kern_sig.c revision 1.212 1 /* $NetBSD: kern_sig.c,v 1.212 2005/12/11 12:24:29 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.212 2005/12/11 12:24:29 christos Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73
74 #include <sys/mount.h>
75 #include <sys/syscallargs.h>
76
77 #include <machine/cpu.h>
78
79 #include <sys/user.h> /* for coredump */
80
81 #include <uvm/uvm.h>
82 #include <uvm/uvm_extern.h>
83
84 static void child_psignal(struct proc *, int);
85 static int build_corename(struct proc *, char *, const char *, size_t);
86 static void ksiginfo_exithook(struct proc *, void *);
87 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
88 static ksiginfo_t *ksiginfo_get(struct proc *, int);
89 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
90
91 sigset_t contsigmask, stopsigmask, sigcantmask;
92
93 struct pool sigacts_pool; /* memory pool for sigacts structures */
94
95 /*
96 * struct sigacts memory pool allocator.
97 */
98
99 static void *
100 sigacts_poolpage_alloc(struct pool *pp, int flags)
101 {
102
103 return (void *)uvm_km_alloc(kernel_map,
104 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
105 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
106 | UVM_KMF_WIRED);
107 }
108
109 static void
110 sigacts_poolpage_free(struct pool *pp, void *v)
111 {
112 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
113 }
114
115 static struct pool_allocator sigactspool_allocator = {
116 sigacts_poolpage_alloc, sigacts_poolpage_free,
117 };
118
119 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
120 &pool_allocator_nointr);
121 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
122
123 /*
124 * Can process p, with pcred pc, send the signal signum to process q?
125 */
126 #define CANSIGNAL(p, pc, q, signum) \
127 ((pc)->pc_ucred->cr_uid == 0 || \
128 (pc)->p_ruid == (q)->p_cred->p_ruid || \
129 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
130 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
131 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
132 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
133
134 /*
135 * Remove and return the first ksiginfo element that matches our requested
136 * signal, or return NULL if one not found.
137 */
138 static ksiginfo_t *
139 ksiginfo_get(struct proc *p, int signo)
140 {
141 ksiginfo_t *ksi;
142 int s;
143
144 s = splsoftclock();
145 simple_lock(&p->p_sigctx.ps_silock);
146 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
147 if (ksi->ksi_signo == signo) {
148 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
149 goto out;
150 }
151 }
152 ksi = NULL;
153 out:
154 simple_unlock(&p->p_sigctx.ps_silock);
155 splx(s);
156 return ksi;
157 }
158
159 /*
160 * Append a new ksiginfo element to the list of pending ksiginfo's, if
161 * we need to (SA_SIGINFO was requested). We replace non RT signals if
162 * they already existed in the queue and we add new entries for RT signals,
163 * or for non RT signals with non-existing entries.
164 */
165 static void
166 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
167 {
168 ksiginfo_t *kp;
169 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
170 int s;
171
172 if ((sa->sa_flags & SA_SIGINFO) == 0)
173 return;
174 /*
175 * If there's no info, don't save it.
176 */
177 if (KSI_EMPTY_P(ksi))
178 return;
179
180 s = splsoftclock();
181 simple_lock(&p->p_sigctx.ps_silock);
182 #ifdef notyet /* XXX: QUEUING */
183 if (ksi->ksi_signo < SIGRTMIN)
184 #endif
185 {
186 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
187 if (kp->ksi_signo == ksi->ksi_signo) {
188 KSI_COPY(ksi, kp);
189 goto out;
190 }
191 }
192 }
193 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
194 if (kp == NULL) {
195 #ifdef DIAGNOSTIC
196 printf("Out of memory allocating siginfo for pid %d\n",
197 p->p_pid);
198 #endif
199 goto out;
200 }
201 *kp = *ksi;
202 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
203 out:
204 simple_unlock(&p->p_sigctx.ps_silock);
205 splx(s);
206 }
207
208 /*
209 * free all pending ksiginfo on exit
210 */
211 static void
212 ksiginfo_exithook(struct proc *p, void *v)
213 {
214 int s;
215
216 s = splsoftclock();
217 simple_lock(&p->p_sigctx.ps_silock);
218 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
219 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
220 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
221 pool_put(&ksiginfo_pool, ksi);
222 }
223 simple_unlock(&p->p_sigctx.ps_silock);
224 splx(s);
225 }
226
227 /*
228 * Initialize signal-related data structures.
229 */
230 void
231 signal_init(void)
232 {
233
234 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
235
236 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
237 sizeof(struct sigacts) > PAGE_SIZE ?
238 &sigactspool_allocator : &pool_allocator_nointr);
239
240 exithook_establish(ksiginfo_exithook, NULL);
241 exechook_establish(ksiginfo_exithook, NULL);
242 }
243
244 /*
245 * Create an initial sigctx structure, using the same signal state
246 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
247 * copy it from parent.
248 */
249 void
250 sigactsinit(struct proc *np, struct proc *pp, int share)
251 {
252 struct sigacts *ps;
253
254 if (share) {
255 np->p_sigacts = pp->p_sigacts;
256 pp->p_sigacts->sa_refcnt++;
257 } else {
258 ps = pool_get(&sigacts_pool, PR_WAITOK);
259 if (pp)
260 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
261 else
262 memset(ps, '\0', sizeof(struct sigacts));
263 ps->sa_refcnt = 1;
264 np->p_sigacts = ps;
265 }
266 }
267
268 /*
269 * Make this process not share its sigctx, maintaining all
270 * signal state.
271 */
272 void
273 sigactsunshare(struct proc *p)
274 {
275 struct sigacts *oldps;
276
277 if (p->p_sigacts->sa_refcnt == 1)
278 return;
279
280 oldps = p->p_sigacts;
281 sigactsinit(p, NULL, 0);
282
283 if (--oldps->sa_refcnt == 0)
284 pool_put(&sigacts_pool, oldps);
285 }
286
287 /*
288 * Release a sigctx structure.
289 */
290 void
291 sigactsfree(struct sigacts *ps)
292 {
293
294 if (--ps->sa_refcnt > 0)
295 return;
296
297 pool_put(&sigacts_pool, ps);
298 }
299
300 int
301 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
302 struct sigaction *osa, const void *tramp, int vers)
303 {
304 struct sigacts *ps;
305 int prop;
306
307 ps = p->p_sigacts;
308 if (signum <= 0 || signum >= NSIG)
309 return (EINVAL);
310
311 /*
312 * Trampoline ABI version 0 is reserved for the legacy
313 * kernel-provided on-stack trampoline. Conversely, if we are
314 * using a non-0 ABI version, we must have a trampoline. Only
315 * validate the vers if a new sigaction was supplied. Emulations
316 * use legacy kernel trampolines with version 0, alternatively
317 * check for that too.
318 */
319 if ((vers != 0 && tramp == NULL) ||
320 #ifdef SIGTRAMP_VALID
321 (nsa != NULL &&
322 ((vers == 0) ?
323 (p->p_emul->e_sigcode == NULL) :
324 !SIGTRAMP_VALID(vers))) ||
325 #endif
326 (vers == 0 && tramp != NULL))
327 return (EINVAL);
328
329 if (osa)
330 *osa = SIGACTION_PS(ps, signum);
331
332 if (nsa) {
333 if (nsa->sa_flags & ~SA_ALLBITS)
334 return (EINVAL);
335
336 prop = sigprop[signum];
337 if (prop & SA_CANTMASK)
338 return (EINVAL);
339
340 (void) splsched(); /* XXXSMP */
341 SIGACTION_PS(ps, signum) = *nsa;
342 ps->sa_sigdesc[signum].sd_tramp = tramp;
343 ps->sa_sigdesc[signum].sd_vers = vers;
344 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
345 if ((prop & SA_NORESET) != 0)
346 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
347 if (signum == SIGCHLD) {
348 if (nsa->sa_flags & SA_NOCLDSTOP)
349 p->p_flag |= P_NOCLDSTOP;
350 else
351 p->p_flag &= ~P_NOCLDSTOP;
352 if (nsa->sa_flags & SA_NOCLDWAIT) {
353 /*
354 * Paranoia: since SA_NOCLDWAIT is implemented
355 * by reparenting the dying child to PID 1 (and
356 * trust it to reap the zombie), PID 1 itself
357 * is forbidden to set SA_NOCLDWAIT.
358 */
359 if (p->p_pid == 1)
360 p->p_flag &= ~P_NOCLDWAIT;
361 else
362 p->p_flag |= P_NOCLDWAIT;
363 } else
364 p->p_flag &= ~P_NOCLDWAIT;
365
366 if (nsa->sa_handler == SIG_IGN) {
367 /*
368 * Paranoia: same as above.
369 */
370 if (p->p_pid == 1)
371 p->p_flag &= ~P_CLDSIGIGN;
372 else
373 p->p_flag |= P_CLDSIGIGN;
374 } else
375 p->p_flag &= ~P_CLDSIGIGN;
376
377 }
378 if ((nsa->sa_flags & SA_NODEFER) == 0)
379 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
380 else
381 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
382 /*
383 * Set bit in p_sigctx.ps_sigignore for signals that are set to
384 * SIG_IGN, and for signals set to SIG_DFL where the default is
385 * to ignore. However, don't put SIGCONT in
386 * p_sigctx.ps_sigignore, as we have to restart the process.
387 */
388 if (nsa->sa_handler == SIG_IGN ||
389 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
390 /* never to be seen again */
391 sigdelset(&p->p_sigctx.ps_siglist, signum);
392 if (signum != SIGCONT) {
393 /* easier in psignal */
394 sigaddset(&p->p_sigctx.ps_sigignore, signum);
395 }
396 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
397 } else {
398 sigdelset(&p->p_sigctx.ps_sigignore, signum);
399 if (nsa->sa_handler == SIG_DFL)
400 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
401 else
402 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
403 }
404 (void) spl0();
405 }
406
407 return (0);
408 }
409
410 #ifdef COMPAT_16
411 /* ARGSUSED */
412 int
413 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
414 {
415 struct compat_16_sys___sigaction14_args /* {
416 syscallarg(int) signum;
417 syscallarg(const struct sigaction *) nsa;
418 syscallarg(struct sigaction *) osa;
419 } */ *uap = v;
420 struct proc *p;
421 struct sigaction nsa, osa;
422 int error;
423
424 if (SCARG(uap, nsa)) {
425 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
426 if (error)
427 return (error);
428 }
429 p = l->l_proc;
430 error = sigaction1(p, SCARG(uap, signum),
431 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
432 NULL, 0);
433 if (error)
434 return (error);
435 if (SCARG(uap, osa)) {
436 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
437 if (error)
438 return (error);
439 }
440 return (0);
441 }
442 #endif
443
444 /* ARGSUSED */
445 int
446 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
447 {
448 struct sys___sigaction_sigtramp_args /* {
449 syscallarg(int) signum;
450 syscallarg(const struct sigaction *) nsa;
451 syscallarg(struct sigaction *) osa;
452 syscallarg(void *) tramp;
453 syscallarg(int) vers;
454 } */ *uap = v;
455 struct proc *p = l->l_proc;
456 struct sigaction nsa, osa;
457 int error;
458
459 if (SCARG(uap, nsa)) {
460 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
461 if (error)
462 return (error);
463 }
464 error = sigaction1(p, SCARG(uap, signum),
465 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
466 SCARG(uap, tramp), SCARG(uap, vers));
467 if (error)
468 return (error);
469 if (SCARG(uap, osa)) {
470 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
471 if (error)
472 return (error);
473 }
474 return (0);
475 }
476
477 /*
478 * Initialize signal state for process 0;
479 * set to ignore signals that are ignored by default and disable the signal
480 * stack.
481 */
482 void
483 siginit(struct proc *p)
484 {
485 struct sigacts *ps;
486 int signum, prop;
487
488 ps = p->p_sigacts;
489 sigemptyset(&contsigmask);
490 sigemptyset(&stopsigmask);
491 sigemptyset(&sigcantmask);
492 for (signum = 1; signum < NSIG; signum++) {
493 prop = sigprop[signum];
494 if (prop & SA_CONT)
495 sigaddset(&contsigmask, signum);
496 if (prop & SA_STOP)
497 sigaddset(&stopsigmask, signum);
498 if (prop & SA_CANTMASK)
499 sigaddset(&sigcantmask, signum);
500 if (prop & SA_IGNORE && signum != SIGCONT)
501 sigaddset(&p->p_sigctx.ps_sigignore, signum);
502 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
503 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
504 }
505 sigemptyset(&p->p_sigctx.ps_sigcatch);
506 p->p_sigctx.ps_sigwaited = NULL;
507 p->p_flag &= ~P_NOCLDSTOP;
508
509 /*
510 * Reset stack state to the user stack.
511 */
512 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
513 p->p_sigctx.ps_sigstk.ss_size = 0;
514 p->p_sigctx.ps_sigstk.ss_sp = 0;
515
516 /* One reference. */
517 ps->sa_refcnt = 1;
518 }
519
520 /*
521 * Reset signals for an exec of the specified process.
522 */
523 void
524 execsigs(struct proc *p)
525 {
526 struct sigacts *ps;
527 int signum, prop;
528
529 sigactsunshare(p);
530
531 ps = p->p_sigacts;
532
533 /*
534 * Reset caught signals. Held signals remain held
535 * through p_sigctx.ps_sigmask (unless they were caught,
536 * and are now ignored by default).
537 */
538 for (signum = 1; signum < NSIG; signum++) {
539 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
540 prop = sigprop[signum];
541 if (prop & SA_IGNORE) {
542 if ((prop & SA_CONT) == 0)
543 sigaddset(&p->p_sigctx.ps_sigignore,
544 signum);
545 sigdelset(&p->p_sigctx.ps_siglist, signum);
546 }
547 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
548 }
549 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
550 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
551 }
552 sigemptyset(&p->p_sigctx.ps_sigcatch);
553 p->p_sigctx.ps_sigwaited = NULL;
554
555 /*
556 * Reset no zombies if child dies flag as Solaris does.
557 */
558 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
559 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
560 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
561
562 /*
563 * Reset stack state to the user stack.
564 */
565 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
566 p->p_sigctx.ps_sigstk.ss_size = 0;
567 p->p_sigctx.ps_sigstk.ss_sp = 0;
568 }
569
570 int
571 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
572 {
573
574 if (oss)
575 *oss = p->p_sigctx.ps_sigmask;
576
577 if (nss) {
578 (void)splsched(); /* XXXSMP */
579 switch (how) {
580 case SIG_BLOCK:
581 sigplusset(nss, &p->p_sigctx.ps_sigmask);
582 break;
583 case SIG_UNBLOCK:
584 sigminusset(nss, &p->p_sigctx.ps_sigmask);
585 CHECKSIGS(p);
586 break;
587 case SIG_SETMASK:
588 p->p_sigctx.ps_sigmask = *nss;
589 CHECKSIGS(p);
590 break;
591 default:
592 (void)spl0(); /* XXXSMP */
593 return (EINVAL);
594 }
595 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
596 (void)spl0(); /* XXXSMP */
597 }
598
599 return (0);
600 }
601
602 /*
603 * Manipulate signal mask.
604 * Note that we receive new mask, not pointer,
605 * and return old mask as return value;
606 * the library stub does the rest.
607 */
608 int
609 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
610 {
611 struct sys___sigprocmask14_args /* {
612 syscallarg(int) how;
613 syscallarg(const sigset_t *) set;
614 syscallarg(sigset_t *) oset;
615 } */ *uap = v;
616 struct proc *p;
617 sigset_t nss, oss;
618 int error;
619
620 if (SCARG(uap, set)) {
621 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
622 if (error)
623 return (error);
624 }
625 p = l->l_proc;
626 error = sigprocmask1(p, SCARG(uap, how),
627 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
628 if (error)
629 return (error);
630 if (SCARG(uap, oset)) {
631 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
632 if (error)
633 return (error);
634 }
635 return (0);
636 }
637
638 void
639 sigpending1(struct proc *p, sigset_t *ss)
640 {
641
642 *ss = p->p_sigctx.ps_siglist;
643 sigminusset(&p->p_sigctx.ps_sigmask, ss);
644 }
645
646 /* ARGSUSED */
647 int
648 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
649 {
650 struct sys___sigpending14_args /* {
651 syscallarg(sigset_t *) set;
652 } */ *uap = v;
653 struct proc *p;
654 sigset_t ss;
655
656 p = l->l_proc;
657 sigpending1(p, &ss);
658 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
659 }
660
661 int
662 sigsuspend1(struct proc *p, const sigset_t *ss)
663 {
664 struct sigacts *ps;
665
666 ps = p->p_sigacts;
667 if (ss) {
668 /*
669 * When returning from sigpause, we want
670 * the old mask to be restored after the
671 * signal handler has finished. Thus, we
672 * save it here and mark the sigctx structure
673 * to indicate this.
674 */
675 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
676 p->p_sigctx.ps_flags |= SAS_OLDMASK;
677 (void) splsched(); /* XXXSMP */
678 p->p_sigctx.ps_sigmask = *ss;
679 CHECKSIGS(p);
680 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
681 (void) spl0(); /* XXXSMP */
682 }
683
684 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
685 /* void */;
686
687 /* always return EINTR rather than ERESTART... */
688 return (EINTR);
689 }
690
691 /*
692 * Suspend process until signal, providing mask to be set
693 * in the meantime. Note nonstandard calling convention:
694 * libc stub passes mask, not pointer, to save a copyin.
695 */
696 /* ARGSUSED */
697 int
698 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
699 {
700 struct sys___sigsuspend14_args /* {
701 syscallarg(const sigset_t *) set;
702 } */ *uap = v;
703 struct proc *p;
704 sigset_t ss;
705 int error;
706
707 if (SCARG(uap, set)) {
708 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
709 if (error)
710 return (error);
711 }
712
713 p = l->l_proc;
714 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
715 }
716
717 int
718 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
719 struct sigaltstack *oss)
720 {
721
722 if (oss)
723 *oss = p->p_sigctx.ps_sigstk;
724
725 if (nss) {
726 if (nss->ss_flags & ~SS_ALLBITS)
727 return (EINVAL);
728
729 if (nss->ss_flags & SS_DISABLE) {
730 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
731 return (EINVAL);
732 } else {
733 if (nss->ss_size < MINSIGSTKSZ)
734 return (ENOMEM);
735 }
736 p->p_sigctx.ps_sigstk = *nss;
737 }
738
739 return (0);
740 }
741
742 /* ARGSUSED */
743 int
744 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
745 {
746 struct sys___sigaltstack14_args /* {
747 syscallarg(const struct sigaltstack *) nss;
748 syscallarg(struct sigaltstack *) oss;
749 } */ *uap = v;
750 struct proc *p;
751 struct sigaltstack nss, oss;
752 int error;
753
754 if (SCARG(uap, nss)) {
755 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
756 if (error)
757 return (error);
758 }
759 p = l->l_proc;
760 error = sigaltstack1(p,
761 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
762 if (error)
763 return (error);
764 if (SCARG(uap, oss)) {
765 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
766 if (error)
767 return (error);
768 }
769 return (0);
770 }
771
772 /* ARGSUSED */
773 int
774 sys_kill(struct lwp *l, void *v, register_t *retval)
775 {
776 struct sys_kill_args /* {
777 syscallarg(int) pid;
778 syscallarg(int) signum;
779 } */ *uap = v;
780 struct proc *cp, *p;
781 struct pcred *pc;
782 ksiginfo_t ksi;
783
784 cp = l->l_proc;
785 pc = cp->p_cred;
786 if ((u_int)SCARG(uap, signum) >= NSIG)
787 return (EINVAL);
788 KSI_INIT(&ksi);
789 ksi.ksi_signo = SCARG(uap, signum);
790 ksi.ksi_code = SI_USER;
791 ksi.ksi_pid = cp->p_pid;
792 ksi.ksi_uid = cp->p_ucred->cr_uid;
793 if (SCARG(uap, pid) > 0) {
794 /* kill single process */
795 if ((p = pfind(SCARG(uap, pid))) == NULL)
796 return (ESRCH);
797 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
798 return (EPERM);
799 if (SCARG(uap, signum))
800 kpsignal2(p, &ksi, 1);
801 return (0);
802 }
803 switch (SCARG(uap, pid)) {
804 case -1: /* broadcast signal */
805 return (killpg1(cp, &ksi, 0, 1));
806 case 0: /* signal own process group */
807 return (killpg1(cp, &ksi, 0, 0));
808 default: /* negative explicit process group */
809 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
810 }
811 /* NOTREACHED */
812 }
813
814 /*
815 * Common code for kill process group/broadcast kill.
816 * cp is calling process.
817 */
818 int
819 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
820 {
821 struct proc *p;
822 struct pcred *pc;
823 struct pgrp *pgrp;
824 int nfound;
825 int signum = ksi->ksi_signo;
826
827 pc = cp->p_cred;
828 nfound = 0;
829 if (all) {
830 /*
831 * broadcast
832 */
833 proclist_lock_read();
834 PROCLIST_FOREACH(p, &allproc) {
835 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
836 p == cp || !CANSIGNAL(cp, pc, p, signum))
837 continue;
838 nfound++;
839 if (signum)
840 kpsignal2(p, ksi, 1);
841 }
842 proclist_unlock_read();
843 } else {
844 if (pgid == 0)
845 /*
846 * zero pgid means send to my process group.
847 */
848 pgrp = cp->p_pgrp;
849 else {
850 pgrp = pgfind(pgid);
851 if (pgrp == NULL)
852 return (ESRCH);
853 }
854 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
855 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
856 !CANSIGNAL(cp, pc, p, signum))
857 continue;
858 nfound++;
859 if (signum && P_ZOMBIE(p) == 0)
860 kpsignal2(p, ksi, 1);
861 }
862 }
863 return (nfound ? 0 : ESRCH);
864 }
865
866 /*
867 * Send a signal to a process group.
868 */
869 void
870 gsignal(int pgid, int signum)
871 {
872 ksiginfo_t ksi;
873 KSI_INIT_EMPTY(&ksi);
874 ksi.ksi_signo = signum;
875 kgsignal(pgid, &ksi, NULL);
876 }
877
878 void
879 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
880 {
881 struct pgrp *pgrp;
882
883 if (pgid && (pgrp = pgfind(pgid)))
884 kpgsignal(pgrp, ksi, data, 0);
885 }
886
887 /*
888 * Send a signal to a process group. If checktty is 1,
889 * limit to members which have a controlling terminal.
890 */
891 void
892 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
893 {
894 ksiginfo_t ksi;
895 KSI_INIT_EMPTY(&ksi);
896 ksi.ksi_signo = sig;
897 kpgsignal(pgrp, &ksi, NULL, checkctty);
898 }
899
900 void
901 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
902 {
903 struct proc *p;
904
905 if (pgrp)
906 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
907 if (checkctty == 0 || p->p_flag & P_CONTROLT)
908 kpsignal(p, ksi, data);
909 }
910
911 /*
912 * Send a signal caused by a trap to the current process.
913 * If it will be caught immediately, deliver it with correct code.
914 * Otherwise, post it normally.
915 */
916 void
917 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
918 {
919 struct proc *p;
920 struct sigacts *ps;
921 int signum = ksi->ksi_signo;
922
923 KASSERT(KSI_TRAP_P(ksi));
924
925 p = l->l_proc;
926 ps = p->p_sigacts;
927 if ((p->p_flag & P_TRACED) == 0 &&
928 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
929 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
930 p->p_stats->p_ru.ru_nsignals++;
931 #ifdef KTRACE
932 if (KTRPOINT(p, KTR_PSIG))
933 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
934 &p->p_sigctx.ps_sigmask, ksi);
935 #endif
936 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
937 (void) splsched(); /* XXXSMP */
938 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
939 &p->p_sigctx.ps_sigmask);
940 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
941 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
942 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
943 sigaddset(&p->p_sigctx.ps_sigignore, signum);
944 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
945 }
946 (void) spl0(); /* XXXSMP */
947 } else {
948 p->p_sigctx.ps_lwp = l->l_lid;
949 /* XXX for core dump/debugger */
950 p->p_sigctx.ps_signo = ksi->ksi_signo;
951 p->p_sigctx.ps_code = ksi->ksi_trap;
952 kpsignal2(p, ksi, 1);
953 }
954 }
955
956 /*
957 * Fill in signal information and signal the parent for a child status change.
958 */
959 static void
960 child_psignal(struct proc *p, int dolock)
961 {
962 ksiginfo_t ksi;
963
964 KSI_INIT(&ksi);
965 ksi.ksi_signo = SIGCHLD;
966 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
967 ksi.ksi_pid = p->p_pid;
968 ksi.ksi_uid = p->p_ucred->cr_uid;
969 ksi.ksi_status = p->p_xstat;
970 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
971 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
972 kpsignal2(p->p_pptr, &ksi, dolock);
973 }
974
975 /*
976 * Send the signal to the process. If the signal has an action, the action
977 * is usually performed by the target process rather than the caller; we add
978 * the signal to the set of pending signals for the process.
979 *
980 * Exceptions:
981 * o When a stop signal is sent to a sleeping process that takes the
982 * default action, the process is stopped without awakening it.
983 * o SIGCONT restarts stopped processes (or puts them back to sleep)
984 * regardless of the signal action (eg, blocked or ignored).
985 *
986 * Other ignored signals are discarded immediately.
987 *
988 * XXXSMP: Invoked as psignal() or sched_psignal().
989 */
990 void
991 psignal1(struct proc *p, int signum, int dolock)
992 {
993 ksiginfo_t ksi;
994
995 KSI_INIT_EMPTY(&ksi);
996 ksi.ksi_signo = signum;
997 kpsignal2(p, &ksi, dolock);
998 }
999
1000 void
1001 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1002 {
1003
1004 if ((p->p_flag & P_WEXIT) == 0 && data) {
1005 size_t fd;
1006 struct filedesc *fdp = p->p_fd;
1007
1008 ksi->ksi_fd = -1;
1009 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1010 struct file *fp = fdp->fd_ofiles[fd];
1011 /* XXX: lock? */
1012 if (fp && fp->f_data == data) {
1013 ksi->ksi_fd = fd;
1014 break;
1015 }
1016 }
1017 }
1018 kpsignal2(p, ksi, dolock);
1019 }
1020
1021 static void
1022 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1023 {
1024 struct lwp *l, *suspended = NULL;
1025 struct sadata_vp *vp;
1026 int s = 0, prop, allsusp;
1027 sig_t action;
1028 int signum = ksi->ksi_signo;
1029
1030 #ifdef DIAGNOSTIC
1031 if (signum <= 0 || signum >= NSIG)
1032 panic("psignal signal number %d", signum);
1033
1034 /* XXXSMP: works, but icky */
1035 if (dolock)
1036 SCHED_ASSERT_UNLOCKED();
1037 else
1038 SCHED_ASSERT_LOCKED();
1039 #endif
1040
1041 /*
1042 * Notify any interested parties in the signal.
1043 */
1044 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1045
1046 prop = sigprop[signum];
1047
1048 /*
1049 * If proc is traced, always give parent a chance.
1050 */
1051 if (p->p_flag & P_TRACED) {
1052 action = SIG_DFL;
1053
1054 /*
1055 * If the process is being traced and the signal is being
1056 * caught, make sure to save any ksiginfo.
1057 */
1058 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1059 ksiginfo_put(p, ksi);
1060 } else {
1061 /*
1062 * If the signal was the result of a trap, reset it
1063 * to default action if it's currently masked, so that it would
1064 * coredump immediatelly instead of spinning repeatedly
1065 * taking the signal.
1066 */
1067 if (KSI_TRAP_P(ksi)
1068 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1069 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1070 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1071 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1072 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1073 SIGACTION(p, signum).sa_handler = SIG_DFL;
1074 }
1075
1076 /*
1077 * If the signal is being ignored,
1078 * then we forget about it immediately.
1079 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1080 * and if it is set to SIG_IGN,
1081 * action will be SIG_DFL here.)
1082 */
1083 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1084 return;
1085 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1086 action = SIG_HOLD;
1087 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1088 action = SIG_CATCH;
1089 else {
1090 action = SIG_DFL;
1091
1092 if (prop & SA_KILL && p->p_nice > NZERO)
1093 p->p_nice = NZERO;
1094
1095 /*
1096 * If sending a tty stop signal to a member of an
1097 * orphaned process group, discard the signal here if
1098 * the action is default; don't stop the process below
1099 * if sleeping, and don't clear any pending SIGCONT.
1100 */
1101 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1102 return;
1103 }
1104 }
1105
1106 if (prop & SA_CONT)
1107 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1108
1109 if (prop & SA_STOP)
1110 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1111
1112 /*
1113 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1114 * please!), check if anything waits on it. If yes, save the
1115 * info into provided ps_sigwaited, and wake-up the waiter.
1116 * The signal won't be processed further here.
1117 */
1118 if ((prop & SA_CANTMASK) == 0
1119 && p->p_sigctx.ps_sigwaited
1120 && sigismember(p->p_sigctx.ps_sigwait, signum)
1121 && p->p_stat != SSTOP) {
1122 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1123 p->p_sigctx.ps_sigwaited = NULL;
1124 if (dolock)
1125 wakeup_one(&p->p_sigctx.ps_sigwait);
1126 else
1127 sched_wakeup(&p->p_sigctx.ps_sigwait);
1128 return;
1129 }
1130
1131 sigaddset(&p->p_sigctx.ps_siglist, signum);
1132
1133 /* CHECKSIGS() is "inlined" here. */
1134 p->p_sigctx.ps_sigcheck = 1;
1135
1136 /*
1137 * Defer further processing for signals which are held,
1138 * except that stopped processes must be continued by SIGCONT.
1139 */
1140 if (action == SIG_HOLD &&
1141 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1142 ksiginfo_put(p, ksi);
1143 return;
1144 }
1145 /* XXXSMP: works, but icky */
1146 if (dolock)
1147 SCHED_LOCK(s);
1148
1149 if (p->p_flag & P_SA) {
1150 allsusp = 0;
1151 l = NULL;
1152 if (p->p_stat == SACTIVE) {
1153 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1154 l = vp->savp_lwp;
1155 KDASSERT(l != NULL);
1156 if (l->l_flag & L_SA_IDLE) {
1157 /* wakeup idle LWP */
1158 goto found;
1159 /*NOTREACHED*/
1160 } else if (l->l_flag & L_SA_YIELD) {
1161 /* idle LWP is already waking up */
1162 goto out;
1163 /*NOTREACHED*/
1164 }
1165 }
1166 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1167 l = vp->savp_lwp;
1168 if (l->l_stat == LSRUN ||
1169 l->l_stat == LSONPROC) {
1170 signotify(p);
1171 goto out;
1172 /*NOTREACHED*/
1173 }
1174 if (l->l_stat == LSSLEEP &&
1175 l->l_flag & L_SINTR) {
1176 /* ok to signal vp lwp */
1177 break;
1178 } else
1179 l = NULL;
1180 }
1181 } else if (p->p_stat == SSTOP) {
1182 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1183 l = vp->savp_lwp;
1184 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1185 break;
1186 l = NULL;
1187 }
1188 }
1189 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1190 /*
1191 * At least one LWP is running or on a run queue.
1192 * The signal will be noticed when one of them returns
1193 * to userspace.
1194 */
1195 signotify(p);
1196 /*
1197 * The signal will be noticed very soon.
1198 */
1199 goto out;
1200 /*NOTREACHED*/
1201 } else {
1202 /*
1203 * Find out if any of the sleeps are interruptable,
1204 * and if all the live LWPs remaining are suspended.
1205 */
1206 allsusp = 1;
1207 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1208 if (l->l_stat == LSSLEEP &&
1209 l->l_flag & L_SINTR)
1210 break;
1211 if (l->l_stat == LSSUSPENDED)
1212 suspended = l;
1213 else if ((l->l_stat != LSZOMB) &&
1214 (l->l_stat != LSDEAD))
1215 allsusp = 0;
1216 }
1217 }
1218
1219 found:
1220 switch (p->p_stat) {
1221 case SACTIVE:
1222
1223 if (l != NULL && (p->p_flag & P_TRACED))
1224 goto run;
1225
1226 /*
1227 * If SIGCONT is default (or ignored) and process is
1228 * asleep, we are finished; the process should not
1229 * be awakened.
1230 */
1231 if ((prop & SA_CONT) && action == SIG_DFL) {
1232 sigdelset(&p->p_sigctx.ps_siglist, signum);
1233 goto done;
1234 }
1235
1236 /*
1237 * When a sleeping process receives a stop
1238 * signal, process immediately if possible.
1239 */
1240 if ((prop & SA_STOP) && action == SIG_DFL) {
1241 /*
1242 * If a child holding parent blocked,
1243 * stopping could cause deadlock.
1244 */
1245 if (p->p_flag & P_PPWAIT) {
1246 goto out;
1247 }
1248 sigdelset(&p->p_sigctx.ps_siglist, signum);
1249 p->p_xstat = signum;
1250 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1251 /*
1252 * XXXSMP: recursive call; don't lock
1253 * the second time around.
1254 */
1255 child_psignal(p, 0);
1256 }
1257 proc_stop(p, 1); /* XXXSMP: recurse? */
1258 goto done;
1259 }
1260
1261 if (l == NULL) {
1262 /*
1263 * Special case: SIGKILL of a process
1264 * which is entirely composed of
1265 * suspended LWPs should succeed. We
1266 * make this happen by unsuspending one of
1267 * them.
1268 */
1269 if (allsusp && (signum == SIGKILL)) {
1270 lwp_continue(suspended);
1271 }
1272 goto done;
1273 }
1274 /*
1275 * All other (caught or default) signals
1276 * cause the process to run.
1277 */
1278 goto runfast;
1279 /*NOTREACHED*/
1280 case SSTOP:
1281 /* Process is stopped */
1282 /*
1283 * If traced process is already stopped,
1284 * then no further action is necessary.
1285 */
1286 if (p->p_flag & P_TRACED)
1287 goto done;
1288
1289 /*
1290 * Kill signal always sets processes running,
1291 * if possible.
1292 */
1293 if (signum == SIGKILL) {
1294 l = proc_unstop(p);
1295 if (l)
1296 goto runfast;
1297 goto done;
1298 }
1299
1300 if (prop & SA_CONT) {
1301 /*
1302 * If SIGCONT is default (or ignored),
1303 * we continue the process but don't
1304 * leave the signal in ps_siglist, as
1305 * it has no further action. If
1306 * SIGCONT is held, we continue the
1307 * process and leave the signal in
1308 * ps_siglist. If the process catches
1309 * SIGCONT, let it handle the signal
1310 * itself. If it isn't waiting on an
1311 * event, then it goes back to run
1312 * state. Otherwise, process goes
1313 * back to sleep state.
1314 */
1315 if (action == SIG_DFL)
1316 sigdelset(&p->p_sigctx.ps_siglist,
1317 signum);
1318 l = proc_unstop(p);
1319 if (l && (action == SIG_CATCH))
1320 goto runfast;
1321 goto out;
1322 }
1323
1324 if (prop & SA_STOP) {
1325 /*
1326 * Already stopped, don't need to stop again.
1327 * (If we did the shell could get confused.)
1328 */
1329 sigdelset(&p->p_sigctx.ps_siglist, signum);
1330 goto done;
1331 }
1332
1333 /*
1334 * If a lwp is sleeping interruptibly, then
1335 * wake it up; it will run until the kernel
1336 * boundary, where it will stop in issignal(),
1337 * since p->p_stat is still SSTOP. When the
1338 * process is continued, it will be made
1339 * runnable and can look at the signal.
1340 */
1341 if (l)
1342 goto run;
1343 goto out;
1344 case SIDL:
1345 /* Process is being created by fork */
1346 /* XXX: We are not ready to receive signals yet */
1347 goto done;
1348 default:
1349 /* Else what? */
1350 panic("psignal: Invalid process state %d.", p->p_stat);
1351 }
1352 /*NOTREACHED*/
1353
1354 runfast:
1355 if (action == SIG_CATCH) {
1356 ksiginfo_put(p, ksi);
1357 action = SIG_HOLD;
1358 }
1359 /*
1360 * Raise priority to at least PUSER.
1361 */
1362 if (l->l_priority > PUSER)
1363 l->l_priority = PUSER;
1364 run:
1365 if (action == SIG_CATCH) {
1366 ksiginfo_put(p, ksi);
1367 action = SIG_HOLD;
1368 }
1369
1370 setrunnable(l); /* XXXSMP: recurse? */
1371 out:
1372 if (action == SIG_CATCH)
1373 ksiginfo_put(p, ksi);
1374 done:
1375 /* XXXSMP: works, but icky */
1376 if (dolock)
1377 SCHED_UNLOCK(s);
1378 }
1379
1380 siginfo_t *
1381 siginfo_alloc(int flags)
1382 {
1383
1384 return pool_get(&siginfo_pool, flags);
1385 }
1386
1387 void
1388 siginfo_free(void *arg)
1389 {
1390
1391 pool_put(&siginfo_pool, arg);
1392 }
1393
1394 void
1395 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1396 {
1397 struct proc *p = l->l_proc;
1398 struct lwp *le, *li;
1399 siginfo_t *si;
1400 int f;
1401
1402 if (p->p_flag & P_SA) {
1403
1404 /* XXXUPSXXX What if not on sa_vp ? */
1405
1406 f = l->l_flag & L_SA;
1407 l->l_flag &= ~L_SA;
1408 si = siginfo_alloc(PR_WAITOK);
1409 si->_info = ksi->ksi_info;
1410 le = li = NULL;
1411 if (KSI_TRAP_P(ksi))
1412 le = l;
1413 else
1414 li = l;
1415 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1416 sizeof(*si), si, siginfo_free) != 0) {
1417 siginfo_free(si);
1418 if (KSI_TRAP_P(ksi))
1419 /* XXX What do we do here?? */;
1420 }
1421 l->l_flag |= f;
1422 return;
1423 }
1424
1425 (*p->p_emul->e_sendsig)(ksi, mask);
1426 }
1427
1428 static __inline int firstsig(const sigset_t *);
1429
1430 static __inline int
1431 firstsig(const sigset_t *ss)
1432 {
1433 int sig;
1434
1435 sig = ffs(ss->__bits[0]);
1436 if (sig != 0)
1437 return (sig);
1438 #if NSIG > 33
1439 sig = ffs(ss->__bits[1]);
1440 if (sig != 0)
1441 return (sig + 32);
1442 #endif
1443 #if NSIG > 65
1444 sig = ffs(ss->__bits[2]);
1445 if (sig != 0)
1446 return (sig + 64);
1447 #endif
1448 #if NSIG > 97
1449 sig = ffs(ss->__bits[3]);
1450 if (sig != 0)
1451 return (sig + 96);
1452 #endif
1453 return (0);
1454 }
1455
1456 /*
1457 * If the current process has received a signal (should be caught or cause
1458 * termination, should interrupt current syscall), return the signal number.
1459 * Stop signals with default action are processed immediately, then cleared;
1460 * they aren't returned. This is checked after each entry to the system for
1461 * a syscall or trap (though this can usually be done without calling issignal
1462 * by checking the pending signal masks in the CURSIG macro.) The normal call
1463 * sequence is
1464 *
1465 * while (signum = CURSIG(curlwp))
1466 * postsig(signum);
1467 */
1468 int
1469 issignal(struct lwp *l)
1470 {
1471 struct proc *p = l->l_proc;
1472 int s = 0, signum, prop;
1473 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1474 sigset_t ss;
1475
1476 /* Bail out if we do not own the virtual processor */
1477 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1478 return 0;
1479
1480 if (p->p_stat == SSTOP) {
1481 /*
1482 * The process is stopped/stopping. Stop ourselves now that
1483 * we're on the kernel/userspace boundary.
1484 */
1485 if (dolock)
1486 SCHED_LOCK(s);
1487 l->l_stat = LSSTOP;
1488 p->p_nrlwps--;
1489 if (p->p_flag & P_TRACED)
1490 goto sigtraceswitch;
1491 else
1492 goto sigswitch;
1493 }
1494 for (;;) {
1495 sigpending1(p, &ss);
1496 if (p->p_flag & P_PPWAIT)
1497 sigminusset(&stopsigmask, &ss);
1498 signum = firstsig(&ss);
1499 if (signum == 0) { /* no signal to send */
1500 p->p_sigctx.ps_sigcheck = 0;
1501 if (locked && dolock)
1502 SCHED_LOCK(s);
1503 return (0);
1504 }
1505 /* take the signal! */
1506 sigdelset(&p->p_sigctx.ps_siglist, signum);
1507
1508 /*
1509 * We should see pending but ignored signals
1510 * only if P_TRACED was on when they were posted.
1511 */
1512 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1513 (p->p_flag & P_TRACED) == 0)
1514 continue;
1515
1516 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1517 /*
1518 * If traced, always stop, and stay
1519 * stopped until released by the debugger.
1520 */
1521 p->p_xstat = signum;
1522
1523 /* Emulation-specific handling of signal trace */
1524 if ((p->p_emul->e_tracesig != NULL) &&
1525 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1526 goto childresumed;
1527
1528 if ((p->p_flag & P_FSTRACE) == 0)
1529 child_psignal(p, dolock);
1530 if (dolock)
1531 SCHED_LOCK(s);
1532 proc_stop(p, 1);
1533 sigtraceswitch:
1534 mi_switch(l, NULL);
1535 SCHED_ASSERT_UNLOCKED();
1536 if (dolock)
1537 splx(s);
1538 else
1539 dolock = 1;
1540
1541 childresumed:
1542 /*
1543 * If we are no longer being traced, or the parent
1544 * didn't give us a signal, look for more signals.
1545 */
1546 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1547 continue;
1548
1549 /*
1550 * If the new signal is being masked, look for other
1551 * signals.
1552 */
1553 signum = p->p_xstat;
1554 p->p_xstat = 0;
1555 /*
1556 * `p->p_sigctx.ps_siglist |= mask' is done
1557 * in setrunnable().
1558 */
1559 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1560 continue;
1561 /* take the signal! */
1562 sigdelset(&p->p_sigctx.ps_siglist, signum);
1563 }
1564
1565 prop = sigprop[signum];
1566
1567 /*
1568 * Decide whether the signal should be returned.
1569 * Return the signal's number, or fall through
1570 * to clear it from the pending mask.
1571 */
1572 switch ((long)SIGACTION(p, signum).sa_handler) {
1573
1574 case (long)SIG_DFL:
1575 /*
1576 * Don't take default actions on system processes.
1577 */
1578 if (p->p_pid <= 1) {
1579 #ifdef DIAGNOSTIC
1580 /*
1581 * Are you sure you want to ignore SIGSEGV
1582 * in init? XXX
1583 */
1584 printf("Process (pid %d) got signal %d\n",
1585 p->p_pid, signum);
1586 #endif
1587 break; /* == ignore */
1588 }
1589 /*
1590 * If there is a pending stop signal to process
1591 * with default action, stop here,
1592 * then clear the signal. However,
1593 * if process is member of an orphaned
1594 * process group, ignore tty stop signals.
1595 */
1596 if (prop & SA_STOP) {
1597 if (p->p_flag & P_TRACED ||
1598 (p->p_pgrp->pg_jobc == 0 &&
1599 prop & SA_TTYSTOP))
1600 break; /* == ignore */
1601 p->p_xstat = signum;
1602 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1603 child_psignal(p, dolock);
1604 if (dolock)
1605 SCHED_LOCK(s);
1606 proc_stop(p, 1);
1607 sigswitch:
1608 mi_switch(l, NULL);
1609 SCHED_ASSERT_UNLOCKED();
1610 if (dolock)
1611 splx(s);
1612 else
1613 dolock = 1;
1614 break;
1615 } else if (prop & SA_IGNORE) {
1616 /*
1617 * Except for SIGCONT, shouldn't get here.
1618 * Default action is to ignore; drop it.
1619 */
1620 break; /* == ignore */
1621 } else
1622 goto keep;
1623 /*NOTREACHED*/
1624
1625 case (long)SIG_IGN:
1626 /*
1627 * Masking above should prevent us ever trying
1628 * to take action on an ignored signal other
1629 * than SIGCONT, unless process is traced.
1630 */
1631 #ifdef DEBUG_ISSIGNAL
1632 if ((prop & SA_CONT) == 0 &&
1633 (p->p_flag & P_TRACED) == 0)
1634 printf("issignal\n");
1635 #endif
1636 break; /* == ignore */
1637
1638 default:
1639 /*
1640 * This signal has an action, let
1641 * postsig() process it.
1642 */
1643 goto keep;
1644 }
1645 }
1646 /* NOTREACHED */
1647
1648 keep:
1649 /* leave the signal for later */
1650 sigaddset(&p->p_sigctx.ps_siglist, signum);
1651 CHECKSIGS(p);
1652 if (locked && dolock)
1653 SCHED_LOCK(s);
1654 return (signum);
1655 }
1656
1657 /*
1658 * Put the argument process into the stopped state and notify the parent
1659 * via wakeup. Signals are handled elsewhere. The process must not be
1660 * on the run queue.
1661 */
1662 void
1663 proc_stop(struct proc *p, int dowakeup)
1664 {
1665 struct lwp *l;
1666 struct proc *parent;
1667 struct sadata_vp *vp;
1668
1669 SCHED_ASSERT_LOCKED();
1670
1671 /* XXX lock process LWP state */
1672 p->p_flag &= ~P_WAITED;
1673 p->p_stat = SSTOP;
1674 parent = p->p_pptr;
1675 parent->p_nstopchild++;
1676
1677 if (p->p_flag & P_SA) {
1678 /*
1679 * Only (try to) put the LWP on the VP in stopped
1680 * state.
1681 * All other LWPs will suspend in sa_setwoken()
1682 * because the VP-LWP in stopped state cannot be
1683 * repossessed.
1684 */
1685 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1686 l = vp->savp_lwp;
1687 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1688 l->l_stat = LSSTOP;
1689 p->p_nrlwps--;
1690 } else if (l->l_stat == LSRUN) {
1691 /* Remove LWP from the run queue */
1692 remrunqueue(l);
1693 l->l_stat = LSSTOP;
1694 p->p_nrlwps--;
1695 } else if (l->l_stat == LSSLEEP &&
1696 l->l_flag & L_SA_IDLE) {
1697 l->l_flag &= ~L_SA_IDLE;
1698 l->l_stat = LSSTOP;
1699 }
1700 }
1701 goto out;
1702 }
1703
1704 /*
1705 * Put as many LWP's as possible in stopped state.
1706 * Sleeping ones will notice the stopped state as they try to
1707 * return to userspace.
1708 */
1709
1710 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1711 if (l->l_stat == LSONPROC) {
1712 /* XXX SMP this assumes that a LWP that is LSONPROC
1713 * is curlwp and hence is about to be mi_switched
1714 * away; the only callers of proc_stop() are:
1715 * - psignal
1716 * - issignal()
1717 * For the former, proc_stop() is only called when
1718 * no processes are running, so we don't worry.
1719 * For the latter, proc_stop() is called right
1720 * before mi_switch().
1721 */
1722 l->l_stat = LSSTOP;
1723 p->p_nrlwps--;
1724 } else if (l->l_stat == LSRUN) {
1725 /* Remove LWP from the run queue */
1726 remrunqueue(l);
1727 l->l_stat = LSSTOP;
1728 p->p_nrlwps--;
1729 } else if ((l->l_stat == LSSLEEP) ||
1730 (l->l_stat == LSSUSPENDED) ||
1731 (l->l_stat == LSZOMB) ||
1732 (l->l_stat == LSDEAD)) {
1733 /*
1734 * Don't do anything; let sleeping LWPs
1735 * discover the stopped state of the process
1736 * on their way out of the kernel; otherwise,
1737 * things like NFS threads that sleep with
1738 * locks will block the rest of the system
1739 * from getting any work done.
1740 *
1741 * Suspended/dead/zombie LWPs aren't going
1742 * anywhere, so we don't need to touch them.
1743 */
1744 }
1745 #ifdef DIAGNOSTIC
1746 else {
1747 panic("proc_stop: process %d lwp %d "
1748 "in unstoppable state %d.\n",
1749 p->p_pid, l->l_lid, l->l_stat);
1750 }
1751 #endif
1752 }
1753
1754 out:
1755 /* XXX unlock process LWP state */
1756
1757 if (dowakeup)
1758 sched_wakeup((caddr_t)p->p_pptr);
1759 }
1760
1761 /*
1762 * Given a process in state SSTOP, set the state back to SACTIVE and
1763 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1764 *
1765 * If no LWPs ended up runnable (and therefore able to take a signal),
1766 * return a LWP that is sleeping interruptably. The caller can wake
1767 * that LWP up to take a signal.
1768 */
1769 struct lwp *
1770 proc_unstop(struct proc *p)
1771 {
1772 struct lwp *l, *lr = NULL;
1773 struct sadata_vp *vp;
1774 int cantake = 0;
1775
1776 SCHED_ASSERT_LOCKED();
1777
1778 /*
1779 * Our caller wants to be informed if there are only sleeping
1780 * and interruptable LWPs left after we have run so that it
1781 * can invoke setrunnable() if required - return one of the
1782 * interruptable LWPs if this is the case.
1783 */
1784
1785 if (!(p->p_flag & P_WAITED))
1786 p->p_pptr->p_nstopchild--;
1787 p->p_stat = SACTIVE;
1788 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1789 if (l->l_stat == LSRUN) {
1790 lr = NULL;
1791 cantake = 1;
1792 }
1793 if (l->l_stat != LSSTOP)
1794 continue;
1795
1796 if (l->l_wchan != NULL) {
1797 l->l_stat = LSSLEEP;
1798 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1799 lr = l;
1800 cantake = 1;
1801 }
1802 } else {
1803 setrunnable(l);
1804 lr = NULL;
1805 cantake = 1;
1806 }
1807 }
1808 if (p->p_flag & P_SA) {
1809 /* Only consider returning the LWP on the VP. */
1810 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1811 lr = vp->savp_lwp;
1812 if (lr->l_stat == LSSLEEP) {
1813 if (lr->l_flag & L_SA_YIELD) {
1814 setrunnable(lr);
1815 break;
1816 } else if (lr->l_flag & L_SINTR)
1817 return lr;
1818 }
1819 }
1820 return NULL;
1821 }
1822 return lr;
1823 }
1824
1825 /*
1826 * Take the action for the specified signal
1827 * from the current set of pending signals.
1828 */
1829 void
1830 postsig(int signum)
1831 {
1832 struct lwp *l;
1833 struct proc *p;
1834 struct sigacts *ps;
1835 sig_t action;
1836 sigset_t *returnmask;
1837
1838 l = curlwp;
1839 p = l->l_proc;
1840 ps = p->p_sigacts;
1841 #ifdef DIAGNOSTIC
1842 if (signum == 0)
1843 panic("postsig");
1844 #endif
1845
1846 KERNEL_PROC_LOCK(l);
1847
1848 #ifdef MULTIPROCESSOR
1849 /*
1850 * On MP, issignal() can return the same signal to multiple
1851 * LWPs. The LWPs will block above waiting for the kernel
1852 * lock and the first LWP which gets through will then remove
1853 * the signal from ps_siglist. All other LWPs exit here.
1854 */
1855 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1856 KERNEL_PROC_UNLOCK(l);
1857 return;
1858 }
1859 #endif
1860 sigdelset(&p->p_sigctx.ps_siglist, signum);
1861 action = SIGACTION_PS(ps, signum).sa_handler;
1862 if (action == SIG_DFL) {
1863 #ifdef KTRACE
1864 if (KTRPOINT(p, KTR_PSIG))
1865 ktrpsig(l, signum, action,
1866 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1867 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1868 NULL);
1869 #endif
1870 /*
1871 * Default action, where the default is to kill
1872 * the process. (Other cases were ignored above.)
1873 */
1874 sigexit(l, signum);
1875 /* NOTREACHED */
1876 } else {
1877 ksiginfo_t *ksi;
1878 /*
1879 * If we get here, the signal must be caught.
1880 */
1881 #ifdef DIAGNOSTIC
1882 if (action == SIG_IGN ||
1883 sigismember(&p->p_sigctx.ps_sigmask, signum))
1884 panic("postsig action");
1885 #endif
1886 /*
1887 * Set the new mask value and also defer further
1888 * occurrences of this signal.
1889 *
1890 * Special case: user has done a sigpause. Here the
1891 * current mask is not of interest, but rather the
1892 * mask from before the sigpause is what we want
1893 * restored after the signal processing is completed.
1894 */
1895 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1896 returnmask = &p->p_sigctx.ps_oldmask;
1897 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1898 } else
1899 returnmask = &p->p_sigctx.ps_sigmask;
1900 p->p_stats->p_ru.ru_nsignals++;
1901 ksi = ksiginfo_get(p, signum);
1902 #ifdef KTRACE
1903 if (KTRPOINT(p, KTR_PSIG))
1904 ktrpsig(l, signum, action,
1905 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1906 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1907 ksi);
1908 #endif
1909 if (ksi == NULL) {
1910 ksiginfo_t ksi1;
1911 /*
1912 * we did not save any siginfo for this, either
1913 * because the signal was not caught, or because the
1914 * user did not request SA_SIGINFO
1915 */
1916 KSI_INIT_EMPTY(&ksi1);
1917 ksi1.ksi_signo = signum;
1918 kpsendsig(l, &ksi1, returnmask);
1919 } else {
1920 kpsendsig(l, ksi, returnmask);
1921 pool_put(&ksiginfo_pool, ksi);
1922 }
1923 p->p_sigctx.ps_lwp = 0;
1924 p->p_sigctx.ps_code = 0;
1925 p->p_sigctx.ps_signo = 0;
1926 (void) splsched(); /* XXXSMP */
1927 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1928 &p->p_sigctx.ps_sigmask);
1929 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1930 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1931 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1932 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1933 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1934 }
1935 (void) spl0(); /* XXXSMP */
1936 }
1937
1938 KERNEL_PROC_UNLOCK(l);
1939 }
1940
1941 /*
1942 * Kill the current process for stated reason.
1943 */
1944 void
1945 killproc(struct proc *p, const char *why)
1946 {
1947 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1948 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1949 psignal(p, SIGKILL);
1950 }
1951
1952 /*
1953 * Force the current process to exit with the specified signal, dumping core
1954 * if appropriate. We bypass the normal tests for masked and caught signals,
1955 * allowing unrecoverable failures to terminate the process without changing
1956 * signal state. Mark the accounting record with the signal termination.
1957 * If dumping core, save the signal number for the debugger. Calls exit and
1958 * does not return.
1959 */
1960
1961 #if defined(DEBUG)
1962 int kern_logsigexit = 1; /* not static to make public for sysctl */
1963 #else
1964 int kern_logsigexit = 0; /* not static to make public for sysctl */
1965 #endif
1966
1967 static const char logcoredump[] =
1968 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1969 static const char lognocoredump[] =
1970 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1971
1972 /* Wrapper function for use in p_userret */
1973 static void
1974 lwp_coredump_hook(struct lwp *l, void *arg)
1975 {
1976 int s;
1977
1978 /*
1979 * Suspend ourselves, so that the kernel stack and therefore
1980 * the userland registers saved in the trapframe are around
1981 * for coredump() to write them out.
1982 */
1983 KERNEL_PROC_LOCK(l);
1984 l->l_flag &= ~L_DETACHED;
1985 SCHED_LOCK(s);
1986 l->l_stat = LSSUSPENDED;
1987 l->l_proc->p_nrlwps--;
1988 /* XXX NJWLWP check if this makes sense here: */
1989 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1990 mi_switch(l, NULL);
1991 SCHED_ASSERT_UNLOCKED();
1992 splx(s);
1993
1994 lwp_exit(l);
1995 }
1996
1997 void
1998 sigexit(struct lwp *l, int signum)
1999 {
2000 struct proc *p;
2001 #if 0
2002 struct lwp *l2;
2003 #endif
2004 int error, exitsig;
2005
2006 p = l->l_proc;
2007
2008 /*
2009 * Don't permit coredump() or exit1() multiple times
2010 * in the same process.
2011 */
2012 if (p->p_flag & P_WEXIT) {
2013 KERNEL_PROC_UNLOCK(l);
2014 (*p->p_userret)(l, p->p_userret_arg);
2015 }
2016 p->p_flag |= P_WEXIT;
2017 /* We don't want to switch away from exiting. */
2018 /* XXX multiprocessor: stop LWPs on other processors. */
2019 #if 0
2020 if (p->p_flag & P_SA) {
2021 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2022 l2->l_flag &= ~L_SA;
2023 p->p_flag &= ~P_SA;
2024 }
2025 #endif
2026
2027 /* Make other LWPs stick around long enough to be dumped */
2028 p->p_userret = lwp_coredump_hook;
2029 p->p_userret_arg = NULL;
2030
2031 exitsig = signum;
2032 p->p_acflag |= AXSIG;
2033 if (sigprop[signum] & SA_CORE) {
2034 p->p_sigctx.ps_signo = signum;
2035 if ((error = coredump(l, NULL)) == 0)
2036 exitsig |= WCOREFLAG;
2037
2038 if (kern_logsigexit) {
2039 /* XXX What if we ever have really large UIDs? */
2040 int uid = p->p_cred && p->p_ucred ?
2041 (int) p->p_ucred->cr_uid : -1;
2042
2043 if (error)
2044 log(LOG_INFO, lognocoredump, p->p_pid,
2045 p->p_comm, uid, signum, error);
2046 else
2047 log(LOG_INFO, logcoredump, p->p_pid,
2048 p->p_comm, uid, signum);
2049 }
2050
2051 }
2052
2053 exit1(l, W_EXITCODE(0, exitsig));
2054 /* NOTREACHED */
2055 }
2056
2057 struct coredump_iostate {
2058 struct lwp *io_lwp;
2059 struct vnode *io_vp;
2060 struct ucred *io_cred;
2061 off_t io_offset;
2062 };
2063
2064 int
2065 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2066 {
2067 struct coredump_iostate *io = cookie;
2068 int error;
2069
2070 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2071 io->io_offset, segflg,
2072 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2073 segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2074 if (error)
2075 return (error);
2076
2077 io->io_offset += len;
2078 return (0);
2079 }
2080
2081 /*
2082 * Dump core, into a file named "progname.core" or "core" (depending on the
2083 * value of shortcorename), unless the process was setuid/setgid.
2084 */
2085 int
2086 coredump(struct lwp *l, const char *pattern)
2087 {
2088 struct vnode *vp;
2089 struct proc *p;
2090 struct vmspace *vm;
2091 struct ucred *cred;
2092 struct nameidata nd;
2093 struct vattr vattr;
2094 struct mount *mp;
2095 struct coredump_iostate io;
2096 int error, error1;
2097 char name[MAXPATHLEN];
2098
2099 p = l->l_proc;
2100 vm = p->p_vmspace;
2101 cred = p->p_cred->pc_ucred;
2102
2103 /*
2104 * Make sure the process has not set-id, to prevent data leaks.
2105 */
2106 if (p->p_flag & P_SUGID)
2107 return (EPERM);
2108
2109 /*
2110 * Refuse to core if the data + stack + user size is larger than
2111 * the core dump limit. XXX THIS IS WRONG, because of mapped
2112 * data.
2113 */
2114 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2115 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2116 return (EFBIG); /* better error code? */
2117
2118 restart:
2119 /*
2120 * The core dump will go in the current working directory. Make
2121 * sure that the directory is still there and that the mount flags
2122 * allow us to write core dumps there.
2123 */
2124 vp = p->p_cwdi->cwdi_cdir;
2125 if (vp->v_mount == NULL ||
2126 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2127 return (EPERM);
2128
2129 if (pattern == NULL)
2130 pattern = p->p_limit->pl_corename;
2131 if ((error = build_corename(p, name, pattern, sizeof(name))) != 0)
2132 return error;
2133
2134 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2135 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2136 if (error)
2137 return (error);
2138 vp = nd.ni_vp;
2139
2140 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2141 VOP_UNLOCK(vp, 0);
2142 if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2143 return (error);
2144 if ((error = vn_start_write(NULL, &mp,
2145 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2146 return (error);
2147 goto restart;
2148 }
2149
2150 /* Don't dump to non-regular files or files with links. */
2151 if (vp->v_type != VREG ||
2152 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2153 error = EINVAL;
2154 goto out;
2155 }
2156 VATTR_NULL(&vattr);
2157 vattr.va_size = 0;
2158 VOP_LEASE(vp, l, cred, LEASE_WRITE);
2159 VOP_SETATTR(vp, &vattr, cred, l);
2160 p->p_acflag |= ACORE;
2161
2162 io.io_lwp = l;
2163 io.io_vp = vp;
2164 io.io_cred = cred;
2165 io.io_offset = 0;
2166
2167 /* Now dump the actual core file. */
2168 error = (*p->p_execsw->es_coredump)(l, &io);
2169 out:
2170 VOP_UNLOCK(vp, 0);
2171 vn_finished_write(mp, 0);
2172 error1 = vn_close(vp, FWRITE, cred, l);
2173 if (error == 0)
2174 error = error1;
2175 return (error);
2176 }
2177
2178 /*
2179 * Nonexistent system call-- signal process (may want to handle it).
2180 * Flag error in case process won't see signal immediately (blocked or ignored).
2181 */
2182 /* ARGSUSED */
2183 int
2184 sys_nosys(struct lwp *l, void *v, register_t *retval)
2185 {
2186 struct proc *p;
2187
2188 p = l->l_proc;
2189 psignal(p, SIGSYS);
2190 return (ENOSYS);
2191 }
2192
2193 static int
2194 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2195 {
2196 const char *s;
2197 char *d, *end;
2198 int i;
2199
2200 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2201 if (*s == '%') {
2202 switch (*(s + 1)) {
2203 case 'n':
2204 i = snprintf(d, end - d, "%s", p->p_comm);
2205 break;
2206 case 'p':
2207 i = snprintf(d, end - d, "%d", p->p_pid);
2208 break;
2209 case 'u':
2210 i = snprintf(d, end - d, "%.*s",
2211 (int)sizeof p->p_pgrp->pg_session->s_login,
2212 p->p_pgrp->pg_session->s_login);
2213 break;
2214 case 't':
2215 i = snprintf(d, end - d, "%ld",
2216 p->p_stats->p_start.tv_sec);
2217 break;
2218 default:
2219 goto copy;
2220 }
2221 d += i;
2222 s++;
2223 } else {
2224 copy: *d = *s;
2225 d++;
2226 }
2227 if (d >= end)
2228 return (ENAMETOOLONG);
2229 }
2230 *d = '\0';
2231 return 0;
2232 }
2233
2234 void
2235 getucontext(struct lwp *l, ucontext_t *ucp)
2236 {
2237 struct proc *p;
2238
2239 p = l->l_proc;
2240
2241 ucp->uc_flags = 0;
2242 ucp->uc_link = l->l_ctxlink;
2243
2244 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2245 ucp->uc_flags |= _UC_SIGMASK;
2246
2247 /*
2248 * The (unsupplied) definition of the `current execution stack'
2249 * in the System V Interface Definition appears to allow returning
2250 * the main context stack.
2251 */
2252 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2253 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2254 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2255 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2256 } else {
2257 /* Simply copy alternate signal execution stack. */
2258 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2259 }
2260 ucp->uc_flags |= _UC_STACK;
2261
2262 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2263 }
2264
2265 /* ARGSUSED */
2266 int
2267 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2268 {
2269 struct sys_getcontext_args /* {
2270 syscallarg(struct __ucontext *) ucp;
2271 } */ *uap = v;
2272 ucontext_t uc;
2273
2274 getucontext(l, &uc);
2275
2276 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2277 }
2278
2279 int
2280 setucontext(struct lwp *l, const ucontext_t *ucp)
2281 {
2282 struct proc *p;
2283 int error;
2284
2285 p = l->l_proc;
2286 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2287 return (error);
2288 l->l_ctxlink = ucp->uc_link;
2289
2290 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2291 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2292
2293 /*
2294 * If there was stack information, update whether or not we are
2295 * still running on an alternate signal stack.
2296 */
2297 if ((ucp->uc_flags & _UC_STACK) != 0) {
2298 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2299 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2300 else
2301 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2302 }
2303
2304 return 0;
2305 }
2306
2307 /* ARGSUSED */
2308 int
2309 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2310 {
2311 struct sys_setcontext_args /* {
2312 syscallarg(const ucontext_t *) ucp;
2313 } */ *uap = v;
2314 ucontext_t uc;
2315 int error;
2316
2317 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2318 exit1(l, W_EXITCODE(0, 0));
2319 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2320 (error = setucontext(l, &uc)) != 0)
2321 return (error);
2322
2323 return (EJUSTRETURN);
2324 }
2325
2326 /*
2327 * sigtimedwait(2) system call, used also for implementation
2328 * of sigwaitinfo() and sigwait().
2329 *
2330 * This only handles single LWP in signal wait. libpthread provides
2331 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2332 */
2333 int
2334 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2335 {
2336 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2337 }
2338
2339 int
2340 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2341 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2342 {
2343 struct sys___sigtimedwait_args /* {
2344 syscallarg(const sigset_t *) set;
2345 syscallarg(siginfo_t *) info;
2346 syscallarg(struct timespec *) timeout;
2347 } */ *uap = v;
2348 sigset_t *waitset, twaitset;
2349 struct proc *p = l->l_proc;
2350 int error, signum, s;
2351 int timo = 0;
2352 struct timeval tvstart;
2353 struct timespec ts;
2354 ksiginfo_t *ksi;
2355
2356 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2357
2358 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2359 FREE(waitset, M_TEMP);
2360 return (error);
2361 }
2362
2363 /*
2364 * Silently ignore SA_CANTMASK signals. psignal1() would
2365 * ignore SA_CANTMASK signals in waitset, we do this
2366 * only for the below siglist check.
2367 */
2368 sigminusset(&sigcantmask, waitset);
2369
2370 /*
2371 * First scan siglist and check if there is signal from
2372 * our waitset already pending.
2373 */
2374 twaitset = *waitset;
2375 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2376 if ((signum = firstsig(&twaitset))) {
2377 /* found pending signal */
2378 sigdelset(&p->p_sigctx.ps_siglist, signum);
2379 ksi = ksiginfo_get(p, signum);
2380 if (!ksi) {
2381 /* No queued siginfo, manufacture one */
2382 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2383 KSI_INIT(ksi);
2384 ksi->ksi_info._signo = signum;
2385 ksi->ksi_info._code = SI_USER;
2386 }
2387
2388 goto sig;
2389 }
2390
2391 /*
2392 * Calculate timeout, if it was specified.
2393 */
2394 if (SCARG(uap, timeout)) {
2395 uint64_t ms;
2396
2397 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2398 return (error);
2399
2400 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2401 timo = mstohz(ms);
2402 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2403 timo = 1;
2404 if (timo <= 0)
2405 return (EAGAIN);
2406
2407 /*
2408 * Remember current mono_time, it would be used in
2409 * ECANCELED/ERESTART case.
2410 */
2411 s = splclock();
2412 tvstart = mono_time;
2413 splx(s);
2414 }
2415
2416 /*
2417 * Setup ps_sigwait list. Pass pointer to malloced memory
2418 * here; it's not possible to pass pointer to a structure
2419 * on current process's stack, the current process might
2420 * be swapped out at the time the signal would get delivered.
2421 */
2422 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2423 p->p_sigctx.ps_sigwaited = ksi;
2424 p->p_sigctx.ps_sigwait = waitset;
2425
2426 /*
2427 * Wait for signal to arrive. We can either be woken up or
2428 * time out.
2429 */
2430 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2431
2432 /*
2433 * Need to find out if we woke as a result of lwp_wakeup()
2434 * or a signal outside our wait set.
2435 */
2436 if (error == EINTR && p->p_sigctx.ps_sigwaited
2437 && !firstsig(&p->p_sigctx.ps_siglist)) {
2438 /* wakeup via _lwp_wakeup() */
2439 error = ECANCELED;
2440 } else if (!error && p->p_sigctx.ps_sigwaited) {
2441 /* spurious wakeup - arrange for syscall restart */
2442 error = ERESTART;
2443 goto fail;
2444 }
2445
2446 /*
2447 * On error, clear sigwait indication. psignal1() clears it
2448 * in !error case.
2449 */
2450 if (error) {
2451 p->p_sigctx.ps_sigwaited = NULL;
2452
2453 /*
2454 * If the sleep was interrupted (either by signal or wakeup),
2455 * update the timeout and copyout new value back.
2456 * It would be used when the syscall would be restarted
2457 * or called again.
2458 */
2459 if (timo && (error == ERESTART || error == ECANCELED)) {
2460 struct timeval tvnow, tvtimo;
2461 int err;
2462
2463 s = splclock();
2464 tvnow = mono_time;
2465 splx(s);
2466
2467 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2468
2469 /* compute how much time has passed since start */
2470 timersub(&tvnow, &tvstart, &tvnow);
2471 /* substract passed time from timeout */
2472 timersub(&tvtimo, &tvnow, &tvtimo);
2473
2474 if (tvtimo.tv_sec < 0) {
2475 error = EAGAIN;
2476 goto fail;
2477 }
2478
2479 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2480
2481 /* copy updated timeout to userland */
2482 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2483 sizeof(ts)))) {
2484 error = err;
2485 goto fail;
2486 }
2487 }
2488
2489 goto fail;
2490 }
2491
2492 /*
2493 * If a signal from the wait set arrived, copy it to userland.
2494 * Copy only the used part of siginfo, the padding part is
2495 * left unchanged (userland is not supposed to touch it anyway).
2496 */
2497 sig:
2498 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2499
2500 fail:
2501 FREE(waitset, M_TEMP);
2502 pool_put(&ksiginfo_pool, ksi);
2503 p->p_sigctx.ps_sigwait = NULL;
2504
2505 return (error);
2506 }
2507
2508 /*
2509 * Returns true if signal is ignored or masked for passed process.
2510 */
2511 int
2512 sigismasked(struct proc *p, int sig)
2513 {
2514
2515 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2516 sigismember(&p->p_sigctx.ps_sigmask, sig));
2517 }
2518
2519 static int
2520 filt_sigattach(struct knote *kn)
2521 {
2522 struct proc *p = curproc;
2523
2524 kn->kn_ptr.p_proc = p;
2525 kn->kn_flags |= EV_CLEAR; /* automatically set */
2526
2527 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2528
2529 return (0);
2530 }
2531
2532 static void
2533 filt_sigdetach(struct knote *kn)
2534 {
2535 struct proc *p = kn->kn_ptr.p_proc;
2536
2537 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2538 }
2539
2540 /*
2541 * signal knotes are shared with proc knotes, so we apply a mask to
2542 * the hint in order to differentiate them from process hints. This
2543 * could be avoided by using a signal-specific knote list, but probably
2544 * isn't worth the trouble.
2545 */
2546 static int
2547 filt_signal(struct knote *kn, long hint)
2548 {
2549
2550 if (hint & NOTE_SIGNAL) {
2551 hint &= ~NOTE_SIGNAL;
2552
2553 if (kn->kn_id == hint)
2554 kn->kn_data++;
2555 }
2556 return (kn->kn_data != 0);
2557 }
2558
2559 const struct filterops sig_filtops = {
2560 0, filt_sigattach, filt_sigdetach, filt_signal
2561 };
2562