kern_sig.c revision 1.223 1 /* $NetBSD: kern_sig.c,v 1.223 2006/06/13 13:56:50 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.223 2006/06/13 13:56:50 yamt Exp $");
41
42 #include "opt_ktrace.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_compat_sunos.h"
45 #include "opt_compat_netbsd.h"
46 #include "opt_compat_netbsd32.h"
47
48 #define SIGPROP /* include signal properties table */
49 #include <sys/param.h>
50 #include <sys/signalvar.h>
51 #include <sys/resourcevar.h>
52 #include <sys/namei.h>
53 #include <sys/vnode.h>
54 #include <sys/proc.h>
55 #include <sys/systm.h>
56 #include <sys/timeb.h>
57 #include <sys/times.h>
58 #include <sys/buf.h>
59 #include <sys/acct.h>
60 #include <sys/file.h>
61 #include <sys/kernel.h>
62 #include <sys/wait.h>
63 #include <sys/ktrace.h>
64 #include <sys/syslog.h>
65 #include <sys/stat.h>
66 #include <sys/core.h>
67 #include <sys/filedesc.h>
68 #include <sys/malloc.h>
69 #include <sys/pool.h>
70 #include <sys/ucontext.h>
71 #include <sys/sa.h>
72 #include <sys/savar.h>
73 #include <sys/exec.h>
74 #include <sys/sysctl.h>
75 #include <sys/kauth.h>
76
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79
80 #include <machine/cpu.h>
81
82 #include <sys/user.h> /* for coredump */
83
84 #include <uvm/uvm.h>
85 #include <uvm/uvm_extern.h>
86
87 static int build_corename(struct proc *, char *, const char *, size_t);
88 static void ksiginfo_exithook(struct proc *, void *);
89 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
90 static ksiginfo_t *ksiginfo_get(struct proc *, int);
91 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
92
93 sigset_t contsigmask, stopsigmask, sigcantmask;
94
95 struct pool sigacts_pool; /* memory pool for sigacts structures */
96
97 /*
98 * struct sigacts memory pool allocator.
99 */
100
101 static void *
102 sigacts_poolpage_alloc(struct pool *pp, int flags)
103 {
104
105 return (void *)uvm_km_alloc(kernel_map,
106 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
107 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
108 | UVM_KMF_WIRED);
109 }
110
111 static void
112 sigacts_poolpage_free(struct pool *pp, void *v)
113 {
114 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
115 }
116
117 static struct pool_allocator sigactspool_allocator = {
118 sigacts_poolpage_alloc, sigacts_poolpage_free,
119 };
120
121 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
122 &pool_allocator_nointr);
123 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
124
125 /*
126 * Remove and return the first ksiginfo element that matches our requested
127 * signal, or return NULL if one not found.
128 */
129 static ksiginfo_t *
130 ksiginfo_get(struct proc *p, int signo)
131 {
132 ksiginfo_t *ksi;
133 int s;
134
135 s = splsoftclock();
136 simple_lock(&p->p_sigctx.ps_silock);
137 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
138 if (ksi->ksi_signo == signo) {
139 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
140 goto out;
141 }
142 }
143 ksi = NULL;
144 out:
145 simple_unlock(&p->p_sigctx.ps_silock);
146 splx(s);
147 return ksi;
148 }
149
150 /*
151 * Append a new ksiginfo element to the list of pending ksiginfo's, if
152 * we need to (SA_SIGINFO was requested). We replace non RT signals if
153 * they already existed in the queue and we add new entries for RT signals,
154 * or for non RT signals with non-existing entries.
155 */
156 static void
157 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
158 {
159 ksiginfo_t *kp;
160 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
161 int s;
162
163 if ((sa->sa_flags & SA_SIGINFO) == 0)
164 return;
165 /*
166 * If there's no info, don't save it.
167 */
168 if (KSI_EMPTY_P(ksi))
169 return;
170
171 s = splsoftclock();
172 simple_lock(&p->p_sigctx.ps_silock);
173 #ifdef notyet /* XXX: QUEUING */
174 if (ksi->ksi_signo < SIGRTMIN)
175 #endif
176 {
177 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
178 if (kp->ksi_signo == ksi->ksi_signo) {
179 KSI_COPY(ksi, kp);
180 goto out;
181 }
182 }
183 }
184 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
185 if (kp == NULL) {
186 #ifdef DIAGNOSTIC
187 printf("Out of memory allocating siginfo for pid %d\n",
188 p->p_pid);
189 #endif
190 goto out;
191 }
192 *kp = *ksi;
193 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
194 out:
195 simple_unlock(&p->p_sigctx.ps_silock);
196 splx(s);
197 }
198
199 /*
200 * free all pending ksiginfo on exit
201 */
202 static void
203 ksiginfo_exithook(struct proc *p, void *v)
204 {
205 int s;
206
207 s = splsoftclock();
208 simple_lock(&p->p_sigctx.ps_silock);
209 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
210 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
211 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
212 pool_put(&ksiginfo_pool, ksi);
213 }
214 simple_unlock(&p->p_sigctx.ps_silock);
215 splx(s);
216 }
217
218 /*
219 * Initialize signal-related data structures.
220 */
221 void
222 signal_init(void)
223 {
224
225 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
226
227 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
228 sizeof(struct sigacts) > PAGE_SIZE ?
229 &sigactspool_allocator : &pool_allocator_nointr);
230
231 exithook_establish(ksiginfo_exithook, NULL);
232 exechook_establish(ksiginfo_exithook, NULL);
233 }
234
235 /*
236 * Create an initial sigctx structure, using the same signal state
237 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
238 * copy it from parent.
239 */
240 void
241 sigactsinit(struct proc *np, struct proc *pp, int share)
242 {
243 struct sigacts *ps;
244
245 if (share) {
246 np->p_sigacts = pp->p_sigacts;
247 pp->p_sigacts->sa_refcnt++;
248 } else {
249 ps = pool_get(&sigacts_pool, PR_WAITOK);
250 if (pp)
251 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
252 else
253 memset(ps, '\0', sizeof(struct sigacts));
254 ps->sa_refcnt = 1;
255 np->p_sigacts = ps;
256 }
257 }
258
259 /*
260 * Make this process not share its sigctx, maintaining all
261 * signal state.
262 */
263 void
264 sigactsunshare(struct proc *p)
265 {
266 struct sigacts *oldps;
267
268 if (p->p_sigacts->sa_refcnt == 1)
269 return;
270
271 oldps = p->p_sigacts;
272 sigactsinit(p, NULL, 0);
273
274 if (--oldps->sa_refcnt == 0)
275 pool_put(&sigacts_pool, oldps);
276 }
277
278 /*
279 * Release a sigctx structure.
280 */
281 void
282 sigactsfree(struct sigacts *ps)
283 {
284
285 if (--ps->sa_refcnt > 0)
286 return;
287
288 pool_put(&sigacts_pool, ps);
289 }
290
291 int
292 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
293 struct sigaction *osa, const void *tramp, int vers)
294 {
295 struct sigacts *ps;
296 int prop;
297
298 ps = p->p_sigacts;
299 if (signum <= 0 || signum >= NSIG)
300 return (EINVAL);
301
302 /*
303 * Trampoline ABI version 0 is reserved for the legacy
304 * kernel-provided on-stack trampoline. Conversely, if we are
305 * using a non-0 ABI version, we must have a trampoline. Only
306 * validate the vers if a new sigaction was supplied. Emulations
307 * use legacy kernel trampolines with version 0, alternatively
308 * check for that too.
309 */
310 if ((vers != 0 && tramp == NULL) ||
311 #ifdef SIGTRAMP_VALID
312 (nsa != NULL &&
313 ((vers == 0) ?
314 (p->p_emul->e_sigcode == NULL) :
315 !SIGTRAMP_VALID(vers))) ||
316 #endif
317 (vers == 0 && tramp != NULL))
318 return (EINVAL);
319
320 if (osa)
321 *osa = SIGACTION_PS(ps, signum);
322
323 if (nsa) {
324 if (nsa->sa_flags & ~SA_ALLBITS)
325 return (EINVAL);
326
327 prop = sigprop[signum];
328 if (prop & SA_CANTMASK)
329 return (EINVAL);
330
331 (void) splsched(); /* XXXSMP */
332 SIGACTION_PS(ps, signum) = *nsa;
333 ps->sa_sigdesc[signum].sd_tramp = tramp;
334 ps->sa_sigdesc[signum].sd_vers = vers;
335 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
336 if ((prop & SA_NORESET) != 0)
337 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
338 if (signum == SIGCHLD) {
339 if (nsa->sa_flags & SA_NOCLDSTOP)
340 p->p_flag |= P_NOCLDSTOP;
341 else
342 p->p_flag &= ~P_NOCLDSTOP;
343 if (nsa->sa_flags & SA_NOCLDWAIT) {
344 /*
345 * Paranoia: since SA_NOCLDWAIT is implemented
346 * by reparenting the dying child to PID 1 (and
347 * trust it to reap the zombie), PID 1 itself
348 * is forbidden to set SA_NOCLDWAIT.
349 */
350 if (p->p_pid == 1)
351 p->p_flag &= ~P_NOCLDWAIT;
352 else
353 p->p_flag |= P_NOCLDWAIT;
354 } else
355 p->p_flag &= ~P_NOCLDWAIT;
356
357 if (nsa->sa_handler == SIG_IGN) {
358 /*
359 * Paranoia: same as above.
360 */
361 if (p->p_pid == 1)
362 p->p_flag &= ~P_CLDSIGIGN;
363 else
364 p->p_flag |= P_CLDSIGIGN;
365 } else
366 p->p_flag &= ~P_CLDSIGIGN;
367
368 }
369 if ((nsa->sa_flags & SA_NODEFER) == 0)
370 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
371 else
372 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
373 /*
374 * Set bit in p_sigctx.ps_sigignore for signals that are set to
375 * SIG_IGN, and for signals set to SIG_DFL where the default is
376 * to ignore. However, don't put SIGCONT in
377 * p_sigctx.ps_sigignore, as we have to restart the process.
378 */
379 if (nsa->sa_handler == SIG_IGN ||
380 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
381 /* never to be seen again */
382 sigdelset(&p->p_sigctx.ps_siglist, signum);
383 if (signum != SIGCONT) {
384 /* easier in psignal */
385 sigaddset(&p->p_sigctx.ps_sigignore, signum);
386 }
387 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
388 } else {
389 sigdelset(&p->p_sigctx.ps_sigignore, signum);
390 if (nsa->sa_handler == SIG_DFL)
391 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
392 else
393 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
394 }
395 (void) spl0();
396 }
397
398 return (0);
399 }
400
401 #ifdef COMPAT_16
402 /* ARGSUSED */
403 int
404 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
405 {
406 struct compat_16_sys___sigaction14_args /* {
407 syscallarg(int) signum;
408 syscallarg(const struct sigaction *) nsa;
409 syscallarg(struct sigaction *) osa;
410 } */ *uap = v;
411 struct proc *p;
412 struct sigaction nsa, osa;
413 int error;
414
415 if (SCARG(uap, nsa)) {
416 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
417 if (error)
418 return (error);
419 }
420 p = l->l_proc;
421 error = sigaction1(p, SCARG(uap, signum),
422 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
423 NULL, 0);
424 if (error)
425 return (error);
426 if (SCARG(uap, osa)) {
427 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
428 if (error)
429 return (error);
430 }
431 return (0);
432 }
433 #endif
434
435 /* ARGSUSED */
436 int
437 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
438 {
439 struct sys___sigaction_sigtramp_args /* {
440 syscallarg(int) signum;
441 syscallarg(const struct sigaction *) nsa;
442 syscallarg(struct sigaction *) osa;
443 syscallarg(void *) tramp;
444 syscallarg(int) vers;
445 } */ *uap = v;
446 struct proc *p = l->l_proc;
447 struct sigaction nsa, osa;
448 int error;
449
450 if (SCARG(uap, nsa)) {
451 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
452 if (error)
453 return (error);
454 }
455 error = sigaction1(p, SCARG(uap, signum),
456 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
457 SCARG(uap, tramp), SCARG(uap, vers));
458 if (error)
459 return (error);
460 if (SCARG(uap, osa)) {
461 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
462 if (error)
463 return (error);
464 }
465 return (0);
466 }
467
468 /*
469 * Initialize signal state for process 0;
470 * set to ignore signals that are ignored by default and disable the signal
471 * stack.
472 */
473 void
474 siginit(struct proc *p)
475 {
476 struct sigacts *ps;
477 int signum, prop;
478
479 ps = p->p_sigacts;
480 sigemptyset(&contsigmask);
481 sigemptyset(&stopsigmask);
482 sigemptyset(&sigcantmask);
483 for (signum = 1; signum < NSIG; signum++) {
484 prop = sigprop[signum];
485 if (prop & SA_CONT)
486 sigaddset(&contsigmask, signum);
487 if (prop & SA_STOP)
488 sigaddset(&stopsigmask, signum);
489 if (prop & SA_CANTMASK)
490 sigaddset(&sigcantmask, signum);
491 if (prop & SA_IGNORE && signum != SIGCONT)
492 sigaddset(&p->p_sigctx.ps_sigignore, signum);
493 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
494 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
495 }
496 sigemptyset(&p->p_sigctx.ps_sigcatch);
497 p->p_sigctx.ps_sigwaited = NULL;
498 p->p_flag &= ~P_NOCLDSTOP;
499
500 /*
501 * Reset stack state to the user stack.
502 */
503 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
504 p->p_sigctx.ps_sigstk.ss_size = 0;
505 p->p_sigctx.ps_sigstk.ss_sp = 0;
506
507 /* One reference. */
508 ps->sa_refcnt = 1;
509 }
510
511 /*
512 * Reset signals for an exec of the specified process.
513 */
514 void
515 execsigs(struct proc *p)
516 {
517 struct sigacts *ps;
518 int signum, prop;
519
520 sigactsunshare(p);
521
522 ps = p->p_sigacts;
523
524 /*
525 * Reset caught signals. Held signals remain held
526 * through p_sigctx.ps_sigmask (unless they were caught,
527 * and are now ignored by default).
528 */
529 for (signum = 1; signum < NSIG; signum++) {
530 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
531 prop = sigprop[signum];
532 if (prop & SA_IGNORE) {
533 if ((prop & SA_CONT) == 0)
534 sigaddset(&p->p_sigctx.ps_sigignore,
535 signum);
536 sigdelset(&p->p_sigctx.ps_siglist, signum);
537 }
538 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
539 }
540 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
541 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
542 }
543 sigemptyset(&p->p_sigctx.ps_sigcatch);
544 p->p_sigctx.ps_sigwaited = NULL;
545
546 /*
547 * Reset no zombies if child dies flag as Solaris does.
548 */
549 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
550 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
551 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
552
553 /*
554 * Reset stack state to the user stack.
555 */
556 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
557 p->p_sigctx.ps_sigstk.ss_size = 0;
558 p->p_sigctx.ps_sigstk.ss_sp = 0;
559 }
560
561 int
562 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
563 {
564
565 if (oss)
566 *oss = p->p_sigctx.ps_sigmask;
567
568 if (nss) {
569 (void)splsched(); /* XXXSMP */
570 switch (how) {
571 case SIG_BLOCK:
572 sigplusset(nss, &p->p_sigctx.ps_sigmask);
573 break;
574 case SIG_UNBLOCK:
575 sigminusset(nss, &p->p_sigctx.ps_sigmask);
576 CHECKSIGS(p);
577 break;
578 case SIG_SETMASK:
579 p->p_sigctx.ps_sigmask = *nss;
580 CHECKSIGS(p);
581 break;
582 default:
583 (void)spl0(); /* XXXSMP */
584 return (EINVAL);
585 }
586 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
587 (void)spl0(); /* XXXSMP */
588 }
589
590 return (0);
591 }
592
593 /*
594 * Manipulate signal mask.
595 * Note that we receive new mask, not pointer,
596 * and return old mask as return value;
597 * the library stub does the rest.
598 */
599 int
600 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
601 {
602 struct sys___sigprocmask14_args /* {
603 syscallarg(int) how;
604 syscallarg(const sigset_t *) set;
605 syscallarg(sigset_t *) oset;
606 } */ *uap = v;
607 struct proc *p;
608 sigset_t nss, oss;
609 int error;
610
611 if (SCARG(uap, set)) {
612 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
613 if (error)
614 return (error);
615 }
616 p = l->l_proc;
617 error = sigprocmask1(p, SCARG(uap, how),
618 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
619 if (error)
620 return (error);
621 if (SCARG(uap, oset)) {
622 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
623 if (error)
624 return (error);
625 }
626 return (0);
627 }
628
629 void
630 sigpending1(struct proc *p, sigset_t *ss)
631 {
632
633 *ss = p->p_sigctx.ps_siglist;
634 sigminusset(&p->p_sigctx.ps_sigmask, ss);
635 }
636
637 /* ARGSUSED */
638 int
639 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
640 {
641 struct sys___sigpending14_args /* {
642 syscallarg(sigset_t *) set;
643 } */ *uap = v;
644 struct proc *p;
645 sigset_t ss;
646
647 p = l->l_proc;
648 sigpending1(p, &ss);
649 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
650 }
651
652 int
653 sigsuspend1(struct proc *p, const sigset_t *ss)
654 {
655 struct sigacts *ps;
656
657 ps = p->p_sigacts;
658 if (ss) {
659 /*
660 * When returning from sigpause, we want
661 * the old mask to be restored after the
662 * signal handler has finished. Thus, we
663 * save it here and mark the sigctx structure
664 * to indicate this.
665 */
666 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
667 p->p_sigctx.ps_flags |= SAS_OLDMASK;
668 (void) splsched(); /* XXXSMP */
669 p->p_sigctx.ps_sigmask = *ss;
670 CHECKSIGS(p);
671 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
672 (void) spl0(); /* XXXSMP */
673 }
674
675 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
676 /* void */;
677
678 /* always return EINTR rather than ERESTART... */
679 return (EINTR);
680 }
681
682 /*
683 * Suspend process until signal, providing mask to be set
684 * in the meantime. Note nonstandard calling convention:
685 * libc stub passes mask, not pointer, to save a copyin.
686 */
687 /* ARGSUSED */
688 int
689 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
690 {
691 struct sys___sigsuspend14_args /* {
692 syscallarg(const sigset_t *) set;
693 } */ *uap = v;
694 struct proc *p;
695 sigset_t ss;
696 int error;
697
698 if (SCARG(uap, set)) {
699 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
700 if (error)
701 return (error);
702 }
703
704 p = l->l_proc;
705 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
706 }
707
708 int
709 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
710 struct sigaltstack *oss)
711 {
712
713 if (oss)
714 *oss = p->p_sigctx.ps_sigstk;
715
716 if (nss) {
717 if (nss->ss_flags & ~SS_ALLBITS)
718 return (EINVAL);
719
720 if (nss->ss_flags & SS_DISABLE) {
721 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
722 return (EINVAL);
723 } else {
724 if (nss->ss_size < MINSIGSTKSZ)
725 return (ENOMEM);
726 }
727 p->p_sigctx.ps_sigstk = *nss;
728 }
729
730 return (0);
731 }
732
733 /* ARGSUSED */
734 int
735 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
736 {
737 struct sys___sigaltstack14_args /* {
738 syscallarg(const struct sigaltstack *) nss;
739 syscallarg(struct sigaltstack *) oss;
740 } */ *uap = v;
741 struct proc *p;
742 struct sigaltstack nss, oss;
743 int error;
744
745 if (SCARG(uap, nss)) {
746 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
747 if (error)
748 return (error);
749 }
750 p = l->l_proc;
751 error = sigaltstack1(p,
752 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
753 if (error)
754 return (error);
755 if (SCARG(uap, oss)) {
756 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
757 if (error)
758 return (error);
759 }
760 return (0);
761 }
762
763 /* ARGSUSED */
764 int
765 sys_kill(struct lwp *l, void *v, register_t *retval)
766 {
767 struct sys_kill_args /* {
768 syscallarg(int) pid;
769 syscallarg(int) signum;
770 } */ *uap = v;
771 struct proc *cp, *p;
772 kauth_cred_t pc;
773 ksiginfo_t ksi;
774 int signum = SCARG(uap, signum);
775 int error;
776
777 cp = l->l_proc;
778 pc = cp->p_cred;
779 if ((u_int)signum >= NSIG)
780 return (EINVAL);
781 KSI_INIT(&ksi);
782 ksi.ksi_signo = signum;
783 ksi.ksi_code = SI_USER;
784 ksi.ksi_pid = cp->p_pid;
785 ksi.ksi_uid = kauth_cred_geteuid(cp->p_cred);
786 if (SCARG(uap, pid) > 0) {
787 /* kill single process */
788 if ((p = pfind(SCARG(uap, pid))) == NULL)
789 return (ESRCH);
790 error = kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL, p,
791 (void *)(uintptr_t)signum, NULL, NULL);
792 if (error)
793 return error;
794 if (signum)
795 kpsignal2(p, &ksi, 1);
796 return (0);
797 }
798 switch (SCARG(uap, pid)) {
799 case -1: /* broadcast signal */
800 return (killpg1(cp, &ksi, 0, 1));
801 case 0: /* signal own process group */
802 return (killpg1(cp, &ksi, 0, 0));
803 default: /* negative explicit process group */
804 return (killpg1(cp, &ksi, -SCARG(uap, pid), 0));
805 }
806 /* NOTREACHED */
807 }
808
809 /*
810 * Common code for kill process group/broadcast kill.
811 * cp is calling process.
812 */
813 int
814 killpg1(struct proc *cp, ksiginfo_t *ksi, int pgid, int all)
815 {
816 struct proc *p;
817 kauth_cred_t pc;
818 struct pgrp *pgrp;
819 int nfound;
820 int signum = ksi->ksi_signo;
821
822 pc = cp->p_cred;
823 nfound = 0;
824 if (all) {
825 /*
826 * broadcast
827 */
828 proclist_lock_read();
829 PROCLIST_FOREACH(p, &allproc) {
830 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
831 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
832 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
833 continue;
834 nfound++;
835 if (signum)
836 kpsignal2(p, ksi, 1);
837 }
838 proclist_unlock_read();
839 } else {
840 if (pgid == 0)
841 /*
842 * zero pgid means send to my process group.
843 */
844 pgrp = cp->p_pgrp;
845 else {
846 pgrp = pgfind(pgid);
847 if (pgrp == NULL)
848 return (ESRCH);
849 }
850 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
851 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
852 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
853 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
854 continue;
855 nfound++;
856 if (signum && P_ZOMBIE(p) == 0)
857 kpsignal2(p, ksi, 1);
858 }
859 }
860 return (nfound ? 0 : ESRCH);
861 }
862
863 /*
864 * Send a signal to a process group.
865 */
866 void
867 gsignal(int pgid, int signum)
868 {
869 ksiginfo_t ksi;
870 KSI_INIT_EMPTY(&ksi);
871 ksi.ksi_signo = signum;
872 kgsignal(pgid, &ksi, NULL);
873 }
874
875 void
876 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
877 {
878 struct pgrp *pgrp;
879
880 if (pgid && (pgrp = pgfind(pgid)))
881 kpgsignal(pgrp, ksi, data, 0);
882 }
883
884 /*
885 * Send a signal to a process group. If checktty is 1,
886 * limit to members which have a controlling terminal.
887 */
888 void
889 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
890 {
891 ksiginfo_t ksi;
892 KSI_INIT_EMPTY(&ksi);
893 ksi.ksi_signo = sig;
894 kpgsignal(pgrp, &ksi, NULL, checkctty);
895 }
896
897 void
898 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
899 {
900 struct proc *p;
901
902 if (pgrp)
903 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
904 if (checkctty == 0 || p->p_flag & P_CONTROLT)
905 kpsignal(p, ksi, data);
906 }
907
908 /*
909 * Send a signal caused by a trap to the current process.
910 * If it will be caught immediately, deliver it with correct code.
911 * Otherwise, post it normally.
912 */
913 void
914 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
915 {
916 struct proc *p;
917 struct sigacts *ps;
918 int signum = ksi->ksi_signo;
919
920 KASSERT(KSI_TRAP_P(ksi));
921
922 p = l->l_proc;
923 ps = p->p_sigacts;
924 if ((p->p_flag & P_TRACED) == 0 &&
925 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
926 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
927 p->p_stats->p_ru.ru_nsignals++;
928 #ifdef KTRACE
929 if (KTRPOINT(p, KTR_PSIG))
930 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
931 &p->p_sigctx.ps_sigmask, ksi);
932 #endif
933 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
934 (void) splsched(); /* XXXSMP */
935 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
936 &p->p_sigctx.ps_sigmask);
937 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
938 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
939 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
940 sigaddset(&p->p_sigctx.ps_sigignore, signum);
941 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
942 }
943 (void) spl0(); /* XXXSMP */
944 } else {
945 p->p_sigctx.ps_lwp = l->l_lid;
946 /* XXX for core dump/debugger */
947 p->p_sigctx.ps_signo = ksi->ksi_signo;
948 p->p_sigctx.ps_code = ksi->ksi_trap;
949 kpsignal2(p, ksi, 1);
950 }
951 }
952
953 /*
954 * Fill in signal information and signal the parent for a child status change.
955 */
956 void
957 child_psignal(struct proc *p, int dolock)
958 {
959 ksiginfo_t ksi;
960
961 KSI_INIT(&ksi);
962 ksi.ksi_signo = SIGCHLD;
963 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
964 ksi.ksi_pid = p->p_pid;
965 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
966 ksi.ksi_status = p->p_xstat;
967 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
968 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
969 kpsignal2(p->p_pptr, &ksi, dolock);
970 }
971
972 /*
973 * Send the signal to the process. If the signal has an action, the action
974 * is usually performed by the target process rather than the caller; we add
975 * the signal to the set of pending signals for the process.
976 *
977 * Exceptions:
978 * o When a stop signal is sent to a sleeping process that takes the
979 * default action, the process is stopped without awakening it.
980 * o SIGCONT restarts stopped processes (or puts them back to sleep)
981 * regardless of the signal action (eg, blocked or ignored).
982 *
983 * Other ignored signals are discarded immediately.
984 *
985 * XXXSMP: Invoked as psignal() or sched_psignal().
986 */
987 void
988 psignal1(struct proc *p, int signum, int dolock)
989 {
990 ksiginfo_t ksi;
991
992 KSI_INIT_EMPTY(&ksi);
993 ksi.ksi_signo = signum;
994 kpsignal2(p, &ksi, dolock);
995 }
996
997 void
998 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
999 {
1000
1001 if ((p->p_flag & P_WEXIT) == 0 && data) {
1002 size_t fd;
1003 struct filedesc *fdp = p->p_fd;
1004
1005 ksi->ksi_fd = -1;
1006 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1007 struct file *fp = fdp->fd_ofiles[fd];
1008 /* XXX: lock? */
1009 if (fp && fp->f_data == data) {
1010 ksi->ksi_fd = fd;
1011 break;
1012 }
1013 }
1014 }
1015 kpsignal2(p, ksi, dolock);
1016 }
1017
1018 static void
1019 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1020 {
1021 struct lwp *l, *suspended = NULL;
1022 struct sadata_vp *vp;
1023 int s = 0, prop, allsusp;
1024 sig_t action;
1025 int signum = ksi->ksi_signo;
1026
1027 #ifdef DIAGNOSTIC
1028 if (signum <= 0 || signum >= NSIG)
1029 panic("psignal signal number %d", signum);
1030
1031 /* XXXSMP: works, but icky */
1032 if (dolock)
1033 SCHED_ASSERT_UNLOCKED();
1034 else
1035 SCHED_ASSERT_LOCKED();
1036 #endif
1037
1038 /*
1039 * Notify any interested parties in the signal.
1040 */
1041 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1042
1043 prop = sigprop[signum];
1044
1045 /*
1046 * If proc is traced, always give parent a chance.
1047 */
1048 if (p->p_flag & P_TRACED) {
1049 action = SIG_DFL;
1050
1051 /*
1052 * If the process is being traced and the signal is being
1053 * caught, make sure to save any ksiginfo.
1054 */
1055 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1056 ksiginfo_put(p, ksi);
1057 } else {
1058 /*
1059 * If the signal was the result of a trap, reset it
1060 * to default action if it's currently masked, so that it would
1061 * coredump immediatelly instead of spinning repeatedly
1062 * taking the signal.
1063 */
1064 if (KSI_TRAP_P(ksi)
1065 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1066 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1067 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1068 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1069 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1070 SIGACTION(p, signum).sa_handler = SIG_DFL;
1071 }
1072
1073 /*
1074 * If the signal is being ignored,
1075 * then we forget about it immediately.
1076 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1077 * and if it is set to SIG_IGN,
1078 * action will be SIG_DFL here.)
1079 */
1080 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1081 return;
1082 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1083 action = SIG_HOLD;
1084 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1085 action = SIG_CATCH;
1086 else {
1087 action = SIG_DFL;
1088
1089 if (prop & SA_KILL && p->p_nice > NZERO)
1090 p->p_nice = NZERO;
1091
1092 /*
1093 * If sending a tty stop signal to a member of an
1094 * orphaned process group, discard the signal here if
1095 * the action is default; don't stop the process below
1096 * if sleeping, and don't clear any pending SIGCONT.
1097 */
1098 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1099 return;
1100 }
1101 }
1102
1103 if (prop & SA_CONT)
1104 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1105
1106 if (prop & SA_STOP)
1107 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1108
1109 /*
1110 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1111 * please!), check if anything waits on it. If yes, save the
1112 * info into provided ps_sigwaited, and wake-up the waiter.
1113 * The signal won't be processed further here.
1114 */
1115 if ((prop & SA_CANTMASK) == 0
1116 && p->p_sigctx.ps_sigwaited
1117 && sigismember(p->p_sigctx.ps_sigwait, signum)
1118 && p->p_stat != SSTOP) {
1119 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1120 p->p_sigctx.ps_sigwaited = NULL;
1121 if (dolock)
1122 wakeup_one(&p->p_sigctx.ps_sigwait);
1123 else
1124 sched_wakeup(&p->p_sigctx.ps_sigwait);
1125 return;
1126 }
1127
1128 sigaddset(&p->p_sigctx.ps_siglist, signum);
1129
1130 /* CHECKSIGS() is "inlined" here. */
1131 p->p_sigctx.ps_sigcheck = 1;
1132
1133 /*
1134 * Defer further processing for signals which are held,
1135 * except that stopped processes must be continued by SIGCONT.
1136 */
1137 if (action == SIG_HOLD &&
1138 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1139 ksiginfo_put(p, ksi);
1140 return;
1141 }
1142 /* XXXSMP: works, but icky */
1143 if (dolock)
1144 SCHED_LOCK(s);
1145
1146 if (p->p_flag & P_SA) {
1147 allsusp = 0;
1148 l = NULL;
1149 if (p->p_stat == SACTIVE) {
1150 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1151 l = vp->savp_lwp;
1152 KDASSERT(l != NULL);
1153 if (l->l_flag & L_SA_IDLE) {
1154 /* wakeup idle LWP */
1155 goto found;
1156 /*NOTREACHED*/
1157 } else if (l->l_flag & L_SA_YIELD) {
1158 /* idle LWP is already waking up */
1159 goto out;
1160 /*NOTREACHED*/
1161 }
1162 }
1163 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1164 l = vp->savp_lwp;
1165 if (l->l_stat == LSRUN ||
1166 l->l_stat == LSONPROC) {
1167 signotify(p);
1168 goto out;
1169 /*NOTREACHED*/
1170 }
1171 if (l->l_stat == LSSLEEP &&
1172 l->l_flag & L_SINTR) {
1173 /* ok to signal vp lwp */
1174 break;
1175 } else
1176 l = NULL;
1177 }
1178 } else if (p->p_stat == SSTOP) {
1179 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1180 l = vp->savp_lwp;
1181 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1182 break;
1183 l = NULL;
1184 }
1185 }
1186 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1187 /*
1188 * At least one LWP is running or on a run queue.
1189 * The signal will be noticed when one of them returns
1190 * to userspace.
1191 */
1192 signotify(p);
1193 /*
1194 * The signal will be noticed very soon.
1195 */
1196 goto out;
1197 /*NOTREACHED*/
1198 } else {
1199 /*
1200 * Find out if any of the sleeps are interruptable,
1201 * and if all the live LWPs remaining are suspended.
1202 */
1203 allsusp = 1;
1204 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1205 if (l->l_stat == LSSLEEP &&
1206 l->l_flag & L_SINTR)
1207 break;
1208 if (l->l_stat == LSSUSPENDED)
1209 suspended = l;
1210 else if ((l->l_stat != LSZOMB) &&
1211 (l->l_stat != LSDEAD))
1212 allsusp = 0;
1213 }
1214 }
1215
1216 found:
1217 switch (p->p_stat) {
1218 case SACTIVE:
1219
1220 if (l != NULL && (p->p_flag & P_TRACED))
1221 goto run;
1222
1223 /*
1224 * If SIGCONT is default (or ignored) and process is
1225 * asleep, we are finished; the process should not
1226 * be awakened.
1227 */
1228 if ((prop & SA_CONT) && action == SIG_DFL) {
1229 sigdelset(&p->p_sigctx.ps_siglist, signum);
1230 goto done;
1231 }
1232
1233 /*
1234 * When a sleeping process receives a stop
1235 * signal, process immediately if possible.
1236 */
1237 if ((prop & SA_STOP) && action == SIG_DFL) {
1238 /*
1239 * If a child holding parent blocked,
1240 * stopping could cause deadlock.
1241 */
1242 if (p->p_flag & P_PPWAIT) {
1243 goto out;
1244 }
1245 sigdelset(&p->p_sigctx.ps_siglist, signum);
1246 p->p_xstat = signum;
1247 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1248 /*
1249 * XXXSMP: recursive call; don't lock
1250 * the second time around.
1251 */
1252 child_psignal(p, 0);
1253 }
1254 proc_stop(p, 1); /* XXXSMP: recurse? */
1255 goto done;
1256 }
1257
1258 if (l == NULL) {
1259 /*
1260 * Special case: SIGKILL of a process
1261 * which is entirely composed of
1262 * suspended LWPs should succeed. We
1263 * make this happen by unsuspending one of
1264 * them.
1265 */
1266 if (allsusp && (signum == SIGKILL)) {
1267 lwp_continue(suspended);
1268 }
1269 goto done;
1270 }
1271 /*
1272 * All other (caught or default) signals
1273 * cause the process to run.
1274 */
1275 goto runfast;
1276 /*NOTREACHED*/
1277 case SSTOP:
1278 /* Process is stopped */
1279 /*
1280 * If traced process is already stopped,
1281 * then no further action is necessary.
1282 */
1283 if (p->p_flag & P_TRACED)
1284 goto done;
1285
1286 /*
1287 * Kill signal always sets processes running,
1288 * if possible.
1289 */
1290 if (signum == SIGKILL) {
1291 l = proc_unstop(p);
1292 if (l)
1293 goto runfast;
1294 goto done;
1295 }
1296
1297 if (prop & SA_CONT) {
1298 /*
1299 * If SIGCONT is default (or ignored),
1300 * we continue the process but don't
1301 * leave the signal in ps_siglist, as
1302 * it has no further action. If
1303 * SIGCONT is held, we continue the
1304 * process and leave the signal in
1305 * ps_siglist. If the process catches
1306 * SIGCONT, let it handle the signal
1307 * itself. If it isn't waiting on an
1308 * event, then it goes back to run
1309 * state. Otherwise, process goes
1310 * back to sleep state.
1311 */
1312 if (action == SIG_DFL)
1313 sigdelset(&p->p_sigctx.ps_siglist,
1314 signum);
1315 l = proc_unstop(p);
1316 if (l && (action == SIG_CATCH))
1317 goto runfast;
1318 goto out;
1319 }
1320
1321 if (prop & SA_STOP) {
1322 /*
1323 * Already stopped, don't need to stop again.
1324 * (If we did the shell could get confused.)
1325 */
1326 sigdelset(&p->p_sigctx.ps_siglist, signum);
1327 goto done;
1328 }
1329
1330 /*
1331 * If a lwp is sleeping interruptibly, then
1332 * wake it up; it will run until the kernel
1333 * boundary, where it will stop in issignal(),
1334 * since p->p_stat is still SSTOP. When the
1335 * process is continued, it will be made
1336 * runnable and can look at the signal.
1337 */
1338 if (l)
1339 goto run;
1340 goto out;
1341 case SIDL:
1342 /* Process is being created by fork */
1343 /* XXX: We are not ready to receive signals yet */
1344 goto done;
1345 default:
1346 /* Else what? */
1347 panic("psignal: Invalid process state %d.", p->p_stat);
1348 }
1349 /*NOTREACHED*/
1350
1351 runfast:
1352 if (action == SIG_CATCH) {
1353 ksiginfo_put(p, ksi);
1354 action = SIG_HOLD;
1355 }
1356 /*
1357 * Raise priority to at least PUSER.
1358 */
1359 if (l->l_priority > PUSER)
1360 l->l_priority = PUSER;
1361 run:
1362 if (action == SIG_CATCH) {
1363 ksiginfo_put(p, ksi);
1364 action = SIG_HOLD;
1365 }
1366
1367 setrunnable(l); /* XXXSMP: recurse? */
1368 out:
1369 if (action == SIG_CATCH)
1370 ksiginfo_put(p, ksi);
1371 done:
1372 /* XXXSMP: works, but icky */
1373 if (dolock)
1374 SCHED_UNLOCK(s);
1375 }
1376
1377 siginfo_t *
1378 siginfo_alloc(int flags)
1379 {
1380
1381 return pool_get(&siginfo_pool, flags);
1382 }
1383
1384 void
1385 siginfo_free(void *arg)
1386 {
1387
1388 pool_put(&siginfo_pool, arg);
1389 }
1390
1391 void
1392 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1393 {
1394 struct proc *p = l->l_proc;
1395 struct lwp *le, *li;
1396 siginfo_t *si;
1397 int f;
1398
1399 if (p->p_flag & P_SA) {
1400
1401 /* XXXUPSXXX What if not on sa_vp ? */
1402
1403 f = l->l_flag & L_SA;
1404 l->l_flag &= ~L_SA;
1405 si = siginfo_alloc(PR_WAITOK);
1406 si->_info = ksi->ksi_info;
1407 le = li = NULL;
1408 if (KSI_TRAP_P(ksi))
1409 le = l;
1410 else
1411 li = l;
1412 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1413 sizeof(*si), si, siginfo_free) != 0) {
1414 siginfo_free(si);
1415 if (KSI_TRAP_P(ksi))
1416 /* XXX What do we do here?? */;
1417 }
1418 l->l_flag |= f;
1419 return;
1420 }
1421
1422 (*p->p_emul->e_sendsig)(ksi, mask);
1423 }
1424
1425 static inline int firstsig(const sigset_t *);
1426
1427 static inline int
1428 firstsig(const sigset_t *ss)
1429 {
1430 int sig;
1431
1432 sig = ffs(ss->__bits[0]);
1433 if (sig != 0)
1434 return (sig);
1435 #if NSIG > 33
1436 sig = ffs(ss->__bits[1]);
1437 if (sig != 0)
1438 return (sig + 32);
1439 #endif
1440 #if NSIG > 65
1441 sig = ffs(ss->__bits[2]);
1442 if (sig != 0)
1443 return (sig + 64);
1444 #endif
1445 #if NSIG > 97
1446 sig = ffs(ss->__bits[3]);
1447 if (sig != 0)
1448 return (sig + 96);
1449 #endif
1450 return (0);
1451 }
1452
1453 /*
1454 * If the current process has received a signal (should be caught or cause
1455 * termination, should interrupt current syscall), return the signal number.
1456 * Stop signals with default action are processed immediately, then cleared;
1457 * they aren't returned. This is checked after each entry to the system for
1458 * a syscall or trap (though this can usually be done without calling issignal
1459 * by checking the pending signal masks in the CURSIG macro.) The normal call
1460 * sequence is
1461 *
1462 * while (signum = CURSIG(curlwp))
1463 * postsig(signum);
1464 */
1465 int
1466 issignal(struct lwp *l)
1467 {
1468 struct proc *p = l->l_proc;
1469 int s = 0, signum, prop;
1470 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1471 sigset_t ss;
1472
1473 /* Bail out if we do not own the virtual processor */
1474 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1475 return 0;
1476
1477 if (p->p_stat == SSTOP) {
1478 /*
1479 * The process is stopped/stopping. Stop ourselves now that
1480 * we're on the kernel/userspace boundary.
1481 */
1482 if (dolock)
1483 SCHED_LOCK(s);
1484 l->l_stat = LSSTOP;
1485 p->p_nrlwps--;
1486 if (p->p_flag & P_TRACED)
1487 goto sigtraceswitch;
1488 else
1489 goto sigswitch;
1490 }
1491 for (;;) {
1492 sigpending1(p, &ss);
1493 if (p->p_flag & P_PPWAIT)
1494 sigminusset(&stopsigmask, &ss);
1495 signum = firstsig(&ss);
1496 if (signum == 0) { /* no signal to send */
1497 p->p_sigctx.ps_sigcheck = 0;
1498 if (locked && dolock)
1499 SCHED_LOCK(s);
1500 return (0);
1501 }
1502 /* take the signal! */
1503 sigdelset(&p->p_sigctx.ps_siglist, signum);
1504
1505 /*
1506 * We should see pending but ignored signals
1507 * only if P_TRACED was on when they were posted.
1508 */
1509 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1510 (p->p_flag & P_TRACED) == 0)
1511 continue;
1512
1513 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1514 /*
1515 * If traced, always stop, and stay
1516 * stopped until released by the debugger.
1517 */
1518 p->p_xstat = signum;
1519
1520 /* Emulation-specific handling of signal trace */
1521 if ((p->p_emul->e_tracesig != NULL) &&
1522 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1523 goto childresumed;
1524
1525 if ((p->p_flag & P_FSTRACE) == 0)
1526 child_psignal(p, dolock);
1527 if (dolock)
1528 SCHED_LOCK(s);
1529 proc_stop(p, 1);
1530 sigtraceswitch:
1531 mi_switch(l, NULL);
1532 SCHED_ASSERT_UNLOCKED();
1533 if (dolock)
1534 splx(s);
1535 else
1536 dolock = 1;
1537
1538 childresumed:
1539 /*
1540 * If we are no longer being traced, or the parent
1541 * didn't give us a signal, look for more signals.
1542 */
1543 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1544 continue;
1545
1546 /*
1547 * If the new signal is being masked, look for other
1548 * signals.
1549 */
1550 signum = p->p_xstat;
1551 p->p_xstat = 0;
1552 /*
1553 * `p->p_sigctx.ps_siglist |= mask' is done
1554 * in setrunnable().
1555 */
1556 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1557 continue;
1558 /* take the signal! */
1559 sigdelset(&p->p_sigctx.ps_siglist, signum);
1560 }
1561
1562 prop = sigprop[signum];
1563
1564 /*
1565 * Decide whether the signal should be returned.
1566 * Return the signal's number, or fall through
1567 * to clear it from the pending mask.
1568 */
1569 switch ((long)SIGACTION(p, signum).sa_handler) {
1570
1571 case (long)SIG_DFL:
1572 /*
1573 * Don't take default actions on system processes.
1574 */
1575 if (p->p_pid <= 1) {
1576 #ifdef DIAGNOSTIC
1577 /*
1578 * Are you sure you want to ignore SIGSEGV
1579 * in init? XXX
1580 */
1581 printf("Process (pid %d) got signal %d\n",
1582 p->p_pid, signum);
1583 #endif
1584 break; /* == ignore */
1585 }
1586 /*
1587 * If there is a pending stop signal to process
1588 * with default action, stop here,
1589 * then clear the signal. However,
1590 * if process is member of an orphaned
1591 * process group, ignore tty stop signals.
1592 */
1593 if (prop & SA_STOP) {
1594 if (p->p_flag & P_TRACED ||
1595 (p->p_pgrp->pg_jobc == 0 &&
1596 prop & SA_TTYSTOP))
1597 break; /* == ignore */
1598 p->p_xstat = signum;
1599 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1600 child_psignal(p, dolock);
1601 if (dolock)
1602 SCHED_LOCK(s);
1603 proc_stop(p, 1);
1604 sigswitch:
1605 mi_switch(l, NULL);
1606 SCHED_ASSERT_UNLOCKED();
1607 if (dolock)
1608 splx(s);
1609 else
1610 dolock = 1;
1611 break;
1612 } else if (prop & SA_IGNORE) {
1613 /*
1614 * Except for SIGCONT, shouldn't get here.
1615 * Default action is to ignore; drop it.
1616 */
1617 break; /* == ignore */
1618 } else
1619 goto keep;
1620 /*NOTREACHED*/
1621
1622 case (long)SIG_IGN:
1623 /*
1624 * Masking above should prevent us ever trying
1625 * to take action on an ignored signal other
1626 * than SIGCONT, unless process is traced.
1627 */
1628 #ifdef DEBUG_ISSIGNAL
1629 if ((prop & SA_CONT) == 0 &&
1630 (p->p_flag & P_TRACED) == 0)
1631 printf("issignal\n");
1632 #endif
1633 break; /* == ignore */
1634
1635 default:
1636 /*
1637 * This signal has an action, let
1638 * postsig() process it.
1639 */
1640 goto keep;
1641 }
1642 }
1643 /* NOTREACHED */
1644
1645 keep:
1646 /* leave the signal for later */
1647 sigaddset(&p->p_sigctx.ps_siglist, signum);
1648 CHECKSIGS(p);
1649 if (locked && dolock)
1650 SCHED_LOCK(s);
1651 return (signum);
1652 }
1653
1654 /*
1655 * Put the argument process into the stopped state and notify the parent
1656 * via wakeup. Signals are handled elsewhere. The process must not be
1657 * on the run queue.
1658 */
1659 void
1660 proc_stop(struct proc *p, int dowakeup)
1661 {
1662 struct lwp *l;
1663 struct proc *parent;
1664 struct sadata_vp *vp;
1665
1666 SCHED_ASSERT_LOCKED();
1667
1668 /* XXX lock process LWP state */
1669 p->p_flag &= ~P_WAITED;
1670 p->p_stat = SSTOP;
1671 parent = p->p_pptr;
1672 parent->p_nstopchild++;
1673
1674 if (p->p_flag & P_SA) {
1675 /*
1676 * Only (try to) put the LWP on the VP in stopped
1677 * state.
1678 * All other LWPs will suspend in sa_setwoken()
1679 * because the VP-LWP in stopped state cannot be
1680 * repossessed.
1681 */
1682 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1683 l = vp->savp_lwp;
1684 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1685 l->l_stat = LSSTOP;
1686 p->p_nrlwps--;
1687 } else if (l->l_stat == LSRUN) {
1688 /* Remove LWP from the run queue */
1689 remrunqueue(l);
1690 l->l_stat = LSSTOP;
1691 p->p_nrlwps--;
1692 } else if (l->l_stat == LSSLEEP &&
1693 l->l_flag & L_SA_IDLE) {
1694 l->l_flag &= ~L_SA_IDLE;
1695 l->l_stat = LSSTOP;
1696 }
1697 }
1698 goto out;
1699 }
1700
1701 /*
1702 * Put as many LWP's as possible in stopped state.
1703 * Sleeping ones will notice the stopped state as they try to
1704 * return to userspace.
1705 */
1706
1707 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1708 if (l->l_stat == LSONPROC) {
1709 /* XXX SMP this assumes that a LWP that is LSONPROC
1710 * is curlwp and hence is about to be mi_switched
1711 * away; the only callers of proc_stop() are:
1712 * - psignal
1713 * - issignal()
1714 * For the former, proc_stop() is only called when
1715 * no processes are running, so we don't worry.
1716 * For the latter, proc_stop() is called right
1717 * before mi_switch().
1718 */
1719 l->l_stat = LSSTOP;
1720 p->p_nrlwps--;
1721 } else if (l->l_stat == LSRUN) {
1722 /* Remove LWP from the run queue */
1723 remrunqueue(l);
1724 l->l_stat = LSSTOP;
1725 p->p_nrlwps--;
1726 } else if ((l->l_stat == LSSLEEP) ||
1727 (l->l_stat == LSSUSPENDED) ||
1728 (l->l_stat == LSZOMB) ||
1729 (l->l_stat == LSDEAD)) {
1730 /*
1731 * Don't do anything; let sleeping LWPs
1732 * discover the stopped state of the process
1733 * on their way out of the kernel; otherwise,
1734 * things like NFS threads that sleep with
1735 * locks will block the rest of the system
1736 * from getting any work done.
1737 *
1738 * Suspended/dead/zombie LWPs aren't going
1739 * anywhere, so we don't need to touch them.
1740 */
1741 }
1742 #ifdef DIAGNOSTIC
1743 else {
1744 panic("proc_stop: process %d lwp %d "
1745 "in unstoppable state %d.\n",
1746 p->p_pid, l->l_lid, l->l_stat);
1747 }
1748 #endif
1749 }
1750
1751 out:
1752 /* XXX unlock process LWP state */
1753
1754 if (dowakeup)
1755 sched_wakeup((caddr_t)p->p_pptr);
1756 }
1757
1758 /*
1759 * Given a process in state SSTOP, set the state back to SACTIVE and
1760 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1761 *
1762 * If no LWPs ended up runnable (and therefore able to take a signal),
1763 * return a LWP that is sleeping interruptably. The caller can wake
1764 * that LWP up to take a signal.
1765 */
1766 struct lwp *
1767 proc_unstop(struct proc *p)
1768 {
1769 struct lwp *l, *lr = NULL;
1770 struct sadata_vp *vp;
1771 int cantake = 0;
1772
1773 SCHED_ASSERT_LOCKED();
1774
1775 /*
1776 * Our caller wants to be informed if there are only sleeping
1777 * and interruptable LWPs left after we have run so that it
1778 * can invoke setrunnable() if required - return one of the
1779 * interruptable LWPs if this is the case.
1780 */
1781
1782 if (!(p->p_flag & P_WAITED))
1783 p->p_pptr->p_nstopchild--;
1784 p->p_stat = SACTIVE;
1785 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1786 if (l->l_stat == LSRUN) {
1787 lr = NULL;
1788 cantake = 1;
1789 }
1790 if (l->l_stat != LSSTOP)
1791 continue;
1792
1793 if (l->l_wchan != NULL) {
1794 l->l_stat = LSSLEEP;
1795 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1796 lr = l;
1797 cantake = 1;
1798 }
1799 } else {
1800 setrunnable(l);
1801 lr = NULL;
1802 cantake = 1;
1803 }
1804 }
1805 if (p->p_flag & P_SA) {
1806 /* Only consider returning the LWP on the VP. */
1807 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1808 lr = vp->savp_lwp;
1809 if (lr->l_stat == LSSLEEP) {
1810 if (lr->l_flag & L_SA_YIELD) {
1811 setrunnable(lr);
1812 break;
1813 } else if (lr->l_flag & L_SINTR)
1814 return lr;
1815 }
1816 }
1817 return NULL;
1818 }
1819 return lr;
1820 }
1821
1822 /*
1823 * Take the action for the specified signal
1824 * from the current set of pending signals.
1825 */
1826 void
1827 postsig(int signum)
1828 {
1829 struct lwp *l;
1830 struct proc *p;
1831 struct sigacts *ps;
1832 sig_t action;
1833 sigset_t *returnmask;
1834
1835 l = curlwp;
1836 p = l->l_proc;
1837 ps = p->p_sigacts;
1838 #ifdef DIAGNOSTIC
1839 if (signum == 0)
1840 panic("postsig");
1841 #endif
1842
1843 KERNEL_PROC_LOCK(l);
1844
1845 #ifdef MULTIPROCESSOR
1846 /*
1847 * On MP, issignal() can return the same signal to multiple
1848 * LWPs. The LWPs will block above waiting for the kernel
1849 * lock and the first LWP which gets through will then remove
1850 * the signal from ps_siglist. All other LWPs exit here.
1851 */
1852 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1853 KERNEL_PROC_UNLOCK(l);
1854 return;
1855 }
1856 #endif
1857 sigdelset(&p->p_sigctx.ps_siglist, signum);
1858 action = SIGACTION_PS(ps, signum).sa_handler;
1859 if (action == SIG_DFL) {
1860 #ifdef KTRACE
1861 if (KTRPOINT(p, KTR_PSIG))
1862 ktrpsig(l, signum, action,
1863 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1864 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1865 NULL);
1866 #endif
1867 /*
1868 * Default action, where the default is to kill
1869 * the process. (Other cases were ignored above.)
1870 */
1871 sigexit(l, signum);
1872 /* NOTREACHED */
1873 } else {
1874 ksiginfo_t *ksi;
1875 /*
1876 * If we get here, the signal must be caught.
1877 */
1878 #ifdef DIAGNOSTIC
1879 if (action == SIG_IGN ||
1880 sigismember(&p->p_sigctx.ps_sigmask, signum))
1881 panic("postsig action");
1882 #endif
1883 /*
1884 * Set the new mask value and also defer further
1885 * occurrences of this signal.
1886 *
1887 * Special case: user has done a sigpause. Here the
1888 * current mask is not of interest, but rather the
1889 * mask from before the sigpause is what we want
1890 * restored after the signal processing is completed.
1891 */
1892 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1893 returnmask = &p->p_sigctx.ps_oldmask;
1894 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1895 } else
1896 returnmask = &p->p_sigctx.ps_sigmask;
1897 p->p_stats->p_ru.ru_nsignals++;
1898 ksi = ksiginfo_get(p, signum);
1899 #ifdef KTRACE
1900 if (KTRPOINT(p, KTR_PSIG))
1901 ktrpsig(l, signum, action,
1902 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1903 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1904 ksi);
1905 #endif
1906 if (ksi == NULL) {
1907 ksiginfo_t ksi1;
1908 /*
1909 * we did not save any siginfo for this, either
1910 * because the signal was not caught, or because the
1911 * user did not request SA_SIGINFO
1912 */
1913 KSI_INIT_EMPTY(&ksi1);
1914 ksi1.ksi_signo = signum;
1915 kpsendsig(l, &ksi1, returnmask);
1916 } else {
1917 kpsendsig(l, ksi, returnmask);
1918 pool_put(&ksiginfo_pool, ksi);
1919 }
1920 p->p_sigctx.ps_lwp = 0;
1921 p->p_sigctx.ps_code = 0;
1922 p->p_sigctx.ps_signo = 0;
1923 (void) splsched(); /* XXXSMP */
1924 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1925 &p->p_sigctx.ps_sigmask);
1926 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1927 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1928 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1929 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1930 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1931 }
1932 (void) spl0(); /* XXXSMP */
1933 }
1934
1935 KERNEL_PROC_UNLOCK(l);
1936 }
1937
1938 /*
1939 * Kill the current process for stated reason.
1940 */
1941 void
1942 killproc(struct proc *p, const char *why)
1943 {
1944 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1945 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1946 psignal(p, SIGKILL);
1947 }
1948
1949 /*
1950 * Force the current process to exit with the specified signal, dumping core
1951 * if appropriate. We bypass the normal tests for masked and caught signals,
1952 * allowing unrecoverable failures to terminate the process without changing
1953 * signal state. Mark the accounting record with the signal termination.
1954 * If dumping core, save the signal number for the debugger. Calls exit and
1955 * does not return.
1956 */
1957
1958 #if defined(DEBUG)
1959 int kern_logsigexit = 1; /* not static to make public for sysctl */
1960 #else
1961 int kern_logsigexit = 0; /* not static to make public for sysctl */
1962 #endif
1963
1964 static const char logcoredump[] =
1965 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1966 static const char lognocoredump[] =
1967 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1968
1969 /* Wrapper function for use in p_userret */
1970 static void
1971 lwp_coredump_hook(struct lwp *l, void *arg)
1972 {
1973 int s;
1974
1975 /*
1976 * Suspend ourselves, so that the kernel stack and therefore
1977 * the userland registers saved in the trapframe are around
1978 * for coredump() to write them out.
1979 */
1980 KERNEL_PROC_LOCK(l);
1981 l->l_flag &= ~L_DETACHED;
1982 SCHED_LOCK(s);
1983 l->l_stat = LSSUSPENDED;
1984 l->l_proc->p_nrlwps--;
1985 /* XXX NJWLWP check if this makes sense here: */
1986 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1987 mi_switch(l, NULL);
1988 SCHED_ASSERT_UNLOCKED();
1989 splx(s);
1990
1991 lwp_exit(l);
1992 }
1993
1994 void
1995 sigexit(struct lwp *l, int signum)
1996 {
1997 struct proc *p;
1998 #if 0
1999 struct lwp *l2;
2000 #endif
2001 int error, exitsig;
2002
2003 p = l->l_proc;
2004
2005 /*
2006 * Don't permit coredump() or exit1() multiple times
2007 * in the same process.
2008 */
2009 if (p->p_flag & P_WEXIT) {
2010 KERNEL_PROC_UNLOCK(l);
2011 (*p->p_userret)(l, p->p_userret_arg);
2012 }
2013 p->p_flag |= P_WEXIT;
2014 /* We don't want to switch away from exiting. */
2015 /* XXX multiprocessor: stop LWPs on other processors. */
2016 #if 0
2017 if (p->p_flag & P_SA) {
2018 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2019 l2->l_flag &= ~L_SA;
2020 p->p_flag &= ~P_SA;
2021 }
2022 #endif
2023
2024 /* Make other LWPs stick around long enough to be dumped */
2025 p->p_userret = lwp_coredump_hook;
2026 p->p_userret_arg = NULL;
2027
2028 exitsig = signum;
2029 p->p_acflag |= AXSIG;
2030 if (sigprop[signum] & SA_CORE) {
2031 p->p_sigctx.ps_signo = signum;
2032 if ((error = coredump(l, NULL)) == 0)
2033 exitsig |= WCOREFLAG;
2034
2035 if (kern_logsigexit) {
2036 /* XXX What if we ever have really large UIDs? */
2037 int uid = p->p_cred && p->p_cred ?
2038 (int) kauth_cred_geteuid(p->p_cred) : -1;
2039
2040 if (error)
2041 log(LOG_INFO, lognocoredump, p->p_pid,
2042 p->p_comm, uid, signum, error);
2043 else
2044 log(LOG_INFO, logcoredump, p->p_pid,
2045 p->p_comm, uid, signum);
2046 }
2047
2048 }
2049
2050 exit1(l, W_EXITCODE(0, exitsig));
2051 /* NOTREACHED */
2052 }
2053
2054 struct coredump_iostate {
2055 struct lwp *io_lwp;
2056 struct vnode *io_vp;
2057 kauth_cred_t io_cred;
2058 off_t io_offset;
2059 };
2060
2061 int
2062 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2063 {
2064 struct coredump_iostate *io = cookie;
2065 int error;
2066
2067 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2068 io->io_offset, segflg,
2069 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2070 segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2071 if (error) {
2072 printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2073 io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2074 segflg == UIO_USERSPACE ? "user" : "system",
2075 len, data, (long long) io->io_offset, error);
2076 return (error);
2077 }
2078
2079 io->io_offset += len;
2080 return (0);
2081 }
2082
2083 /*
2084 * Dump core, into a file named "progname.core" or "core" (depending on the
2085 * value of shortcorename), unless the process was setuid/setgid.
2086 */
2087 int
2088 coredump(struct lwp *l, const char *pattern)
2089 {
2090 struct vnode *vp;
2091 struct proc *p;
2092 struct vmspace *vm;
2093 kauth_cred_t cred;
2094 struct nameidata nd;
2095 struct vattr vattr;
2096 struct mount *mp;
2097 struct coredump_iostate io;
2098 int error, error1;
2099 char *name = NULL;
2100
2101 p = l->l_proc;
2102 vm = p->p_vmspace;
2103 cred = p->p_cred;
2104
2105 /*
2106 * Make sure the process has not set-id, to prevent data leaks,
2107 * unless it was specifically requested to allow set-id coredumps.
2108 */
2109 if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2110 return EPERM;
2111
2112 /*
2113 * Refuse to core if the data + stack + user size is larger than
2114 * the core dump limit. XXX THIS IS WRONG, because of mapped
2115 * data.
2116 */
2117 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2118 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2119 return EFBIG; /* better error code? */
2120
2121 restart:
2122 /*
2123 * The core dump will go in the current working directory. Make
2124 * sure that the directory is still there and that the mount flags
2125 * allow us to write core dumps there.
2126 */
2127 vp = p->p_cwdi->cwdi_cdir;
2128 if (vp->v_mount == NULL ||
2129 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2130 error = EPERM;
2131 goto done;
2132 }
2133
2134 if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2135 pattern = security_setidcore_path;
2136
2137 if (pattern == NULL)
2138 pattern = p->p_limit->pl_corename;
2139 if (name == NULL) {
2140 name = PNBUF_GET();
2141 }
2142 if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2143 goto done;
2144 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2145 if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2146 S_IRUSR | S_IWUSR)) != 0)
2147 goto done;
2148 vp = nd.ni_vp;
2149
2150 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2151 VOP_UNLOCK(vp, 0);
2152 if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2153 goto done;
2154 if ((error = vn_start_write(NULL, &mp,
2155 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2156 goto done;
2157 goto restart;
2158 }
2159
2160 /* Don't dump to non-regular files or files with links. */
2161 if (vp->v_type != VREG ||
2162 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2163 error = EINVAL;
2164 goto out;
2165 }
2166 VATTR_NULL(&vattr);
2167 vattr.va_size = 0;
2168
2169 if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2170 vattr.va_uid = security_setidcore_owner;
2171 vattr.va_gid = security_setidcore_group;
2172 vattr.va_mode = security_setidcore_mode;
2173 }
2174
2175 VOP_LEASE(vp, l, cred, LEASE_WRITE);
2176 VOP_SETATTR(vp, &vattr, cred, l);
2177 p->p_acflag |= ACORE;
2178
2179 io.io_lwp = l;
2180 io.io_vp = vp;
2181 io.io_cred = cred;
2182 io.io_offset = 0;
2183
2184 /* Now dump the actual core file. */
2185 error = (*p->p_execsw->es_coredump)(l, &io);
2186 out:
2187 VOP_UNLOCK(vp, 0);
2188 vn_finished_write(mp, 0);
2189 error1 = vn_close(vp, FWRITE, cred, l);
2190 if (error == 0)
2191 error = error1;
2192 done:
2193 if (name != NULL)
2194 PNBUF_PUT(name);
2195 return error;
2196 }
2197
2198 /*
2199 * Nonexistent system call-- signal process (may want to handle it).
2200 * Flag error in case process won't see signal immediately (blocked or ignored).
2201 */
2202 /* ARGSUSED */
2203 int
2204 sys_nosys(struct lwp *l, void *v, register_t *retval)
2205 {
2206 struct proc *p;
2207
2208 p = l->l_proc;
2209 psignal(p, SIGSYS);
2210 return (ENOSYS);
2211 }
2212
2213 static int
2214 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2215 {
2216 const char *s;
2217 char *d, *end;
2218 int i;
2219
2220 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2221 if (*s == '%') {
2222 switch (*(s + 1)) {
2223 case 'n':
2224 i = snprintf(d, end - d, "%s", p->p_comm);
2225 break;
2226 case 'p':
2227 i = snprintf(d, end - d, "%d", p->p_pid);
2228 break;
2229 case 'u':
2230 i = snprintf(d, end - d, "%.*s",
2231 (int)sizeof p->p_pgrp->pg_session->s_login,
2232 p->p_pgrp->pg_session->s_login);
2233 break;
2234 case 't':
2235 i = snprintf(d, end - d, "%ld",
2236 p->p_stats->p_start.tv_sec);
2237 break;
2238 default:
2239 goto copy;
2240 }
2241 d += i;
2242 s++;
2243 } else {
2244 copy: *d = *s;
2245 d++;
2246 }
2247 if (d >= end)
2248 return (ENAMETOOLONG);
2249 }
2250 *d = '\0';
2251 return 0;
2252 }
2253
2254 void
2255 getucontext(struct lwp *l, ucontext_t *ucp)
2256 {
2257 struct proc *p;
2258
2259 p = l->l_proc;
2260
2261 ucp->uc_flags = 0;
2262 ucp->uc_link = l->l_ctxlink;
2263
2264 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2265 ucp->uc_flags |= _UC_SIGMASK;
2266
2267 /*
2268 * The (unsupplied) definition of the `current execution stack'
2269 * in the System V Interface Definition appears to allow returning
2270 * the main context stack.
2271 */
2272 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2273 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2274 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2275 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2276 } else {
2277 /* Simply copy alternate signal execution stack. */
2278 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2279 }
2280 ucp->uc_flags |= _UC_STACK;
2281
2282 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2283 }
2284
2285 /* ARGSUSED */
2286 int
2287 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2288 {
2289 struct sys_getcontext_args /* {
2290 syscallarg(struct __ucontext *) ucp;
2291 } */ *uap = v;
2292 ucontext_t uc;
2293
2294 getucontext(l, &uc);
2295
2296 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2297 }
2298
2299 int
2300 setucontext(struct lwp *l, const ucontext_t *ucp)
2301 {
2302 struct proc *p;
2303 int error;
2304
2305 p = l->l_proc;
2306 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2307 return (error);
2308 l->l_ctxlink = ucp->uc_link;
2309
2310 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2311 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2312
2313 /*
2314 * If there was stack information, update whether or not we are
2315 * still running on an alternate signal stack.
2316 */
2317 if ((ucp->uc_flags & _UC_STACK) != 0) {
2318 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2319 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2320 else
2321 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2322 }
2323
2324 return 0;
2325 }
2326
2327 /* ARGSUSED */
2328 int
2329 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2330 {
2331 struct sys_setcontext_args /* {
2332 syscallarg(const ucontext_t *) ucp;
2333 } */ *uap = v;
2334 ucontext_t uc;
2335 int error;
2336
2337 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2338 exit1(l, W_EXITCODE(0, 0));
2339 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2340 (error = setucontext(l, &uc)) != 0)
2341 return (error);
2342
2343 return (EJUSTRETURN);
2344 }
2345
2346 /*
2347 * sigtimedwait(2) system call, used also for implementation
2348 * of sigwaitinfo() and sigwait().
2349 *
2350 * This only handles single LWP in signal wait. libpthread provides
2351 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2352 */
2353 int
2354 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2355 {
2356 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2357 }
2358
2359 int
2360 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2361 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2362 {
2363 struct sys___sigtimedwait_args /* {
2364 syscallarg(const sigset_t *) set;
2365 syscallarg(siginfo_t *) info;
2366 syscallarg(struct timespec *) timeout;
2367 } */ *uap = v;
2368 sigset_t *waitset, twaitset;
2369 struct proc *p = l->l_proc;
2370 int error, signum;
2371 int timo = 0;
2372 struct timespec ts, tsstart;
2373 ksiginfo_t *ksi;
2374
2375 memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */
2376
2377 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2378
2379 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2380 FREE(waitset, M_TEMP);
2381 return (error);
2382 }
2383
2384 /*
2385 * Silently ignore SA_CANTMASK signals. psignal1() would
2386 * ignore SA_CANTMASK signals in waitset, we do this
2387 * only for the below siglist check.
2388 */
2389 sigminusset(&sigcantmask, waitset);
2390
2391 /*
2392 * First scan siglist and check if there is signal from
2393 * our waitset already pending.
2394 */
2395 twaitset = *waitset;
2396 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2397 if ((signum = firstsig(&twaitset))) {
2398 /* found pending signal */
2399 sigdelset(&p->p_sigctx.ps_siglist, signum);
2400 ksi = ksiginfo_get(p, signum);
2401 if (!ksi) {
2402 /* No queued siginfo, manufacture one */
2403 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2404 KSI_INIT(ksi);
2405 ksi->ksi_info._signo = signum;
2406 ksi->ksi_info._code = SI_USER;
2407 }
2408
2409 goto sig;
2410 }
2411
2412 /*
2413 * Calculate timeout, if it was specified.
2414 */
2415 if (SCARG(uap, timeout)) {
2416 uint64_t ms;
2417
2418 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2419 return (error);
2420
2421 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2422 timo = mstohz(ms);
2423 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2424 timo = 1;
2425 if (timo <= 0)
2426 return (EAGAIN);
2427
2428 /*
2429 * Remember current uptime, it would be used in
2430 * ECANCELED/ERESTART case.
2431 */
2432 getnanouptime(&tsstart);
2433 }
2434
2435 /*
2436 * Setup ps_sigwait list. Pass pointer to malloced memory
2437 * here; it's not possible to pass pointer to a structure
2438 * on current process's stack, the current process might
2439 * be swapped out at the time the signal would get delivered.
2440 */
2441 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2442 p->p_sigctx.ps_sigwaited = ksi;
2443 p->p_sigctx.ps_sigwait = waitset;
2444
2445 /*
2446 * Wait for signal to arrive. We can either be woken up or
2447 * time out.
2448 */
2449 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2450
2451 /*
2452 * Need to find out if we woke as a result of lwp_wakeup()
2453 * or a signal outside our wait set.
2454 */
2455 if (error == EINTR && p->p_sigctx.ps_sigwaited
2456 && !firstsig(&p->p_sigctx.ps_siglist)) {
2457 /* wakeup via _lwp_wakeup() */
2458 error = ECANCELED;
2459 } else if (!error && p->p_sigctx.ps_sigwaited) {
2460 /* spurious wakeup - arrange for syscall restart */
2461 error = ERESTART;
2462 goto fail;
2463 }
2464
2465 /*
2466 * On error, clear sigwait indication. psignal1() clears it
2467 * in !error case.
2468 */
2469 if (error) {
2470 p->p_sigctx.ps_sigwaited = NULL;
2471
2472 /*
2473 * If the sleep was interrupted (either by signal or wakeup),
2474 * update the timeout and copyout new value back.
2475 * It would be used when the syscall would be restarted
2476 * or called again.
2477 */
2478 if (timo && (error == ERESTART || error == ECANCELED)) {
2479 struct timespec tsnow;
2480 int err;
2481
2482 /* XXX double check the following change */
2483 getnanouptime(&tsnow);
2484
2485 /* compute how much time has passed since start */
2486 timespecsub(&tsnow, &tsstart, &tsnow);
2487 /* substract passed time from timeout */
2488 timespecsub(&ts, &tsnow, &ts);
2489
2490 if (ts.tv_sec < 0) {
2491 error = EAGAIN;
2492 goto fail;
2493 }
2494 /* XXX double check the previous change */
2495
2496 /* copy updated timeout to userland */
2497 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2498 sizeof(ts)))) {
2499 error = err;
2500 goto fail;
2501 }
2502 }
2503
2504 goto fail;
2505 }
2506
2507 /*
2508 * If a signal from the wait set arrived, copy it to userland.
2509 * Copy only the used part of siginfo, the padding part is
2510 * left unchanged (userland is not supposed to touch it anyway).
2511 */
2512 sig:
2513 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2514
2515 fail:
2516 FREE(waitset, M_TEMP);
2517 pool_put(&ksiginfo_pool, ksi);
2518 p->p_sigctx.ps_sigwait = NULL;
2519
2520 return (error);
2521 }
2522
2523 /*
2524 * Returns true if signal is ignored or masked for passed process.
2525 */
2526 int
2527 sigismasked(struct proc *p, int sig)
2528 {
2529
2530 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2531 sigismember(&p->p_sigctx.ps_sigmask, sig));
2532 }
2533
2534 static int
2535 filt_sigattach(struct knote *kn)
2536 {
2537 struct proc *p = curproc;
2538
2539 kn->kn_ptr.p_proc = p;
2540 kn->kn_flags |= EV_CLEAR; /* automatically set */
2541
2542 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2543
2544 return (0);
2545 }
2546
2547 static void
2548 filt_sigdetach(struct knote *kn)
2549 {
2550 struct proc *p = kn->kn_ptr.p_proc;
2551
2552 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2553 }
2554
2555 /*
2556 * signal knotes are shared with proc knotes, so we apply a mask to
2557 * the hint in order to differentiate them from process hints. This
2558 * could be avoided by using a signal-specific knote list, but probably
2559 * isn't worth the trouble.
2560 */
2561 static int
2562 filt_signal(struct knote *kn, long hint)
2563 {
2564
2565 if (hint & NOTE_SIGNAL) {
2566 hint &= ~NOTE_SIGNAL;
2567
2568 if (kn->kn_id == hint)
2569 kn->kn_data++;
2570 }
2571 return (kn->kn_data != 0);
2572 }
2573
2574 const struct filterops sig_filtops = {
2575 0, filt_sigattach, filt_sigdetach, filt_signal
2576 };
2577