185 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1186 break;
1187 l = NULL;
1188 }
1189 }
1190 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1191 /*
1192 * At least one LWP is running or on a run queue.
1193 * The signal will be noticed when one of them returns
1194 * to userspace.
1195 */
1196 signotify(p);
1197 /*
1198 * The signal will be noticed very soon.
1199 */
1200 goto out;
1201 /*NOTREACHED*/
1202 } else {
1203 /*
1204 * Find out if any of the sleeps are interruptable,
1205 * and if all the live LWPs remaining are suspended.
1206 */
1207 allsusp = 1;
1208 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1209 if (l->l_stat == LSSLEEP &&
1210 l->l_flag & L_SINTR)
1211 break;
1212 if (l->l_stat == LSSUSPENDED)
1213 suspended = l;
1214 else if ((l->l_stat != LSZOMB) &&
1215 (l->l_stat != LSDEAD))
1216 allsusp = 0;
1217 }
1218 }
1219
1220 found:
1221 switch (p->p_stat) {
1222 case SACTIVE:
1223
1224 if (l != NULL && (p->p_flag & P_TRACED))
1225 goto run;
1226
1227 /*
1228 * If SIGCONT is default (or ignored) and process is
1229 * asleep, we are finished; the process should not
1230 * be awakened.
1231 */
1232 if ((prop & SA_CONT) && action == SIG_DFL) {
1233 sigdelset(&p->p_sigctx.ps_siglist, signum);
1234 goto done;
1235 }
1236
1237 /*
1238 * When a sleeping process receives a stop
1239 * signal, process immediately if possible.
1240 */
1241 if ((prop & SA_STOP) && action == SIG_DFL) {
1242 /*
1243 * If a child holding parent blocked,
1244 * stopping could cause deadlock.
1245 */
1246 if (p->p_flag & P_PPWAIT) {
1247 goto out;
1248 }
1249 sigdelset(&p->p_sigctx.ps_siglist, signum);
1250 p->p_xstat = signum;
1251 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1252 /*
1253 * XXXSMP: recursive call; don't lock
1254 * the second time around.
1255 */
1256 child_psignal(p, 0);
1257 }
1258 proc_stop(p, 1); /* XXXSMP: recurse? */
1259 goto done;
1260 }
1261
1262 if (l == NULL) {
1263 /*
1264 * Special case: SIGKILL of a process
1265 * which is entirely composed of
1266 * suspended LWPs should succeed. We
1267 * make this happen by unsuspending one of
1268 * them.
1269 */
1270 if (allsusp && (signum == SIGKILL)) {
1271 if (p->p_flag & P_SA) {
1272 /*
1273 * get a suspended lwp from
1274 * the cache to send KILL
1275 * signal
1276 * XXXcl add signal checks at resume points
1277 */
1278 suspended = sa_getcachelwp
1279 (SLIST_FIRST(&p->p_sa->sa_vps));
1280 }
1281 lwp_continue(suspended);
1282 }
1283 goto done;
1284 }
1285 /*
1286 * All other (caught or default) signals
1287 * cause the process to run.
1288 */
1289 goto runfast;
1290 /*NOTREACHED*/
1291 case SSTOP:
1292 /* Process is stopped */
1293 /*
1294 * If traced process is already stopped,
1295 * then no further action is necessary.
1296 */
1297 if (p->p_flag & P_TRACED)
1298 goto done;
1299
1300 /*
1301 * Kill signal always sets processes running,
1302 * if possible.
1303 */
1304 if (signum == SIGKILL) {
1305 l = proc_unstop(p);
1306 if (l)
1307 goto runfast;
1308 goto done;
1309 }
1310
1311 if (prop & SA_CONT) {
1312 /*
1313 * If SIGCONT is default (or ignored),
1314 * we continue the process but don't
1315 * leave the signal in ps_siglist, as
1316 * it has no further action. If
1317 * SIGCONT is held, we continue the
1318 * process and leave the signal in
1319 * ps_siglist. If the process catches
1320 * SIGCONT, let it handle the signal
1321 * itself. If it isn't waiting on an
1322 * event, then it goes back to run
1323 * state. Otherwise, process goes
1324 * back to sleep state.
1325 */
1326 if (action == SIG_DFL)
1327 sigdelset(&p->p_sigctx.ps_siglist,
1328 signum);
1329 l = proc_unstop(p);
1330 if (l && (action == SIG_CATCH))
1331 goto runfast;
1332 goto out;
1333 }
1334
1335 if (prop & SA_STOP) {
1336 /*
1337 * Already stopped, don't need to stop again.
1338 * (If we did the shell could get confused.)
1339 */
1340 sigdelset(&p->p_sigctx.ps_siglist, signum);
1341 goto done;
1342 }
1343
1344 /*
1345 * If a lwp is sleeping interruptibly, then
1346 * wake it up; it will run until the kernel
1347 * boundary, where it will stop in issignal(),
1348 * since p->p_stat is still SSTOP. When the
1349 * process is continued, it will be made
1350 * runnable and can look at the signal.
1351 */
1352 if (l)
1353 goto run;
1354 goto out;
1355 case SIDL:
1356 /* Process is being created by fork */
1357 /* XXX: We are not ready to receive signals yet */
1358 goto done;
1359 default:
1360 /* Else what? */
1361 panic("psignal: Invalid process state %d.", p->p_stat);
1362 }
1363 /*NOTREACHED*/
1364
1365 runfast:
1366 if (action == SIG_CATCH) {
1367 ksiginfo_put(p, ksi);
1368 action = SIG_HOLD;
1369 }
1370 /*
1371 * Raise priority to at least PUSER.
1372 */
1373 if (l->l_priority > PUSER)
1374 l->l_priority = PUSER;
1375 run:
1376 if (action == SIG_CATCH) {
1377 ksiginfo_put(p, ksi);
1378 action = SIG_HOLD;
1379 }
1380
1381 setrunnable(l); /* XXXSMP: recurse? */
1382 out:
1383 if (action == SIG_CATCH)
1384 ksiginfo_put(p, ksi);
1385 done:
1386 /* XXXSMP: works, but icky */
1387 if (dolock)
1388 SCHED_UNLOCK(s);
1389 }
1390
1391 void
1392 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1393 {
1394 struct proc *p = l->l_proc;
1395 struct lwp *le, *li;
1396 siginfo_t *si;
1397 int f;
1398
1399 if (p->p_flag & P_SA) {
1400
1401 /* XXXUPSXXX What if not on sa_vp ? */
1402
1403 f = l->l_flag & L_SA;
1404 l->l_flag &= ~L_SA;
1405 si = pool_get(&siginfo_pool, PR_WAITOK);
1406 si->_info = ksi->ksi_info;
1407 le = li = NULL;
1408 if (KSI_TRAP_P(ksi))
1409 le = l;
1410 else
1411 li = l;
1412 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1413 sizeof(*si), si) != 0) {
1414 pool_put(&siginfo_pool, si);
1415 if (KSI_TRAP_P(ksi))
1416 /* XXX What do we do here?? */;
1417 }
1418 l->l_flag |= f;
1419 return;
1420 }
1421
1422 (*p->p_emul->e_sendsig)(ksi, mask);
1423 }
1424
1425 static __inline int firstsig(const sigset_t *);
1426
1427 static __inline int
1428 firstsig(const sigset_t *ss)
1429 {
1430 int sig;
1431
1432 sig = ffs(ss->__bits[0]);
1433 if (sig != 0)
1434 return (sig);
1435 #if NSIG > 33
1436 sig = ffs(ss->__bits[1]);
1437 if (sig != 0)
1438 return (sig + 32);
1439 #endif
1440 #if NSIG > 65
1441 sig = ffs(ss->__bits[2]);
1442 if (sig != 0)
1443 return (sig + 64);
1444 #endif
1445 #if NSIG > 97
1446 sig = ffs(ss->__bits[3]);
1447 if (sig != 0)
1448 return (sig + 96);
1449 #endif
1450 return (0);
1451 }
1452
1453 /*
1454 * If the current process has received a signal (should be caught or cause
1455 * termination, should interrupt current syscall), return the signal number.
1456 * Stop signals with default action are processed immediately, then cleared;
1457 * they aren't returned. This is checked after each entry to the system for
1458 * a syscall or trap (though this can usually be done without calling issignal
1459 * by checking the pending signal masks in the CURSIG macro.) The normal call
1460 * sequence is
1461 *
1462 * while (signum = CURSIG(curlwp))
1463 * postsig(signum);
1464 */
1465 int
1466 issignal(struct lwp *l)
1467 {
1468 struct proc *p = l->l_proc;
1469 int s = 0, signum, prop;
1470 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1471 sigset_t ss;
1472
1473 /* Bail out if we do not own the virtual processor */
1474 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1475 return 0;
1476
1477 if (p->p_stat == SSTOP) {
1478 /*
1479 * The process is stopped/stopping. Stop ourselves now that
1480 * we're on the kernel/userspace boundary.
1481 */
1482 if (dolock)
1483 SCHED_LOCK(s);
1484 l->l_stat = LSSTOP;
1485 p->p_nrlwps--;
1486 if (p->p_flag & P_TRACED)
1487 goto sigtraceswitch;
1488 else
1489 goto sigswitch;
1490 }
1491 for (;;) {
1492 sigpending1(p, &ss);
1493 if (p->p_flag & P_PPWAIT)
1494 sigminusset(&stopsigmask, &ss);
1495 signum = firstsig(&ss);
1496 if (signum == 0) { /* no signal to send */
1497 p->p_sigctx.ps_sigcheck = 0;
1498 if (locked && dolock)
1499 SCHED_LOCK(s);
1500 return (0);
1501 }
1502 /* take the signal! */
1503 sigdelset(&p->p_sigctx.ps_siglist, signum);
1504
1505 /*
1506 * We should see pending but ignored signals
1507 * only if P_TRACED was on when they were posted.
1508 */
1509 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1510 (p->p_flag & P_TRACED) == 0)
1511 continue;
1512
1513 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1514 /*
1515 * If traced, always stop, and stay
1516 * stopped until released by the debugger.
1517 */
1518 p->p_xstat = signum;
1519
1520 /* Emulation-specific handling of signal trace */
1521 if ((p->p_emul->e_tracesig != NULL) &&
1522 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1523 goto childresumed;
1524
1525 if ((p->p_flag & P_FSTRACE) == 0)
1526 child_psignal(p, dolock);
1527 if (dolock)
1528 SCHED_LOCK(s);
1529 proc_stop(p, 1);
1530 sigtraceswitch:
1531 mi_switch(l, NULL);
1532 SCHED_ASSERT_UNLOCKED();
1533 if (dolock)
1534 splx(s);
1535 else
1536 dolock = 1;
1537
1538 childresumed:
1539 /*
1540 * If we are no longer being traced, or the parent
1541 * didn't give us a signal, look for more signals.
1542 */
1543 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1544 continue;
1545
1546 /*
1547 * If the new signal is being masked, look for other
1548 * signals.
1549 */
1550 signum = p->p_xstat;
1551 p->p_xstat = 0;
1552 /*
1553 * `p->p_sigctx.ps_siglist |= mask' is done
1554 * in setrunnable().
1555 */
1556 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1557 continue;
1558 /* take the signal! */
1559 sigdelset(&p->p_sigctx.ps_siglist, signum);
1560 }
1561
1562 prop = sigprop[signum];
1563
1564 /*
1565 * Decide whether the signal should be returned.
1566 * Return the signal's number, or fall through
1567 * to clear it from the pending mask.
1568 */
1569 switch ((long)SIGACTION(p, signum).sa_handler) {
1570
1571 case (long)SIG_DFL:
1572 /*
1573 * Don't take default actions on system processes.
1574 */
1575 if (p->p_pid <= 1) {
1576 #ifdef DIAGNOSTIC
1577 /*
1578 * Are you sure you want to ignore SIGSEGV
1579 * in init? XXX
1580 */
1581 printf("Process (pid %d) got signal %d\n",
1582 p->p_pid, signum);
1583 #endif
1584 break; /* == ignore */
1585 }
1586 /*
1587 * If there is a pending stop signal to process
1588 * with default action, stop here,
1589 * then clear the signal. However,
1590 * if process is member of an orphaned
1591 * process group, ignore tty stop signals.
1592 */
1593 if (prop & SA_STOP) {
1594 if (p->p_flag & P_TRACED ||
1595 (p->p_pgrp->pg_jobc == 0 &&
1596 prop & SA_TTYSTOP))
1597 break; /* == ignore */
1598 p->p_xstat = signum;
1599 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1600 child_psignal(p, dolock);
1601 if (dolock)
1602 SCHED_LOCK(s);
1603 proc_stop(p, 1);
1604 sigswitch:
1605 mi_switch(l, NULL);
1606 SCHED_ASSERT_UNLOCKED();
1607 if (dolock)
1608 splx(s);
1609 else
1610 dolock = 1;
1611 break;
1612 } else if (prop & SA_IGNORE) {
1613 /*
1614 * Except for SIGCONT, shouldn't get here.
1615 * Default action is to ignore; drop it.
1616 */
1617 break; /* == ignore */
1618 } else
1619 goto keep;
1620 /*NOTREACHED*/
1621
1622 case (long)SIG_IGN:
1623 /*
1624 * Masking above should prevent us ever trying
1625 * to take action on an ignored signal other
1626 * than SIGCONT, unless process is traced.
1627 */
1628 #ifdef DEBUG_ISSIGNAL
1629 if ((prop & SA_CONT) == 0 &&
1630 (p->p_flag & P_TRACED) == 0)
1631 printf("issignal\n");
1632 #endif
1633 break; /* == ignore */
1634
1635 default:
1636 /*
1637 * This signal has an action, let
1638 * postsig() process it.
1639 */
1640 goto keep;
1641 }
1642 }
1643 /* NOTREACHED */
1644
1645 keep:
1646 /* leave the signal for later */
1647 sigaddset(&p->p_sigctx.ps_siglist, signum);
1648 CHECKSIGS(p);
1649 if (locked && dolock)
1650 SCHED_LOCK(s);
1651 return (signum);
1652 }
1653
1654 /*
1655 * Put the argument process into the stopped state and notify the parent
1656 * via wakeup. Signals are handled elsewhere. The process must not be
1657 * on the run queue.
1658 */
1659 void
1660 proc_stop(struct proc *p, int dowakeup)
1661 {
1662 struct lwp *l;
1663 struct proc *parent;
1664 struct sadata_vp *vp;
1665
1666 SCHED_ASSERT_LOCKED();
1667
1668 /* XXX lock process LWP state */
1669 p->p_flag &= ~P_WAITED;
1670 p->p_stat = SSTOP;
1671 parent = p->p_pptr;
1672 parent->p_nstopchild++;
1673
1674 if (p->p_flag & P_SA) {
1675 /*
1676 * Only (try to) put the LWP on the VP in stopped
1677 * state.
1678 * All other LWPs will suspend in sa_setwoken()
1679 * because the VP-LWP in stopped state cannot be
1680 * repossessed.
1681 */
1682 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1683 l = vp->savp_lwp;
1684 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1685 l->l_stat = LSSTOP;
1686 p->p_nrlwps--;
1687 } else if (l->l_stat == LSRUN) {
1688 /* Remove LWP from the run queue */
1689 remrunqueue(l);
1690 l->l_stat = LSSTOP;
1691 p->p_nrlwps--;
1692 } else if (l->l_stat == LSSLEEP &&
1693 l->l_flag & L_SA_IDLE) {
1694 l->l_flag &= ~L_SA_IDLE;
1695 l->l_stat = LSSTOP;
1696 }
1697 }
1698 goto out;
1699 }
1700
1701 /*
1702 * Put as many LWP's as possible in stopped state.
1703 * Sleeping ones will notice the stopped state as they try to
1704 * return to userspace.
1705 */
1706
1707 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1708 if (l->l_stat == LSONPROC) {
1709 /* XXX SMP this assumes that a LWP that is LSONPROC
1710 * is curlwp and hence is about to be mi_switched
1711 * away; the only callers of proc_stop() are:
1712 * - psignal
1713 * - issignal()
1714 * For the former, proc_stop() is only called when
1715 * no processes are running, so we don't worry.
1716 * For the latter, proc_stop() is called right
1717 * before mi_switch().
1718 */
1719 l->l_stat = LSSTOP;
1720 p->p_nrlwps--;
1721 } else if (l->l_stat == LSRUN) {
1722 /* Remove LWP from the run queue */
1723 remrunqueue(l);
1724 l->l_stat = LSSTOP;
1725 p->p_nrlwps--;
1726 } else if ((l->l_stat == LSSLEEP) ||
1727 (l->l_stat == LSSUSPENDED) ||
1728 (l->l_stat == LSZOMB) ||
1729 (l->l_stat == LSDEAD)) {
1730 /*
1731 * Don't do anything; let sleeping LWPs
1732 * discover the stopped state of the process
1733 * on their way out of the kernel; otherwise,
1734 * things like NFS threads that sleep with
1735 * locks will block the rest of the system
1736 * from getting any work done.
1737 *
1738 * Suspended/dead/zombie LWPs aren't going
1739 * anywhere, so we don't need to touch them.
1740 */
1741 }
1742 #ifdef DIAGNOSTIC
1743 else {
1744 panic("proc_stop: process %d lwp %d "
1745 "in unstoppable state %d.\n",
1746 p->p_pid, l->l_lid, l->l_stat);
1747 }
1748 #endif
1749 }
1750
1751 out:
1752 /* XXX unlock process LWP state */
1753
1754 if (dowakeup)
1755 sched_wakeup((caddr_t)p->p_pptr);
1756 }
1757
1758 /*
1759 * Given a process in state SSTOP, set the state back to SACTIVE and
1760 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1761 *
1762 * If no LWPs ended up runnable (and therefore able to take a signal),
1763 * return a LWP that is sleeping interruptably. The caller can wake
1764 * that LWP up to take a signal.
1765 */
1766 struct lwp *
1767 proc_unstop(struct proc *p)
1768 {
1769 struct lwp *l, *lr = NULL;
1770 struct sadata_vp *vp;
1771 int cantake = 0;
1772
1773 SCHED_ASSERT_LOCKED();
1774
1775 /*
1776 * Our caller wants to be informed if there are only sleeping
1777 * and interruptable LWPs left after we have run so that it
1778 * can invoke setrunnable() if required - return one of the
1779 * interruptable LWPs if this is the case.
1780 */
1781
1782 if (!(p->p_flag & P_WAITED))
1783 p->p_pptr->p_nstopchild--;
1784 p->p_stat = SACTIVE;
1785 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1786 if (l->l_stat == LSRUN) {
1787 lr = NULL;
1788 cantake = 1;
1789 }
1790 if (l->l_stat != LSSTOP)
1791 continue;
1792
1793 if (l->l_wchan != NULL) {
1794 l->l_stat = LSSLEEP;
1795 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1796 lr = l;
1797 cantake = 1;
1798 }
1799 } else {
1800 setrunnable(l);
1801 lr = NULL;
1802 cantake = 1;
1803 }
1804 }
1805 if (p->p_flag & P_SA) {
1806 /* Only consider returning the LWP on the VP. */
1807 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1808 lr = vp->savp_lwp;
1809 if (lr->l_stat == LSSLEEP) {
1810 if (lr->l_flag & L_SA_YIELD) {
1811 setrunnable(lr);
1812 break;
1813 } else if (lr->l_flag & L_SINTR)
1814 return lr;
1815 }
1816 }
1817 return NULL;
1818 }
1819 return lr;
1820 }
1821
1822 /*
1823 * Take the action for the specified signal
1824 * from the current set of pending signals.
1825 */
1826 void
1827 postsig(int signum)
1828 {
1829 struct lwp *l;
1830 struct proc *p;
1831 struct sigacts *ps;
1832 sig_t action;
1833 sigset_t *returnmask;
1834
1835 l = curlwp;
1836 p = l->l_proc;
1837 ps = p->p_sigacts;
1838 #ifdef DIAGNOSTIC
1839 if (signum == 0)
1840 panic("postsig");
1841 #endif
1842
1843 KERNEL_PROC_LOCK(l);
1844
1845 #ifdef MULTIPROCESSOR
1846 /*
1847 * On MP, issignal() can return the same signal to multiple
1848 * LWPs. The LWPs will block above waiting for the kernel
1849 * lock and the first LWP which gets through will then remove
1850 * the signal from ps_siglist. All other LWPs exit here.
1851 */
1852 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1853 KERNEL_PROC_UNLOCK(l);
1854 return;
1855 }
1856 #endif
1857 sigdelset(&p->p_sigctx.ps_siglist, signum);
1858 action = SIGACTION_PS(ps, signum).sa_handler;
1859 if (action == SIG_DFL) {
1860 #ifdef KTRACE
1861 if (KTRPOINT(p, KTR_PSIG))
1862 ktrpsig(p, signum, action,
1863 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1864 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1865 NULL);
1866 #endif
1867 /*
1868 * Default action, where the default is to kill
1869 * the process. (Other cases were ignored above.)
1870 */
1871 sigexit(l, signum);
1872 /* NOTREACHED */
1873 } else {
1874 ksiginfo_t *ksi;
1875 /*
1876 * If we get here, the signal must be caught.
1877 */
1878 #ifdef DIAGNOSTIC
1879 if (action == SIG_IGN ||
1880 sigismember(&p->p_sigctx.ps_sigmask, signum))
1881 panic("postsig action");
1882 #endif
1883 /*
1884 * Set the new mask value and also defer further
1885 * occurrences of this signal.
1886 *
1887 * Special case: user has done a sigpause. Here the
1888 * current mask is not of interest, but rather the
1889 * mask from before the sigpause is what we want
1890 * restored after the signal processing is completed.
1891 */
1892 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1893 returnmask = &p->p_sigctx.ps_oldmask;
1894 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1895 } else
1896 returnmask = &p->p_sigctx.ps_sigmask;
1897 p->p_stats->p_ru.ru_nsignals++;
1898 ksi = ksiginfo_get(p, signum);
1899 #ifdef KTRACE
1900 if (KTRPOINT(p, KTR_PSIG))
1901 ktrpsig(p, signum, action,
1902 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1903 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1904 ksi);
1905 #endif
1906 if (ksi == NULL) {
1907 ksiginfo_t ksi1;
1908 /*
1909 * we did not save any siginfo for this, either
1910 * because the signal was not caught, or because the
1911 * user did not request SA_SIGINFO
1912 */
1913 KSI_INIT_EMPTY(&ksi1);
1914 ksi1.ksi_signo = signum;
1915 kpsendsig(l, &ksi1, returnmask);
1916 } else {
1917 kpsendsig(l, ksi, returnmask);
1918 pool_put(&ksiginfo_pool, ksi);
1919 }
1920 p->p_sigctx.ps_lwp = 0;
1921 p->p_sigctx.ps_code = 0;
1922 p->p_sigctx.ps_signo = 0;
1923 (void) splsched(); /* XXXSMP */
1924 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1925 &p->p_sigctx.ps_sigmask);
1926 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1927 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1928 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1929 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1930 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1931 }
1932 (void) spl0(); /* XXXSMP */
1933 }
1934
1935 KERNEL_PROC_UNLOCK(l);
1936 }
1937
1938 /*
1939 * Kill the current process for stated reason.
1940 */
1941 void
1942 killproc(struct proc *p, const char *why)
1943 {
1944 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1945 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1946 psignal(p, SIGKILL);
1947 }
1948
1949 /*
1950 * Force the current process to exit with the specified signal, dumping core
1951 * if appropriate. We bypass the normal tests for masked and caught signals,
1952 * allowing unrecoverable failures to terminate the process without changing
1953 * signal state. Mark the accounting record with the signal termination.
1954 * If dumping core, save the signal number for the debugger. Calls exit and
1955 * does not return.
1956 */
1957
1958 #if defined(DEBUG)
1959 int kern_logsigexit = 1; /* not static to make public for sysctl */
1960 #else
1961 int kern_logsigexit = 0; /* not static to make public for sysctl */
1962 #endif
1963
1964 static const char logcoredump[] =
1965 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1966 static const char lognocoredump[] =
1967 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1968
1969 /* Wrapper function for use in p_userret */
1970 static void
1971 lwp_coredump_hook(struct lwp *l, void *arg)
1972 {
1973 int s;
1974
1975 /*
1976 * Suspend ourselves, so that the kernel stack and therefore
1977 * the userland registers saved in the trapframe are around
1978 * for coredump() to write them out.
1979 */
1980 KERNEL_PROC_LOCK(l);
1981 l->l_flag &= ~L_DETACHED;
1982 SCHED_LOCK(s);
1983 l->l_stat = LSSUSPENDED;
1984 l->l_proc->p_nrlwps--;
1985 /* XXX NJWLWP check if this makes sense here: */
1986 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1987 mi_switch(l, NULL);
1988 SCHED_ASSERT_UNLOCKED();
1989 splx(s);
1990
1991 lwp_exit(l);
1992 }
1993
1994 void
1995 sigexit(struct lwp *l, int signum)
1996 {
1997 struct proc *p;
1998 #if 0
1999 struct lwp *l2;
2000 #endif
2001 int error, exitsig;
2002
2003 p = l->l_proc;
2004
2005 /*
2006 * Don't permit coredump() or exit1() multiple times
2007 * in the same process.
2008 */
2009 if (p->p_flag & P_WEXIT) {
2010 KERNEL_PROC_UNLOCK(l);
2011 (*p->p_userret)(l, p->p_userret_arg);
2012 }
2013 p->p_flag |= P_WEXIT;
2014 /* We don't want to switch away from exiting. */
2015 /* XXX multiprocessor: stop LWPs on other processors. */
2016 #if 0
2017 if (p->p_flag & P_SA) {
2018 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2019 l2->l_flag &= ~L_SA;
2020 p->p_flag &= ~P_SA;
2021 }
2022 #endif
2023
2024 /* Make other LWPs stick around long enough to be dumped */
2025 p->p_userret = lwp_coredump_hook;
2026 p->p_userret_arg = NULL;
2027
2028 exitsig = signum;
2029 p->p_acflag |= AXSIG;
2030 if (sigprop[signum] & SA_CORE) {
2031 p->p_sigctx.ps_signo = signum;
2032 if ((error = coredump(l, NULL)) == 0)
2033 exitsig |= WCOREFLAG;
2034
2035 if (kern_logsigexit) {
2036 /* XXX What if we ever have really large UIDs? */
2037 int uid = p->p_cred && p->p_ucred ?
2038 (int) p->p_ucred->cr_uid : -1;
2039
2040 if (error)
2041 log(LOG_INFO, lognocoredump, p->p_pid,
2042 p->p_comm, uid, signum, error);
2043 else
2044 log(LOG_INFO, logcoredump, p->p_pid,
2045 p->p_comm, uid, signum);
2046 }
2047
2048 }
2049
2050 exit1(l, W_EXITCODE(0, exitsig));
2051 /* NOTREACHED */
2052 }
2053
2054 struct coredump_iostate {
2055 struct proc *io_proc;
2056 struct vnode *io_vp;
2057 struct ucred *io_cred;
2058 off_t io_offset;
2059 };
2060
2061 int
2062 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2063 {
2064 struct coredump_iostate *io = cookie;
2065 int error;
2066
2067 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2068 io->io_offset, segflg,
2069 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2070 segflg == UIO_USERSPACE ? io->io_proc : NULL);
2071 if (error)
2072 return (error);
2073
2074 io->io_offset += len;
2075 return (0);
2076 }
2077
2078 /*
2079 * Dump core, into a file named "progname.core" or "core" (depending on the
2080 * value of shortcorename), unless the process was setuid/setgid.
2081 */
2082 int
2083 coredump(struct lwp *l, const char *pattern)
2084 {
2085 struct vnode *vp;
2086 struct proc *p;
2087 struct vmspace *vm;
2088 struct ucred *cred;
2089 struct nameidata nd;
2090 struct vattr vattr;
2091 struct mount *mp;
2092 struct coredump_iostate io;
2093 int error, error1;
2094 char name[MAXPATHLEN];
2095
2096 p = l->l_proc;
2097 vm = p->p_vmspace;
2098 cred = p->p_cred->pc_ucred;
2099
2100 /*
2101 * Make sure the process has not set-id, to prevent data leaks.
2102 */
2103 if (p->p_flag & P_SUGID)
2104 return (EPERM);
2105
2106 /*
2107 * Refuse to core if the data + stack + user size is larger than
2108 * the core dump limit. XXX THIS IS WRONG, because of mapped
2109 * data.
2110 */
2111 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2112 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2113 return (EFBIG); /* better error code? */
2114
2115 restart:
2116 /*
2117 * The core dump will go in the current working directory. Make
2118 * sure that the directory is still there and that the mount flags
2119 * allow us to write core dumps there.
2120 */
2121 vp = p->p_cwdi->cwdi_cdir;
2122 if (vp->v_mount == NULL ||
2123 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2124 return (EPERM);
2125
2126 if (pattern == NULL)
2127 pattern = p->p_limit->pl_corename;
2128 if ((error = build_corename(p, name, pattern, sizeof(name))) != 0)
2129 return error;
2130
2131 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2132 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2133 if (error)
2134 return (error);
2135 vp = nd.ni_vp;
2136
2137 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2138 VOP_UNLOCK(vp, 0);
2139 if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2140 return (error);
2141 if ((error = vn_start_write(NULL, &mp,
2142 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2143 return (error);
2144 goto restart;
2145 }
2146
2147 /* Don't dump to non-regular files or files with links. */
2148 if (vp->v_type != VREG ||
2149 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2150 error = EINVAL;
2151 goto out;
2152 }
2153 VATTR_NULL(&vattr);
2154 vattr.va_size = 0;
2155 VOP_LEASE(vp, p, cred, LEASE_WRITE);
2156 VOP_SETATTR(vp, &vattr, cred, p);
2157 p->p_acflag |= ACORE;
2158
2159 io.io_proc = p;
2160 io.io_vp = vp;
2161 io.io_cred = cred;
2162 io.io_offset = 0;
2163
2164 /* Now dump the actual core file. */
2165 error = (*p->p_execsw->es_coredump)(l, &io);
2166 out:
2167 VOP_UNLOCK(vp, 0);
2168 vn_finished_write(mp, 0);
2169 error1 = vn_close(vp, FWRITE, cred, p);
2170 if (error == 0)
2171 error = error1;
2172 return (error);
2173 }
2174
2175 /*
2176 * Nonexistent system call-- signal process (may want to handle it).
2177 * Flag error in case process won't see signal immediately (blocked or ignored).
2178 */
2179 /* ARGSUSED */
2180 int
2181 sys_nosys(struct lwp *l, void *v, register_t *retval)
2182 {
2183 struct proc *p;
2184
2185 p = l->l_proc;
2186 psignal(p, SIGSYS);
2187 return (ENOSYS);
2188 }
2189
2190 static int
2191 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2192 {
2193 const char *s;
2194 char *d, *end;
2195 int i;
2196
2197 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2198 if (*s == '%') {
2199 switch (*(s + 1)) {
2200 case 'n':
2201 i = snprintf(d, end - d, "%s", p->p_comm);
2202 break;
2203 case 'p':
2204 i = snprintf(d, end - d, "%d", p->p_pid);
2205 break;
2206 case 'u':
2207 i = snprintf(d, end - d, "%.*s",
2208 (int)sizeof p->p_pgrp->pg_session->s_login,
2209 p->p_pgrp->pg_session->s_login);
2210 break;
2211 case 't':
2212 i = snprintf(d, end - d, "%ld",
2213 p->p_stats->p_start.tv_sec);
2214 break;
2215 default:
2216 goto copy;
2217 }
2218 d += i;
2219 s++;
2220 } else {
2221 copy: *d = *s;
2222 d++;
2223 }
2224 if (d >= end)
2225 return (ENAMETOOLONG);
2226 }
2227 *d = '\0';
2228 return 0;
2229 }
2230
2231 void
2232 getucontext(struct lwp *l, ucontext_t *ucp)
2233 {
2234 struct proc *p;
2235
2236 p = l->l_proc;
2237
2238 ucp->uc_flags = 0;
2239 ucp->uc_link = l->l_ctxlink;
2240
2241 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2242 ucp->uc_flags |= _UC_SIGMASK;
2243
2244 /*
2245 * The (unsupplied) definition of the `current execution stack'
2246 * in the System V Interface Definition appears to allow returning
2247 * the main context stack.
2248 */
2249 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2250 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2251 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2252 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2253 } else {
2254 /* Simply copy alternate signal execution stack. */
2255 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2256 }
2257 ucp->uc_flags |= _UC_STACK;
2258
2259 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2260 }
2261
2262 /* ARGSUSED */
2263 int
2264 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2265 {
2266 struct sys_getcontext_args /* {
2267 syscallarg(struct __ucontext *) ucp;
2268 } */ *uap = v;
2269 ucontext_t uc;
2270
2271 getucontext(l, &uc);
2272
2273 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2274 }
2275
2276 int
2277 setucontext(struct lwp *l, const ucontext_t *ucp)
2278 {
2279 struct proc *p;
2280 int error;
2281
2282 p = l->l_proc;
2283 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2284 return (error);
2285 l->l_ctxlink = ucp->uc_link;
2286
2287 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2288 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2289
2290 /*
2291 * If there was stack information, update whether or not we are
2292 * still running on an alternate signal stack.
2293 */
2294 if ((ucp->uc_flags & _UC_STACK) != 0) {
2295 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2296 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2297 else
2298 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2299 }
2300
2301 return 0;
2302 }
2303
2304 /* ARGSUSED */
2305 int
2306 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2307 {
2308 struct sys_setcontext_args /* {
2309 syscallarg(const ucontext_t *) ucp;
2310 } */ *uap = v;
2311 ucontext_t uc;
2312 int error;
2313
2314 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2315 exit1(l, W_EXITCODE(0, 0));
2316 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2317 (error = setucontext(l, &uc)) != 0)
2318 return (error);
2319
2320 return (EJUSTRETURN);
2321 }
2322
2323 /*
2324 * sigtimedwait(2) system call, used also for implementation
2325 * of sigwaitinfo() and sigwait().
2326 *
2327 * This only handles single LWP in signal wait. libpthread provides
2328 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2329 */
2330 int
2331 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2332 {
2333 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2334 }
2335
2336 int
2337 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2338 copyinout_t put_info, copyinout_t fetch_timeout, copyinout_t put_timeout)
2339 {
2340 struct sys___sigtimedwait_args /* {
2341 syscallarg(const sigset_t *) set;
2342 syscallarg(siginfo_t *) info;
2343 syscallarg(struct timespec *) timeout;
2344 } */ *uap = v;
2345 sigset_t *waitset, twaitset;
2346 struct proc *p = l->l_proc;
2347 int error, signum, s;
2348 int timo = 0;
2349 struct timeval tvstart;
2350 struct timespec ts;
2351 ksiginfo_t *ksi;
2352
2353 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2354
2355 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2356 FREE(waitset, M_TEMP);
2357 return (error);
2358 }
2359
2360 /*
2361 * Silently ignore SA_CANTMASK signals. psignal1() would
2362 * ignore SA_CANTMASK signals in waitset, we do this
2363 * only for the below siglist check.
2364 */
2365 sigminusset(&sigcantmask, waitset);
2366
2367 /*
2368 * First scan siglist and check if there is signal from
2369 * our waitset already pending.
2370 */
2371 twaitset = *waitset;
2372 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2373 if ((signum = firstsig(&twaitset))) {
2374 /* found pending signal */
2375 sigdelset(&p->p_sigctx.ps_siglist, signum);
2376 ksi = ksiginfo_get(p, signum);
2377 if (!ksi) {
2378 /* No queued siginfo, manufacture one */
2379 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2380 KSI_INIT(ksi);
2381 ksi->ksi_info._signo = signum;
2382 ksi->ksi_info._code = SI_USER;
2383 }
2384
2385 goto sig;
2386 }
2387
2388 /*
2389 * Calculate timeout, if it was specified.
2390 */
2391 if (SCARG(uap, timeout)) {
2392 uint64_t ms;
2393
2394 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2395 return (error);
2396
2397 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2398 timo = mstohz(ms);
2399 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2400 timo = 1;
2401 if (timo <= 0)
2402 return (EAGAIN);
2403
2404 /*
2405 * Remember current mono_time, it would be used in
2406 * ECANCELED/ERESTART case.
2407 */
2408 s = splclock();
2409 tvstart = mono_time;
2410 splx(s);
2411 }
2412
2413 /*
2414 * Setup ps_sigwait list. Pass pointer to malloced memory
2415 * here; it's not possible to pass pointer to a structure
2416 * on current process's stack, the current process might
2417 * be swapped out at the time the signal would get delivered.
2418 */
2419 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2420 p->p_sigctx.ps_sigwaited = ksi;
2421 p->p_sigctx.ps_sigwait = waitset;
2422
2423 /*
2424 * Wait for signal to arrive. We can either be woken up or
2425 * time out.
2426 */
2427 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2428
2429 /*
2430 * Need to find out if we woke as a result of lwp_wakeup()
2431 * or a signal outside our wait set.
2432 */
2433 if (error == EINTR && p->p_sigctx.ps_sigwaited
2434 && !firstsig(&p->p_sigctx.ps_siglist)) {
2435 /* wakeup via _lwp_wakeup() */
2436 error = ECANCELED;
2437 } else if (!error && p->p_sigctx.ps_sigwaited) {
2438 /* spurious wakeup - arrange for syscall restart */
2439 error = ERESTART;
2440 goto fail;
2441 }
2442
2443 /*
2444 * On error, clear sigwait indication. psignal1() clears it
2445 * in !error case.
2446 */
2447 if (error) {
2448 p->p_sigctx.ps_sigwaited = NULL;
2449
2450 /*
2451 * If the sleep was interrupted (either by signal or wakeup),
2452 * update the timeout and copyout new value back.
2453 * It would be used when the syscall would be restarted
2454 * or called again.
2455 */
2456 if (timo && (error == ERESTART || error == ECANCELED)) {
2457 struct timeval tvnow, tvtimo;
2458 int err;
2459
2460 s = splclock();
2461 tvnow = mono_time;
2462 splx(s);
2463
2464 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2465
2466 /* compute how much time has passed since start */
2467 timersub(&tvnow, &tvstart, &tvnow);
2468 /* substract passed time from timeout */
2469 timersub(&tvtimo, &tvnow, &tvtimo);
2470
2471 if (tvtimo.tv_sec < 0) {
2472 error = EAGAIN;
2473 goto fail;
2474 }
2475
2476 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2477
2478 /* copy updated timeout to userland */
2479 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2480 sizeof(ts)))) {
2481 error = err;
2482 goto fail;
2483 }
2484 }
2485
2486 goto fail;
2487 }
2488
2489 /*
2490 * If a signal from the wait set arrived, copy it to userland.
2491 * Copy only the used part of siginfo, the padding part is
2492 * left unchanged (userland is not supposed to touch it anyway).
2493 */
2494 sig:
2495 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2496
2497 fail:
2498 FREE(waitset, M_TEMP);
2499 pool_put(&ksiginfo_pool, ksi);
2500 p->p_sigctx.ps_sigwait = NULL;
2501
2502 return (error);
2503 }
2504
2505 /*
2506 * Returns true if signal is ignored or masked for passed process.
2507 */
2508 int
2509 sigismasked(struct proc *p, int sig)
2510 {
2511
2512 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2513 sigismember(&p->p_sigctx.ps_sigmask, sig));
2514 }
2515
2516 static int
2517 filt_sigattach(struct knote *kn)
2518 {
2519 struct proc *p = curproc;
2520
2521 kn->kn_ptr.p_proc = p;
2522 kn->kn_flags |= EV_CLEAR; /* automatically set */
2523
2524 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2525
2526 return (0);
2527 }
2528
2529 static void
2530 filt_sigdetach(struct knote *kn)
2531 {
2532 struct proc *p = kn->kn_ptr.p_proc;
2533
2534 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2535 }
2536
2537 /*
2538 * signal knotes are shared with proc knotes, so we apply a mask to
2539 * the hint in order to differentiate them from process hints. This
2540 * could be avoided by using a signal-specific knote list, but probably
2541 * isn't worth the trouble.
2542 */
2543 static int
2544 filt_signal(struct knote *kn, long hint)
2545 {
2546
2547 if (hint & NOTE_SIGNAL) {
2548 hint &= ~NOTE_SIGNAL;
2549
2550 if (kn->kn_id == hint)
2551 kn->kn_data++;
2552 }
2553 return (kn->kn_data != 0);
2554 }
2555
2556 const struct filterops sig_filtops = {
2557 0, filt_sigattach, filt_sigdetach, filt_signal
2558 };
2559