kern_sig.c revision 1.214 1 /* $NetBSD: kern_sig.c,v 1.214 2006/02/02 17:48:51 elad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.214 2006/02/02 17:48:51 elad Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_compat_sunos.h"
44 #include "opt_compat_netbsd.h"
45 #include "opt_compat_netbsd32.h"
46
47 #define SIGPROP /* include signal properties table */
48 #include <sys/param.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/timeb.h>
56 #include <sys/times.h>
57 #include <sys/buf.h>
58 #include <sys/acct.h>
59 #include <sys/file.h>
60 #include <sys/kernel.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/core.h>
66 #include <sys/filedesc.h>
67 #include <sys/malloc.h>
68 #include <sys/pool.h>
69 #include <sys/ucontext.h>
70 #include <sys/sa.h>
71 #include <sys/savar.h>
72 #include <sys/exec.h>
73 #include <sys/sysctl.h>
74
75 #include <sys/mount.h>
76 #include <sys/syscallargs.h>
77
78 #include <machine/cpu.h>
79
80 #include <sys/user.h> /* for coredump */
81
82 #include <uvm/uvm.h>
83 #include <uvm/uvm_extern.h>
84
85 static void child_psignal(struct proc *, int);
86 static int build_corename(struct proc *, char *, const char *, size_t);
87 static void ksiginfo_exithook(struct proc *, void *);
88 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
89 static ksiginfo_t *ksiginfo_get(struct proc *, int);
90 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
91
92 sigset_t contsigmask, stopsigmask, sigcantmask;
93
94 struct pool sigacts_pool; /* memory pool for sigacts structures */
95
96 /*
97 * struct sigacts memory pool allocator.
98 */
99
100 static void *
101 sigacts_poolpage_alloc(struct pool *pp, int flags)
102 {
103
104 return (void *)uvm_km_alloc(kernel_map,
105 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
106 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
107 | UVM_KMF_WIRED);
108 }
109
110 static void
111 sigacts_poolpage_free(struct pool *pp, void *v)
112 {
113 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
114 }
115
116 static struct pool_allocator sigactspool_allocator = {
117 sigacts_poolpage_alloc, sigacts_poolpage_free,
118 };
119
120 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
121 &pool_allocator_nointr);
122 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
123
124 /*
125 * Can process p, with pcred pc, send the signal signum to process q?
126 */
127 #define CANSIGNAL(p, pc, q, signum) \
128 ((pc)->pc_ucred->cr_uid == 0 || \
129 (pc)->p_ruid == (q)->p_cred->p_ruid || \
130 (pc)->pc_ucred->cr_uid == (q)->p_cred->p_ruid || \
131 (pc)->p_ruid == (q)->p_ucred->cr_uid || \
132 (pc)->pc_ucred->cr_uid == (q)->p_ucred->cr_uid || \
133 ((signum) == SIGCONT && (q)->p_session == (p)->p_session))
134
135 /*
136 * Remove and return the first ksiginfo element that matches our requested
137 * signal, or return NULL if one not found.
138 */
139 static ksiginfo_t *
140 ksiginfo_get(struct proc *p, int signo)
141 {
142 ksiginfo_t *ksi;
143 int s;
144
145 s = splsoftclock();
146 simple_lock(&p->p_sigctx.ps_silock);
147 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
148 if (ksi->ksi_signo == signo) {
149 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
150 goto out;
151 }
152 }
153 ksi = NULL;
154 out:
155 simple_unlock(&p->p_sigctx.ps_silock);
156 splx(s);
157 return ksi;
158 }
159
160 /*
161 * Append a new ksiginfo element to the list of pending ksiginfo's, if
162 * we need to (SA_SIGINFO was requested). We replace non RT signals if
163 * they already existed in the queue and we add new entries for RT signals,
164 * or for non RT signals with non-existing entries.
165 */
166 static void
167 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
168 {
169 ksiginfo_t *kp;
170 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
171 int s;
172
173 if ((sa->sa_flags & SA_SIGINFO) == 0)
174 return;
175 /*
176 * If there's no info, don't save it.
177 */
178 if (KSI_EMPTY_P(ksi))
179 return;
180
181 s = splsoftclock();
182 simple_lock(&p->p_sigctx.ps_silock);
183 #ifdef notyet /* XXX: QUEUING */
184 if (ksi->ksi_signo < SIGRTMIN)
185 #endif
186 {
187 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
188 if (kp->ksi_signo == ksi->ksi_signo) {
189 KSI_COPY(ksi, kp);
190 goto out;
191 }
192 }
193 }
194 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
195 if (kp == NULL) {
196 #ifdef DIAGNOSTIC
197 printf("Out of memory allocating siginfo for pid %d\n",
198 p->p_pid);
199 #endif
200 goto out;
201 }
202 *kp = *ksi;
203 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
204 out:
205 simple_unlock(&p->p_sigctx.ps_silock);
206 splx(s);
207 }
208
209 /*
210 * free all pending ksiginfo on exit
211 */
212 static void
213 ksiginfo_exithook(struct proc *p, void *v)
214 {
215 int s;
216
217 s = splsoftclock();
218 simple_lock(&p->p_sigctx.ps_silock);
219 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
220 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
221 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
222 pool_put(&ksiginfo_pool, ksi);
223 }
224 simple_unlock(&p->p_sigctx.ps_silock);
225 splx(s);
226 }
227
228 /*
229 * Initialize signal-related data structures.
230 */
231 void
232 signal_init(void)
233 {
234
235 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
236
237 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
238 sizeof(struct sigacts) > PAGE_SIZE ?
239 &sigactspool_allocator : &pool_allocator_nointr);
240
241 exithook_establish(ksiginfo_exithook, NULL);
242 exechook_establish(ksiginfo_exithook, NULL);
243 }
244
245 /*
246 * Create an initial sigctx structure, using the same signal state
247 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
248 * copy it from parent.
249 */
250 void
251 sigactsinit(struct proc *np, struct proc *pp, int share)
252 {
253 struct sigacts *ps;
254
255 if (share) {
256 np->p_sigacts = pp->p_sigacts;
257 pp->p_sigacts->sa_refcnt++;
258 } else {
259 ps = pool_get(&sigacts_pool, PR_WAITOK);
260 if (pp)
261 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
262 else
263 memset(ps, '\0', sizeof(struct sigacts));
264 ps->sa_refcnt = 1;
265 np->p_sigacts = ps;
266 }
267 }
268
269 /*
270 * Make this process not share its sigctx, maintaining all
271 * signal state.
272 */
273 void
274 sigactsunshare(struct proc *p)
275 {
276 struct sigacts *oldps;
277
278 if (p->p_sigacts->sa_refcnt == 1)
279 return;
280
281 oldps = p->p_sigacts;
282 sigactsinit(p, NULL, 0);
283
284 if (--oldps->sa_refcnt == 0)
285 pool_put(&sigacts_pool, oldps);
286 }
287
288 /*
289 * Release a sigctx structure.
290 */
291 void
292 sigactsfree(struct sigacts *ps)
293 {
294
295 if (--ps->sa_refcnt > 0)
296 return;
297
298 pool_put(&sigacts_pool, ps);
299 }
300
301 int
302 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
303 struct sigaction *osa, const void *tramp, int vers)
304 {
305 struct sigacts *ps;
306 int prop;
307
308 ps = p->p_sigacts;
309 if (signum <= 0 || signum >= NSIG)
310 return (EINVAL);
311
312 /*
313 * Trampoline ABI version 0 is reserved for the legacy
314 * kernel-provided on-stack trampoline. Conversely, if we are
315 * using a non-0 ABI version, we must have a trampoline. Only
316 * validate the vers if a new sigaction was supplied. Emulations
317 * use legacy kernel trampolines with version 0, alternatively
318 * check for that too.
319 */
320 if ((vers != 0 && tramp == NULL) ||
321 #ifdef SIGTRAMP_VALID
322 (nsa != NULL &&
323 ((vers == 0) ?
324 (p->p_emul->e_sigcode == NULL) :
325 !SIGTRAMP_VALID(vers))) ||
326 #endif
327 (vers == 0 && tramp != NULL))
328 return (EINVAL);
329
330 if (osa)
331 *osa = SIGACTION_PS(ps, signum);
332
333 if (nsa) {
334 if (nsa->sa_flags & ~SA_ALLBITS)
335 return (EINVAL);
336
337 prop = sigprop[signum];
338 if (prop & SA_CANTMASK)
339 return (EINVAL);
340
341 (void) splsched(); /* XXXSMP */
342 SIGACTION_PS(ps, signum) = *nsa;
343 ps->sa_sigdesc[signum].sd_tramp = tramp;
344 ps->sa_sigdesc[signum].sd_vers = vers;
345 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
346 if ((prop & SA_NORESET) != 0)
347 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
348 if (signum == SIGCHLD) {
349 if (nsa->sa_flags & SA_NOCLDSTOP)
350 p->p_flag |= P_NOCLDSTOP;
351 else
352 p->p_flag &= ~P_NOCLDSTOP;
353 if (nsa->sa_flags & SA_NOCLDWAIT) {
354 /*
355 * Paranoia: since SA_NOCLDWAIT is implemented
356 * by reparenting the dying child to PID 1 (and
357 * trust it to reap the zombie), PID 1 itself
358 * is forbidden to set SA_NOCLDWAIT.
359 */
360 if (p->p_pid == 1)
361 p->p_flag &= ~P_NOCLDWAIT;
362 else
363 p->p_flag |= P_NOCLDWAIT;
364 } else
365 p->p_flag &= ~P_NOCLDWAIT;
366
367 if (nsa->sa_handler == SIG_IGN) {
368 /*
369 * Paranoia: same as above.
370 */
371 if (p->p_pid == 1)
372 p->p_flag &= ~P_CLDSIGIGN;
373 else
374 p->p_flag |= P_CLDSIGIGN;
375 } else
376 p->p_flag &= ~P_CLDSIGIGN;
377
378 }
379 if ((nsa->sa_flags & SA_NODEFER) == 0)
380 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
381 else
382 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
383 /*
384 * Set bit in p_sigctx.ps_sigignore for signals that are set to
385 * SIG_IGN, and for signals set to SIG_DFL where the default is
386 * to ignore. However, don't put SIGCONT in
387 * p_sigctx.ps_sigignore, as we have to restart the process.
388 */
389 if (nsa->sa_handler == SIG_IGN ||
390 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
391 /* never to be seen again */
392 sigdelset(&p->p_sigctx.ps_siglist, signum);
393 if (signum != SIGCONT) {
394 /* easier in psignal */
395 sigaddset(&p->p_sigctx.ps_sigignore, signum);
396 }
397 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
398 } else {
399 sigdelset(&p->p_sigctx.ps_sigignore, signum);
400 if (nsa->sa_handler == SIG_DFL)
401 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
402 else
403 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
404 }
405 (void) spl0();
406 }
407
408 return (0);
409 }
410
411 #ifdef COMPAT_16
412 /* ARGSUSED */
413 int
414 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
415 {
416 struct compat_16_sys___sigaction14_args /* {
417 syscallarg(int) signum;
418 syscallarg(const struct sigaction *) nsa;
419 syscallarg(struct sigaction *) osa;
420 } */ *uap = v;
421 struct proc *p;
422 struct sigaction nsa, osa;
423 int error;
424
425 if (SCARG(uap, nsa)) {
426 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
427 if (error)
428 return (error);
429 }
430 p = l->l_proc;
431 error = sigaction1(p, SCARG(uap, signum),
432 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
433 NULL, 0);
434 if (error)
435 return (error);
436 if (SCARG(uap, osa)) {
437 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
438 if (error)
439 return (error);
440 }
441 return (0);
442 }
443 #endif
444
445 /* ARGSUSED */
446 int
447 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
448 {
449 struct sys___sigaction_sigtramp_args /* {
450 syscallarg(int) signum;
451 syscallarg(const struct sigaction *) nsa;
452 syscallarg(struct sigaction *) osa;
453 syscallarg(void *) tramp;
454 syscallarg(int) vers;
455 } */ *uap = v;
456 struct proc *p = l->l_proc;
457 struct sigaction nsa, osa;
458 int error;
459
460 if (SCARG(uap, nsa)) {
461 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
462 if (error)
463 return (error);
464 }
465 error = sigaction1(p, SCARG(uap, signum),
466 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
467 SCARG(uap, tramp), SCARG(uap, vers));
468 if (error)
469 return (error);
470 if (SCARG(uap, osa)) {
471 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
472 if (error)
473 return (error);
474 }
475 return (0);
476 }
477
478 /*
479 * Initialize signal state for process 0;
480 * set to ignore signals that are ignored by default and disable the signal
481 * stack.
482 */
483 void
484 siginit(struct proc *p)
485 {
486 struct sigacts *ps;
487 int signum, prop;
488
489 ps = p->p_sigacts;
490 sigemptyset(&contsigmask);
491 sigemptyset(&stopsigmask);
492 sigemptyset(&sigcantmask);
493 for (signum = 1; signum < NSIG; signum++) {
494 prop = sigprop[signum];
495 if (prop & SA_CONT)
496 sigaddset(&contsigmask, signum);
497 if (prop & SA_STOP)
498 sigaddset(&stopsigmask, signum);
499 if (prop & SA_CANTMASK)
500 sigaddset(&sigcantmask, signum);
501 if (prop & SA_IGNORE && signum != SIGCONT)
502 sigaddset(&p->p_sigctx.ps_sigignore, signum);
503 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
504 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
505 }
506 sigemptyset(&p->p_sigctx.ps_sigcatch);
507 p->p_sigctx.ps_sigwaited = NULL;
508 p->p_flag &= ~P_NOCLDSTOP;
509
510 /*
511 * Reset stack state to the user stack.
512 */
513 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
514 p->p_sigctx.ps_sigstk.ss_size = 0;
515 p->p_sigctx.ps_sigstk.ss_sp = 0;
516
517 /* One reference. */
518 ps->sa_refcnt = 1;
519 }
520
521 /*
522 * Reset signals for an exec of the specified process.
523 */
524 void
525 execsigs(struct proc *p)
526 {
527 struct sigacts *ps;
528 int signum, prop;
529
530 sigactsunshare(p);
531
532 ps = p->p_sigacts;
533
534 /*
535 * Reset caught signals. Held signals remain held
536 * through p_sigctx.ps_sigmask (unless they were caught,
537 * and are now ignored by default).
538 */
539 for (signum = 1; signum < NSIG; signum++) {
540 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
541 prop = sigprop[signum];
542 if (prop & SA_IGNORE) {
543 if ((prop & SA_CONT) == 0)
544 sigaddset(&p->p_sigctx.ps_sigignore,
545 signum);
546 sigdelset(&p->p_sigctx.ps_siglist, signum);
547 }
548 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
549 }
550 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
551 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
552 }
553 sigemptyset(&p->p_sigctx.ps_sigcatch);
554 p->p_sigctx.ps_sigwaited = NULL;
555
556 /*
557 * Reset no zombies if child dies flag as Solaris does.
558 */
559 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
560 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
561 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
562
563 /*
564 * Reset stack state to the user stack.
565 */
566 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
567 p->p_sigctx.ps_sigstk.ss_size = 0;
568 p->p_sigctx.ps_sigstk.ss_sp = 0;
569 }
570
571 int
572 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
573 {
574
575 if (oss)
576 *oss = p->p_sigctx.ps_sigmask;
577
578 if (nss) {
579 (void)splsched(); /* XXXSMP */
580 switch (how) {
581 case SIG_BLOCK:
582 sigplusset(nss, &p->p_sigctx.ps_sigmask);
583 break;
584 case SIG_UNBLOCK:
585 sigminusset(nss, &p->p_sigctx.ps_sigmask);
586 CHECKSIGS(p);
587 break;
588 case SIG_SETMASK:
589 p->p_sigctx.ps_sigmask = *nss;
590 CHECKSIGS(p);
591 break;
592 default:
593 (void)spl0(); /* XXXSMP */
594 return (EINVAL);
595 }
596 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
597 (void)spl0(); /* XXXSMP */
598 }
599
600 return (0);
601 }
602
603 /*
604 * Manipulate signal mask.
605 * Note that we receive new mask, not pointer,
606 * and return old mask as return value;
607 * the library stub does the rest.
608 */
609 int
610 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
611 {
612 struct sys___sigprocmask14_args /* {
613 syscallarg(int) how;
614 syscallarg(const sigset_t *) set;
615 syscallarg(sigset_t *) oset;
616 } */ *uap = v;
617 struct proc *p;
618 sigset_t nss, oss;
619 int error;
620
621 if (SCARG(uap, set)) {
622 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
623 if (error)
624 return (error);
625 }
626 p = l->l_proc;
627 error = sigprocmask1(p, SCARG(uap, how),
628 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
629 if (error)
630 return (error);
631 if (SCARG(uap, oset)) {
632 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
633 if (error)
634 return (error);
635 }
636 return (0);
637 }
638
639 void
640 sigpending1(struct proc *p, sigset_t *ss)
641 {
642
643 *ss = p->p_sigctx.ps_siglist;
644 sigminusset(&p->p_sigctx.ps_sigmask, ss);
645 }
646
647 /* ARGSUSED */
648 int
649 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
650 {
651 struct sys___sigpending14_args /* {
652 syscallarg(sigset_t *) set;
653 } */ *uap = v;
654 struct proc *p;
655 sigset_t ss;
656
657 p = l->l_proc;
658 sigpending1(p, &ss);
659 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
660 }
661
662 int
663 sigsuspend1(struct proc *p, const sigset_t *ss)
664 {
665 struct sigacts *ps;
666
667 ps = p->p_sigacts;
668 if (ss) {
669 /*
670 * When returning from sigpause, we want
671 * the old mask to be restored after the
672 * signal handler has finished. Thus, we
673 * save it here and mark the sigctx structure
674 * to indicate this.
675 */
676 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
677 p->p_sigctx.ps_flags |= SAS_OLDMASK;
678 (void) splsched(); /* XXXSMP */
679 p->p_sigctx.ps_sigmask = *ss;
680 CHECKSIGS(p);
681 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
682 (void) spl0(); /* XXXSMP */
683 }
684
685 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
686 /* void */;
687
688 /* always return EINTR rather than ERESTART... */
689 return (EINTR);
690 }
691
692 /*
693 * Suspend process until signal, providing mask to be set
694 * in the meantime. Note nonstandard calling convention:
695 * libc stub passes mask, not pointer, to save a copyin.
696 */
697 /* ARGSUSED */
698 int
699 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
700 {
701 struct sys___sigsuspend14_args /* {
702 syscallarg(const sigset_t *) set;
703 } */ *uap = v;
704 struct proc *p;
705 sigset_t ss;
706 int error;
707
708 if (SCARG(uap, set)) {
709 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
710 if (error)
711 return (error);
712 }
713
714 p = l->l_proc;
715 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
716 }
717
718 int
719 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
720 struct sigaltstack *oss)
721 {
722
723 if (oss)
724 *oss = p->p_sigctx.ps_sigstk;
725
726 if (nss) {
727 if (nss->ss_flags & ~SS_ALLBITS)
728 return (EINVAL);
729
730 if (nss->ss_flags & SS_DISABLE) {
731 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
732 return (EINVAL);
733 } else {
734 if (nss->ss_size < MINSIGSTKSZ)
735 return (ENOMEM);
736 }
737 p->p_sigctx.ps_sigstk = *nss;
738 }
739
740 return (0);
741 }
742
743 /* ARGSUSED */
744 int
745 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
746 {
747 struct sys___sigaltstack14_args /* {
748 syscallarg(const struct sigaltstack *) nss;
749 syscallarg(struct sigaltstack *) oss;
750 } */ *uap = v;
751 struct proc *p;
752 struct sigaltstack nss, oss;
753 int error;
754
755 if (SCARG(uap, nss)) {
756 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
757 if (error)
758 return (error);
759 }
760 p = l->l_proc;
761 error = sigaltstack1(p,
762 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
763 if (error)
764 return (error);
765 if (SCARG(uap, oss)) {
766 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
767 if (error)
768 return (error);
769 }
770 return (0);
771 }
772
773 /* ARGSUSED */
774 int
775 sys_kill(struct lwp *l, void *v, register_t *retval)
776 {
777 struct sys_kill_args /* {
778 syscallarg(int) pid;
779 syscallarg(int) signum;
780 } */ *uap = v;
781 struct proc *cp, *p;
782 struct pcred *pc;
783 ksiginfo_t ksi;
784
785 cp = l->l_proc;
786 pc = cp->p_cred;
787 if ((u_int)SCARG(uap, signum) >= NSIG)
788 return (EINVAL);
789 KSI_INIT(&ksi);
790 ksi.ksi_signo = SCARG(uap, signum);
791 ksi.ksi_code = SI_USER;
792 ksi.ksi_pid = cp->p_pid;
793 ksi.ksi_uid = cp->p_ucred->cr_uid;
794 if (SCARG(uap, pid) > 0) {
795 /* kill single process */
796 if ((p = pfind(SCARG(uap, pid))) == NULL)
797 return (ESRCH);
798 if (!CANSIGNAL(cp, pc, p, SCARG(uap, signum)))
799 return (EPERM);
800 if (SCARG(uap, signum))
801 kpsignal2(p, &ksi, 1);
802 return (0);
803 }
804 switch (SCARG(uap, pid)) {
805 case -1: /* broadcast signal */
806 return (killpg1(cp, &ksi, 0, 1));
807 case 0: /* signal own process group */
808 return (killpg1(cp, &ksi, 0, 0));
809 default: /* negative explicit process group */
810 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
811 }
812 /* NOTREACHED */
813 }
814
815 /*
816 * Common code for kill process group/broadcast kill.
817 * cp is calling process.
818 */
819 int
820 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
821 {
822 struct proc *p;
823 struct pcred *pc;
824 struct pgrp *pgrp;
825 int nfound;
826 int signum = ksi->ksi_signo;
827
828 pc = cp->p_cred;
829 nfound = 0;
830 if (all) {
831 /*
832 * broadcast
833 */
834 proclist_lock_read();
835 PROCLIST_FOREACH(p, &allproc) {
836 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
837 p == cp || !CANSIGNAL(cp, pc, p, signum))
838 continue;
839 nfound++;
840 if (signum)
841 kpsignal2(p, ksi, 1);
842 }
843 proclist_unlock_read();
844 } else {
845 if (pgid == 0)
846 /*
847 * zero pgid means send to my process group.
848 */
849 pgrp = cp->p_pgrp;
850 else {
851 pgrp = pgfind(pgid);
852 if (pgrp == NULL)
853 return (ESRCH);
854 }
855 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
856 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
857 !CANSIGNAL(cp, pc, p, signum))
858 continue;
859 nfound++;
860 if (signum && P_ZOMBIE(p) == 0)
861 kpsignal2(p, ksi, 1);
862 }
863 }
864 return (nfound ? 0 : ESRCH);
865 }
866
867 /*
868 * Send a signal to a process group.
869 */
870 void
871 gsignal(int pgid, int signum)
872 {
873 ksiginfo_t ksi;
874 KSI_INIT_EMPTY(&ksi);
875 ksi.ksi_signo = signum;
876 kgsignal(pgid, &ksi, NULL);
877 }
878
879 void
880 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
881 {
882 struct pgrp *pgrp;
883
884 if (pgid && (pgrp = pgfind(pgid)))
885 kpgsignal(pgrp, ksi, data, 0);
886 }
887
888 /*
889 * Send a signal to a process group. If checktty is 1,
890 * limit to members which have a controlling terminal.
891 */
892 void
893 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
894 {
895 ksiginfo_t ksi;
896 KSI_INIT_EMPTY(&ksi);
897 ksi.ksi_signo = sig;
898 kpgsignal(pgrp, &ksi, NULL, checkctty);
899 }
900
901 void
902 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
903 {
904 struct proc *p;
905
906 if (pgrp)
907 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
908 if (checkctty == 0 || p->p_flag & P_CONTROLT)
909 kpsignal(p, ksi, data);
910 }
911
912 /*
913 * Send a signal caused by a trap to the current process.
914 * If it will be caught immediately, deliver it with correct code.
915 * Otherwise, post it normally.
916 */
917 void
918 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
919 {
920 struct proc *p;
921 struct sigacts *ps;
922 int signum = ksi->ksi_signo;
923
924 KASSERT(KSI_TRAP_P(ksi));
925
926 p = l->l_proc;
927 ps = p->p_sigacts;
928 if ((p->p_flag & P_TRACED) == 0 &&
929 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
930 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
931 p->p_stats->p_ru.ru_nsignals++;
932 #ifdef KTRACE
933 if (KTRPOINT(p, KTR_PSIG))
934 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
935 &p->p_sigctx.ps_sigmask, ksi);
936 #endif
937 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
938 (void) splsched(); /* XXXSMP */
939 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
940 &p->p_sigctx.ps_sigmask);
941 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
942 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
943 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
944 sigaddset(&p->p_sigctx.ps_sigignore, signum);
945 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
946 }
947 (void) spl0(); /* XXXSMP */
948 } else {
949 p->p_sigctx.ps_lwp = l->l_lid;
950 /* XXX for core dump/debugger */
951 p->p_sigctx.ps_signo = ksi->ksi_signo;
952 p->p_sigctx.ps_code = ksi->ksi_trap;
953 kpsignal2(p, ksi, 1);
954 }
955 }
956
957 /*
958 * Fill in signal information and signal the parent for a child status change.
959 */
960 static void
961 child_psignal(struct proc *p, int dolock)
962 {
963 ksiginfo_t ksi;
964
965 KSI_INIT(&ksi);
966 ksi.ksi_signo = SIGCHLD;
967 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
968 ksi.ksi_pid = p->p_pid;
969 ksi.ksi_uid = p->p_ucred->cr_uid;
970 ksi.ksi_status = p->p_xstat;
971 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
972 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
973 kpsignal2(p->p_pptr, &ksi, dolock);
974 }
975
976 /*
977 * Send the signal to the process. If the signal has an action, the action
978 * is usually performed by the target process rather than the caller; we add
979 * the signal to the set of pending signals for the process.
980 *
981 * Exceptions:
982 * o When a stop signal is sent to a sleeping process that takes the
983 * default action, the process is stopped without awakening it.
984 * o SIGCONT restarts stopped processes (or puts them back to sleep)
985 * regardless of the signal action (eg, blocked or ignored).
986 *
987 * Other ignored signals are discarded immediately.
988 *
989 * XXXSMP: Invoked as psignal() or sched_psignal().
990 */
991 void
992 psignal1(struct proc *p, int signum, int dolock)
993 {
994 ksiginfo_t ksi;
995
996 KSI_INIT_EMPTY(&ksi);
997 ksi.ksi_signo = signum;
998 kpsignal2(p, &ksi, dolock);
999 }
1000
1001 void
1002 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1003 {
1004
1005 if ((p->p_flag & P_WEXIT) == 0 && data) {
1006 size_t fd;
1007 struct filedesc *fdp = p->p_fd;
1008
1009 ksi->ksi_fd = -1;
1010 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1011 struct file *fp = fdp->fd_ofiles[fd];
1012 /* XXX: lock? */
1013 if (fp && fp->f_data == data) {
1014 ksi->ksi_fd = fd;
1015 break;
1016 }
1017 }
1018 }
1019 kpsignal2(p, ksi, dolock);
1020 }
1021
1022 static void
1023 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1024 {
1025 struct lwp *l, *suspended = NULL;
1026 struct sadata_vp *vp;
1027 int s = 0, prop, allsusp;
1028 sig_t action;
1029 int signum = ksi->ksi_signo;
1030
1031 #ifdef DIAGNOSTIC
1032 if (signum <= 0 || signum >= NSIG)
1033 panic("psignal signal number %d", signum);
1034
1035 /* XXXSMP: works, but icky */
1036 if (dolock)
1037 SCHED_ASSERT_UNLOCKED();
1038 else
1039 SCHED_ASSERT_LOCKED();
1040 #endif
1041
1042 /*
1043 * Notify any interested parties in the signal.
1044 */
1045 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1046
1047 prop = sigprop[signum];
1048
1049 /*
1050 * If proc is traced, always give parent a chance.
1051 */
1052 if (p->p_flag & P_TRACED) {
1053 action = SIG_DFL;
1054
1055 /*
1056 * If the process is being traced and the signal is being
1057 * caught, make sure to save any ksiginfo.
1058 */
1059 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1060 ksiginfo_put(p, ksi);
1061 } else {
1062 /*
1063 * If the signal was the result of a trap, reset it
1064 * to default action if it's currently masked, so that it would
1065 * coredump immediatelly instead of spinning repeatedly
1066 * taking the signal.
1067 */
1068 if (KSI_TRAP_P(ksi)
1069 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1070 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1071 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1072 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1073 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1074 SIGACTION(p, signum).sa_handler = SIG_DFL;
1075 }
1076
1077 /*
1078 * If the signal is being ignored,
1079 * then we forget about it immediately.
1080 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1081 * and if it is set to SIG_IGN,
1082 * action will be SIG_DFL here.)
1083 */
1084 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1085 return;
1086 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1087 action = SIG_HOLD;
1088 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1089 action = SIG_CATCH;
1090 else {
1091 action = SIG_DFL;
1092
1093 if (prop & SA_KILL && p->p_nice > NZERO)
1094 p->p_nice = NZERO;
1095
1096 /*
1097 * If sending a tty stop signal to a member of an
1098 * orphaned process group, discard the signal here if
1099 * the action is default; don't stop the process below
1100 * if sleeping, and don't clear any pending SIGCONT.
1101 */
1102 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1103 return;
1104 }
1105 }
1106
1107 if (prop & SA_CONT)
1108 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1109
1110 if (prop & SA_STOP)
1111 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1112
1113 /*
1114 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1115 * please!), check if anything waits on it. If yes, save the
1116 * info into provided ps_sigwaited, and wake-up the waiter.
1117 * The signal won't be processed further here.
1118 */
1119 if ((prop & SA_CANTMASK) == 0
1120 && p->p_sigctx.ps_sigwaited
1121 && sigismember(p->p_sigctx.ps_sigwait, signum)
1122 && p->p_stat != SSTOP) {
1123 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1124 p->p_sigctx.ps_sigwaited = NULL;
1125 if (dolock)
1126 wakeup_one(&p->p_sigctx.ps_sigwait);
1127 else
1128 sched_wakeup(&p->p_sigctx.ps_sigwait);
1129 return;
1130 }
1131
1132 sigaddset(&p->p_sigctx.ps_siglist, signum);
1133
1134 /* CHECKSIGS() is "inlined" here. */
1135 p->p_sigctx.ps_sigcheck = 1;
1136
1137 /*
1138 * Defer further processing for signals which are held,
1139 * except that stopped processes must be continued by SIGCONT.
1140 */
1141 if (action == SIG_HOLD &&
1142 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1143 ksiginfo_put(p, ksi);
1144 return;
1145 }
1146 /* XXXSMP: works, but icky */
1147 if (dolock)
1148 SCHED_LOCK(s);
1149
1150 if (p->p_flag & P_SA) {
1151 allsusp = 0;
1152 l = NULL;
1153 if (p->p_stat == SACTIVE) {
1154 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1155 l = vp->savp_lwp;
1156 KDASSERT(l != NULL);
1157 if (l->l_flag & L_SA_IDLE) {
1158 /* wakeup idle LWP */
1159 goto found;
1160 /*NOTREACHED*/
1161 } else if (l->l_flag & L_SA_YIELD) {
1162 /* idle LWP is already waking up */
1163 goto out;
1164 /*NOTREACHED*/
1165 }
1166 }
1167 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1168 l = vp->savp_lwp;
1169 if (l->l_stat == LSRUN ||
1170 l->l_stat == LSONPROC) {
1171 signotify(p);
1172 goto out;
1173 /*NOTREACHED*/
1174 }
1175 if (l->l_stat == LSSLEEP &&
1176 l->l_flag & L_SINTR) {
1177 /* ok to signal vp lwp */
1178 break;
1179 } else
1180 l = NULL;
1181 }
1182 } else if (p->p_stat == SSTOP) {
1183 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1184 l = vp->savp_lwp;
1185 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1186 break;
1187 l = NULL;
1188 }
1189 }
1190 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1191 /*
1192 * At least one LWP is running or on a run queue.
1193 * The signal will be noticed when one of them returns
1194 * to userspace.
1195 */
1196 signotify(p);
1197 /*
1198 * The signal will be noticed very soon.
1199 */
1200 goto out;
1201 /*NOTREACHED*/
1202 } else {
1203 /*
1204 * Find out if any of the sleeps are interruptable,
1205 * and if all the live LWPs remaining are suspended.
1206 */
1207 allsusp = 1;
1208 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1209 if (l->l_stat == LSSLEEP &&
1210 l->l_flag & L_SINTR)
1211 break;
1212 if (l->l_stat == LSSUSPENDED)
1213 suspended = l;
1214 else if ((l->l_stat != LSZOMB) &&
1215 (l->l_stat != LSDEAD))
1216 allsusp = 0;
1217 }
1218 }
1219
1220 found:
1221 switch (p->p_stat) {
1222 case SACTIVE:
1223
1224 if (l != NULL && (p->p_flag & P_TRACED))
1225 goto run;
1226
1227 /*
1228 * If SIGCONT is default (or ignored) and process is
1229 * asleep, we are finished; the process should not
1230 * be awakened.
1231 */
1232 if ((prop & SA_CONT) && action == SIG_DFL) {
1233 sigdelset(&p->p_sigctx.ps_siglist, signum);
1234 goto done;
1235 }
1236
1237 /*
1238 * When a sleeping process receives a stop
1239 * signal, process immediately if possible.
1240 */
1241 if ((prop & SA_STOP) && action == SIG_DFL) {
1242 /*
1243 * If a child holding parent blocked,
1244 * stopping could cause deadlock.
1245 */
1246 if (p->p_flag & P_PPWAIT) {
1247 goto out;
1248 }
1249 sigdelset(&p->p_sigctx.ps_siglist, signum);
1250 p->p_xstat = signum;
1251 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1252 /*
1253 * XXXSMP: recursive call; don't lock
1254 * the second time around.
1255 */
1256 child_psignal(p, 0);
1257 }
1258 proc_stop(p, 1); /* XXXSMP: recurse? */
1259 goto done;
1260 }
1261
1262 if (l == NULL) {
1263 /*
1264 * Special case: SIGKILL of a process
1265 * which is entirely composed of
1266 * suspended LWPs should succeed. We
1267 * make this happen by unsuspending one of
1268 * them.
1269 */
1270 if (allsusp && (signum == SIGKILL)) {
1271 lwp_continue(suspended);
1272 }
1273 goto done;
1274 }
1275 /*
1276 * All other (caught or default) signals
1277 * cause the process to run.
1278 */
1279 goto runfast;
1280 /*NOTREACHED*/
1281 case SSTOP:
1282 /* Process is stopped */
1283 /*
1284 * If traced process is already stopped,
1285 * then no further action is necessary.
1286 */
1287 if (p->p_flag & P_TRACED)
1288 goto done;
1289
1290 /*
1291 * Kill signal always sets processes running,
1292 * if possible.
1293 */
1294 if (signum == SIGKILL) {
1295 l = proc_unstop(p);
1296 if (l)
1297 goto runfast;
1298 goto done;
1299 }
1300
1301 if (prop & SA_CONT) {
1302 /*
1303 * If SIGCONT is default (or ignored),
1304 * we continue the process but don't
1305 * leave the signal in ps_siglist, as
1306 * it has no further action. If
1307 * SIGCONT is held, we continue the
1308 * process and leave the signal in
1309 * ps_siglist. If the process catches
1310 * SIGCONT, let it handle the signal
1311 * itself. If it isn't waiting on an
1312 * event, then it goes back to run
1313 * state. Otherwise, process goes
1314 * back to sleep state.
1315 */
1316 if (action == SIG_DFL)
1317 sigdelset(&p->p_sigctx.ps_siglist,
1318 signum);
1319 l = proc_unstop(p);
1320 if (l && (action == SIG_CATCH))
1321 goto runfast;
1322 goto out;
1323 }
1324
1325 if (prop & SA_STOP) {
1326 /*
1327 * Already stopped, don't need to stop again.
1328 * (If we did the shell could get confused.)
1329 */
1330 sigdelset(&p->p_sigctx.ps_siglist, signum);
1331 goto done;
1332 }
1333
1334 /*
1335 * If a lwp is sleeping interruptibly, then
1336 * wake it up; it will run until the kernel
1337 * boundary, where it will stop in issignal(),
1338 * since p->p_stat is still SSTOP. When the
1339 * process is continued, it will be made
1340 * runnable and can look at the signal.
1341 */
1342 if (l)
1343 goto run;
1344 goto out;
1345 case SIDL:
1346 /* Process is being created by fork */
1347 /* XXX: We are not ready to receive signals yet */
1348 goto done;
1349 default:
1350 /* Else what? */
1351 panic("psignal: Invalid process state %d.", p->p_stat);
1352 }
1353 /*NOTREACHED*/
1354
1355 runfast:
1356 if (action == SIG_CATCH) {
1357 ksiginfo_put(p, ksi);
1358 action = SIG_HOLD;
1359 }
1360 /*
1361 * Raise priority to at least PUSER.
1362 */
1363 if (l->l_priority > PUSER)
1364 l->l_priority = PUSER;
1365 run:
1366 if (action == SIG_CATCH) {
1367 ksiginfo_put(p, ksi);
1368 action = SIG_HOLD;
1369 }
1370
1371 setrunnable(l); /* XXXSMP: recurse? */
1372 out:
1373 if (action == SIG_CATCH)
1374 ksiginfo_put(p, ksi);
1375 done:
1376 /* XXXSMP: works, but icky */
1377 if (dolock)
1378 SCHED_UNLOCK(s);
1379 }
1380
1381 siginfo_t *
1382 siginfo_alloc(int flags)
1383 {
1384
1385 return pool_get(&siginfo_pool, flags);
1386 }
1387
1388 void
1389 siginfo_free(void *arg)
1390 {
1391
1392 pool_put(&siginfo_pool, arg);
1393 }
1394
1395 void
1396 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1397 {
1398 struct proc *p = l->l_proc;
1399 struct lwp *le, *li;
1400 siginfo_t *si;
1401 int f;
1402
1403 if (p->p_flag & P_SA) {
1404
1405 /* XXXUPSXXX What if not on sa_vp ? */
1406
1407 f = l->l_flag & L_SA;
1408 l->l_flag &= ~L_SA;
1409 si = siginfo_alloc(PR_WAITOK);
1410 si->_info = ksi->ksi_info;
1411 le = li = NULL;
1412 if (KSI_TRAP_P(ksi))
1413 le = l;
1414 else
1415 li = l;
1416 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1417 sizeof(*si), si, siginfo_free) != 0) {
1418 siginfo_free(si);
1419 if (KSI_TRAP_P(ksi))
1420 /* XXX What do we do here?? */;
1421 }
1422 l->l_flag |= f;
1423 return;
1424 }
1425
1426 (*p->p_emul->e_sendsig)(ksi, mask);
1427 }
1428
1429 static inline int firstsig(const sigset_t *);
1430
1431 static inline int
1432 firstsig(const sigset_t *ss)
1433 {
1434 int sig;
1435
1436 sig = ffs(ss->__bits[0]);
1437 if (sig != 0)
1438 return (sig);
1439 #if NSIG > 33
1440 sig = ffs(ss->__bits[1]);
1441 if (sig != 0)
1442 return (sig + 32);
1443 #endif
1444 #if NSIG > 65
1445 sig = ffs(ss->__bits[2]);
1446 if (sig != 0)
1447 return (sig + 64);
1448 #endif
1449 #if NSIG > 97
1450 sig = ffs(ss->__bits[3]);
1451 if (sig != 0)
1452 return (sig + 96);
1453 #endif
1454 return (0);
1455 }
1456
1457 /*
1458 * If the current process has received a signal (should be caught or cause
1459 * termination, should interrupt current syscall), return the signal number.
1460 * Stop signals with default action are processed immediately, then cleared;
1461 * they aren't returned. This is checked after each entry to the system for
1462 * a syscall or trap (though this can usually be done without calling issignal
1463 * by checking the pending signal masks in the CURSIG macro.) The normal call
1464 * sequence is
1465 *
1466 * while (signum = CURSIG(curlwp))
1467 * postsig(signum);
1468 */
1469 int
1470 issignal(struct lwp *l)
1471 {
1472 struct proc *p = l->l_proc;
1473 int s = 0, signum, prop;
1474 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1475 sigset_t ss;
1476
1477 /* Bail out if we do not own the virtual processor */
1478 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1479 return 0;
1480
1481 if (p->p_stat == SSTOP) {
1482 /*
1483 * The process is stopped/stopping. Stop ourselves now that
1484 * we're on the kernel/userspace boundary.
1485 */
1486 if (dolock)
1487 SCHED_LOCK(s);
1488 l->l_stat = LSSTOP;
1489 p->p_nrlwps--;
1490 if (p->p_flag & P_TRACED)
1491 goto sigtraceswitch;
1492 else
1493 goto sigswitch;
1494 }
1495 for (;;) {
1496 sigpending1(p, &ss);
1497 if (p->p_flag & P_PPWAIT)
1498 sigminusset(&stopsigmask, &ss);
1499 signum = firstsig(&ss);
1500 if (signum == 0) { /* no signal to send */
1501 p->p_sigctx.ps_sigcheck = 0;
1502 if (locked && dolock)
1503 SCHED_LOCK(s);
1504 return (0);
1505 }
1506 /* take the signal! */
1507 sigdelset(&p->p_sigctx.ps_siglist, signum);
1508
1509 /*
1510 * We should see pending but ignored signals
1511 * only if P_TRACED was on when they were posted.
1512 */
1513 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1514 (p->p_flag & P_TRACED) == 0)
1515 continue;
1516
1517 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1518 /*
1519 * If traced, always stop, and stay
1520 * stopped until released by the debugger.
1521 */
1522 p->p_xstat = signum;
1523
1524 /* Emulation-specific handling of signal trace */
1525 if ((p->p_emul->e_tracesig != NULL) &&
1526 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1527 goto childresumed;
1528
1529 if ((p->p_flag & P_FSTRACE) == 0)
1530 child_psignal(p, dolock);
1531 if (dolock)
1532 SCHED_LOCK(s);
1533 proc_stop(p, 1);
1534 sigtraceswitch:
1535 mi_switch(l, NULL);
1536 SCHED_ASSERT_UNLOCKED();
1537 if (dolock)
1538 splx(s);
1539 else
1540 dolock = 1;
1541
1542 childresumed:
1543 /*
1544 * If we are no longer being traced, or the parent
1545 * didn't give us a signal, look for more signals.
1546 */
1547 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1548 continue;
1549
1550 /*
1551 * If the new signal is being masked, look for other
1552 * signals.
1553 */
1554 signum = p->p_xstat;
1555 p->p_xstat = 0;
1556 /*
1557 * `p->p_sigctx.ps_siglist |= mask' is done
1558 * in setrunnable().
1559 */
1560 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1561 continue;
1562 /* take the signal! */
1563 sigdelset(&p->p_sigctx.ps_siglist, signum);
1564 }
1565
1566 prop = sigprop[signum];
1567
1568 /*
1569 * Decide whether the signal should be returned.
1570 * Return the signal's number, or fall through
1571 * to clear it from the pending mask.
1572 */
1573 switch ((long)SIGACTION(p, signum).sa_handler) {
1574
1575 case (long)SIG_DFL:
1576 /*
1577 * Don't take default actions on system processes.
1578 */
1579 if (p->p_pid <= 1) {
1580 #ifdef DIAGNOSTIC
1581 /*
1582 * Are you sure you want to ignore SIGSEGV
1583 * in init? XXX
1584 */
1585 printf("Process (pid %d) got signal %d\n",
1586 p->p_pid, signum);
1587 #endif
1588 break; /* == ignore */
1589 }
1590 /*
1591 * If there is a pending stop signal to process
1592 * with default action, stop here,
1593 * then clear the signal. However,
1594 * if process is member of an orphaned
1595 * process group, ignore tty stop signals.
1596 */
1597 if (prop & SA_STOP) {
1598 if (p->p_flag & P_TRACED ||
1599 (p->p_pgrp->pg_jobc == 0 &&
1600 prop & SA_TTYSTOP))
1601 break; /* == ignore */
1602 p->p_xstat = signum;
1603 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1604 child_psignal(p, dolock);
1605 if (dolock)
1606 SCHED_LOCK(s);
1607 proc_stop(p, 1);
1608 sigswitch:
1609 mi_switch(l, NULL);
1610 SCHED_ASSERT_UNLOCKED();
1611 if (dolock)
1612 splx(s);
1613 else
1614 dolock = 1;
1615 break;
1616 } else if (prop & SA_IGNORE) {
1617 /*
1618 * Except for SIGCONT, shouldn't get here.
1619 * Default action is to ignore; drop it.
1620 */
1621 break; /* == ignore */
1622 } else
1623 goto keep;
1624 /*NOTREACHED*/
1625
1626 case (long)SIG_IGN:
1627 /*
1628 * Masking above should prevent us ever trying
1629 * to take action on an ignored signal other
1630 * than SIGCONT, unless process is traced.
1631 */
1632 #ifdef DEBUG_ISSIGNAL
1633 if ((prop & SA_CONT) == 0 &&
1634 (p->p_flag & P_TRACED) == 0)
1635 printf("issignal\n");
1636 #endif
1637 break; /* == ignore */
1638
1639 default:
1640 /*
1641 * This signal has an action, let
1642 * postsig() process it.
1643 */
1644 goto keep;
1645 }
1646 }
1647 /* NOTREACHED */
1648
1649 keep:
1650 /* leave the signal for later */
1651 sigaddset(&p->p_sigctx.ps_siglist, signum);
1652 CHECKSIGS(p);
1653 if (locked && dolock)
1654 SCHED_LOCK(s);
1655 return (signum);
1656 }
1657
1658 /*
1659 * Put the argument process into the stopped state and notify the parent
1660 * via wakeup. Signals are handled elsewhere. The process must not be
1661 * on the run queue.
1662 */
1663 void
1664 proc_stop(struct proc *p, int dowakeup)
1665 {
1666 struct lwp *l;
1667 struct proc *parent;
1668 struct sadata_vp *vp;
1669
1670 SCHED_ASSERT_LOCKED();
1671
1672 /* XXX lock process LWP state */
1673 p->p_flag &= ~P_WAITED;
1674 p->p_stat = SSTOP;
1675 parent = p->p_pptr;
1676 parent->p_nstopchild++;
1677
1678 if (p->p_flag & P_SA) {
1679 /*
1680 * Only (try to) put the LWP on the VP in stopped
1681 * state.
1682 * All other LWPs will suspend in sa_setwoken()
1683 * because the VP-LWP in stopped state cannot be
1684 * repossessed.
1685 */
1686 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1687 l = vp->savp_lwp;
1688 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1689 l->l_stat = LSSTOP;
1690 p->p_nrlwps--;
1691 } else if (l->l_stat == LSRUN) {
1692 /* Remove LWP from the run queue */
1693 remrunqueue(l);
1694 l->l_stat = LSSTOP;
1695 p->p_nrlwps--;
1696 } else if (l->l_stat == LSSLEEP &&
1697 l->l_flag & L_SA_IDLE) {
1698 l->l_flag &= ~L_SA_IDLE;
1699 l->l_stat = LSSTOP;
1700 }
1701 }
1702 goto out;
1703 }
1704
1705 /*
1706 * Put as many LWP's as possible in stopped state.
1707 * Sleeping ones will notice the stopped state as they try to
1708 * return to userspace.
1709 */
1710
1711 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1712 if (l->l_stat == LSONPROC) {
1713 /* XXX SMP this assumes that a LWP that is LSONPROC
1714 * is curlwp and hence is about to be mi_switched
1715 * away; the only callers of proc_stop() are:
1716 * - psignal
1717 * - issignal()
1718 * For the former, proc_stop() is only called when
1719 * no processes are running, so we don't worry.
1720 * For the latter, proc_stop() is called right
1721 * before mi_switch().
1722 */
1723 l->l_stat = LSSTOP;
1724 p->p_nrlwps--;
1725 } else if (l->l_stat == LSRUN) {
1726 /* Remove LWP from the run queue */
1727 remrunqueue(l);
1728 l->l_stat = LSSTOP;
1729 p->p_nrlwps--;
1730 } else if ((l->l_stat == LSSLEEP) ||
1731 (l->l_stat == LSSUSPENDED) ||
1732 (l->l_stat == LSZOMB) ||
1733 (l->l_stat == LSDEAD)) {
1734 /*
1735 * Don't do anything; let sleeping LWPs
1736 * discover the stopped state of the process
1737 * on their way out of the kernel; otherwise,
1738 * things like NFS threads that sleep with
1739 * locks will block the rest of the system
1740 * from getting any work done.
1741 *
1742 * Suspended/dead/zombie LWPs aren't going
1743 * anywhere, so we don't need to touch them.
1744 */
1745 }
1746 #ifdef DIAGNOSTIC
1747 else {
1748 panic("proc_stop: process %d lwp %d "
1749 "in unstoppable state %d.\n",
1750 p->p_pid, l->l_lid, l->l_stat);
1751 }
1752 #endif
1753 }
1754
1755 out:
1756 /* XXX unlock process LWP state */
1757
1758 if (dowakeup)
1759 sched_wakeup((caddr_t)p->p_pptr);
1760 }
1761
1762 /*
1763 * Given a process in state SSTOP, set the state back to SACTIVE and
1764 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1765 *
1766 * If no LWPs ended up runnable (and therefore able to take a signal),
1767 * return a LWP that is sleeping interruptably. The caller can wake
1768 * that LWP up to take a signal.
1769 */
1770 struct lwp *
1771 proc_unstop(struct proc *p)
1772 {
1773 struct lwp *l, *lr = NULL;
1774 struct sadata_vp *vp;
1775 int cantake = 0;
1776
1777 SCHED_ASSERT_LOCKED();
1778
1779 /*
1780 * Our caller wants to be informed if there are only sleeping
1781 * and interruptable LWPs left after we have run so that it
1782 * can invoke setrunnable() if required - return one of the
1783 * interruptable LWPs if this is the case.
1784 */
1785
1786 if (!(p->p_flag & P_WAITED))
1787 p->p_pptr->p_nstopchild--;
1788 p->p_stat = SACTIVE;
1789 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1790 if (l->l_stat == LSRUN) {
1791 lr = NULL;
1792 cantake = 1;
1793 }
1794 if (l->l_stat != LSSTOP)
1795 continue;
1796
1797 if (l->l_wchan != NULL) {
1798 l->l_stat = LSSLEEP;
1799 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1800 lr = l;
1801 cantake = 1;
1802 }
1803 } else {
1804 setrunnable(l);
1805 lr = NULL;
1806 cantake = 1;
1807 }
1808 }
1809 if (p->p_flag & P_SA) {
1810 /* Only consider returning the LWP on the VP. */
1811 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1812 lr = vp->savp_lwp;
1813 if (lr->l_stat == LSSLEEP) {
1814 if (lr->l_flag & L_SA_YIELD) {
1815 setrunnable(lr);
1816 break;
1817 } else if (lr->l_flag & L_SINTR)
1818 return lr;
1819 }
1820 }
1821 return NULL;
1822 }
1823 return lr;
1824 }
1825
1826 /*
1827 * Take the action for the specified signal
1828 * from the current set of pending signals.
1829 */
1830 void
1831 postsig(int signum)
1832 {
1833 struct lwp *l;
1834 struct proc *p;
1835 struct sigacts *ps;
1836 sig_t action;
1837 sigset_t *returnmask;
1838
1839 l = curlwp;
1840 p = l->l_proc;
1841 ps = p->p_sigacts;
1842 #ifdef DIAGNOSTIC
1843 if (signum == 0)
1844 panic("postsig");
1845 #endif
1846
1847 KERNEL_PROC_LOCK(l);
1848
1849 #ifdef MULTIPROCESSOR
1850 /*
1851 * On MP, issignal() can return the same signal to multiple
1852 * LWPs. The LWPs will block above waiting for the kernel
1853 * lock and the first LWP which gets through will then remove
1854 * the signal from ps_siglist. All other LWPs exit here.
1855 */
1856 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1857 KERNEL_PROC_UNLOCK(l);
1858 return;
1859 }
1860 #endif
1861 sigdelset(&p->p_sigctx.ps_siglist, signum);
1862 action = SIGACTION_PS(ps, signum).sa_handler;
1863 if (action == SIG_DFL) {
1864 #ifdef KTRACE
1865 if (KTRPOINT(p, KTR_PSIG))
1866 ktrpsig(l, signum, action,
1867 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1868 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1869 NULL);
1870 #endif
1871 /*
1872 * Default action, where the default is to kill
1873 * the process. (Other cases were ignored above.)
1874 */
1875 sigexit(l, signum);
1876 /* NOTREACHED */
1877 } else {
1878 ksiginfo_t *ksi;
1879 /*
1880 * If we get here, the signal must be caught.
1881 */
1882 #ifdef DIAGNOSTIC
1883 if (action == SIG_IGN ||
1884 sigismember(&p->p_sigctx.ps_sigmask, signum))
1885 panic("postsig action");
1886 #endif
1887 /*
1888 * Set the new mask value and also defer further
1889 * occurrences of this signal.
1890 *
1891 * Special case: user has done a sigpause. Here the
1892 * current mask is not of interest, but rather the
1893 * mask from before the sigpause is what we want
1894 * restored after the signal processing is completed.
1895 */
1896 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1897 returnmask = &p->p_sigctx.ps_oldmask;
1898 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1899 } else
1900 returnmask = &p->p_sigctx.ps_sigmask;
1901 p->p_stats->p_ru.ru_nsignals++;
1902 ksi = ksiginfo_get(p, signum);
1903 #ifdef KTRACE
1904 if (KTRPOINT(p, KTR_PSIG))
1905 ktrpsig(l, signum, action,
1906 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1907 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1908 ksi);
1909 #endif
1910 if (ksi == NULL) {
1911 ksiginfo_t ksi1;
1912 /*
1913 * we did not save any siginfo for this, either
1914 * because the signal was not caught, or because the
1915 * user did not request SA_SIGINFO
1916 */
1917 KSI_INIT_EMPTY(&ksi1);
1918 ksi1.ksi_signo = signum;
1919 kpsendsig(l, &ksi1, returnmask);
1920 } else {
1921 kpsendsig(l, ksi, returnmask);
1922 pool_put(&ksiginfo_pool, ksi);
1923 }
1924 p->p_sigctx.ps_lwp = 0;
1925 p->p_sigctx.ps_code = 0;
1926 p->p_sigctx.ps_signo = 0;
1927 (void) splsched(); /* XXXSMP */
1928 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1929 &p->p_sigctx.ps_sigmask);
1930 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1931 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1932 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1933 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1934 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1935 }
1936 (void) spl0(); /* XXXSMP */
1937 }
1938
1939 KERNEL_PROC_UNLOCK(l);
1940 }
1941
1942 /*
1943 * Kill the current process for stated reason.
1944 */
1945 void
1946 killproc(struct proc *p, const char *why)
1947 {
1948 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1949 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1950 psignal(p, SIGKILL);
1951 }
1952
1953 /*
1954 * Force the current process to exit with the specified signal, dumping core
1955 * if appropriate. We bypass the normal tests for masked and caught signals,
1956 * allowing unrecoverable failures to terminate the process without changing
1957 * signal state. Mark the accounting record with the signal termination.
1958 * If dumping core, save the signal number for the debugger. Calls exit and
1959 * does not return.
1960 */
1961
1962 #if defined(DEBUG)
1963 int kern_logsigexit = 1; /* not static to make public for sysctl */
1964 #else
1965 int kern_logsigexit = 0; /* not static to make public for sysctl */
1966 #endif
1967
1968 static const char logcoredump[] =
1969 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1970 static const char lognocoredump[] =
1971 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1972
1973 /* Wrapper function for use in p_userret */
1974 static void
1975 lwp_coredump_hook(struct lwp *l, void *arg)
1976 {
1977 int s;
1978
1979 /*
1980 * Suspend ourselves, so that the kernel stack and therefore
1981 * the userland registers saved in the trapframe are around
1982 * for coredump() to write them out.
1983 */
1984 KERNEL_PROC_LOCK(l);
1985 l->l_flag &= ~L_DETACHED;
1986 SCHED_LOCK(s);
1987 l->l_stat = LSSUSPENDED;
1988 l->l_proc->p_nrlwps--;
1989 /* XXX NJWLWP check if this makes sense here: */
1990 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1991 mi_switch(l, NULL);
1992 SCHED_ASSERT_UNLOCKED();
1993 splx(s);
1994
1995 lwp_exit(l);
1996 }
1997
1998 void
1999 sigexit(struct lwp *l, int signum)
2000 {
2001 struct proc *p;
2002 #if 0
2003 struct lwp *l2;
2004 #endif
2005 int error, exitsig;
2006
2007 p = l->l_proc;
2008
2009 /*
2010 * Don't permit coredump() or exit1() multiple times
2011 * in the same process.
2012 */
2013 if (p->p_flag & P_WEXIT) {
2014 KERNEL_PROC_UNLOCK(l);
2015 (*p->p_userret)(l, p->p_userret_arg);
2016 }
2017 p->p_flag |= P_WEXIT;
2018 /* We don't want to switch away from exiting. */
2019 /* XXX multiprocessor: stop LWPs on other processors. */
2020 #if 0
2021 if (p->p_flag & P_SA) {
2022 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2023 l2->l_flag &= ~L_SA;
2024 p->p_flag &= ~P_SA;
2025 }
2026 #endif
2027
2028 /* Make other LWPs stick around long enough to be dumped */
2029 p->p_userret = lwp_coredump_hook;
2030 p->p_userret_arg = NULL;
2031
2032 exitsig = signum;
2033 p->p_acflag |= AXSIG;
2034 if (sigprop[signum] & SA_CORE) {
2035 p->p_sigctx.ps_signo = signum;
2036 if ((error = coredump(l, NULL)) == 0)
2037 exitsig |= WCOREFLAG;
2038
2039 if (kern_logsigexit) {
2040 /* XXX What if we ever have really large UIDs? */
2041 int uid = p->p_cred && p->p_ucred ?
2042 (int) p->p_ucred->cr_uid : -1;
2043
2044 if (error)
2045 log(LOG_INFO, lognocoredump, p->p_pid,
2046 p->p_comm, uid, signum, error);
2047 else
2048 log(LOG_INFO, logcoredump, p->p_pid,
2049 p->p_comm, uid, signum);
2050 }
2051
2052 }
2053
2054 exit1(l, W_EXITCODE(0, exitsig));
2055 /* NOTREACHED */
2056 }
2057
2058 struct coredump_iostate {
2059 struct lwp *io_lwp;
2060 struct vnode *io_vp;
2061 struct ucred *io_cred;
2062 off_t io_offset;
2063 };
2064
2065 int
2066 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2067 {
2068 struct coredump_iostate *io = cookie;
2069 int error;
2070
2071 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2072 io->io_offset, segflg,
2073 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2074 segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2075 if (error)
2076 return (error);
2077
2078 io->io_offset += len;
2079 return (0);
2080 }
2081
2082 /*
2083 * Dump core, into a file named "progname.core" or "core" (depending on the
2084 * value of shortcorename), unless the process was setuid/setgid.
2085 */
2086 int
2087 coredump(struct lwp *l, const char *pattern)
2088 {
2089 struct vnode *vp;
2090 struct proc *p;
2091 struct vmspace *vm;
2092 struct ucred *cred;
2093 struct nameidata nd;
2094 struct vattr vattr;
2095 struct mount *mp;
2096 struct coredump_iostate io;
2097 int error, error1;
2098 char name[MAXPATHLEN];
2099
2100 p = l->l_proc;
2101 vm = p->p_vmspace;
2102 cred = p->p_cred->pc_ucred;
2103
2104 /*
2105 * Make sure the process has not set-id, to prevent data leaks,
2106 * unless it was specifically requested to allow set-id coredumps.
2107 */
2108 if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2109 return (EPERM);
2110
2111 /*
2112 * Refuse to core if the data + stack + user size is larger than
2113 * the core dump limit. XXX THIS IS WRONG, because of mapped
2114 * data.
2115 */
2116 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2117 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2118 return (EFBIG); /* better error code? */
2119
2120 restart:
2121 /*
2122 * The core dump will go in the current working directory. Make
2123 * sure that the directory is still there and that the mount flags
2124 * allow us to write core dumps there.
2125 */
2126 vp = p->p_cwdi->cwdi_cdir;
2127 if (vp->v_mount == NULL ||
2128 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0)
2129 return (EPERM);
2130
2131 if (p->p_flag & P_SUGID && security_setidcore_dump)
2132 pattern = security_setidcore_path;
2133
2134 if (pattern == NULL)
2135 pattern = p->p_limit->pl_corename;
2136 if ((error = build_corename(p, name, pattern, sizeof(name))) != 0)
2137 return error;
2138
2139 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2140 error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE, S_IRUSR | S_IWUSR);
2141 if (error)
2142 return (error);
2143 vp = nd.ni_vp;
2144
2145 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2146 VOP_UNLOCK(vp, 0);
2147 if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2148 return (error);
2149 if ((error = vn_start_write(NULL, &mp,
2150 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2151 return (error);
2152 goto restart;
2153 }
2154
2155 /* Don't dump to non-regular files or files with links. */
2156 if (vp->v_type != VREG ||
2157 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2158 error = EINVAL;
2159 goto out;
2160 }
2161 VATTR_NULL(&vattr);
2162 vattr.va_size = 0;
2163
2164 if (p->p_flag & P_SUGID && security_setidcore_dump) {
2165 vattr.va_uid = security_setidcore_owner;
2166 vattr.va_gid = security_setidcore_group;
2167 vattr.va_mode = security_setidcore_mode;
2168 }
2169
2170 VOP_LEASE(vp, l, cred, LEASE_WRITE);
2171 VOP_SETATTR(vp, &vattr, cred, l);
2172 p->p_acflag |= ACORE;
2173
2174 io.io_lwp = l;
2175 io.io_vp = vp;
2176 io.io_cred = cred;
2177 io.io_offset = 0;
2178
2179 /* Now dump the actual core file. */
2180 error = (*p->p_execsw->es_coredump)(l, &io);
2181 out:
2182 VOP_UNLOCK(vp, 0);
2183 vn_finished_write(mp, 0);
2184 error1 = vn_close(vp, FWRITE, cred, l);
2185 if (error == 0)
2186 error = error1;
2187 return (error);
2188 }
2189
2190 /*
2191 * Nonexistent system call-- signal process (may want to handle it).
2192 * Flag error in case process won't see signal immediately (blocked or ignored).
2193 */
2194 /* ARGSUSED */
2195 int
2196 sys_nosys(struct lwp *l, void *v, register_t *retval)
2197 {
2198 struct proc *p;
2199
2200 p = l->l_proc;
2201 psignal(p, SIGSYS);
2202 return (ENOSYS);
2203 }
2204
2205 static int
2206 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2207 {
2208 const char *s;
2209 char *d, *end;
2210 int i;
2211
2212 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2213 if (*s == '%') {
2214 switch (*(s + 1)) {
2215 case 'n':
2216 i = snprintf(d, end - d, "%s", p->p_comm);
2217 break;
2218 case 'p':
2219 i = snprintf(d, end - d, "%d", p->p_pid);
2220 break;
2221 case 'u':
2222 i = snprintf(d, end - d, "%.*s",
2223 (int)sizeof p->p_pgrp->pg_session->s_login,
2224 p->p_pgrp->pg_session->s_login);
2225 break;
2226 case 't':
2227 i = snprintf(d, end - d, "%ld",
2228 p->p_stats->p_start.tv_sec);
2229 break;
2230 default:
2231 goto copy;
2232 }
2233 d += i;
2234 s++;
2235 } else {
2236 copy: *d = *s;
2237 d++;
2238 }
2239 if (d >= end)
2240 return (ENAMETOOLONG);
2241 }
2242 *d = '\0';
2243 return 0;
2244 }
2245
2246 void
2247 getucontext(struct lwp *l, ucontext_t *ucp)
2248 {
2249 struct proc *p;
2250
2251 p = l->l_proc;
2252
2253 ucp->uc_flags = 0;
2254 ucp->uc_link = l->l_ctxlink;
2255
2256 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2257 ucp->uc_flags |= _UC_SIGMASK;
2258
2259 /*
2260 * The (unsupplied) definition of the `current execution stack'
2261 * in the System V Interface Definition appears to allow returning
2262 * the main context stack.
2263 */
2264 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2265 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2266 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2267 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2268 } else {
2269 /* Simply copy alternate signal execution stack. */
2270 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2271 }
2272 ucp->uc_flags |= _UC_STACK;
2273
2274 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2275 }
2276
2277 /* ARGSUSED */
2278 int
2279 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2280 {
2281 struct sys_getcontext_args /* {
2282 syscallarg(struct __ucontext *) ucp;
2283 } */ *uap = v;
2284 ucontext_t uc;
2285
2286 getucontext(l, &uc);
2287
2288 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2289 }
2290
2291 int
2292 setucontext(struct lwp *l, const ucontext_t *ucp)
2293 {
2294 struct proc *p;
2295 int error;
2296
2297 p = l->l_proc;
2298 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2299 return (error);
2300 l->l_ctxlink = ucp->uc_link;
2301
2302 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2303 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2304
2305 /*
2306 * If there was stack information, update whether or not we are
2307 * still running on an alternate signal stack.
2308 */
2309 if ((ucp->uc_flags & _UC_STACK) != 0) {
2310 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2311 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2312 else
2313 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2314 }
2315
2316 return 0;
2317 }
2318
2319 /* ARGSUSED */
2320 int
2321 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2322 {
2323 struct sys_setcontext_args /* {
2324 syscallarg(const ucontext_t *) ucp;
2325 } */ *uap = v;
2326 ucontext_t uc;
2327 int error;
2328
2329 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2330 exit1(l, W_EXITCODE(0, 0));
2331 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2332 (error = setucontext(l, &uc)) != 0)
2333 return (error);
2334
2335 return (EJUSTRETURN);
2336 }
2337
2338 /*
2339 * sigtimedwait(2) system call, used also for implementation
2340 * of sigwaitinfo() and sigwait().
2341 *
2342 * This only handles single LWP in signal wait. libpthread provides
2343 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2344 */
2345 int
2346 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2347 {
2348 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2349 }
2350
2351 int
2352 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2353 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2354 {
2355 struct sys___sigtimedwait_args /* {
2356 syscallarg(const sigset_t *) set;
2357 syscallarg(siginfo_t *) info;
2358 syscallarg(struct timespec *) timeout;
2359 } */ *uap = v;
2360 sigset_t *waitset, twaitset;
2361 struct proc *p = l->l_proc;
2362 int error, signum, s;
2363 int timo = 0;
2364 struct timeval tvstart;
2365 struct timespec ts;
2366 ksiginfo_t *ksi;
2367
2368 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2369
2370 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2371 FREE(waitset, M_TEMP);
2372 return (error);
2373 }
2374
2375 /*
2376 * Silently ignore SA_CANTMASK signals. psignal1() would
2377 * ignore SA_CANTMASK signals in waitset, we do this
2378 * only for the below siglist check.
2379 */
2380 sigminusset(&sigcantmask, waitset);
2381
2382 /*
2383 * First scan siglist and check if there is signal from
2384 * our waitset already pending.
2385 */
2386 twaitset = *waitset;
2387 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2388 if ((signum = firstsig(&twaitset))) {
2389 /* found pending signal */
2390 sigdelset(&p->p_sigctx.ps_siglist, signum);
2391 ksi = ksiginfo_get(p, signum);
2392 if (!ksi) {
2393 /* No queued siginfo, manufacture one */
2394 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2395 KSI_INIT(ksi);
2396 ksi->ksi_info._signo = signum;
2397 ksi->ksi_info._code = SI_USER;
2398 }
2399
2400 goto sig;
2401 }
2402
2403 /*
2404 * Calculate timeout, if it was specified.
2405 */
2406 if (SCARG(uap, timeout)) {
2407 uint64_t ms;
2408
2409 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2410 return (error);
2411
2412 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2413 timo = mstohz(ms);
2414 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2415 timo = 1;
2416 if (timo <= 0)
2417 return (EAGAIN);
2418
2419 /*
2420 * Remember current mono_time, it would be used in
2421 * ECANCELED/ERESTART case.
2422 */
2423 s = splclock();
2424 tvstart = mono_time;
2425 splx(s);
2426 }
2427
2428 /*
2429 * Setup ps_sigwait list. Pass pointer to malloced memory
2430 * here; it's not possible to pass pointer to a structure
2431 * on current process's stack, the current process might
2432 * be swapped out at the time the signal would get delivered.
2433 */
2434 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2435 p->p_sigctx.ps_sigwaited = ksi;
2436 p->p_sigctx.ps_sigwait = waitset;
2437
2438 /*
2439 * Wait for signal to arrive. We can either be woken up or
2440 * time out.
2441 */
2442 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2443
2444 /*
2445 * Need to find out if we woke as a result of lwp_wakeup()
2446 * or a signal outside our wait set.
2447 */
2448 if (error == EINTR && p->p_sigctx.ps_sigwaited
2449 && !firstsig(&p->p_sigctx.ps_siglist)) {
2450 /* wakeup via _lwp_wakeup() */
2451 error = ECANCELED;
2452 } else if (!error && p->p_sigctx.ps_sigwaited) {
2453 /* spurious wakeup - arrange for syscall restart */
2454 error = ERESTART;
2455 goto fail;
2456 }
2457
2458 /*
2459 * On error, clear sigwait indication. psignal1() clears it
2460 * in !error case.
2461 */
2462 if (error) {
2463 p->p_sigctx.ps_sigwaited = NULL;
2464
2465 /*
2466 * If the sleep was interrupted (either by signal or wakeup),
2467 * update the timeout and copyout new value back.
2468 * It would be used when the syscall would be restarted
2469 * or called again.
2470 */
2471 if (timo && (error == ERESTART || error == ECANCELED)) {
2472 struct timeval tvnow, tvtimo;
2473 int err;
2474
2475 s = splclock();
2476 tvnow = mono_time;
2477 splx(s);
2478
2479 TIMESPEC_TO_TIMEVAL(&tvtimo, &ts);
2480
2481 /* compute how much time has passed since start */
2482 timersub(&tvnow, &tvstart, &tvnow);
2483 /* substract passed time from timeout */
2484 timersub(&tvtimo, &tvnow, &tvtimo);
2485
2486 if (tvtimo.tv_sec < 0) {
2487 error = EAGAIN;
2488 goto fail;
2489 }
2490
2491 TIMEVAL_TO_TIMESPEC(&tvtimo, &ts);
2492
2493 /* copy updated timeout to userland */
2494 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2495 sizeof(ts)))) {
2496 error = err;
2497 goto fail;
2498 }
2499 }
2500
2501 goto fail;
2502 }
2503
2504 /*
2505 * If a signal from the wait set arrived, copy it to userland.
2506 * Copy only the used part of siginfo, the padding part is
2507 * left unchanged (userland is not supposed to touch it anyway).
2508 */
2509 sig:
2510 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2511
2512 fail:
2513 FREE(waitset, M_TEMP);
2514 pool_put(&ksiginfo_pool, ksi);
2515 p->p_sigctx.ps_sigwait = NULL;
2516
2517 return (error);
2518 }
2519
2520 /*
2521 * Returns true if signal is ignored or masked for passed process.
2522 */
2523 int
2524 sigismasked(struct proc *p, int sig)
2525 {
2526
2527 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2528 sigismember(&p->p_sigctx.ps_sigmask, sig));
2529 }
2530
2531 static int
2532 filt_sigattach(struct knote *kn)
2533 {
2534 struct proc *p = curproc;
2535
2536 kn->kn_ptr.p_proc = p;
2537 kn->kn_flags |= EV_CLEAR; /* automatically set */
2538
2539 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2540
2541 return (0);
2542 }
2543
2544 static void
2545 filt_sigdetach(struct knote *kn)
2546 {
2547 struct proc *p = kn->kn_ptr.p_proc;
2548
2549 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2550 }
2551
2552 /*
2553 * signal knotes are shared with proc knotes, so we apply a mask to
2554 * the hint in order to differentiate them from process hints. This
2555 * could be avoided by using a signal-specific knote list, but probably
2556 * isn't worth the trouble.
2557 */
2558 static int
2559 filt_signal(struct knote *kn, long hint)
2560 {
2561
2562 if (hint & NOTE_SIGNAL) {
2563 hint &= ~NOTE_SIGNAL;
2564
2565 if (kn->kn_id == hint)
2566 kn->kn_data++;
2567 }
2568 return (kn->kn_data != 0);
2569 }
2570
2571 const struct filterops sig_filtops = {
2572 0, filt_sigattach, filt_sigdetach, filt_signal
2573 };
2574