kern_sig.c revision 1.210 1 /* $NetBSD: kern_sig.c,v 1.210 2005/10/23 00:09:14 cube Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.210 2005/10/23 00:09:14 cube Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm.h>
82 #include <uvm/uvm_extern.h>
83
84 static void child_psignal(struct proc *, int);
85 static int build_corename(struct proc *, char *, const char *, size_t);
86 static void ksiginfo_exithook(struct proc *, void *);
87 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94
95 /*
96 * struct sigacts memory pool allocator.
97 */
98
99 static void *
100 sigacts_poolpage_alloc(struct pool *pp, int flags)
101 {
102
103 return (void *)uvm_km_alloc(kernel_map,
104 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
105 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
106 | UVM_KMF_WIRED);
107 }
108
109 static void
110 sigacts_poolpage_free(struct pool *pp, void *v)
111 {
112 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
113 }
114
115 static struct pool_allocator sigactspool_allocator = {
116 sigacts_poolpage_alloc, sigacts_poolpage_free,
117 };
118
119 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
120 &pool_allocator_nointr);
121 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
122
123 /*
124 * Can process p, with pcred pc, send the signal signum to process q?
125 */
126 #define CANSIGNAL(p, pc, q, signum) \
127 ((pc)->pc_ucred->cr_uid == 0 || \
128 (pc)->p_ruid == (q)->p_cred->p_ruid || \
129 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
130 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
131 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
132 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
133
134 /*
135 * Remove and return the first ksiginfo element that matches our requested
136 * signal, or return NULL if one not found.
137 */
138 static ksiginfo_t *
139 ksiginfo_get(struct proc *p, int signo)
140 {
141 ksiginfo_t *ksi;
142 int s;
143
144 s = splsoftclock();
145 simple_lock(&p->p_sigctx.ps_silock);
146 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
147 if (ksi->ksi_signo == signo) {
148 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
149 goto out;
150 }
151 }
152 ksi = NULL;
153 out:
154 simple_unlock(&p->p_sigctx.ps_silock);
155 splx(s);
156 return ksi;
157 }
158
159 /*
160 * Append a new ksiginfo element to the list of pending ksiginfo's, if
161 * we need to (SA_SIGINFO was requested). We replace non RT signals if
162 * they already existed in the queue and we add new entries for RT signals,
163 * or for non RT signals with non-existing entries.
164 */
165 static void
166 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
167 {
168 ksiginfo_t *kp;
169 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
170 int s;
171
172 if ((sa->sa_flags & SA_SIGINFO) == 0)
173 return;
174 /*
175 * If there's no info, don't save it.
176 */
177 if (KSI_EMPTY_P(ksi))
178 return;
179
180 s = splsoftclock();
181 simple_lock(&p->p_sigctx.ps_silock);
182 #ifdef notyet /* XXX: QUEUING */
183 if (ksi->ksi_signo < SIGRTMIN)
184 #endif
185 {
186 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
187 if (kp->ksi_signo == ksi->ksi_signo) {
188 KSI_COPY(ksi, kp);
189 goto out;
190 }
191 }
192 }
193 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
194 if (kp == NULL) {
195 #ifdef DIAGNOSTIC
196 printf("Out of memory allocating siginfo for pid %d\n",
197 p->p_pid);
198 #endif
199 goto out;
200 }
201 *kp = *ksi;
202 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
203 out:
204 simple_unlock(&p->p_sigctx.ps_silock);
205 splx(s);
206 }
207
208 /*
209 * free all pending ksiginfo on exit
210 */
211 static void
212 ksiginfo_exithook(struct proc *p, void *v)
213 {
214 int s;
215
216 s = splsoftclock();
217 simple_lock(&p->p_sigctx.ps_silock);
218 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
219 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
220 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
221 pool_put(&ksiginfo_pool, ksi);
222 }
223 simple_unlock(&p->p_sigctx.ps_silock);
224 splx(s);
225 }
226
227 /*
228 * Initialize signal-related data structures.
229 */
230 void
231 signal_init(void)
232 {
233
234 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
235
236 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
237 sizeof(struct sigacts) > PAGE_SIZE ?
238 &sigactspool_allocator : &pool_allocator_nointr);
239
240 exithook_establish(ksiginfo_exithook, NULL);
241 exechook_establish(ksiginfo_exithook, NULL);
242 }
243
244 /*
245 * Create an initial sigctx structure, using the same signal state
246 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
247 * copy it from parent.
248 */
249 void
250 sigactsinit(struct proc *np, struct proc *pp, int share)
251 {
252 struct sigacts *ps;
253
254 if (share) {
255 np->p_sigacts = pp->p_sigacts;
256 pp->p_sigacts->sa_refcnt++;
257 } else {
258 ps = pool_get(&sigacts_pool, PR_WAITOK);
259 if (pp)
260 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
261 else
262 memset(ps, '\0', sizeof(struct sigacts));
263 ps->sa_refcnt = 1;
264 np->p_sigacts = ps;
265 }
266 }
267
268 /*
269 * Make this process not share its sigctx, maintaining all
270 * signal state.
271 */
272 void
273 sigactsunshare(struct proc *p)
274 {
275 struct sigacts *oldps;
276
277 if (p->p_sigacts->sa_refcnt == 1)
278 return;
279
280 oldps = p->p_sigacts;
281 sigactsinit(p, NULL, 0);
282
283 if (--oldps->sa_refcnt == 0)
284 pool_put(&sigacts_pool, oldps);
285 }
286
287 /*
288 * Release a sigctx structure.
289 */
290 void
291 sigactsfree(struct sigacts *ps)
292 {
293
294 if (--ps->sa_refcnt > 0)
295 return;
296
297 pool_put(&sigacts_pool, ps);
298 }
299
300 int
301 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
302 struct sigaction *osa, const void *tramp, int vers)
303 {
304 struct sigacts *ps;
305 int prop;
306
307 ps = p->p_sigacts;
308 if (signum <= 0 || signum >= NSIG)
309 return (EINVAL);
310
311 /*
312 * Trampoline ABI version 0 is reserved for the legacy
313 * kernel-provided on-stack trampoline. Conversely, if we are
314 * using a non-0 ABI version, we must have a trampoline. Only
315 * validate the vers if a new sigaction was supplied. Emulations
316 * use legacy kernel trampolines with version 0, alternatively
317 * check for that too.
318 */
319 if ((vers != 0 && tramp == NULL) ||
320 #ifdef SIGTRAMP_VALID
321 (nsa != NULL &&
322 ((vers == 0) ?
323 (p->p_emul->e_sigcode == NULL) :
324 !SIGTRAMP_VALID(vers))) ||
325 #endif
326 (vers == 0 && tramp != NULL))
327 return (EINVAL);
328
329 if (osa)
330 *osa = SIGACTION_PS(ps, signum);
331
332 if (nsa) {
333 if (nsa->sa_flags & ~SA_ALLBITS)
334 return (EINVAL);
335
336 prop = sigprop[signum];
337 if (prop & SA_CANTMASK)
338 return (EINVAL);
339
340 (void) splsched(); /* XXXSMP */
341 SIGACTION_PS(ps, signum) = *nsa;
342 ps->sa_sigdesc[signum].sd_tramp = tramp;
343 ps->sa_sigdesc[signum].sd_vers = vers;
344 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
345 if ((prop & SA_NORESET) != 0)
346 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
347 if (signum == SIGCHLD) {
348 if (nsa->sa_flags & SA_NOCLDSTOP)
349 p->p_flag |= P_NOCLDSTOP;
350 else
351 p->p_flag &= ~P_NOCLDSTOP;
352 if (nsa->sa_flags & SA_NOCLDWAIT) {
353 /*
354 * Paranoia: since SA_NOCLDWAIT is implemented
355 * by reparenting the dying child to PID 1 (and
356 * trust it to reap the zombie), PID 1 itself
357 * is forbidden to set SA_NOCLDWAIT.
358 */
359 if (p->p_pid == 1)
360 p->p_flag &= ~P_NOCLDWAIT;
361 else
362 p->p_flag |= P_NOCLDWAIT;
363 } else
364 p->p_flag &= ~P_NOCLDWAIT;
365
366 if (nsa->sa_handler == SIG_IGN) {
367 /*
368 * Paranoia: same as above.
369 */
370 if (p->p_pid == 1)
371 p->p_flag &= ~P_CLDSIGIGN;
372 else
373 p->p_flag |= P_CLDSIGIGN;
374 } else
375 p->p_flag &= ~P_CLDSIGIGN;
376
377 }
378 if ((nsa->sa_flags & SA_NODEFER) == 0)
379 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
380 else
381 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
382 /*
383 * Set bit in p_sigctx.ps_sigignore for signals that are set to
384 * SIG_IGN, and for signals set to SIG_DFL where the default is
385 * to ignore. However, don't put SIGCONT in
386 * p_sigctx.ps_sigignore, as we have to restart the process.
387 */
388 if (nsa->sa_handler == SIG_IGN ||
389 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
390 /* never to be seen again */
391 sigdelset(&p->p_sigctx.ps_siglist, signum);
392 if (signum != SIGCONT) {
393 /* easier in psignal */
394 sigaddset(&p->p_sigctx.ps_sigignore, signum);
395 }
396 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
397 } else {
398 sigdelset(&p->p_sigctx.ps_sigignore, signum);
399 if (nsa->sa_handler == SIG_DFL)
400 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
401 else
402 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
403 }
404 (void) spl0();
405 }
406
407 return (0);
408 }
409
410 #ifdef COMPAT_16
411 /* ARGSUSED */
412 int
413 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
414 {
415 struct compat_16_sys___sigaction14_args /* {
416 syscallarg(int) signum;
417 syscallarg(const struct sigaction *) nsa;
418 syscallarg(struct sigaction *) osa;
419 } */ *uap = v;
420 struct proc *p;
421 struct sigaction nsa, osa;
422 int error;
423
424 if (SCARG(uap, nsa)) {
425 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
426 if (error)
427 return (error);
428 }
429 p = l->l_proc;
430 error = sigaction1(p, SCARG(uap, signum),
431 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
432 NULL, 0);
433 if (error)
434 return (error);
435 if (SCARG(uap, osa)) {
436 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
437 if (error)
438 return (error);
439 }
440 return (0);
441 }
442 #endif
443
444 /* ARGSUSED */
445 int
446 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
447 {
448 struct sys___sigaction_sigtramp_args /* {
449 syscallarg(int) signum;
450 syscallarg(const struct sigaction *) nsa;
451 syscallarg(struct sigaction *) osa;
452 syscallarg(void *) tramp;
453 syscallarg(int) vers;
454 } */ *uap = v;
455 struct proc *p = l->l_proc;
456 struct sigaction nsa, osa;
457 int error;
458
459 if (SCARG(uap, nsa)) {
460 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
461 if (error)
462 return (error);
463 }
464 error = sigaction1(p, SCARG(uap, signum),
465 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
466 SCARG(uap, tramp), SCARG(uap, vers));
467 if (error)
468 return (error);
469 if (SCARG(uap, osa)) {
470 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
471 if (error)
472 return (error);
473 }
474 return (0);
475 }
476
477 /*
478 * Initialize signal state for process 0;
479 * set to ignore signals that are ignored by default and disable the signal
480 * stack.
481 */
482 void
483 siginit(struct proc *p)
484 {
485 struct sigacts *ps;
486 int signum, prop;
487
488 ps = p->p_sigacts;
489 sigemptyset(&contsigmask);
490 sigemptyset(&stopsigmask);
491 sigemptyset(&sigcantmask);
492 for (signum = 1; signum < NSIG; signum++) {
493 prop = sigprop[signum];
494 if (prop & SA_CONT)
495 sigaddset(&contsigmask, signum);
496 if (prop & SA_STOP)
497 sigaddset(&stopsigmask, signum);
498 if (prop & SA_CANTMASK)
499 sigaddset(&sigcantmask, signum);
500 if (prop & SA_IGNORE && signum != SIGCONT)
501 sigaddset(&p->p_sigctx.ps_sigignore, signum);
502 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
503 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
504 }
505 sigemptyset(&p->p_sigctx.ps_sigcatch);
506 p->p_sigctx.ps_sigwaited = NULL;
507 p->p_flag &= ~P_NOCLDSTOP;
508
509 /*
510 * Reset stack state to the user stack.
511 */
512 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
513 p->p_sigctx.ps_sigstk.ss_size = 0;
514 p->p_sigctx.ps_sigstk.ss_sp = 0;
515
516 /* One reference. */
517 ps->sa_refcnt = 1;
518 }
519
520 /*
521 * Reset signals for an exec of the specified process.
522 */
523 void
524 execsigs(struct proc *p)
525 {
526 struct sigacts *ps;
527 int signum, prop;
528
529 sigactsunshare(p);
530
531 ps = p->p_sigacts;
532
533 /*
534 * Reset caught signals. Held signals remain held
535 * through p_sigctx.ps_sigmask (unless they were caught,
536 * and are now ignored by default).
537 */
538 for (signum = 1; signum < NSIG; signum++) {
539 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
540 prop = sigprop[signum];
541 if (prop & SA_IGNORE) {
542 if ((prop & SA_CONT) == 0)
543 sigaddset(&p->p_sigctx.ps_sigignore,
544 signum);
545 sigdelset(&p->p_sigctx.ps_siglist, signum);
546 }
547 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
548 }
549 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
550 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
551 }
552 sigemptyset(&p->p_sigctx.ps_sigcatch);
553 p->p_sigctx.ps_sigwaited = NULL;
554
555 /*
556 * Reset no zombies if child dies flag as Solaris does.
557 */
558 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
559 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
560 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
561
562 /*
563 * Reset stack state to the user stack.
564 */
565 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
566 p->p_sigctx.ps_sigstk.ss_size = 0;
567 p->p_sigctx.ps_sigstk.ss_sp = 0;
568 }
569
570 int
571 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
572 {
573
574 if (oss)
575 *oss = p->p_sigctx.ps_sigmask;
576
577 if (nss) {
578 (void)splsched(); /* XXXSMP */
579 switch (how) {
580 case SIG_BLOCK:
581 sigplusset(nss, &p->p_sigctx.ps_sigmask);
582 break;
583 case SIG_UNBLOCK:
584 sigminusset(nss, &p->p_sigctx.ps_sigmask);
585 CHECKSIGS(p);
586 break;
587 case SIG_SETMASK:
588 p->p_sigctx.ps_sigmask = *nss;
589 CHECKSIGS(p);
590 break;
591 default:
592 (void)spl0(); /* XXXSMP */
593 return (EINVAL);
594 }
595 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
596 (void)spl0(); /* XXXSMP */
597 }
598
599 return (0);
600 }
601
602 /*
603 * Manipulate signal mask.
604 * Note that we receive new mask, not pointer,
605 * and return old mask as return value;
606 * the library stub does the rest.
607 */
608 int
609 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
610 {
611 struct sys___sigprocmask14_args /* {
612 syscallarg(int) how;
613 syscallarg(const sigset_t *) set;
614 syscallarg(sigset_t *) oset;
615 } */ *uap = v;
616 struct proc *p;
617 sigset_t nss, oss;
618 int error;
619
620 if (SCARG(uap, set)) {
621 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
622 if (error)
623 return (error);
624 }
625 p = l->l_proc;
626 error = sigprocmask1(p, SCARG(uap, how),
627 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
628 if (error)
629 return (error);
630 if (SCARG(uap, oset)) {
631 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
632 if (error)
633 return (error);
634 }
635 return (0);
636 }
637
638 void
639 sigpending1(struct proc *p, sigset_t *ss)
640 {
641
642 *ss = p->p_sigctx.ps_siglist;
643 sigminusset(&p->p_sigctx.ps_sigmask, ss);
644 }
645
646 /* ARGSUSED */
647 int
648 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
649 {
650 struct sys___sigpending14_args /* {
651 syscallarg(sigset_t *) set;
652 } */ *uap = v;
653 struct proc *p;
654 sigset_t ss;
655
656 p = l->l_proc;
657 sigpending1(p, &ss);
658 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
659 }
660
661 int
662 sigsuspend1(struct proc *p, const sigset_t *ss)
663 {
664 struct sigacts *ps;
665
666 ps = p->p_sigacts;
667 if (ss) {
668 /*
669 * When returning from sigpause, we want
670 * the old mask to be restored after the
671 * signal handler has finished. Thus, we
672 * save it here and mark the sigctx structure
673 * to indicate this.
674 */
675 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
676 p->p_sigctx.ps_flags |= SAS_OLDMASK;
677 (void) splsched(); /* XXXSMP */
678 p->p_sigctx.ps_sigmask = *ss;
679 CHECKSIGS(p);
680 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
681 (void) spl0(); /* XXXSMP */
682 }
683
684 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
685 /* void */;
686
687 /* always return EINTR rather than ERESTART... */
688 return (EINTR);
689 }
690
691 /*
692 * Suspend process until signal, providing mask to be set
693 * in the meantime. Note nonstandard calling convention:
694 * libc stub passes mask, not pointer, to save a copyin.
695 */
696 /* ARGSUSED */
697 int
698 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
699 {
700 struct sys___sigsuspend14_args /* {
701 syscallarg(const sigset_t *) set;
702 } */ *uap = v;
703 struct proc *p;
704 sigset_t ss;
705 int error;
706
707 if (SCARG(uap, set)) {
708 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
709 if (error)
710 return (error);
711 }
712
713 p = l->l_proc;
714 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
715 }
716
717 int
718 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
719 struct sigaltstack *oss)
720 {
721
722 if (oss)
723 *oss = p->p_sigctx.ps_sigstk;
724
725 if (nss) {
726 if (nss->ss_flags & ~SS_ALLBITS)
727 return (EINVAL);
728
729 if (nss->ss_flags & SS_DISABLE) {
730 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
731 return (EINVAL);
732 } else {
733 if (nss->ss_size < MINSIGSTKSZ)
734 return (ENOMEM);
735 }
736 p->p_sigctx.ps_sigstk = *nss;
737 }
738
739 return (0);
740 }
741
742 /* ARGSUSED */
743 int
744 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
745 {
746 struct sys___sigaltstack14_args /* {
747 syscallarg(const struct sigaltstack *) nss;
748 syscallarg(struct sigaltstack *) oss;
749 } */ *uap = v;
750 struct proc *p;
751 struct sigaltstack nss, oss;
752 int error;
753
754 if (SCARG(uap, nss)) {
755 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
756 if (error)
757 return (error);
758 }
759 p = l->l_proc;
760 error = sigaltstack1(p,
761 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
762 if (error)
763 return (error);
764 if (SCARG(uap, oss)) {
765 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
766 if (error)
767 return (error);
768 }
769 return (0);
770 }
771
772 /* ARGSUSED */
773 int
774 sys_kill(struct lwp *l, void *v, register_t *retval)
775 {
776 struct sys_kill_args /* {
777 syscallarg(int) pid;
778 syscallarg(int) signum;
779 } */ *uap = v;
780 struct proc *cp, *p;
781 struct pcred *pc;
782 ksiginfo_t ksi;
783
784 cp = l->l_proc;
785 pc = cp->p_cred;
786 if ((u_int)SCARG(uap, signum) >= NSIG)
787 return (EINVAL);
788 KSI_INIT(&ksi);
789 ksi.ksi_signo = SCARG(uap, signum);
790 ksi.ksi_code = SI_USER;
791 ksi.ksi_pid = cp->p_pid;
792 ksi.ksi_uid = cp->p_ucred->cr_uid;
793 if (SCARG(uap, pid) > 0) {
794 /* kill single process */
795 if ((p = pfind(SCARG(uap, pid))) == NULL)
796 return (ESRCH);
797 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
798 return (EPERM);
799 if (SCARG(uap, signum))
800 kpsignal2(p, &ksi, 1);
801 return (0);
802 }
803 switch (SCARG(uap, pid)) {
804 case -1: /* broadcast signal */
805 return (killpg1(cp, &ksi, 0, 1));
806 case 0: /* signal own process group */
807 return (killpg1(cp, &ksi, 0, 0));
808 default: /* negative explicit process group */
809 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
810 }
811 /* NOTREACHED */
812 }
813
814 /*
815 * Common code for kill process group/broadcast kill.
816 * cp is calling process.
817 */
818 int
819 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
820 {
821 struct proc *p;
822 struct pcred *pc;
823 struct pgrp *pgrp;
824 int nfound;
825 int signum = ksi->ksi_signo;
826
827 pc = cp->p_cred;
828 nfound = 0;
829 if (all) {
830 /*
831 * broadcast
832 */
833 proclist_lock_read();
834 PROCLIST_FOREACH(p, &allproc) {
835 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
836 p == cp || !CANSIGNAL(cp, pc, p, signum))
837 continue;
838 nfound++;
839 if (signum)
840 kpsignal2(p, ksi, 1);
841 }
842 proclist_unlock_read();
843 } else {
844 if (pgid == 0)
845 /*
846 * zero pgid means send to my process group.
847 */
848 pgrp = cp->p_pgrp;
849 else {
850 pgrp = pgfind(pgid);
851 if (pgrp == NULL)
852 return (ESRCH);
853 }
854 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
855 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
856 !CANSIGNAL(cp, pc, p, signum))
857 continue;
858 nfound++;
859 if (signum && P_ZOMBIE(p) == 0)
860 kpsignal2(p, ksi, 1);
861 }
862 }
863 return (nfound ? 0 : ESRCH);
864 }
865
866 /*
867 * Send a signal to a process group.
868 */
869 void
870 gsignal(int pgid, int signum)
871 {
872 ksiginfo_t ksi;
873 KSI_INIT_EMPTY(&ksi);
874 ksi.ksi_signo = signum;
875 kgsignal(pgid, &ksi, NULL);
876 }
877
878 void
879 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
880 {
881 struct pgrp *pgrp;
882
883 if (pgid && (pgrp = pgfind(pgid)))
884 kpgsignal(pgrp, ksi, data, 0);
885 }
886
887 /*
888 * Send a signal to a process group. If checktty is 1,
889 * limit to members which have a controlling terminal.
890 */
891 void
892 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
893 {
894 ksiginfo_t ksi;
895 KSI_INIT_EMPTY(&ksi);
896 ksi.ksi_signo = sig;
897 kpgsignal(pgrp, &ksi, NULL, checkctty);
898 }
899
900 void
901 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
902 {
903 struct proc *p;
904
905 if (pgrp)
906 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
907 if (checkctty == 0 || p->p_flag & P_CONTROLT)
908 kpsignal(p, ksi, data);
909 }
910
911 /*
912 * Send a signal caused by a trap to the current process.
913 * If it will be caught immediately, deliver it with correct code.
914 * Otherwise, post it normally.
915 */
916 void
917 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
918 {
919 struct proc *p;
920 struct sigacts *ps;
921 int signum = ksi->ksi_signo;
922
923 KASSERT(KSI_TRAP_P(ksi));
924
925 p = l->l_proc;
926 ps = p->p_sigacts;
927 if ((p->p_flag & P_TRACED) == 0 &&
928 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
929 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
930 p->p_stats->p_ru.ru_nsignals++;
931 #ifdef KTRACE
932 if (KTRPOINT(p, KTR_PSIG))
933 ktrpsig(p, signum, SIGACTION_PS(ps, signum).sa_handler,
934 &p->p_sigctx.ps_sigmask, ksi);
935 #endif
936 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
937 (void) splsched(); /* XXXSMP */
938 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
939 &p->p_sigctx.ps_sigmask);
940 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
941 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
942 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
943 sigaddset(&p->p_sigctx.ps_sigignore, signum);
944 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
945 }
946 (void) spl0(); /* XXXSMP */
947 } else {
948 p->p_sigctx.ps_lwp = l->l_lid;
949 /* XXX for core dump/debugger */
950 p->p_sigctx.ps_signo = ksi->ksi_signo;
951 p->p_sigctx.ps_code = ksi->ksi_trap;
952 kpsignal2(p, ksi, 1);
953 }
954 }
955
956 /*
957 * Fill in signal information and signal the parent for a child status change.
958 */
959 static void
960 child_psignal(struct proc *p, int dolock)
961 {
962 ksiginfo_t ksi;
963
964 KSI_INIT(&ksi);
965 ksi.ksi_signo = SIGCHLD;
966 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
967 ksi.ksi_pid = p->p_pid;
968 ksi.ksi_uid = p->p_ucred->cr_uid;
969 ksi.ksi_status = p->p_xstat;
970 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
971 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
972 kpsignal2(p->p_pptr, &ksi, dolock);
973 }
974
975 /*
976 * Send the signal to the process. If the signal has an action, the action
977 * is usually performed by the target process rather than the caller; we add
978 * the signal to the set of pending signals for the process.
979 *
980 * Exceptions:
981 * o When a stop signal is sent to a sleeping process that takes the
982 * default action, the process is stopped without awakening it.
983 * o SIGCONT restarts stopped processes (or puts them back to sleep)
984 * regardless of the signal action (eg, blocked or ignored).
985 *
986 * Other ignored signals are discarded immediately.
987 *
988 * XXXSMP: Invoked as psignal() or sched_psignal().
989 */
990 void
991 psignal1(struct proc *p, int signum, int dolock)
992 {
993 ksiginfo_t ksi;
994
995 KSI_INIT_EMPTY(&ksi);
996 ksi.ksi_signo = signum;
997 kpsignal2(p, &ksi, dolock);
998 }
999
1000 void
1001 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1002 {
1003
1004 if ((p->p_flag & P_WEXIT) == 0 && data) {
1005 size_t fd;
1006 struct filedesc *fdp = p->p_fd;
1007
1008 ksi->ksi_fd = -1;
1009 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1010 struct file *fp = fdp->fd_ofiles[fd];
1011 /* XXX: lock? */
1012 if (fp && fp->f_data == data) {
1013 ksi->ksi_fd = fd;
1014 break;
1015 }
1016 }
1017 }
1018 kpsignal2(p, ksi, dolock);
1019 }
1020
1021 static void
1022 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1023 {
1024 struct lwp *l, *suspended = NULL;
1025 struct sadata_vp *vp;
1026 int s = 0, prop, allsusp;
1027 sig_t action;
1028 int signum = ksi->ksi_signo;
1029
1030 #ifdef DIAGNOSTIC
1031 if (signum <= 0 || signum >= NSIG)
1032 panic("psignal signal number %d", signum);
1033
1034 /* XXXSMP: works, but icky */
1035 if (dolock)
1036 SCHED_ASSERT_UNLOCKED();
1037 else
1038 SCHED_ASSERT_LOCKED();
1039 #endif
1040
1041 /*
1042 * Notify any interested parties in the signal.
1043 */
1044 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1045
1046 prop = sigprop[signum];
1047
1048 /*
1049 * If proc is traced, always give parent a chance.
1050 */
1051 if (p->p_flag & P_TRACED) {
1052 action = SIG_DFL;
1053
1054 /*
1055 * If the process is being traced and the signal is being
1056 * caught, make sure to save any ksiginfo.
1057 */
1058 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1059 ksiginfo_put(p, ksi);
1060 } else {
1061 /*
1062 * If the signal was the result of a trap, reset it
1063 * to default action if it's currently masked, so that it would
1064 * coredump immediatelly instead of spinning repeatedly
1065 * taking the signal.
1066 */
1067 if (KSI_TRAP_P(ksi)
1068 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1069 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1070 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1071 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1072 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1073 SIGACTION(p, signum).sa_handler = SIG_DFL;
1074 }
1075
1076 /*
1077 * If the signal is being ignored,
1078 * then we forget about it immediately.
1079 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1080 * and if it is set to SIG_IGN,
1081 * action will be SIG_DFL here.)
1082 */
1083 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1084 return;
1085 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1086 action = SIG_HOLD;
1087 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1088 action = SIG_CATCH;
1089 else {
1090 action = SIG_DFL;
1091
1092 if (prop & SA_KILL && p->p_nice > NZERO)
1093 p->p_nice = NZERO;
1094
1095 /*
1096 * If sending a tty stop signal to a member of an
1097 * orphaned process group, discard the signal here if
1098 * the action is default; don't stop the process below
1099 * if sleeping, and don't clear any pending SIGCONT.
1100 */
1101 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1102 return;
1103 }
1104 }
1105
1106 if (prop & SA_CONT)
1107 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1108
1109 if (prop & SA_STOP)
1110 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1111
1112 /*
1113 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1114 * please!), check if anything waits on it. If yes, save the
1115 * info into provided ps_sigwaited, and wake-up the waiter.
1116 * The signal won't be processed further here.
1117 */
1118 if ((prop & SA_CANTMASK) == 0
1119 && p->p_sigctx.ps_sigwaited
1120 && sigismember(p->p_sigctx.ps_sigwait, signum)
1121 && p->p_stat != SSTOP) {
1122 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1123 p->p_sigctx.ps_sigwaited = NULL;
1124 if (dolock)
1125 wakeup_one(&p->p_sigctx.ps_sigwait);
1126 else
1127 sched_wakeup(&p->p_sigctx.ps_sigwait);
1128 return;
1129 }
1130
1131 sigaddset(&p->p_sigctx.ps_siglist, signum);
1132
1133 /* CHECKSIGS() is "inlined" here. */
1134 p->p_sigctx.ps_sigcheck = 1;
1135
1136 /*
1137 * Defer further processing for signals which are held,
1138 * except that stopped processes must be continued by SIGCONT.
1139 */
1140 if (action == SIG_HOLD &&
1141 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1142 ksiginfo_put(p, ksi);
1143 return;
1144 }
1145 /* XXXSMP: works, but icky */
1146 if (dolock)
1147 SCHED_LOCK(s);
1148
1149 if (p->p_flag & P_SA) {
1150 allsusp = 0;
1151 l = NULL;
1152 if (p->p_stat == SACTIVE) {
1153 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1154 l = vp->savp_lwp;
1155 KDASSERT(l != NULL);
1156 if (l->l_flag & L_SA_IDLE) {
1157 /* wakeup idle LWP */
1158 goto found;
1159 /*NOTREACHED*/
1160 } else if (l->l_flag & L_SA_YIELD) {
1161 /* idle LWP is already waking up */
1162 goto out;
1163 /*NOTREACHED*/
1164 }
1165 }
1166 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1167 l = vp->savp_lwp;
1168 if (l->l_stat == LSRUN ||
1169 l->l_stat == LSONPROC) {
1170 signotify(p);
1171 goto out;
1172 /*NOTREACHED*/
1173 }
1174 if (l->l_stat == LSSLEEP &&
1175 l->l_flag & L_SINTR) {
1176 /* ok to signal vp lwp */
1177 } else
1178 l = NULL;
1179 }
1180 if (l == NULL)
1181 allsusp = 1;
1182 } else if (p->p_stat == SSTOP) {
1183 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1184 l = vp->savp_lwp;
1185 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1186 break;
1187 l = NULL;
1188 }
1189 }
1190 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1191 /*
1192 * At least one LWP is running or on a run queue.
1193 * The signal will be noticed when one of them returns
1194 * to userspace.
1195 */
1196 signotify(p);
1197 /*
1198 * The signal will be noticed very soon.
1199 */
1200 goto out;
1201 /*NOTREACHED*/
1202 } else {
1203 /*
1204 * Find out if any of the sleeps are interruptable,
1205 * and if all the live LWPs remaining are suspended.
1206 */
1207 allsusp = 1;
1208 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1209 if (l->l_stat == LSSLEEP &&
1210 l->l_flag & L_SINTR)
1211 break;
1212 if (l->l_stat == LSSUSPENDED)
1213 suspended = l;
1214 else if ((l->l_stat != LSZOMB) &&
1215 (l->l_stat != LSDEAD))
1216 allsusp = 0;
1217 }
1218 }
1219
1220 found:
1221 switch (p->p_stat) {
1222 case SACTIVE:
1223
1224 if (l != NULL && (p->p_flag & P_TRACED))
1225 goto run;
1226
1227 /*
1228 * If SIGCONT is default (or ignored) and process is
1229 * asleep, we are finished; the process should not
1230 * be awakened.
1231 */
1232 if ((prop & SA_CONT) && action == SIG_DFL) {
1233 sigdelset(&p->p_sigctx.ps_siglist, signum);
1234 goto done;
1235 }
1236
1237 /*
1238 * When a sleeping process receives a stop
1239 * signal, process immediately if possible.
1240 */
1241 if ((prop & SA_STOP) && action == SIG_DFL) {
1242 /*
1243 * If a child holding parent blocked,
1244 * stopping could cause deadlock.
1245 */
1246 if (p->p_flag & P_PPWAIT) {
1247 goto out;
1248 }
1249 sigdelset(&p->p_sigctx.ps_siglist, signum);
1250 p->p_xstat = signum;
1251 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1252 /*
1253 * XXXSMP: recursive call; don't lock
1254 * the second time around.
1255 */
1256 child_psignal(p, 0);
1257 }
1258 proc_stop(p, 1); /* XXXSMP: recurse? */
1259 goto done;
1260 }
1261
1262 if (l == NULL) {
1263 /*
1264 * Special case: SIGKILL of a process
1265 * which is entirely composed of
1266 * suspended LWPs should succeed. We
1267 * make this happen by unsuspending one of
1268 * them.
1269 */
1270 if (allsusp && (signum == SIGKILL)) {
1271 if (p->p_flag & P_SA) {
1272 /*
1273 * get a suspended lwp from
1274 * the cache to send KILL
1275 * signal
1276 * XXXcl add signal checks at resume points
1277 */
1278 suspended = sa_getcachelwp
1279 (SLIST_FIRST(&p->p_sa->sa_vps));
1280 }
1281 lwp_continue(suspended);
1282 }
1283 goto done;
1284 }
1285 /*
1286 * All other (caught or default) signals
1287 * cause the process to run.
1288 */
1289 goto runfast;
1290 /*NOTREACHED*/
1291 case SSTOP:
1292 /* Process is stopped */
1293 /*
1294 * If traced process is already stopped,
1295 * then no further action is necessary.
1296 */
1297 if (p->p_flag & P_TRACED)
1298 goto done;
1299
1300 /*
1301 * Kill signal always sets processes running,
1302 * if possible.
1303 */
1304 if (signum == SIGKILL) {
1305 l = proc_unstop(p);
1306 if (l)
1307 goto runfast;
1308 goto done;
1309 }
1310
1311 if (prop & SA_CONT) {
1312 /*
1313 * If SIGCONT is default (or ignored),
1314 * we continue the process but don't
1315 * leave the signal in ps_siglist, as
1316 * it has no further action. If
1317 * SIGCONT is held, we continue the
1318 * process and leave the signal in
1319 * ps_siglist. If the process catches
1320 * SIGCONT, let it handle the signal
1321 * itself. If it isn't waiting on an
1322 * event, then it goes back to run
1323 * state. Otherwise, process goes
1324 * back to sleep state.
1325 */
1326 if (action == SIG_DFL)
1327 sigdelset(&p->p_sigctx.ps_siglist,
1328 signum);
1329 l = proc_unstop(p);
1330 if (l && (action == SIG_CATCH))
1331 goto runfast;
1332 goto out;
1333 }
1334
1335 if (prop & SA_STOP) {
1336 /*
1337 * Already stopped, don't need to stop again.
1338 * (If we did the shell could get confused.)
1339 */
1340 sigdelset(&p->p_sigctx.ps_siglist, signum);
1341 goto done;
1342 }
1343
1344 /*
1345 * If a lwp is sleeping interruptibly, then
1346 * wake it up; it will run until the kernel
1347 * boundary, where it will stop in issignal(),
1348 * since p->p_stat is still SSTOP. When the
1349 * process is continued, it will be made
1350 * runnable and can look at the signal.
1351 */
1352 if (l)
1353 goto run;
1354 goto out;
1355 case SIDL:
1356 /* Process is being created by fork */
1357 /* XXX: We are not ready to receive signals yet */
1358 goto done;
1359 default:
1360 /* Else what? */
1361 panic("psignal: Invalid process state %d.", p->p_stat);
1362 }
1363 /*NOTREACHED*/
1364
1365 runfast:
1366 if (action == SIG_CATCH) {
1367 ksiginfo_put(p, ksi);
1368 action = SIG_HOLD;
1369 }
1370 /*
1371 * Raise priority to at least PUSER.
1372 */
1373 if (l->l_priority > PUSER)
1374 l->l_priority = PUSER;
1375 run:
1376 if (action == SIG_CATCH) {
1377 ksiginfo_put(p, ksi);
1378 action = SIG_HOLD;
1379 }
1380
1381 setrunnable(l); /* XXXSMP: recurse? */
1382 out:
1383 if (action == SIG_CATCH)
1384 ksiginfo_put(p, ksi);
1385 done:
1386 /* XXXSMP: works, but icky */
1387 if (dolock)
1388 SCHED_UNLOCK(s);
1389 }
1390
1391 siginfo_t *
1392 siginfo_alloc(int flags)
1393 {
1394
1395 return pool_get(&siginfo_pool, flags);
1396 }
1397
1398 void
1399 siginfo_free(void *arg)
1400 {
1401
1402 pool_put(&siginfo_pool, arg);
1403 }
1404
1405 void
1406 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1407 {
1408 struct proc *p = l->l_proc;
1409 struct lwp *le, *li;
1410 siginfo_t *si;
1411 int f;
1412
1413 if (p->p_flag & P_SA) {
1414
1415 /* XXXUPSXXX What if not on sa_vp ? */
1416
1417 f = l->l_flag & L_SA;
1418 l->l_flag &= ~L_SA;
1419 si = siginfo_alloc(PR_WAITOK);
1420 si->_info = ksi->ksi_info;
1421 le = li = NULL;
1422 if (KSI_TRAP_P(ksi))
1423 le = l;
1424 else
1425 li = l;
1426 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1427 sizeof(*si), si, siginfo_free) != 0) {
1428 siginfo_free(si);
1429 if (KSI_TRAP_P(ksi))
1430 /* XXX What do we do here?? */;
1431 }
1432 l->l_flag |= f;
1433 return;
1434 }
1435
1436 (*p->p_emul->e_sendsig)(ksi, mask);
1437 }
1438
1439 static __inline int firstsig(const sigset_t *);
1440
1441 static __inline int
1442 firstsig(const sigset_t *ss)
1443 {
1444 int sig;
1445
1446 sig = ffs(ss->__bits[0]);
1447 if (sig != 0)
1448 return (sig);
1449 #if NSIG > 33
1450 sig = ffs(ss->__bits[1]);
1451 if (sig != 0)
1452 return (sig + 32);
1453 #endif
1454 #if NSIG > 65
1455 sig = ffs(ss->__bits[2]);
1456 if (sig != 0)
1457 return (sig + 64);
1458 #endif
1459 #if NSIG > 97
1460 sig = ffs(ss->__bits[3]);
1461 if (sig != 0)
1462 return (sig + 96);
1463 #endif
1464 return (0);
1465 }
1466
1467 /*
1468 * If the current process has received a signal (should be caught or cause
1469 * termination, should interrupt current syscall), return the signal number.
1470 * Stop signals with default action are processed immediately, then cleared;
1471 * they aren't returned. This is checked after each entry to the system for
1472 * a syscall or trap (though this can usually be done without calling issignal
1473 * by checking the pending signal masks in the CURSIG macro.) The normal call
1474 * sequence is
1475 *
1476 * while (signum = CURSIG(curlwp))
1477 * postsig(signum);
1478 */
1479 int
1480 issignal(struct lwp *l)
1481 {
1482 struct proc *p = l->l_proc;
1483 int s = 0, signum, prop;
1484 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1485 sigset_t ss;
1486
1487 /* Bail out if we do not own the virtual processor */
1488 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1489 return 0;
1490
1491 if (p->p_stat == SSTOP) {
1492 /*
1493 * The process is stopped/stopping. Stop ourselves now that
1494 * we're on the kernel/userspace boundary.
1495 */
1496 if (dolock)
1497 SCHED_LOCK(s);
1498 l->l_stat = LSSTOP;
1499 p->p_nrlwps--;
1500 if (p->p_flag & P_TRACED)
1501 goto sigtraceswitch;
1502 else
1503 goto sigswitch;
1504 }
1505 for (;;) {
1506 sigpending1(p, &ss);
1507 if (p->p_flag & P_PPWAIT)
1508 sigminusset(&stopsigmask, &ss);
1509 signum = firstsig(&ss);
1510 if (signum == 0) { /* no signal to send */
1511 p->p_sigctx.ps_sigcheck = 0;
1512 if (locked && dolock)
1513 SCHED_LOCK(s);
1514 return (0);
1515 }
1516 /* take the signal! */
1517 sigdelset(&p->p_sigctx.ps_siglist, signum);
1518
1519 /*
1520 * We should see pending but ignored signals
1521 * only if P_TRACED was on when they were posted.
1522 */
1523 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1524 (p->p_flag & P_TRACED) == 0)
1525 continue;
1526
1527 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1528 /*
1529 * If traced, always stop, and stay
1530 * stopped until released by the debugger.
1531 */
1532 p->p_xstat = signum;
1533
1534 /* Emulation-specific handling of signal trace */
1535 if ((p->p_emul->e_tracesig != NULL) &&
1536 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1537 goto childresumed;
1538
1539 if ((p->p_flag & P_FSTRACE) == 0)
1540 child_psignal(p, dolock);
1541 if (dolock)
1542 SCHED_LOCK(s);
1543 proc_stop(p, 1);
1544 sigtraceswitch:
1545 mi_switch(l, NULL);
1546 SCHED_ASSERT_UNLOCKED();
1547 if (dolock)
1548 splx(s);
1549 else
1550 dolock = 1;
1551
1552 childresumed:
1553 /*
1554 * If we are no longer being traced, or the parent
1555 * didn't give us a signal, look for more signals.
1556 */
1557 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1558 continue;
1559
1560 /*
1561 * If the new signal is being masked, look for other
1562 * signals.
1563 */
1564 signum = p->p_xstat;
1565 p->p_xstat = 0;
1566 /*
1567 * `p->p_sigctx.ps_siglist |= mask' is done
1568 * in setrunnable().
1569 */
1570 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1571 continue;
1572 /* take the signal! */
1573 sigdelset(&p->p_sigctx.ps_siglist, signum);
1574 }
1575
1576 prop = sigprop[signum];
1577
1578 /*
1579 * Decide whether the signal should be returned.
1580 * Return the signal's number, or fall through
1581 * to clear it from the pending mask.
1582 */
1583 switch ((long)SIGACTION(p, signum).sa_handler) {
1584
1585 case (long)SIG_DFL:
1586 /*
1587 * Don't take default actions on system processes.
1588 */
1589 if (p->p_pid <= 1) {
1590 #ifdef DIAGNOSTIC
1591 /*
1592 * Are you sure you want to ignore SIGSEGV
1593 * in init? XXX
1594 */
1595 printf("Process (pid %d) got signal %d\n",
1596 p->p_pid, signum);
1597 #endif
1598 break; /* == ignore */
1599 }
1600 /*
1601 * If there is a pending stop signal to process
1602 * with default action, stop here,
1603 * then clear the signal. However,
1604 * if process is member of an orphaned
1605 * process group, ignore tty stop signals.
1606 */
1607 if (prop & SA_STOP) {
1608 if (p->p_flag & P_TRACED ||
1609 (p->p_pgrp->pg_jobc == 0 &&
1610 prop & SA_TTYSTOP))
1611 break; /* == ignore */
1612 p->p_xstat = signum;
1613 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1614 child_psignal(p, dolock);
1615 if (dolock)
1616 SCHED_LOCK(s);
1617 proc_stop(p, 1);
1618 sigswitch:
1619 mi_switch(l, NULL);
1620 SCHED_ASSERT_UNLOCKED();
1621 if (dolock)
1622 splx(s);
1623 else
1624 dolock = 1;
1625 break;
1626 } else if (prop & SA_IGNORE) {
1627 /*
1628 * Except for SIGCONT, shouldn't get here.
1629 * Default action is to ignore; drop it.
1630 */
1631 break; /* == ignore */
1632 } else
1633 goto keep;
1634 /*NOTREACHED*/
1635
1636 case (long)SIG_IGN:
1637 /*
1638 * Masking above should prevent us ever trying
1639 * to take action on an ignored signal other
1640 * than SIGCONT, unless process is traced.
1641 */
1642 #ifdef DEBUG_ISSIGNAL
1643 if ((prop & SA_CONT) == 0 &&
1644 (p->p_flag & P_TRACED) == 0)
1645 printf("issignal\n");
1646 #endif
1647 break; /* == ignore */
1648
1649 default:
1650 /*
1651 * This signal has an action, let
1652 * postsig() process it.
1653 */
1654 goto keep;
1655 }
1656 }
1657 /* NOTREACHED */
1658
1659 keep:
1660 /* leave the signal for later */
1661 sigaddset(&p->p_sigctx.ps_siglist, signum);
1662 CHECKSIGS(p);
1663 if (locked && dolock)
1664 SCHED_LOCK(s);
1665 return (signum);
1666 }
1667
1668 /*
1669 * Put the argument process into the stopped state and notify the parent
1670 * via wakeup. Signals are handled elsewhere. The process must not be
1671 * on the run queue.
1672 */
1673 void
1674 proc_stop(struct proc *p, int dowakeup)
1675 {
1676 struct lwp *l;
1677 struct proc *parent;
1678 struct sadata_vp *vp;
1679
1680 SCHED_ASSERT_LOCKED();
1681
1682 /* XXX lock process LWP state */
1683 p->p_flag &= ~P_WAITED;
1684 p->p_stat = SSTOP;
1685 parent = p->p_pptr;
1686 parent->p_nstopchild++;
1687
1688 if (p->p_flag & P_SA) {
1689 /*
1690 * Only (try to) put the LWP on the VP in stopped
1691 * state.
1692 * All other LWPs will suspend in sa_setwoken()
1693 * because the VP-LWP in stopped state cannot be
1694 * repossessed.
1695 */
1696 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1697 l = vp->savp_lwp;
1698 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1699 l->l_stat = LSSTOP;
1700 p->p_nrlwps--;
1701 } else if (l->l_stat == LSRUN) {
1702 /* Remove LWP from the run queue */
1703 remrunqueue(l);
1704 l->l_stat = LSSTOP;
1705 p->p_nrlwps--;
1706 } else if (l->l_stat == LSSLEEP &&
1707 l->l_flag & L_SA_IDLE) {
1708 l->l_flag &= ~L_SA_IDLE;
1709 l->l_stat = LSSTOP;
1710 }
1711 }
1712 goto out;
1713 }
1714
1715 /*
1716 * Put as many LWP's as possible in stopped state.
1717 * Sleeping ones will notice the stopped state as they try to
1718 * return to userspace.
1719 */
1720
1721 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1722 if (l->l_stat == LSONPROC) {
1723 /* XXX SMP this assumes that a LWP that is LSONPROC
1724 * is curlwp and hence is about to be mi_switched
1725 * away; the only callers of proc_stop() are:
1726 * - psignal
1727 * - issignal()
1728 * For the former, proc_stop() is only called when
1729 * no processes are running, so we don't worry.
1730 * For the latter, proc_stop() is called right
1731 * before mi_switch().
1732 */
1733 l->l_stat = LSSTOP;
1734 p->p_nrlwps--;
1735 } else if (l->l_stat == LSRUN) {
1736 /* Remove LWP from the run queue */
1737 remrunqueue(l);
1738 l->l_stat = LSSTOP;
1739 p->p_nrlwps--;
1740 } else if ((l->l_stat == LSSLEEP) ||
1741 (l->l_stat == LSSUSPENDED) ||
1742 (l->l_stat == LSZOMB) ||
1743 (l->l_stat == LSDEAD)) {
1744 /*
1745 * Don't do anything; let sleeping LWPs
1746 * discover the stopped state of the process
1747 * on their way out of the kernel; otherwise,
1748 * things like NFS threads that sleep with
1749 * locks will block the rest of the system
1750 * from getting any work done.
1751 *
1752 * Suspended/dead/zombie LWPs aren't going
1753 * anywhere, so we don't need to touch them.
1754 */
1755 }
1756 #ifdef DIAGNOSTIC
1757 else {
1758 panic("proc_stop: process %d lwp %d "
1759 "in unstoppable state %d.\n",
1760 p->p_pid, l->l_lid, l->l_stat);
1761 }
1762 #endif
1763 }
1764
1765 out:
1766 /* XXX unlock process LWP state */
1767
1768 if (dowakeup)
1769 sched_wakeup((caddr_t)p->p_pptr);
1770 }
1771
1772 /*
1773 * Given a process in state SSTOP, set the state back to SACTIVE and
1774 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1775 *
1776 * If no LWPs ended up runnable (and therefore able to take a signal),
1777 * return a LWP that is sleeping interruptably. The caller can wake
1778 * that LWP up to take a signal.
1779 */
1780 struct lwp *
1781 proc_unstop(struct proc *p)
1782 {
1783 struct lwp *l, *lr = NULL;
1784 struct sadata_vp *vp;
1785 int cantake = 0;
1786
1787 SCHED_ASSERT_LOCKED();
1788
1789 /*
1790 * Our caller wants to be informed if there are only sleeping
1791 * and interruptable LWPs left after we have run so that it
1792 * can invoke setrunnable() if required - return one of the
1793 * interruptable LWPs if this is the case.
1794 */
1795
1796 if (!(p->p_flag & P_WAITED))
1797 p->p_pptr->p_nstopchild--;
1798 p->p_stat = SACTIVE;
1799 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1800 if (l->l_stat == LSRUN) {
1801 lr = NULL;
1802 cantake = 1;
1803 }
1804 if (l->l_stat != LSSTOP)
1805 continue;
1806
1807 if (l->l_wchan != NULL) {
1808 l->l_stat = LSSLEEP;
1809 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1810 lr = l;
1811 cantake = 1;
1812 }
1813 } else {
1814 setrunnable(l);
1815 lr = NULL;
1816 cantake = 1;
1817 }
1818 }
1819 if (p->p_flag & P_SA) {
1820 /* Only consider returning the LWP on the VP. */
1821 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1822 lr = vp->savp_lwp;
1823 if (lr->l_stat == LSSLEEP) {
1824 if (lr->l_flag & L_SA_YIELD) {
1825 setrunnable(lr);
1826 break;
1827 } else if (lr->l_flag & L_SINTR)
1828 return lr;
1829 }
1830 }
1831 return NULL;
1832 }
1833 return lr;
1834 }
1835
1836 /*
1837 * Take the action for the specified signal
1838 * from the current set of pending signals.
1839 */
1840 void
1841 postsig(int signum)
1842 {
1843 struct lwp *l;
1844 struct proc *p;
1845 struct sigacts *ps;
1846 sig_t action;
1847 sigset_t *returnmask;
1848
1849 l = curlwp;
1850 p = l->l_proc;
1851 ps = p->p_sigacts;
1852 #ifdef DIAGNOSTIC
1853 if (signum == 0)
1854 panic("postsig");
1855 #endif
1856
1857 KERNEL_PROC_LOCK(l);
1858
1859 #ifdef MULTIPROCESSOR
1860 /*
1861 * On MP, issignal() can return the same signal to multiple
1862 * LWPs. The LWPs will block above waiting for the kernel
1863 * lock and the first LWP which gets through will then remove
1864 * the signal from ps_siglist. All other LWPs exit here.
1865 */
1866 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1867 KERNEL_PROC_UNLOCK(l);
1868 return;
1869 }
1870 #endif
1871 sigdelset(&p->p_sigctx.ps_siglist, signum);
1872 action = SIGACTION_PS(ps, signum).sa_handler;
1873 if (action == SIG_DFL) {
1874 #ifdef KTRACE
1875 if (KTRPOINT(p, KTR_PSIG))
1876 ktrpsig(p, signum, action,
1877 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1878 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1879 NULL);
1880 #endif
1881 /*
1882 * Default action, where the default is to kill
1883 * the process. (Other cases were ignored above.)
1884 */
1885 sigexit(l, signum);
1886 /* NOTREACHED */
1887 } else {
1888 ksiginfo_t *ksi;
1889 /*
1890 * If we get here, the signal must be caught.
1891 */
1892 #ifdef DIAGNOSTIC
1893 if (action == SIG_IGN ||
1894 sigismember(&p->p_sigctx.ps_sigmask, signum))
1895 panic("postsig action");
1896 #endif
1897 /*
1898 * Set the new mask value and also defer further
1899 * occurrences of this signal.
1900 *
1901 * Special case: user has done a sigpause. Here the
1902 * current mask is not of interest, but rather the
1903 * mask from before the sigpause is what we want
1904 * restored after the signal processing is completed.
1905 */
1906 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1907 returnmask = &p->p_sigctx.ps_oldmask;
1908 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1909 } else
1910 returnmask = &p->p_sigctx.ps_sigmask;
1911 p->p_stats->p_ru.ru_nsignals++;
1912 ksi = ksiginfo_get(p, signum);
1913 #ifdef KTRACE
1914 if (KTRPOINT(p, KTR_PSIG))
1915 ktrpsig(p, signum, action,
1916 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1917 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1918 ksi);
1919 #endif
1920 if (ksi == NULL) {
1921 ksiginfo_t ksi1;
1922 /*
1923 * we did not save any siginfo for this, either
1924 * because the signal was not caught, or because the
1925 * user did not request SA_SIGINFO
1926 */
1927 KSI_INIT_EMPTY(&ksi1);
1928 ksi1.ksi_signo = signum;
1929 kpsendsig(l, &ksi1, returnmask);
1930 } else {
1931 kpsendsig(l, ksi, returnmask);
1932 pool_put(&ksiginfo_pool, ksi);
1933 }
1934 p->p_sigctx.ps_lwp = 0;
1935 p->p_sigctx.ps_code = 0;
1936 p->p_sigctx.ps_signo = 0;
1937 (void) splsched(); /* XXXSMP */
1938 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1939 &p->p_sigctx.ps_sigmask);
1940 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1941 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1942 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1943 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1944 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1945 }
1946 (void) spl0(); /* XXXSMP */
1947 }
1948
1949 KERNEL_PROC_UNLOCK(l);
1950 }
1951
1952 /*
1953 * Kill the current process for stated reason.
1954 */
1955 void
1956 killproc(struct proc *p, const char *why)
1957 {
1958 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1959 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1960 psignal(p, SIGKILL);
1961 }
1962
1963 /*
1964 * Force the current process to exit with the specified signal, dumping core
1965 * if appropriate. We bypass the normal tests for masked and caught signals,
1966 * allowing unrecoverable failures to terminate the process without changing
1967 * signal state. Mark the accounting record with the signal termination.
1968 * If dumping core, save the signal number for the debugger. Calls exit and
1969 * does not return.
1970 */
1971
1972 #if defined(DEBUG)
1973 int kern_logsigexit = 1; /* not static to make public for sysctl */
1974 #else
1975 int kern_logsigexit = 0; /* not static to make public for sysctl */
1976 #endif
1977
1978 static const char logcoredump[] =
1979 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1980 static const char lognocoredump[] =
1981 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1982
1983 /* Wrapper function for use in p_userret */
1984 static void
1985 lwp_coredump_hook(struct lwp *l, void *arg)
1986 {
1987 int s;
1988
1989 /*
1990 * Suspend ourselves, so that the kernel stack and therefore
1991 * the userland registers saved in the trapframe are around
1992 * for coredump() to write them out.
1993 */
1994 KERNEL_PROC_LOCK(l);
1995 l->l_flag &= ~L_DETACHED;
1996 SCHED_LOCK(s);
1997 l->l_stat = LSSUSPENDED;
1998 l->l_proc->p_nrlwps--;
1999 /* XXX NJWLWP check if this makes sense here: */
2000 l->l_proc->p_stats->p_ru.ru_nvcsw++;
2001 mi_switch(l, NULL);
2002 SCHED_ASSERT_UNLOCKED();
2003 splx(s);
2004
2005 lwp_exit(l);
2006 }
2007
2008 void
2009 sigexit(struct lwp *l, int signum)
2010 {
2011 struct proc *p;
2012 #if 0
2013 struct lwp *l2;
2014 #endif
2015 int error, exitsig;
2016
2017 p = l->l_proc;
2018
2019 /*
2020 * Don't permit coredump() or exit1() multiple times
2021 * in the same process.
2022 */
2023 if (p->p_flag & P_WEXIT) {
2024 KERNEL_PROC_UNLOCK(l);
2025 (*p->p_userret)(l, p->p_userret_arg);
2026 }
2027 p->p_flag |= P_WEXIT;
2028 /* We don't want to switch away from exiting. */
2029 /* XXX multiprocessor: stop LWPs on other processors. */
2030 #if 0
2031 if (p->p_flag & P_SA) {
2032 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2033 l2->l_flag &= ~L_SA;
2034 p->p_flag &= ~P_SA;
2035 }
2036 #endif
2037
2038 /* Make other LWPs stick around long enough to be dumped */
2039 p->p_userret = lwp_coredump_hook;
2040 p->p_userret_arg = NULL;
2041
2042 exitsig = signum;
2043 p->p_acflag |= AXSIG;
2044 if (sigprop[signum] & SA_CORE) {
2045 p->p_sigctx.ps_signo = signum;
2046 if ((error = coredump(l, NULL)) == 0)
2047 exitsig |= WCOREFLAG;
2048
2049 if (kern_logsigexit) {
2050 /* XXX What if we ever have really large UIDs? */
2051 int uid = p->p_cred && p->p_ucred ?
2052 (int) p->p_ucred->cr_uid : -1;
2053
2054 if (error)
2055 log(LOG_INFO, lognocoredump, p->p_pid,
2056 p->p_comm, uid, signum, error);
2057 else
2058 log(LOG_INFO, logcoredump, p->p_pid,
2059 p->p_comm, uid, signum);
2060 }
2061
2062 }
2063
2064 exit1(l, W_EXITCODE(0, exitsig));
2065 /* NOTREACHED */
2066 }
2067
2068 struct coredump_iostate {
2069 struct proc *io_proc;
2070 struct vnode *io_vp;
2071 struct ucred *io_cred;
2072 off_t io_offset;
2073 };
2074
2075 int
2076 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2077 {
2078 struct coredump_iostate *io = cookie;
2079 int error;
2080
2081 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2082 io->io_offset, segflg,
2083 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2084 segflg == UIO_USERSPACE ? io->io_proc : NULL);
2085 if (error)
2086 return (error);
2087
2088 io->io_offset += len;
2089 return (0);
2090 }
2091
2092 /*
2093 * Dump core, into a file named "progname.core" or "core" (depending on the
2094 * value of shortcorename), unless the process was setuid/setgid.
2095 */
2096 int
2097 coredump(struct lwp *l, const char *pattern)
2098 {
2099 struct vnode *vp;
2100 struct proc *p;
2101 struct vmspace *vm;
2102 struct ucred *cred;
2103 struct nameidata nd;
2104 struct vattr vattr;
2105 struct mount *mp;
2106 struct coredump_iostate io;
2107 int error, error1;
2108 char name[MAXPATHLEN];
2109
2110 p = l->l_proc;
2111 vm = p->p_vmspace;
2112 cred = p->p_cred->pc_ucred;
2113
2114 /*
2115 * Make sure the process has not set-id, to prevent data leaks.
2116 */
2117 if (p->p_flag & P_SUGID)
2118 return (EPERM);
2119
2120 /*
2121 * Refuse to core if the data + stack + user size is larger than
2122 * the core dump limit. XXX THIS IS WRONG, because of mapped
2123 * data.
2124 */
2125 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2126 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2127 return (EFBIG); /* better error code? */
2128
2129 restart:
2130 /*
2131 * The core dump will go in the current working directory. Make
2132 * sure that the directory is still there and that the mount flags
2133 * allow us to write core dumps there.
2134 */
2135 vp = p->p_cwdi->cwdi_cdir;
2136 if (vp->v_mount == NULL ||
2137 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2138 return (EPERM);
2139
2140 if (pattern == NULL)
2141 pattern = p->p_limit->pl_corename;
2142 if ((error = build_corename(p, name, pattern, sizeof(name))) != 0)
2143 return error;
2144
2145 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
2146 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2147 if (error)
2148 return (error);
2149 vp = nd.ni_vp;
2150
2151 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2152 VOP_UNLOCK(vp, 0);
2153 if ((error = vn_close(vp, FWRITE, cred, p)) != 0)
2154 return (error);
2155 if ((error = vn_start_write(NULL, &mp,
2156 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2157 return (error);
2158 goto restart;
2159 }
2160
2161 /* Don't dump to non-regular files or files with links. */
2162 if (vp->v_type != VREG ||
2163 VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) {
2164 error = EINVAL;
2165 goto out;
2166 }
2167 VATTR_NULL(&vattr);
2168 vattr.va_size = 0;
2169 VOP_LEASE(vp, p, cred, LEASE_WRITE);
2170 VOP_SETATTR(vp, &vattr, cred, p);
2171 p->p_acflag |= ACORE;
2172
2173 io.io_proc = p;
2174 io.io_vp = vp;
2175 io.io_cred = cred;
2176 io.io_offset = 0;
2177
2178 /* Now dump the actual core file. */
2179 error = (*p->p_execsw->es_coredump)(l, &io);
2180 out:
2181 VOP_UNLOCK(vp, 0);
2182 vn_finished_write(mp, 0);
2183 error1 = vn_close(vp, FWRITE, cred, p);
2184 if (error == 0)
2185 error = error1;
2186 return (error);
2187 }
2188
2189 /*
2190 * Nonexistent system call-- signal process (may want to handle it).
2191 * Flag error in case process won't see signal immediately (blocked or ignored).
2192 */
2193 /* ARGSUSED */
2194 int
2195 sys_nosys(struct lwp *l, void *v, register_t *retval)
2196 {
2197 struct proc *p;
2198
2199 p = l->l_proc;
2200 psignal(p, SIGSYS);
2201 return (ENOSYS);
2202 }
2203
2204 static int
2205 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2206 {
2207 const char *s;
2208 char *d, *end;
2209 int i;
2210
2211 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2212 if (*s == '%') {
2213 switch (*(s + 1)) {
2214 case 'n':
2215 i = snprintf(d, end - d, "%s", p->p_comm);
2216 break;
2217 case 'p':
2218 i = snprintf(d, end - d, "%d", p->p_pid);
2219 break;
2220 case 'u':
2221 i = snprintf(d, end - d, "%.*s",
2222 (int)sizeof p->p_pgrp->pg_session->s_login,
2223 p->p_pgrp->pg_session->s_login);
2224 break;
2225 case 't':
2226 i = snprintf(d, end - d, "%ld",
2227 p->p_stats->p_start.tv_sec);
2228 break;
2229 default:
2230 goto copy;
2231 }
2232 d += i;
2233 s++;
2234 } else {
2235 copy: *d = *s;
2236 d++;
2237 }
2238 if (d >= end)
2239 return (ENAMETOOLONG);
2240 }
2241 *d = '\0';
2242 return 0;
2243 }
2244
2245 void
2246 getucontext(struct lwp *l, ucontext_t *ucp)
2247 {
2248 struct proc *p;
2249
2250 p = l->l_proc;
2251
2252 ucp->uc_flags = 0;
2253 ucp->uc_link = l->l_ctxlink;
2254
2255 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2256 ucp->uc_flags |= _UC_SIGMASK;
2257
2258 /*
2259 * The (unsupplied) definition of the `current execution stack'
2260 * in the System V Interface Definition appears to allow returning
2261 * the main context stack.
2262 */
2263 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2264 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2265 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2266 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2267 } else {
2268 /* Simply copy alternate signal execution stack. */
2269 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2270 }
2271 ucp->uc_flags |= _UC_STACK;
2272
2273 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2274 }
2275
2276 /* ARGSUSED */
2277 int
2278 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2279 {
2280 struct sys_getcontext_args /* {
2281 syscallarg(struct __ucontext *) ucp;
2282 } */ *uap = v;
2283 ucontext_t uc;
2284
2285 getucontext(l, &uc);
2286
2287 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2288 }
2289
2290 int
2291 setucontext(struct lwp *l, const ucontext_t *ucp)
2292 {
2293 struct proc *p;
2294 int error;
2295
2296 p = l->l_proc;
2297 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2298 return (error);
2299 l->l_ctxlink = ucp->uc_link;
2300
2301 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2302 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2303
2304 /*
2305 * If there was stack information, update whether or not we are
2306 * still running on an alternate signal stack.
2307 */
2308 if ((ucp->uc_flags & _UC_STACK) != 0) {
2309 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2310 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2311 else
2312 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2313 }
2314
2315 return 0;
2316 }
2317
2318 /* ARGSUSED */
2319 int
2320 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2321 {
2322 struct sys_setcontext_args /* {
2323 syscallarg(const ucontext_t *) ucp;
2324 } */ *uap = v;
2325 ucontext_t uc;
2326 int error;
2327
2328 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2329 exit1(l, W_EXITCODE(0, 0));
2330 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2331 (error = setucontext(l, &uc)) != 0)
2332 return (error);
2333
2334 return (EJUSTRETURN);
2335 }
2336
2337 /*
2338 * sigtimedwait(2) system call, used also for implementation
2339 * of sigwaitinfo() and sigwait().
2340 *
2341 * This only handles single LWP in signal wait. libpthread provides
2342 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2343 */
2344 int
2345 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2346 {
2347 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2348 }
2349
2350 int
2351 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2352 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2353 {
2354 struct sys___sigtimedwait_args /* {
2355 syscallarg(const sigset_t *) set;
2356 syscallarg(siginfo_t *) info;
2357 syscallarg(struct timespec *) timeout;
2358 } */ *uap = v;
2359 sigset_t *waitset, twaitset;
2360 struct proc *p = l->l_proc;
2361 int error, signum, s;
2362 int timo = 0;
2363 struct timeval tvstart;
2364 struct timespec ts;
2365 ksiginfo_t *ksi;
2366
2367 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2368
2369 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2370 FREE(waitset, M_TEMP);
2371 return (error);
2372 }
2373
2374 /*
2375 * Silently ignore SA_CANTMASK signals. psignal1() would
2376 * ignore SA_CANTMASK signals in waitset, we do this
2377 * only for the below siglist check.
2378 */
2379 sigminusset(&sigcantmask, waitset);
2380
2381 /*
2382 * First scan siglist and check if there is signal from
2383 * our waitset already pending.
2384 */
2385 twaitset = *waitset;
2386 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2387 if ((signum = firstsig(&twaitset))) {
2388 /* found pending signal */
2389 sigdelset(&p->p_sigctx.ps_siglist, signum);
2390 ksi = ksiginfo_get(p, signum);
2391 if (!ksi) {
2392 /* No queued siginfo, manufacture one */
2393 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2394 KSI_INIT(ksi);
2395 ksi->ksi_info._signo = signum;
2396 ksi->ksi_info._code = SI_USER;
2397 }
2398
2399 goto sig;
2400 }
2401
2402 /*
2403 * Calculate timeout, if it was specified.
2404 */
2405 if (SCARG(uap, timeout)) {
2406 uint64_t ms;
2407
2408 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2409 return (error);
2410
2411 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2412 timo = mstohz(ms);
2413 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2414 timo = 1;
2415 if (timo <= 0)
2416 return (EAGAIN);
2417
2418 /*
2419 * Remember current mono_time, it would be used in
2420 * ECANCELED/ERESTART case.
2421 */
2422 s = splclock();
2423 tvstart = mono_time;
2424 splx(s);
2425 }
2426
2427 /*
2428 * Setup ps_sigwait list. Pass pointer to malloced memory
2429 * here; it's not possible to pass pointer to a structure
2430 * on current process's stack, the current process might
2431 * be swapped out at the time the signal would get delivered.
2432 */
2433 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2434 p->p_sigctx.ps_sigwaited = ksi;
2435 p->p_sigctx.ps_sigwait = waitset;
2436
2437 /*
2438 * Wait for signal to arrive. We can either be woken up or
2439 * time out.
2440 */
2441 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2442
2443 /*
2444 * Need to find out if we woke as a result of lwp_wakeup()
2445 * or a signal outside our wait set.
2446 */
2447 if (error == EINTR && p->p_sigctx.ps_sigwaited
2448 && !firstsig(&p->p_sigctx.ps_siglist)) {
2449 /* wakeup via _lwp_wakeup() */
2450 error = ECANCELED;
2451 } else if (!error && p->p_sigctx.ps_sigwaited) {
2452 /* spurious wakeup - arrange for syscall restart */
2453 error = ERESTART;
2454 goto fail;
2455 }
2456
2457 /*
2458 * On error, clear sigwait indication. psignal1() clears it
2459 * in !error case.
2460 */
2461 if (error) {
2462 p->p_sigctx.ps_sigwaited = NULL;
2463
2464 /*
2465 * If the sleep was interrupted (either by signal or wakeup),
2466 * update the timeout and copyout new value back.
2467 * It would be used when the syscall would be restarted
2468 * or called again.
2469 */
2470 if (timo && (error == ERESTART || error == ECANCELED)) {
2471 struct timeval tvnow, tvtimo;
2472 int err;
2473
2474 s = splclock();
2475 tvnow = mono_time;
2476 splx(s);
2477
2478 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2479
2480 /* compute how much time has passed since start */
2481 timersub(&tvnow, &tvstart, &tvnow);
2482 /* substract passed time from timeout */
2483 timersub(&tvtimo, &tvnow, &tvtimo);
2484
2485 if (tvtimo.tv_sec < 0) {
2486 error = EAGAIN;
2487 goto fail;
2488 }
2489
2490 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2491
2492 /* copy updated timeout to userland */
2493 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2494 sizeof(ts)))) {
2495 error = err;
2496 goto fail;
2497 }
2498 }
2499
2500 goto fail;
2501 }
2502
2503 /*
2504 * If a signal from the wait set arrived, copy it to userland.
2505 * Copy only the used part of siginfo, the padding part is
2506 * left unchanged (userland is not supposed to touch it anyway).
2507 */
2508 sig:
2509 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2510
2511 fail:
2512 FREE(waitset, M_TEMP);
2513 pool_put(&ksiginfo_pool, ksi);
2514 p->p_sigctx.ps_sigwait = NULL;
2515
2516 return (error);
2517 }
2518
2519 /*
2520 * Returns true if signal is ignored or masked for passed process.
2521 */
2522 int
2523 sigismasked(struct proc *p, int sig)
2524 {
2525
2526 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2527 sigismember(&p->p_sigctx.ps_sigmask, sig));
2528 }
2529
2530 static int
2531 filt_sigattach(struct knote *kn)
2532 {
2533 struct proc *p = curproc;
2534
2535 kn->kn_ptr.p_proc = p;
2536 kn->kn_flags |= EV_CLEAR; /* automatically set */
2537
2538 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2539
2540 return (0);
2541 }
2542
2543 static void
2544 filt_sigdetach(struct knote *kn)
2545 {
2546 struct proc *p = kn->kn_ptr.p_proc;
2547
2548 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2549 }
2550
2551 /*
2552 * signal knotes are shared with proc knotes, so we apply a mask to
2553 * the hint in order to differentiate them from process hints. This
2554 * could be avoided by using a signal-specific knote list, but probably
2555 * isn't worth the trouble.
2556 */
2557 static int
2558 filt_signal(struct knote *kn, long hint)
2559 {
2560
2561 if (hint & NOTE_SIGNAL) {
2562 hint &= ~NOTE_SIGNAL;
2563
2564 if (kn->kn_id == hint)
2565 kn->kn_data++;
2566 }
2567 return (kn->kn_data != 0);
2568 }
2569
2570 const struct filterops sig_filtops = {
2571 0, filt_sigattach, filt_sigdetach, filt_signal
2572 };
2573