kern_sig.c revision 1.222 1 /* $NetBSD: kern_sig.c,v 1.222 2006/06/11 07:32:18 rjs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.222 2006/06/11 07:32:18 rjs Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_compat_sunos.h"
45 #include "opt_compat_netbsd.h"
46 #include "opt_compat_netbsd32.h"
47
48 #define SIGPROP /* include signal properties table */
49 #include <sys/param.h>
50 #include <sys/signalvar.h>
51 #include <sys/resourcevar.h>
52 #include <sys/namei.h>
53 #include <sys/vnode.h>
54 #include <sys/proc.h>
55 #include <sys/systm.h>
56 #include <sys/timeb.h>
57 #include <sys/times.h>
58 #include <sys/buf.h>
59 #include <sys/acct.h>
60 #include <sys/file.h>
61 #include <sys/kernel.h>
62 #include <sys/wait.h>
63 #include <sys/ktrace.h>
64 #include <sys/syslog.h>
65 #include <sys/stat.h>
66 #include <sys/core.h>
67 #include <sys/filedesc.h>
68 #include <sys/malloc.h>
69 #include <sys/pool.h>
70 #include <sys/ucontext.h>
71 #include <sys/sa.h>
72 #include <sys/savar.h>
73 #include <sys/exec.h>
74 #include <sys/sysctl.h>
75 #include <sys/kauth.h>
76
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79
80 #include <machine/cpu.h>
81
82 #include <sys/user.h> /* for coredump */
83
84 #include <uvm/uvm.h>
85 #include <uvm/uvm_extern.h>
86
87 static int build_corename(struct proc *, char *, const char *, size_t);
88 static void ksiginfo_exithook(struct proc *, void *);
89 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
90 static ksiginfo_t *ksiginfo_get(struct proc *, int);
91 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
92
93 sigset_t contsigmask, stopsigmask, sigcantmask;
94
95 struct pool sigacts_pool; /* memory pool for sigacts structures */
96
97 /*
98 * struct sigacts memory pool allocator.
99 */
100
101 static void *
102 sigacts_poolpage_alloc(struct pool *pp, int flags)
103 {
104
105 return (void *)uvm_km_alloc(kernel_map,
106 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
107 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
108 | UVM_KMF_WIRED);
109 }
110
111 static void
112 sigacts_poolpage_free(struct pool *pp, void *v)
113 {
114 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
115 }
116
117 static struct pool_allocator sigactspool_allocator = {
118 sigacts_poolpage_alloc, sigacts_poolpage_free,
119 };
120
121 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
122 &pool_allocator_nointr);
123 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
124
125 /*
126 * Remove and return the first ksiginfo element that matches our requested
127 * signal, or return NULL if one not found.
128 */
129 static ksiginfo_t *
130 ksiginfo_get(struct proc *p, int signo)
131 {
132 ksiginfo_t *ksi;
133 int s;
134
135 s = splsoftclock();
136 simple_lock(&p->p_sigctx.ps_silock);
137 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
138 if (ksi->ksi_signo == signo) {
139 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
140 goto out;
141 }
142 }
143 ksi = NULL;
144 out:
145 simple_unlock(&p->p_sigctx.ps_silock);
146 splx(s);
147 return ksi;
148 }
149
150 /*
151 * Append a new ksiginfo element to the list of pending ksiginfo's, if
152 * we need to (SA_SIGINFO was requested). We replace non RT signals if
153 * they already existed in the queue and we add new entries for RT signals,
154 * or for non RT signals with non-existing entries.
155 */
156 static void
157 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
158 {
159 ksiginfo_t *kp;
160 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
161 int s;
162
163 if ((sa->sa_flags & SA_SIGINFO) == 0)
164 return;
165 /*
166 * If there's no info, don't save it.
167 */
168 if (KSI_EMPTY_P(ksi))
169 return;
170
171 s = splsoftclock();
172 simple_lock(&p->p_sigctx.ps_silock);
173 #ifdef notyet /* XXX: QUEUING */
174 if (ksi->ksi_signo < SIGRTMIN)
175 #endif
176 {
177 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
178 if (kp->ksi_signo == ksi->ksi_signo) {
179 KSI_COPY(ksi, kp);
180 goto out;
181 }
182 }
183 }
184 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
185 if (kp == NULL) {
186 #ifdef DIAGNOSTIC
187 printf("Out of memory allocating siginfo for pid %d\n",
188 p->p_pid);
189 #endif
190 goto out;
191 }
192 *kp = *ksi;
193 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
194 out:
195 simple_unlock(&p->p_sigctx.ps_silock);
196 splx(s);
197 }
198
199 /*
200 * free all pending ksiginfo on exit
201 */
202 static void
203 ksiginfo_exithook(struct proc *p, void *v)
204 {
205 int s;
206
207 s = splsoftclock();
208 simple_lock(&p->p_sigctx.ps_silock);
209 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
210 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
211 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
212 pool_put(&ksiginfo_pool, ksi);
213 }
214 simple_unlock(&p->p_sigctx.ps_silock);
215 splx(s);
216 }
217
218 /*
219 * Initialize signal-related data structures.
220 */
221 void
222 signal_init(void)
223 {
224
225 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
226
227 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
228 sizeof(struct sigacts) > PAGE_SIZE ?
229 &sigactspool_allocator : &pool_allocator_nointr);
230
231 exithook_establish(ksiginfo_exithook, NULL);
232 exechook_establish(ksiginfo_exithook, NULL);
233 }
234
235 /*
236 * Create an initial sigctx structure, using the same signal state
237 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
238 * copy it from parent.
239 */
240 void
241 sigactsinit(struct proc *np, struct proc *pp, int share)
242 {
243 struct sigacts *ps;
244
245 if (share) {
246 np->p_sigacts = pp->p_sigacts;
247 pp->p_sigacts->sa_refcnt++;
248 } else {
249 ps = pool_get(&sigacts_pool, PR_WAITOK);
250 if (pp)
251 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
252 else
253 memset(ps, '\0', sizeof(struct sigacts));
254 ps->sa_refcnt = 1;
255 np->p_sigacts = ps;
256 }
257 }
258
259 /*
260 * Make this process not share its sigctx, maintaining all
261 * signal state.
262 */
263 void
264 sigactsunshare(struct proc *p)
265 {
266 struct sigacts *oldps;
267
268 if (p->p_sigacts->sa_refcnt == 1)
269 return;
270
271 oldps = p->p_sigacts;
272 sigactsinit(p, NULL, 0);
273
274 if (--oldps->sa_refcnt == 0)
275 pool_put(&sigacts_pool, oldps);
276 }
277
278 /*
279 * Release a sigctx structure.
280 */
281 void
282 sigactsfree(struct sigacts *ps)
283 {
284
285 if (--ps->sa_refcnt > 0)
286 return;
287
288 pool_put(&sigacts_pool, ps);
289 }
290
291 int
292 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
293 struct sigaction *osa, const void *tramp, int vers)
294 {
295 struct sigacts *ps;
296 int prop;
297
298 ps = p->p_sigacts;
299 if (signum <= 0 || signum >= NSIG)
300 return (EINVAL);
301
302 /*
303 * Trampoline ABI version 0 is reserved for the legacy
304 * kernel-provided on-stack trampoline. Conversely, if we are
305 * using a non-0 ABI version, we must have a trampoline. Only
306 * validate the vers if a new sigaction was supplied. Emulations
307 * use legacy kernel trampolines with version 0, alternatively
308 * check for that too.
309 */
310 if ((vers != 0 && tramp == NULL) ||
311 #ifdef SIGTRAMP_VALID
312 (nsa != NULL &&
313 ((vers == 0) ?
314 (p->p_emul->e_sigcode == NULL) :
315 !SIGTRAMP_VALID(vers))) ||
316 #endif
317 (vers == 0 && tramp != NULL))
318 return (EINVAL);
319
320 if (osa)
321 *osa = SIGACTION_PS(ps, signum);
322
323 if (nsa) {
324 if (nsa->sa_flags & ~SA_ALLBITS)
325 return (EINVAL);
326
327 prop = sigprop[signum];
328 if (prop & SA_CANTMASK)
329 return (EINVAL);
330
331 (void) splsched(); /* XXXSMP */
332 SIGACTION_PS(ps, signum) = *nsa;
333 ps->sa_sigdesc[signum].sd_tramp = tramp;
334 ps->sa_sigdesc[signum].sd_vers = vers;
335 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
336 if ((prop & SA_NORESET) != 0)
337 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
338 if (signum == SIGCHLD) {
339 if (nsa->sa_flags & SA_NOCLDSTOP)
340 p->p_flag |= P_NOCLDSTOP;
341 else
342 p->p_flag &= ~P_NOCLDSTOP;
343 if (nsa->sa_flags & SA_NOCLDWAIT) {
344 /*
345 * Paranoia: since SA_NOCLDWAIT is implemented
346 * by reparenting the dying child to PID 1 (and
347 * trust it to reap the zombie), PID 1 itself
348 * is forbidden to set SA_NOCLDWAIT.
349 */
350 if (p->p_pid == 1)
351 p->p_flag &= ~P_NOCLDWAIT;
352 else
353 p->p_flag |= P_NOCLDWAIT;
354 } else
355 p->p_flag &= ~P_NOCLDWAIT;
356
357 if (nsa->sa_handler == SIG_IGN) {
358 /*
359 * Paranoia: same as above.
360 */
361 if (p->p_pid == 1)
362 p->p_flag &= ~P_CLDSIGIGN;
363 else
364 p->p_flag |= P_CLDSIGIGN;
365 } else
366 p->p_flag &= ~P_CLDSIGIGN;
367
368 }
369 if ((nsa->sa_flags & SA_NODEFER) == 0)
370 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
371 else
372 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
373 /*
374 * Set bit in p_sigctx.ps_sigignore for signals that are set to
375 * SIG_IGN, and for signals set to SIG_DFL where the default is
376 * to ignore. However, don't put SIGCONT in
377 * p_sigctx.ps_sigignore, as we have to restart the process.
378 */
379 if (nsa->sa_handler == SIG_IGN ||
380 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
381 /* never to be seen again */
382 sigdelset(&p->p_sigctx.ps_siglist, signum);
383 if (signum != SIGCONT) {
384 /* easier in psignal */
385 sigaddset(&p->p_sigctx.ps_sigignore, signum);
386 }
387 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
388 } else {
389 sigdelset(&p->p_sigctx.ps_sigignore, signum);
390 if (nsa->sa_handler == SIG_DFL)
391 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
392 else
393 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
394 }
395 (void) spl0();
396 }
397
398 return (0);
399 }
400
401 #ifdef COMPAT_16
402 /* ARGSUSED */
403 int
404 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
405 {
406 struct compat_16_sys___sigaction14_args /* {
407 syscallarg(int) signum;
408 syscallarg(const struct sigaction *) nsa;
409 syscallarg(struct sigaction *) osa;
410 } */ *uap = v;
411 struct proc *p;
412 struct sigaction nsa, osa;
413 int error;
414
415 if (SCARG(uap, nsa)) {
416 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
417 if (error)
418 return (error);
419 }
420 p = l->l_proc;
421 error = sigaction1(p, SCARG(uap, signum),
422 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
423 NULL, 0);
424 if (error)
425 return (error);
426 if (SCARG(uap, osa)) {
427 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
428 if (error)
429 return (error);
430 }
431 return (0);
432 }
433 #endif
434
435 /* ARGSUSED */
436 int
437 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
438 {
439 struct sys___sigaction_sigtramp_args /* {
440 syscallarg(int) signum;
441 syscallarg(const struct sigaction *) nsa;
442 syscallarg(struct sigaction *) osa;
443 syscallarg(void *) tramp;
444 syscallarg(int) vers;
445 } */ *uap = v;
446 struct proc *p = l->l_proc;
447 struct sigaction nsa, osa;
448 int error;
449
450 if (SCARG(uap, nsa)) {
451 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
452 if (error)
453 return (error);
454 }
455 error = sigaction1(p, SCARG(uap, signum),
456 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
457 SCARG(uap, tramp), SCARG(uap, vers));
458 if (error)
459 return (error);
460 if (SCARG(uap, osa)) {
461 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
462 if (error)
463 return (error);
464 }
465 return (0);
466 }
467
468 /*
469 * Initialize signal state for process 0;
470 * set to ignore signals that are ignored by default and disable the signal
471 * stack.
472 */
473 void
474 siginit(struct proc *p)
475 {
476 struct sigacts *ps;
477 int signum, prop;
478
479 ps = p->p_sigacts;
480 sigemptyset(&contsigmask);
481 sigemptyset(&stopsigmask);
482 sigemptyset(&sigcantmask);
483 for (signum = 1; signum < NSIG; signum++) {
484 prop = sigprop[signum];
485 if (prop & SA_CONT)
486 sigaddset(&contsigmask, signum);
487 if (prop & SA_STOP)
488 sigaddset(&stopsigmask, signum);
489 if (prop & SA_CANTMASK)
490 sigaddset(&sigcantmask, signum);
491 if (prop & SA_IGNORE && signum != SIGCONT)
492 sigaddset(&p->p_sigctx.ps_sigignore, signum);
493 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
494 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
495 }
496 sigemptyset(&p->p_sigctx.ps_sigcatch);
497 p->p_sigctx.ps_sigwaited = NULL;
498 p->p_flag &= ~P_NOCLDSTOP;
499
500 /*
501 * Reset stack state to the user stack.
502 */
503 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
504 p->p_sigctx.ps_sigstk.ss_size = 0;
505 p->p_sigctx.ps_sigstk.ss_sp = 0;
506
507 /* One reference. */
508 ps->sa_refcnt = 1;
509 }
510
511 /*
512 * Reset signals for an exec of the specified process.
513 */
514 void
515 execsigs(struct proc *p)
516 {
517 struct sigacts *ps;
518 int signum, prop;
519
520 sigactsunshare(p);
521
522 ps = p->p_sigacts;
523
524 /*
525 * Reset caught signals. Held signals remain held
526 * through p_sigctx.ps_sigmask (unless they were caught,
527 * and are now ignored by default).
528 */
529 for (signum = 1; signum < NSIG; signum++) {
530 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
531 prop = sigprop[signum];
532 if (prop & SA_IGNORE) {
533 if ((prop & SA_CONT) == 0)
534 sigaddset(&p->p_sigctx.ps_sigignore,
535 signum);
536 sigdelset(&p->p_sigctx.ps_siglist, signum);
537 }
538 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
539 }
540 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
541 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
542 }
543 sigemptyset(&p->p_sigctx.ps_sigcatch);
544 p->p_sigctx.ps_sigwaited = NULL;
545
546 /*
547 * Reset no zombies if child dies flag as Solaris does.
548 */
549 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
550 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
551 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
552
553 /*
554 * Reset stack state to the user stack.
555 */
556 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
557 p->p_sigctx.ps_sigstk.ss_size = 0;
558 p->p_sigctx.ps_sigstk.ss_sp = 0;
559 }
560
561 int
562 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
563 {
564
565 if (oss)
566 *oss = p->p_sigctx.ps_sigmask;
567
568 if (nss) {
569 (void)splsched(); /* XXXSMP */
570 switch (how) {
571 case SIG_BLOCK:
572 sigplusset(nss, &p->p_sigctx.ps_sigmask);
573 break;
574 case SIG_UNBLOCK:
575 sigminusset(nss, &p->p_sigctx.ps_sigmask);
576 CHECKSIGS(p);
577 break;
578 case SIG_SETMASK:
579 p->p_sigctx.ps_sigmask = *nss;
580 CHECKSIGS(p);
581 break;
582 default:
583 (void)spl0(); /* XXXSMP */
584 return (EINVAL);
585 }
586 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
587 (void)spl0(); /* XXXSMP */
588 }
589
590 return (0);
591 }
592
593 /*
594 * Manipulate signal mask.
595 * Note that we receive new mask, not pointer,
596 * and return old mask as return value;
597 * the library stub does the rest.
598 */
599 int
600 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
601 {
602 struct sys___sigprocmask14_args /* {
603 syscallarg(int) how;
604 syscallarg(const sigset_t *) set;
605 syscallarg(sigset_t *) oset;
606 } */ *uap = v;
607 struct proc *p;
608 sigset_t nss, oss;
609 int error;
610
611 if (SCARG(uap, set)) {
612 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
613 if (error)
614 return (error);
615 }
616 p = l->l_proc;
617 error = sigprocmask1(p, SCARG(uap, how),
618 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
619 if (error)
620 return (error);
621 if (SCARG(uap, oset)) {
622 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
623 if (error)
624 return (error);
625 }
626 return (0);
627 }
628
629 void
630 sigpending1(struct proc *p, sigset_t *ss)
631 {
632
633 *ss = p->p_sigctx.ps_siglist;
634 sigminusset(&p->p_sigctx.ps_sigmask, ss);
635 }
636
637 /* ARGSUSED */
638 int
639 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
640 {
641 struct sys___sigpending14_args /* {
642 syscallarg(sigset_t *) set;
643 } */ *uap = v;
644 struct proc *p;
645 sigset_t ss;
646
647 p = l->l_proc;
648 sigpending1(p, &ss);
649 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
650 }
651
652 int
653 sigsuspend1(struct proc *p, const sigset_t *ss)
654 {
655 struct sigacts *ps;
656
657 ps = p->p_sigacts;
658 if (ss) {
659 /*
660 * When returning from sigpause, we want
661 * the old mask to be restored after the
662 * signal handler has finished. Thus, we
663 * save it here and mark the sigctx structure
664 * to indicate this.
665 */
666 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
667 p->p_sigctx.ps_flags |= SAS_OLDMASK;
668 (void) splsched(); /* XXXSMP */
669 p->p_sigctx.ps_sigmask = *ss;
670 CHECKSIGS(p);
671 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
672 (void) spl0(); /* XXXSMP */
673 }
674
675 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
676 /* void */;
677
678 /* always return EINTR rather than ERESTART... */
679 return (EINTR);
680 }
681
682 /*
683 * Suspend process until signal, providing mask to be set
684 * in the meantime. Note nonstandard calling convention:
685 * libc stub passes mask, not pointer, to save a copyin.
686 */
687 /* ARGSUSED */
688 int
689 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
690 {
691 struct sys___sigsuspend14_args /* {
692 syscallarg(const sigset_t *) set;
693 } */ *uap = v;
694 struct proc *p;
695 sigset_t ss;
696 int error;
697
698 if (SCARG(uap, set)) {
699 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
700 if (error)
701 return (error);
702 }
703
704 p = l->l_proc;
705 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
706 }
707
708 int
709 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
710 struct sigaltstack *oss)
711 {
712
713 if (oss)
714 *oss = p->p_sigctx.ps_sigstk;
715
716 if (nss) {
717 if (nss->ss_flags & ~SS_ALLBITS)
718 return (EINVAL);
719
720 if (nss->ss_flags & SS_DISABLE) {
721 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
722 return (EINVAL);
723 } else {
724 if (nss->ss_size < MINSIGSTKSZ)
725 return (ENOMEM);
726 }
727 p->p_sigctx.ps_sigstk = *nss;
728 }
729
730 return (0);
731 }
732
733 /* ARGSUSED */
734 int
735 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
736 {
737 struct sys___sigaltstack14_args /* {
738 syscallarg(const struct sigaltstack *) nss;
739 syscallarg(struct sigaltstack *) oss;
740 } */ *uap = v;
741 struct proc *p;
742 struct sigaltstack nss, oss;
743 int error;
744
745 if (SCARG(uap, nss)) {
746 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
747 if (error)
748 return (error);
749 }
750 p = l->l_proc;
751 error = sigaltstack1(p,
752 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
753 if (error)
754 return (error);
755 if (SCARG(uap, oss)) {
756 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
757 if (error)
758 return (error);
759 }
760 return (0);
761 }
762
763 /* ARGSUSED */
764 int
765 sys_kill(struct lwp *l, void *v, register_t *retval)
766 {
767 struct sys_kill_args /* {
768 syscallarg(int) pid;
769 syscallarg(int) signum;
770 } */ *uap = v;
771 struct proc *cp, *p;
772 kauth_cred_t pc;
773 ksiginfo_t ksi;
774
775 cp = l->l_proc;
776 pc = cp->p_cred;
777 if ((u_int)SCARG(uap, signum) >= NSIG)
778 return (EINVAL);
779 KSI_INIT(&ksi);
780 ksi.ksi_signo = SCARG(uap, signum);
781 ksi.ksi_code = SI_USER;
782 ksi.ksi_pid = cp->p_pid;
783 ksi.ksi_uid = kauth_cred_geteuid(cp->p_cred);
784 if (SCARG(uap, pid) > 0) {
785 /* kill single process */
786 if ((p = pfind(SCARG(uap, pid))) == NULL)
787 return (ESRCH);
788 if (kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL, cp,
789 p->p_cred, p,
790 (void *)(unsigned long)SCARG(uap, signum)) != 0)
791 return (EPERM);
792 if (SCARG(uap, signum))
793 kpsignal2(p, &ksi, 1);
794 return (0);
795 }
796 switch (SCARG(uap, pid)) {
797 case -1: /* broadcast signal */
798 return (killpg1(cp, &ksi, 0, 1));
799 case 0: /* signal own process group */
800 return (killpg1(cp, &ksi, 0, 0));
801 default: /* negative explicit process group */
802 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
803 }
804 /* NOTREACHED */
805 }
806
807 /*
808 * Common code for kill process group/broadcast kill.
809 * cp is calling process.
810 */
811 int
812 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
813 {
814 struct proc *p;
815 kauth_cred_t pc;
816 struct pgrp *pgrp;
817 int nfound;
818 int signum = ksi->ksi_signo;
819
820 pc = cp->p_cred;
821 nfound = 0;
822 if (all) {
823 /*
824 * broadcast
825 */
826 proclist_lock_read();
827 PROCLIST_FOREACH(p, &allproc) {
828 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
829 p == cp ||
830 kauth_authorize_process(pc,
831 KAUTH_PROCESS_CANSIGNAL, cp, p->p_cred, p,
832 (void *)(unsigned long)signum) != 0)
833 continue;
834 nfound++;
835 if (signum)
836 kpsignal2(p, ksi, 1);
837 }
838 proclist_unlock_read();
839 } else {
840 if (pgid == 0)
841 /*
842 * zero pgid means send to my process group.
843 */
844 pgrp = cp->p_pgrp;
845 else {
846 pgrp = pgfind(pgid);
847 if (pgrp == NULL)
848 return (ESRCH);
849 }
850 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
851 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
852 kauth_authorize_process(pc,
853 KAUTH_PROCESS_CANSIGNAL, cp, p->p_cred, p,
854 (void *)(unsigned long)signum) != 0)
855 continue;
856 nfound++;
857 if (signum && P_ZOMBIE(p) == 0)
858 kpsignal2(p, ksi, 1);
859 }
860 }
861 return (nfound ? 0 : ESRCH);
862 }
863
864 /*
865 * Send a signal to a process group.
866 */
867 void
868 gsignal(int pgid, int signum)
869 {
870 ksiginfo_t ksi;
871 KSI_INIT_EMPTY(&ksi);
872 ksi.ksi_signo = signum;
873 kgsignal(pgid, &ksi, NULL);
874 }
875
876 void
877 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
878 {
879 struct pgrp *pgrp;
880
881 if (pgid && (pgrp = pgfind(pgid)))
882 kpgsignal(pgrp, ksi, data, 0);
883 }
884
885 /*
886 * Send a signal to a process group. If checktty is 1,
887 * limit to members which have a controlling terminal.
888 */
889 void
890 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
891 {
892 ksiginfo_t ksi;
893 KSI_INIT_EMPTY(&ksi);
894 ksi.ksi_signo = sig;
895 kpgsignal(pgrp, &ksi, NULL, checkctty);
896 }
897
898 void
899 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
900 {
901 struct proc *p;
902
903 if (pgrp)
904 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
905 if (checkctty == 0 || p->p_flag & P_CONTROLT)
906 kpsignal(p, ksi, data);
907 }
908
909 /*
910 * Send a signal caused by a trap to the current process.
911 * If it will be caught immediately, deliver it with correct code.
912 * Otherwise, post it normally.
913 */
914 void
915 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
916 {
917 struct proc *p;
918 struct sigacts *ps;
919 int signum = ksi->ksi_signo;
920
921 KASSERT(KSI_TRAP_P(ksi));
922
923 p = l->l_proc;
924 ps = p->p_sigacts;
925 if ((p->p_flag & P_TRACED) == 0 &&
926 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
927 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
928 p->p_stats->p_ru.ru_nsignals++;
929 #ifdef KTRACE
930 if (KTRPOINT(p, KTR_PSIG))
931 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
932 &p->p_sigctx.ps_sigmask, ksi);
933 #endif
934 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
935 (void) splsched(); /* XXXSMP */
936 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
937 &p->p_sigctx.ps_sigmask);
938 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
939 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
940 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
941 sigaddset(&p->p_sigctx.ps_sigignore, signum);
942 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
943 }
944 (void) spl0(); /* XXXSMP */
945 } else {
946 p->p_sigctx.ps_lwp = l->l_lid;
947 /* XXX for core dump/debugger */
948 p->p_sigctx.ps_signo = ksi->ksi_signo;
949 p->p_sigctx.ps_code = ksi->ksi_trap;
950 kpsignal2(p, ksi, 1);
951 }
952 }
953
954 /*
955 * Fill in signal information and signal the parent for a child status change.
956 */
957 void
958 child_psignal(struct proc *p, int dolock)
959 {
960 ksiginfo_t ksi;
961
962 KSI_INIT(&ksi);
963 ksi.ksi_signo = SIGCHLD;
964 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
965 ksi.ksi_pid = p->p_pid;
966 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
967 ksi.ksi_status = p->p_xstat;
968 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
969 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
970 kpsignal2(p->p_pptr, &ksi, dolock);
971 }
972
973 /*
974 * Send the signal to the process. If the signal has an action, the action
975 * is usually performed by the target process rather than the caller; we add
976 * the signal to the set of pending signals for the process.
977 *
978 * Exceptions:
979 * o When a stop signal is sent to a sleeping process that takes the
980 * default action, the process is stopped without awakening it.
981 * o SIGCONT restarts stopped processes (or puts them back to sleep)
982 * regardless of the signal action (eg, blocked or ignored).
983 *
984 * Other ignored signals are discarded immediately.
985 *
986 * XXXSMP: Invoked as psignal() or sched_psignal().
987 */
988 void
989 psignal1(struct proc *p, int signum, int dolock)
990 {
991 ksiginfo_t ksi;
992
993 KSI_INIT_EMPTY(&ksi);
994 ksi.ksi_signo = signum;
995 kpsignal2(p, &ksi, dolock);
996 }
997
998 void
999 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1000 {
1001
1002 if ((p->p_flag & P_WEXIT) == 0 && data) {
1003 size_t fd;
1004 struct filedesc *fdp = p->p_fd;
1005
1006 ksi->ksi_fd = -1;
1007 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1008 struct file *fp = fdp->fd_ofiles[fd];
1009 /* XXX: lock? */
1010 if (fp && fp->f_data == data) {
1011 ksi->ksi_fd = fd;
1012 break;
1013 }
1014 }
1015 }
1016 kpsignal2(p, ksi, dolock);
1017 }
1018
1019 static void
1020 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1021 {
1022 struct lwp *l, *suspended = NULL;
1023 struct sadata_vp *vp;
1024 int s = 0, prop, allsusp;
1025 sig_t action;
1026 int signum = ksi->ksi_signo;
1027
1028 #ifdef DIAGNOSTIC
1029 if (signum <= 0 || signum >= NSIG)
1030 panic("psignal signal number %d", signum);
1031
1032 /* XXXSMP: works, but icky */
1033 if (dolock)
1034 SCHED_ASSERT_UNLOCKED();
1035 else
1036 SCHED_ASSERT_LOCKED();
1037 #endif
1038
1039 /*
1040 * Notify any interested parties in the signal.
1041 */
1042 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1043
1044 prop = sigprop[signum];
1045
1046 /*
1047 * If proc is traced, always give parent a chance.
1048 */
1049 if (p->p_flag & P_TRACED) {
1050 action = SIG_DFL;
1051
1052 /*
1053 * If the process is being traced and the signal is being
1054 * caught, make sure to save any ksiginfo.
1055 */
1056 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1057 ksiginfo_put(p, ksi);
1058 } else {
1059 /*
1060 * If the signal was the result of a trap, reset it
1061 * to default action if it's currently masked, so that it would
1062 * coredump immediatelly instead of spinning repeatedly
1063 * taking the signal.
1064 */
1065 if (KSI_TRAP_P(ksi)
1066 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1067 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1068 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1069 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1070 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1071 SIGACTION(p, signum).sa_handler = SIG_DFL;
1072 }
1073
1074 /*
1075 * If the signal is being ignored,
1076 * then we forget about it immediately.
1077 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1078 * and if it is set to SIG_IGN,
1079 * action will be SIG_DFL here.)
1080 */
1081 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1082 return;
1083 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1084 action = SIG_HOLD;
1085 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1086 action = SIG_CATCH;
1087 else {
1088 action = SIG_DFL;
1089
1090 if (prop & SA_KILL && p->p_nice > NZERO)
1091 p->p_nice = NZERO;
1092
1093 /*
1094 * If sending a tty stop signal to a member of an
1095 * orphaned process group, discard the signal here if
1096 * the action is default; don't stop the process below
1097 * if sleeping, and don't clear any pending SIGCONT.
1098 */
1099 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1100 return;
1101 }
1102 }
1103
1104 if (prop & SA_CONT)
1105 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1106
1107 if (prop & SA_STOP)
1108 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1109
1110 /*
1111 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1112 * please!), check if anything waits on it. If yes, save the
1113 * info into provided ps_sigwaited, and wake-up the waiter.
1114 * The signal won't be processed further here.
1115 */
1116 if ((prop & SA_CANTMASK) == 0
1117 && p->p_sigctx.ps_sigwaited
1118 && sigismember(p->p_sigctx.ps_sigwait, signum)
1119 && p->p_stat != SSTOP) {
1120 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1121 p->p_sigctx.ps_sigwaited = NULL;
1122 if (dolock)
1123 wakeup_one(&p->p_sigctx.ps_sigwait);
1124 else
1125 sched_wakeup(&p->p_sigctx.ps_sigwait);
1126 return;
1127 }
1128
1129 sigaddset(&p->p_sigctx.ps_siglist, signum);
1130
1131 /* CHECKSIGS() is "inlined" here. */
1132 p->p_sigctx.ps_sigcheck = 1;
1133
1134 /*
1135 * Defer further processing for signals which are held,
1136 * except that stopped processes must be continued by SIGCONT.
1137 */
1138 if (action == SIG_HOLD &&
1139 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1140 ksiginfo_put(p, ksi);
1141 return;
1142 }
1143 /* XXXSMP: works, but icky */
1144 if (dolock)
1145 SCHED_LOCK(s);
1146
1147 if (p->p_flag & P_SA) {
1148 allsusp = 0;
1149 l = NULL;
1150 if (p->p_stat == SACTIVE) {
1151 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1152 l = vp->savp_lwp;
1153 KDASSERT(l != NULL);
1154 if (l->l_flag & L_SA_IDLE) {
1155 /* wakeup idle LWP */
1156 goto found;
1157 /*NOTREACHED*/
1158 } else if (l->l_flag & L_SA_YIELD) {
1159 /* idle LWP is already waking up */
1160 goto out;
1161 /*NOTREACHED*/
1162 }
1163 }
1164 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1165 l = vp->savp_lwp;
1166 if (l->l_stat == LSRUN ||
1167 l->l_stat == LSONPROC) {
1168 signotify(p);
1169 goto out;
1170 /*NOTREACHED*/
1171 }
1172 if (l->l_stat == LSSLEEP &&
1173 l->l_flag & L_SINTR) {
1174 /* ok to signal vp lwp */
1175 break;
1176 } else
1177 l = NULL;
1178 }
1179 } else if (p->p_stat == SSTOP) {
1180 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1181 l = vp->savp_lwp;
1182 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1183 break;
1184 l = NULL;
1185 }
1186 }
1187 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1188 /*
1189 * At least one LWP is running or on a run queue.
1190 * The signal will be noticed when one of them returns
1191 * to userspace.
1192 */
1193 signotify(p);
1194 /*
1195 * The signal will be noticed very soon.
1196 */
1197 goto out;
1198 /*NOTREACHED*/
1199 } else {
1200 /*
1201 * Find out if any of the sleeps are interruptable,
1202 * and if all the live LWPs remaining are suspended.
1203 */
1204 allsusp = 1;
1205 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1206 if (l->l_stat == LSSLEEP &&
1207 l->l_flag & L_SINTR)
1208 break;
1209 if (l->l_stat == LSSUSPENDED)
1210 suspended = l;
1211 else if ((l->l_stat != LSZOMB) &&
1212 (l->l_stat != LSDEAD))
1213 allsusp = 0;
1214 }
1215 }
1216
1217 found:
1218 switch (p->p_stat) {
1219 case SACTIVE:
1220
1221 if (l != NULL && (p->p_flag & P_TRACED))
1222 goto run;
1223
1224 /*
1225 * If SIGCONT is default (or ignored) and process is
1226 * asleep, we are finished; the process should not
1227 * be awakened.
1228 */
1229 if ((prop & SA_CONT) && action == SIG_DFL) {
1230 sigdelset(&p->p_sigctx.ps_siglist, signum);
1231 goto done;
1232 }
1233
1234 /*
1235 * When a sleeping process receives a stop
1236 * signal, process immediately if possible.
1237 */
1238 if ((prop & SA_STOP) && action == SIG_DFL) {
1239 /*
1240 * If a child holding parent blocked,
1241 * stopping could cause deadlock.
1242 */
1243 if (p->p_flag & P_PPWAIT) {
1244 goto out;
1245 }
1246 sigdelset(&p->p_sigctx.ps_siglist, signum);
1247 p->p_xstat = signum;
1248 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1249 /*
1250 * XXXSMP: recursive call; don't lock
1251 * the second time around.
1252 */
1253 child_psignal(p, 0);
1254 }
1255 proc_stop(p, 1); /* XXXSMP: recurse? */
1256 goto done;
1257 }
1258
1259 if (l == NULL) {
1260 /*
1261 * Special case: SIGKILL of a process
1262 * which is entirely composed of
1263 * suspended LWPs should succeed. We
1264 * make this happen by unsuspending one of
1265 * them.
1266 */
1267 if (allsusp && (signum == SIGKILL)) {
1268 lwp_continue(suspended);
1269 }
1270 goto done;
1271 }
1272 /*
1273 * All other (caught or default) signals
1274 * cause the process to run.
1275 */
1276 goto runfast;
1277 /*NOTREACHED*/
1278 case SSTOP:
1279 /* Process is stopped */
1280 /*
1281 * If traced process is already stopped,
1282 * then no further action is necessary.
1283 */
1284 if (p->p_flag & P_TRACED)
1285 goto done;
1286
1287 /*
1288 * Kill signal always sets processes running,
1289 * if possible.
1290 */
1291 if (signum == SIGKILL) {
1292 l = proc_unstop(p);
1293 if (l)
1294 goto runfast;
1295 goto done;
1296 }
1297
1298 if (prop & SA_CONT) {
1299 /*
1300 * If SIGCONT is default (or ignored),
1301 * we continue the process but don't
1302 * leave the signal in ps_siglist, as
1303 * it has no further action. If
1304 * SIGCONT is held, we continue the
1305 * process and leave the signal in
1306 * ps_siglist. If the process catches
1307 * SIGCONT, let it handle the signal
1308 * itself. If it isn't waiting on an
1309 * event, then it goes back to run
1310 * state. Otherwise, process goes
1311 * back to sleep state.
1312 */
1313 if (action == SIG_DFL)
1314 sigdelset(&p->p_sigctx.ps_siglist,
1315 signum);
1316 l = proc_unstop(p);
1317 if (l && (action == SIG_CATCH))
1318 goto runfast;
1319 goto out;
1320 }
1321
1322 if (prop & SA_STOP) {
1323 /*
1324 * Already stopped, don't need to stop again.
1325 * (If we did the shell could get confused.)
1326 */
1327 sigdelset(&p->p_sigctx.ps_siglist, signum);
1328 goto done;
1329 }
1330
1331 /*
1332 * If a lwp is sleeping interruptibly, then
1333 * wake it up; it will run until the kernel
1334 * boundary, where it will stop in issignal(),
1335 * since p->p_stat is still SSTOP. When the
1336 * process is continued, it will be made
1337 * runnable and can look at the signal.
1338 */
1339 if (l)
1340 goto run;
1341 goto out;
1342 case SIDL:
1343 /* Process is being created by fork */
1344 /* XXX: We are not ready to receive signals yet */
1345 goto done;
1346 default:
1347 /* Else what? */
1348 panic("psignal: Invalid process state %d.", p->p_stat);
1349 }
1350 /*NOTREACHED*/
1351
1352 runfast:
1353 if (action == SIG_CATCH) {
1354 ksiginfo_put(p, ksi);
1355 action = SIG_HOLD;
1356 }
1357 /*
1358 * Raise priority to at least PUSER.
1359 */
1360 if (l->l_priority > PUSER)
1361 l->l_priority = PUSER;
1362 run:
1363 if (action == SIG_CATCH) {
1364 ksiginfo_put(p, ksi);
1365 action = SIG_HOLD;
1366 }
1367
1368 setrunnable(l); /* XXXSMP: recurse? */
1369 out:
1370 if (action == SIG_CATCH)
1371 ksiginfo_put(p, ksi);
1372 done:
1373 /* XXXSMP: works, but icky */
1374 if (dolock)
1375 SCHED_UNLOCK(s);
1376 }
1377
1378 siginfo_t *
1379 siginfo_alloc(int flags)
1380 {
1381
1382 return pool_get(&siginfo_pool, flags);
1383 }
1384
1385 void
1386 siginfo_free(void *arg)
1387 {
1388
1389 pool_put(&siginfo_pool, arg);
1390 }
1391
1392 void
1393 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1394 {
1395 struct proc *p = l->l_proc;
1396 struct lwp *le, *li;
1397 siginfo_t *si;
1398 int f;
1399
1400 if (p->p_flag & P_SA) {
1401
1402 /* XXXUPSXXX What if not on sa_vp ? */
1403
1404 f = l->l_flag & L_SA;
1405 l->l_flag &= ~L_SA;
1406 si = siginfo_alloc(PR_WAITOK);
1407 si->_info = ksi->ksi_info;
1408 le = li = NULL;
1409 if (KSI_TRAP_P(ksi))
1410 le = l;
1411 else
1412 li = l;
1413 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1414 sizeof(*si), si, siginfo_free) != 0) {
1415 siginfo_free(si);
1416 if (KSI_TRAP_P(ksi))
1417 /* XXX What do we do here?? */;
1418 }
1419 l->l_flag |= f;
1420 return;
1421 }
1422
1423 (*p->p_emul->e_sendsig)(ksi, mask);
1424 }
1425
1426 static inline int firstsig(const sigset_t *);
1427
1428 static inline int
1429 firstsig(const sigset_t *ss)
1430 {
1431 int sig;
1432
1433 sig = ffs(ss->__bits[0]);
1434 if (sig != 0)
1435 return (sig);
1436 #if NSIG > 33
1437 sig = ffs(ss->__bits[1]);
1438 if (sig != 0)
1439 return (sig + 32);
1440 #endif
1441 #if NSIG > 65
1442 sig = ffs(ss->__bits[2]);
1443 if (sig != 0)
1444 return (sig + 64);
1445 #endif
1446 #if NSIG > 97
1447 sig = ffs(ss->__bits[3]);
1448 if (sig != 0)
1449 return (sig + 96);
1450 #endif
1451 return (0);
1452 }
1453
1454 /*
1455 * If the current process has received a signal (should be caught or cause
1456 * termination, should interrupt current syscall), return the signal number.
1457 * Stop signals with default action are processed immediately, then cleared;
1458 * they aren't returned. This is checked after each entry to the system for
1459 * a syscall or trap (though this can usually be done without calling issignal
1460 * by checking the pending signal masks in the CURSIG macro.) The normal call
1461 * sequence is
1462 *
1463 * while (signum = CURSIG(curlwp))
1464 * postsig(signum);
1465 */
1466 int
1467 issignal(struct lwp *l)
1468 {
1469 struct proc *p = l->l_proc;
1470 int s = 0, signum, prop;
1471 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1472 sigset_t ss;
1473
1474 /* Bail out if we do not own the virtual processor */
1475 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1476 return 0;
1477
1478 if (p->p_stat == SSTOP) {
1479 /*
1480 * The process is stopped/stopping. Stop ourselves now that
1481 * we're on the kernel/userspace boundary.
1482 */
1483 if (dolock)
1484 SCHED_LOCK(s);
1485 l->l_stat = LSSTOP;
1486 p->p_nrlwps--;
1487 if (p->p_flag & P_TRACED)
1488 goto sigtraceswitch;
1489 else
1490 goto sigswitch;
1491 }
1492 for (;;) {
1493 sigpending1(p, &ss);
1494 if (p->p_flag & P_PPWAIT)
1495 sigminusset(&stopsigmask, &ss);
1496 signum = firstsig(&ss);
1497 if (signum == 0) { /* no signal to send */
1498 p->p_sigctx.ps_sigcheck = 0;
1499 if (locked && dolock)
1500 SCHED_LOCK(s);
1501 return (0);
1502 }
1503 /* take the signal! */
1504 sigdelset(&p->p_sigctx.ps_siglist, signum);
1505
1506 /*
1507 * We should see pending but ignored signals
1508 * only if P_TRACED was on when they were posted.
1509 */
1510 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1511 (p->p_flag & P_TRACED) == 0)
1512 continue;
1513
1514 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1515 /*
1516 * If traced, always stop, and stay
1517 * stopped until released by the debugger.
1518 */
1519 p->p_xstat = signum;
1520
1521 /* Emulation-specific handling of signal trace */
1522 if ((p->p_emul->e_tracesig != NULL) &&
1523 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1524 goto childresumed;
1525
1526 if ((p->p_flag & P_FSTRACE) == 0)
1527 child_psignal(p, dolock);
1528 if (dolock)
1529 SCHED_LOCK(s);
1530 proc_stop(p, 1);
1531 sigtraceswitch:
1532 mi_switch(l, NULL);
1533 SCHED_ASSERT_UNLOCKED();
1534 if (dolock)
1535 splx(s);
1536 else
1537 dolock = 1;
1538
1539 childresumed:
1540 /*
1541 * If we are no longer being traced, or the parent
1542 * didn't give us a signal, look for more signals.
1543 */
1544 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1545 continue;
1546
1547 /*
1548 * If the new signal is being masked, look for other
1549 * signals.
1550 */
1551 signum = p->p_xstat;
1552 p->p_xstat = 0;
1553 /*
1554 * `p->p_sigctx.ps_siglist |= mask' is done
1555 * in setrunnable().
1556 */
1557 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1558 continue;
1559 /* take the signal! */
1560 sigdelset(&p->p_sigctx.ps_siglist, signum);
1561 }
1562
1563 prop = sigprop[signum];
1564
1565 /*
1566 * Decide whether the signal should be returned.
1567 * Return the signal's number, or fall through
1568 * to clear it from the pending mask.
1569 */
1570 switch ((long)SIGACTION(p, signum).sa_handler) {
1571
1572 case (long)SIG_DFL:
1573 /*
1574 * Don't take default actions on system processes.
1575 */
1576 if (p->p_pid <= 1) {
1577 #ifdef DIAGNOSTIC
1578 /*
1579 * Are you sure you want to ignore SIGSEGV
1580 * in init? XXX
1581 */
1582 printf("Process (pid %d) got signal %d\n",
1583 p->p_pid, signum);
1584 #endif
1585 break; /* == ignore */
1586 }
1587 /*
1588 * If there is a pending stop signal to process
1589 * with default action, stop here,
1590 * then clear the signal. However,
1591 * if process is member of an orphaned
1592 * process group, ignore tty stop signals.
1593 */
1594 if (prop & SA_STOP) {
1595 if (p->p_flag & P_TRACED ||
1596 (p->p_pgrp->pg_jobc == 0 &&
1597 prop & SA_TTYSTOP))
1598 break; /* == ignore */
1599 p->p_xstat = signum;
1600 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1601 child_psignal(p, dolock);
1602 if (dolock)
1603 SCHED_LOCK(s);
1604 proc_stop(p, 1);
1605 sigswitch:
1606 mi_switch(l, NULL);
1607 SCHED_ASSERT_UNLOCKED();
1608 if (dolock)
1609 splx(s);
1610 else
1611 dolock = 1;
1612 break;
1613 } else if (prop & SA_IGNORE) {
1614 /*
1615 * Except for SIGCONT, shouldn't get here.
1616 * Default action is to ignore; drop it.
1617 */
1618 break; /* == ignore */
1619 } else
1620 goto keep;
1621 /*NOTREACHED*/
1622
1623 case (long)SIG_IGN:
1624 /*
1625 * Masking above should prevent us ever trying
1626 * to take action on an ignored signal other
1627 * than SIGCONT, unless process is traced.
1628 */
1629 #ifdef DEBUG_ISSIGNAL
1630 if ((prop & SA_CONT) == 0 &&
1631 (p->p_flag & P_TRACED) == 0)
1632 printf("issignal\n");
1633 #endif
1634 break; /* == ignore */
1635
1636 default:
1637 /*
1638 * This signal has an action, let
1639 * postsig() process it.
1640 */
1641 goto keep;
1642 }
1643 }
1644 /* NOTREACHED */
1645
1646 keep:
1647 /* leave the signal for later */
1648 sigaddset(&p->p_sigctx.ps_siglist, signum);
1649 CHECKSIGS(p);
1650 if (locked && dolock)
1651 SCHED_LOCK(s);
1652 return (signum);
1653 }
1654
1655 /*
1656 * Put the argument process into the stopped state and notify the parent
1657 * via wakeup. Signals are handled elsewhere. The process must not be
1658 * on the run queue.
1659 */
1660 void
1661 proc_stop(struct proc *p, int dowakeup)
1662 {
1663 struct lwp *l;
1664 struct proc *parent;
1665 struct sadata_vp *vp;
1666
1667 SCHED_ASSERT_LOCKED();
1668
1669 /* XXX lock process LWP state */
1670 p->p_flag &= ~P_WAITED;
1671 p->p_stat = SSTOP;
1672 parent = p->p_pptr;
1673 parent->p_nstopchild++;
1674
1675 if (p->p_flag & P_SA) {
1676 /*
1677 * Only (try to) put the LWP on the VP in stopped
1678 * state.
1679 * All other LWPs will suspend in sa_setwoken()
1680 * because the VP-LWP in stopped state cannot be
1681 * repossessed.
1682 */
1683 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1684 l = vp->savp_lwp;
1685 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1686 l->l_stat = LSSTOP;
1687 p->p_nrlwps--;
1688 } else if (l->l_stat == LSRUN) {
1689 /* Remove LWP from the run queue */
1690 remrunqueue(l);
1691 l->l_stat = LSSTOP;
1692 p->p_nrlwps--;
1693 } else if (l->l_stat == LSSLEEP &&
1694 l->l_flag & L_SA_IDLE) {
1695 l->l_flag &= ~L_SA_IDLE;
1696 l->l_stat = LSSTOP;
1697 }
1698 }
1699 goto out;
1700 }
1701
1702 /*
1703 * Put as many LWP's as possible in stopped state.
1704 * Sleeping ones will notice the stopped state as they try to
1705 * return to userspace.
1706 */
1707
1708 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1709 if (l->l_stat == LSONPROC) {
1710 /* XXX SMP this assumes that a LWP that is LSONPROC
1711 * is curlwp and hence is about to be mi_switched
1712 * away; the only callers of proc_stop() are:
1713 * - psignal
1714 * - issignal()
1715 * For the former, proc_stop() is only called when
1716 * no processes are running, so we don't worry.
1717 * For the latter, proc_stop() is called right
1718 * before mi_switch().
1719 */
1720 l->l_stat = LSSTOP;
1721 p->p_nrlwps--;
1722 } else if (l->l_stat == LSRUN) {
1723 /* Remove LWP from the run queue */
1724 remrunqueue(l);
1725 l->l_stat = LSSTOP;
1726 p->p_nrlwps--;
1727 } else if ((l->l_stat == LSSLEEP) ||
1728 (l->l_stat == LSSUSPENDED) ||
1729 (l->l_stat == LSZOMB) ||
1730 (l->l_stat == LSDEAD)) {
1731 /*
1732 * Don't do anything; let sleeping LWPs
1733 * discover the stopped state of the process
1734 * on their way out of the kernel; otherwise,
1735 * things like NFS threads that sleep with
1736 * locks will block the rest of the system
1737 * from getting any work done.
1738 *
1739 * Suspended/dead/zombie LWPs aren't going
1740 * anywhere, so we don't need to touch them.
1741 */
1742 }
1743 #ifdef DIAGNOSTIC
1744 else {
1745 panic("proc_stop: process %d lwp %d "
1746 "in unstoppable state %d.\n",
1747 p->p_pid, l->l_lid, l->l_stat);
1748 }
1749 #endif
1750 }
1751
1752 out:
1753 /* XXX unlock process LWP state */
1754
1755 if (dowakeup)
1756 sched_wakeup((caddr_t)p->p_pptr);
1757 }
1758
1759 /*
1760 * Given a process in state SSTOP, set the state back to SACTIVE and
1761 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1762 *
1763 * If no LWPs ended up runnable (and therefore able to take a signal),
1764 * return a LWP that is sleeping interruptably. The caller can wake
1765 * that LWP up to take a signal.
1766 */
1767 struct lwp *
1768 proc_unstop(struct proc *p)
1769 {
1770 struct lwp *l, *lr = NULL;
1771 struct sadata_vp *vp;
1772 int cantake = 0;
1773
1774 SCHED_ASSERT_LOCKED();
1775
1776 /*
1777 * Our caller wants to be informed if there are only sleeping
1778 * and interruptable LWPs left after we have run so that it
1779 * can invoke setrunnable() if required - return one of the
1780 * interruptable LWPs if this is the case.
1781 */
1782
1783 if (!(p->p_flag & P_WAITED))
1784 p->p_pptr->p_nstopchild--;
1785 p->p_stat = SACTIVE;
1786 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1787 if (l->l_stat == LSRUN) {
1788 lr = NULL;
1789 cantake = 1;
1790 }
1791 if (l->l_stat != LSSTOP)
1792 continue;
1793
1794 if (l->l_wchan != NULL) {
1795 l->l_stat = LSSLEEP;
1796 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1797 lr = l;
1798 cantake = 1;
1799 }
1800 } else {
1801 setrunnable(l);
1802 lr = NULL;
1803 cantake = 1;
1804 }
1805 }
1806 if (p->p_flag & P_SA) {
1807 /* Only consider returning the LWP on the VP. */
1808 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1809 lr = vp->savp_lwp;
1810 if (lr->l_stat == LSSLEEP) {
1811 if (lr->l_flag & L_SA_YIELD) {
1812 setrunnable(lr);
1813 break;
1814 } else if (lr->l_flag & L_SINTR)
1815 return lr;
1816 }
1817 }
1818 return NULL;
1819 }
1820 return lr;
1821 }
1822
1823 /*
1824 * Take the action for the specified signal
1825 * from the current set of pending signals.
1826 */
1827 void
1828 postsig(int signum)
1829 {
1830 struct lwp *l;
1831 struct proc *p;
1832 struct sigacts *ps;
1833 sig_t action;
1834 sigset_t *returnmask;
1835
1836 l = curlwp;
1837 p = l->l_proc;
1838 ps = p->p_sigacts;
1839 #ifdef DIAGNOSTIC
1840 if (signum == 0)
1841 panic("postsig");
1842 #endif
1843
1844 KERNEL_PROC_LOCK(l);
1845
1846 #ifdef MULTIPROCESSOR
1847 /*
1848 * On MP, issignal() can return the same signal to multiple
1849 * LWPs. The LWPs will block above waiting for the kernel
1850 * lock and the first LWP which gets through will then remove
1851 * the signal from ps_siglist. All other LWPs exit here.
1852 */
1853 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1854 KERNEL_PROC_UNLOCK(l);
1855 return;
1856 }
1857 #endif
1858 sigdelset(&p->p_sigctx.ps_siglist, signum);
1859 action = SIGACTION_PS(ps, signum).sa_handler;
1860 if (action == SIG_DFL) {
1861 #ifdef KTRACE
1862 if (KTRPOINT(p, KTR_PSIG))
1863 ktrpsig(l, signum, action,
1864 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1865 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1866 NULL);
1867 #endif
1868 /*
1869 * Default action, where the default is to kill
1870 * the process. (Other cases were ignored above.)
1871 */
1872 sigexit(l, signum);
1873 /* NOTREACHED */
1874 } else {
1875 ksiginfo_t *ksi;
1876 /*
1877 * If we get here, the signal must be caught.
1878 */
1879 #ifdef DIAGNOSTIC
1880 if (action == SIG_IGN ||
1881 sigismember(&p->p_sigctx.ps_sigmask, signum))
1882 panic("postsig action");
1883 #endif
1884 /*
1885 * Set the new mask value and also defer further
1886 * occurrences of this signal.
1887 *
1888 * Special case: user has done a sigpause. Here the
1889 * current mask is not of interest, but rather the
1890 * mask from before the sigpause is what we want
1891 * restored after the signal processing is completed.
1892 */
1893 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1894 returnmask = &p->p_sigctx.ps_oldmask;
1895 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1896 } else
1897 returnmask = &p->p_sigctx.ps_sigmask;
1898 p->p_stats->p_ru.ru_nsignals++;
1899 ksi = ksiginfo_get(p, signum);
1900 #ifdef KTRACE
1901 if (KTRPOINT(p, KTR_PSIG))
1902 ktrpsig(l, signum, action,
1903 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1904 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1905 ksi);
1906 #endif
1907 if (ksi == NULL) {
1908 ksiginfo_t ksi1;
1909 /*
1910 * we did not save any siginfo for this, either
1911 * because the signal was not caught, or because the
1912 * user did not request SA_SIGINFO
1913 */
1914 KSI_INIT_EMPTY(&ksi1);
1915 ksi1.ksi_signo = signum;
1916 kpsendsig(l, &ksi1, returnmask);
1917 } else {
1918 kpsendsig(l, ksi, returnmask);
1919 pool_put(&ksiginfo_pool, ksi);
1920 }
1921 p->p_sigctx.ps_lwp = 0;
1922 p->p_sigctx.ps_code = 0;
1923 p->p_sigctx.ps_signo = 0;
1924 (void) splsched(); /* XXXSMP */
1925 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1926 &p->p_sigctx.ps_sigmask);
1927 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1928 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1929 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1930 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1931 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1932 }
1933 (void) spl0(); /* XXXSMP */
1934 }
1935
1936 KERNEL_PROC_UNLOCK(l);
1937 }
1938
1939 /*
1940 * Kill the current process for stated reason.
1941 */
1942 void
1943 killproc(struct proc *p, const char *why)
1944 {
1945 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1946 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1947 psignal(p, SIGKILL);
1948 }
1949
1950 /*
1951 * Force the current process to exit with the specified signal, dumping core
1952 * if appropriate. We bypass the normal tests for masked and caught signals,
1953 * allowing unrecoverable failures to terminate the process without changing
1954 * signal state. Mark the accounting record with the signal termination.
1955 * If dumping core, save the signal number for the debugger. Calls exit and
1956 * does not return.
1957 */
1958
1959 #if defined(DEBUG)
1960 int kern_logsigexit = 1; /* not static to make public for sysctl */
1961 #else
1962 int kern_logsigexit = 0; /* not static to make public for sysctl */
1963 #endif
1964
1965 static const char logcoredump[] =
1966 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1967 static const char lognocoredump[] =
1968 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1969
1970 /* Wrapper function for use in p_userret */
1971 static void
1972 lwp_coredump_hook(struct lwp *l, void *arg)
1973 {
1974 int s;
1975
1976 /*
1977 * Suspend ourselves, so that the kernel stack and therefore
1978 * the userland registers saved in the trapframe are around
1979 * for coredump() to write them out.
1980 */
1981 KERNEL_PROC_LOCK(l);
1982 l->l_flag &= ~L_DETACHED;
1983 SCHED_LOCK(s);
1984 l->l_stat = LSSUSPENDED;
1985 l->l_proc->p_nrlwps--;
1986 /* XXX NJWLWP check if this makes sense here: */
1987 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1988 mi_switch(l, NULL);
1989 SCHED_ASSERT_UNLOCKED();
1990 splx(s);
1991
1992 lwp_exit(l);
1993 }
1994
1995 void
1996 sigexit(struct lwp *l, int signum)
1997 {
1998 struct proc *p;
1999 #if 0
2000 struct lwp *l2;
2001 #endif
2002 int error, exitsig;
2003
2004 p = l->l_proc;
2005
2006 /*
2007 * Don't permit coredump() or exit1() multiple times
2008 * in the same process.
2009 */
2010 if (p->p_flag & P_WEXIT) {
2011 KERNEL_PROC_UNLOCK(l);
2012 (*p->p_userret)(l, p->p_userret_arg);
2013 }
2014 p->p_flag |= P_WEXIT;
2015 /* We don't want to switch away from exiting. */
2016 /* XXX multiprocessor: stop LWPs on other processors. */
2017 #if 0
2018 if (p->p_flag & P_SA) {
2019 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2020 l2->l_flag &= ~L_SA;
2021 p->p_flag &= ~P_SA;
2022 }
2023 #endif
2024
2025 /* Make other LWPs stick around long enough to be dumped */
2026 p->p_userret = lwp_coredump_hook;
2027 p->p_userret_arg = NULL;
2028
2029 exitsig = signum;
2030 p->p_acflag |= AXSIG;
2031 if (sigprop[signum] & SA_CORE) {
2032 p->p_sigctx.ps_signo = signum;
2033 if ((error = coredump(l, NULL)) == 0)
2034 exitsig |= WCOREFLAG;
2035
2036 if (kern_logsigexit) {
2037 /* XXX What if we ever have really large UIDs? */
2038 int uid = p->p_cred && p->p_cred ?
2039 (int) kauth_cred_geteuid(p->p_cred) : -1;
2040
2041 if (error)
2042 log(LOG_INFO, lognocoredump, p->p_pid,
2043 p->p_comm, uid, signum, error);
2044 else
2045 log(LOG_INFO, logcoredump, p->p_pid,
2046 p->p_comm, uid, signum);
2047 }
2048
2049 }
2050
2051 exit1(l, W_EXITCODE(0, exitsig));
2052 /* NOTREACHED */
2053 }
2054
2055 struct coredump_iostate {
2056 struct lwp *io_lwp;
2057 struct vnode *io_vp;
2058 kauth_cred_t io_cred;
2059 off_t io_offset;
2060 };
2061
2062 int
2063 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2064 {
2065 struct coredump_iostate *io = cookie;
2066 int error;
2067
2068 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2069 io->io_offset, segflg,
2070 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2071 segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2072 if (error) {
2073 printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2074 io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2075 segflg == UIO_USERSPACE ? "user" : "system",
2076 len, data, (long long) io->io_offset, error);
2077 return (error);
2078 }
2079
2080 io->io_offset += len;
2081 return (0);
2082 }
2083
2084 /*
2085 * Dump core, into a file named "progname.core" or "core" (depending on the
2086 * value of shortcorename), unless the process was setuid/setgid.
2087 */
2088 int
2089 coredump(struct lwp *l, const char *pattern)
2090 {
2091 struct vnode *vp;
2092 struct proc *p;
2093 struct vmspace *vm;
2094 kauth_cred_t cred;
2095 struct nameidata nd;
2096 struct vattr vattr;
2097 struct mount *mp;
2098 struct coredump_iostate io;
2099 int error, error1;
2100 char *name = NULL;
2101
2102 p = l->l_proc;
2103 vm = p->p_vmspace;
2104 cred = p->p_cred;
2105
2106 /*
2107 * Make sure the process has not set-id, to prevent data leaks,
2108 * unless it was specifically requested to allow set-id coredumps.
2109 */
2110 if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2111 return EPERM;
2112
2113 /*
2114 * Refuse to core if the data + stack + user size is larger than
2115 * the core dump limit. XXX THIS IS WRONG, because of mapped
2116 * data.
2117 */
2118 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2119 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2120 return EFBIG; /* better error code? */
2121
2122 restart:
2123 /*
2124 * The core dump will go in the current working directory. Make
2125 * sure that the directory is still there and that the mount flags
2126 * allow us to write core dumps there.
2127 */
2128 vp = p->p_cwdi->cwdi_cdir;
2129 if (vp->v_mount == NULL ||
2130 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2131 error = EPERM;
2132 goto done;
2133 }
2134
2135 if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2136 pattern = security_setidcore_path;
2137
2138 if (pattern == NULL)
2139 pattern = p->p_limit->pl_corename;
2140 if (name == NULL) {
2141 name = PNBUF_GET();
2142 }
2143 if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2144 goto done;
2145 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2146 if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2147 S_IRUSR | S_IWUSR)) != 0)
2148 goto done;
2149 vp = nd.ni_vp;
2150
2151 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2152 VOP_UNLOCK(vp, 0);
2153 if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2154 goto done;
2155 if ((error = vn_start_write(NULL, &mp,
2156 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2157 goto done;
2158 goto restart;
2159 }
2160
2161 /* Don't dump to non-regular files or files with links. */
2162 if (vp->v_type != VREG ||
2163 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2164 error = EINVAL;
2165 goto out;
2166 }
2167 VATTR_NULL(&vattr);
2168 vattr.va_size = 0;
2169
2170 if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2171 vattr.va_uid = security_setidcore_owner;
2172 vattr.va_gid = security_setidcore_group;
2173 vattr.va_mode = security_setidcore_mode;
2174 }
2175
2176 VOP_LEASE(vp, l, cred, LEASE_WRITE);
2177 VOP_SETATTR(vp, &vattr, cred, l);
2178 p->p_acflag |= ACORE;
2179
2180 io.io_lwp = l;
2181 io.io_vp = vp;
2182 io.io_cred = cred;
2183 io.io_offset = 0;
2184
2185 /* Now dump the actual core file. */
2186 error = (*p->p_execsw->es_coredump)(l, &io);
2187 out:
2188 VOP_UNLOCK(vp, 0);
2189 vn_finished_write(mp, 0);
2190 error1 = vn_close(vp, FWRITE, cred, l);
2191 if (error == 0)
2192 error = error1;
2193 done:
2194 if (name != NULL)
2195 PNBUF_PUT(name);
2196 return error;
2197 }
2198
2199 /*
2200 * Nonexistent system call-- signal process (may want to handle it).
2201 * Flag error in case process won't see signal immediately (blocked or ignored).
2202 */
2203 /* ARGSUSED */
2204 int
2205 sys_nosys(struct lwp *l, void *v, register_t *retval)
2206 {
2207 struct proc *p;
2208
2209 p = l->l_proc;
2210 psignal(p, SIGSYS);
2211 return (ENOSYS);
2212 }
2213
2214 static int
2215 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2216 {
2217 const char *s;
2218 char *d, *end;
2219 int i;
2220
2221 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2222 if (*s == '%') {
2223 switch (*(s + 1)) {
2224 case 'n':
2225 i = snprintf(d, end - d, "%s", p->p_comm);
2226 break;
2227 case 'p':
2228 i = snprintf(d, end - d, "%d", p->p_pid);
2229 break;
2230 case 'u':
2231 i = snprintf(d, end - d, "%.*s",
2232 (int)sizeof p->p_pgrp->pg_session->s_login,
2233 p->p_pgrp->pg_session->s_login);
2234 break;
2235 case 't':
2236 i = snprintf(d, end - d, "%ld",
2237 p->p_stats->p_start.tv_sec);
2238 break;
2239 default:
2240 goto copy;
2241 }
2242 d += i;
2243 s++;
2244 } else {
2245 copy: *d = *s;
2246 d++;
2247 }
2248 if (d >= end)
2249 return (ENAMETOOLONG);
2250 }
2251 *d = '\0';
2252 return 0;
2253 }
2254
2255 void
2256 getucontext(struct lwp *l, ucontext_t *ucp)
2257 {
2258 struct proc *p;
2259
2260 p = l->l_proc;
2261
2262 ucp->uc_flags = 0;
2263 ucp->uc_link = l->l_ctxlink;
2264
2265 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2266 ucp->uc_flags |= _UC_SIGMASK;
2267
2268 /*
2269 * The (unsupplied) definition of the `current execution stack'
2270 * in the System V Interface Definition appears to allow returning
2271 * the main context stack.
2272 */
2273 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2274 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2275 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2276 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2277 } else {
2278 /* Simply copy alternate signal execution stack. */
2279 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2280 }
2281 ucp->uc_flags |= _UC_STACK;
2282
2283 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2284 }
2285
2286 /* ARGSUSED */
2287 int
2288 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2289 {
2290 struct sys_getcontext_args /* {
2291 syscallarg(struct __ucontext *) ucp;
2292 } */ *uap = v;
2293 ucontext_t uc;
2294
2295 getucontext(l, &uc);
2296
2297 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2298 }
2299
2300 int
2301 setucontext(struct lwp *l, const ucontext_t *ucp)
2302 {
2303 struct proc *p;
2304 int error;
2305
2306 p = l->l_proc;
2307 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2308 return (error);
2309 l->l_ctxlink = ucp->uc_link;
2310
2311 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2312 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2313
2314 /*
2315 * If there was stack information, update whether or not we are
2316 * still running on an alternate signal stack.
2317 */
2318 if ((ucp->uc_flags & _UC_STACK) != 0) {
2319 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2320 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2321 else
2322 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2323 }
2324
2325 return 0;
2326 }
2327
2328 /* ARGSUSED */
2329 int
2330 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2331 {
2332 struct sys_setcontext_args /* {
2333 syscallarg(const ucontext_t *) ucp;
2334 } */ *uap = v;
2335 ucontext_t uc;
2336 int error;
2337
2338 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2339 exit1(l, W_EXITCODE(0, 0));
2340 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2341 (error = setucontext(l, &uc)) != 0)
2342 return (error);
2343
2344 return (EJUSTRETURN);
2345 }
2346
2347 /*
2348 * sigtimedwait(2) system call, used also for implementation
2349 * of sigwaitinfo() and sigwait().
2350 *
2351 * This only handles single LWP in signal wait. libpthread provides
2352 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2353 */
2354 int
2355 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2356 {
2357 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2358 }
2359
2360 int
2361 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2362 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2363 {
2364 struct sys___sigtimedwait_args /* {
2365 syscallarg(const sigset_t *) set;
2366 syscallarg(siginfo_t *) info;
2367 syscallarg(struct timespec *) timeout;
2368 } */ *uap = v;
2369 sigset_t *waitset, twaitset;
2370 struct proc *p = l->l_proc;
2371 int error, signum;
2372 int timo = 0;
2373 struct timespec ts, tsstart;
2374 ksiginfo_t *ksi;
2375
2376 memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */
2377
2378 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2379
2380 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2381 FREE(waitset, M_TEMP);
2382 return (error);
2383 }
2384
2385 /*
2386 * Silently ignore SA_CANTMASK signals. psignal1() would
2387 * ignore SA_CANTMASK signals in waitset, we do this
2388 * only for the below siglist check.
2389 */
2390 sigminusset(&sigcantmask, waitset);
2391
2392 /*
2393 * First scan siglist and check if there is signal from
2394 * our waitset already pending.
2395 */
2396 twaitset = *waitset;
2397 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2398 if ((signum = firstsig(&twaitset))) {
2399 /* found pending signal */
2400 sigdelset(&p->p_sigctx.ps_siglist, signum);
2401 ksi = ksiginfo_get(p, signum);
2402 if (!ksi) {
2403 /* No queued siginfo, manufacture one */
2404 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2405 KSI_INIT(ksi);
2406 ksi->ksi_info._signo = signum;
2407 ksi->ksi_info._code = SI_USER;
2408 }
2409
2410 goto sig;
2411 }
2412
2413 /*
2414 * Calculate timeout, if it was specified.
2415 */
2416 if (SCARG(uap, timeout)) {
2417 uint64_t ms;
2418
2419 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2420 return (error);
2421
2422 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2423 timo = mstohz(ms);
2424 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2425 timo = 1;
2426 if (timo <= 0)
2427 return (EAGAIN);
2428
2429 /*
2430 * Remember current uptime, it would be used in
2431 * ECANCELED/ERESTART case.
2432 */
2433 getnanouptime(&tsstart);
2434 }
2435
2436 /*
2437 * Setup ps_sigwait list. Pass pointer to malloced memory
2438 * here; it's not possible to pass pointer to a structure
2439 * on current process's stack, the current process might
2440 * be swapped out at the time the signal would get delivered.
2441 */
2442 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2443 p->p_sigctx.ps_sigwaited = ksi;
2444 p->p_sigctx.ps_sigwait = waitset;
2445
2446 /*
2447 * Wait for signal to arrive. We can either be woken up or
2448 * time out.
2449 */
2450 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2451
2452 /*
2453 * Need to find out if we woke as a result of lwp_wakeup()
2454 * or a signal outside our wait set.
2455 */
2456 if (error == EINTR && p->p_sigctx.ps_sigwaited
2457 && !firstsig(&p->p_sigctx.ps_siglist)) {
2458 /* wakeup via _lwp_wakeup() */
2459 error = ECANCELED;
2460 } else if (!error && p->p_sigctx.ps_sigwaited) {
2461 /* spurious wakeup - arrange for syscall restart */
2462 error = ERESTART;
2463 goto fail;
2464 }
2465
2466 /*
2467 * On error, clear sigwait indication. psignal1() clears it
2468 * in !error case.
2469 */
2470 if (error) {
2471 p->p_sigctx.ps_sigwaited = NULL;
2472
2473 /*
2474 * If the sleep was interrupted (either by signal or wakeup),
2475 * update the timeout and copyout new value back.
2476 * It would be used when the syscall would be restarted
2477 * or called again.
2478 */
2479 if (timo && (error == ERESTART || error == ECANCELED)) {
2480 struct timespec tsnow;
2481 int err;
2482
2483 /* XXX double check the following change */
2484 getnanouptime(&tsnow);
2485
2486 /* compute how much time has passed since start */
2487 timespecsub(&tsnow, &tsstart, &tsnow);
2488 /* substract passed time from timeout */
2489 timespecsub(&ts, &tsnow, &ts);
2490
2491 if (ts.tv_sec < 0) {
2492 error = EAGAIN;
2493 goto fail;
2494 }
2495 /* XXX double check the previous change */
2496
2497 /* copy updated timeout to userland */
2498 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2499 sizeof(ts)))) {
2500 error = err;
2501 goto fail;
2502 }
2503 }
2504
2505 goto fail;
2506 }
2507
2508 /*
2509 * If a signal from the wait set arrived, copy it to userland.
2510 * Copy only the used part of siginfo, the padding part is
2511 * left unchanged (userland is not supposed to touch it anyway).
2512 */
2513 sig:
2514 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2515
2516 fail:
2517 FREE(waitset, M_TEMP);
2518 pool_put(&ksiginfo_pool, ksi);
2519 p->p_sigctx.ps_sigwait = NULL;
2520
2521 return (error);
2522 }
2523
2524 /*
2525 * Returns true if signal is ignored or masked for passed process.
2526 */
2527 int
2528 sigismasked(struct proc *p, int sig)
2529 {
2530
2531 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2532 sigismember(&p->p_sigctx.ps_sigmask, sig));
2533 }
2534
2535 static int
2536 filt_sigattach(struct knote *kn)
2537 {
2538 struct proc *p = curproc;
2539
2540 kn->kn_ptr.p_proc = p;
2541 kn->kn_flags |= EV_CLEAR; /* automatically set */
2542
2543 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2544
2545 return (0);
2546 }
2547
2548 static void
2549 filt_sigdetach(struct knote *kn)
2550 {
2551 struct proc *p = kn->kn_ptr.p_proc;
2552
2553 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2554 }
2555
2556 /*
2557 * signal knotes are shared with proc knotes, so we apply a mask to
2558 * the hint in order to differentiate them from process hints. This
2559 * could be avoided by using a signal-specific knote list, but probably
2560 * isn't worth the trouble.
2561 */
2562 static int
2563 filt_signal(struct knote *kn, long hint)
2564 {
2565
2566 if (hint & NOTE_SIGNAL) {
2567 hint &= ~NOTE_SIGNAL;
2568
2569 if (kn->kn_id == hint)
2570 kn->kn_data++;
2571 }
2572 return (kn->kn_data != 0);
2573 }
2574
2575 const struct filterops sig_filtops = {
2576 0, filt_sigattach, filt_sigdetach, filt_signal
2577 };
2578