kern_sig.c revision 1.225 1 /* $NetBSD: kern_sig.c,v 1.225 2006/08/29 23:34:48 matt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.225 2006/08/29 23:34:48 matt Exp $");
41
42 #include "opt_coredump.h"
43 #include "opt_ktrace.h"
44 #include "opt_multiprocessor.h"
45 #include "opt_compat_sunos.h"
46 #include "opt_compat_netbsd.h"
47 #include "opt_compat_netbsd32.h"
48
49 #define SIGPROP /* include signal properties table */
50 #include <sys/param.h>
51 #include <sys/signalvar.h>
52 #include <sys/resourcevar.h>
53 #include <sys/namei.h>
54 #include <sys/vnode.h>
55 #include <sys/proc.h>
56 #include <sys/systm.h>
57 #include <sys/timeb.h>
58 #include <sys/times.h>
59 #include <sys/buf.h>
60 #include <sys/acct.h>
61 #include <sys/file.h>
62 #include <sys/kernel.h>
63 #include <sys/wait.h>
64 #include <sys/ktrace.h>
65 #include <sys/syslog.h>
66 #include <sys/stat.h>
67 #include <sys/core.h>
68 #include <sys/filedesc.h>
69 #include <sys/malloc.h>
70 #include <sys/pool.h>
71 #include <sys/ucontext.h>
72 #include <sys/sa.h>
73 #include <sys/savar.h>
74 #include <sys/exec.h>
75 #include <sys/sysctl.h>
76 #include <sys/kauth.h>
77
78 #include <sys/mount.h>
79 #include <sys/syscallargs.h>
80
81 #include <machine/cpu.h>
82
83 #include <sys/user.h> /* for coredump */
84
85 #include <uvm/uvm.h>
86 #include <uvm/uvm_extern.h>
87
88 static int build_corename(struct proc *, char *, const char *, size_t);
89 static void ksiginfo_exithook(struct proc *, void *);
90 static void ksiginfo_put(struct proc *, const ksiginfo_t *);
91 static ksiginfo_t *ksiginfo_get(struct proc *, int);
92 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
93
94 sigset_t contsigmask, stopsigmask, sigcantmask;
95
96 struct pool sigacts_pool; /* memory pool for sigacts structures */
97
98 /*
99 * struct sigacts memory pool allocator.
100 */
101
102 static void *
103 sigacts_poolpage_alloc(struct pool *pp, int flags)
104 {
105
106 return (void *)uvm_km_alloc(kernel_map,
107 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
108 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
109 | UVM_KMF_WIRED);
110 }
111
112 static void
113 sigacts_poolpage_free(struct pool *pp, void *v)
114 {
115 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
116 }
117
118 static struct pool_allocator sigactspool_allocator = {
119 sigacts_poolpage_alloc, sigacts_poolpage_free,
120 };
121
122 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
123 &pool_allocator_nointr);
124 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
125
126 /*
127 * Remove and return the first ksiginfo element that matches our requested
128 * signal, or return NULL if one not found.
129 */
130 static ksiginfo_t *
131 ksiginfo_get(struct proc *p, int signo)
132 {
133 ksiginfo_t *ksi;
134 int s;
135
136 s = splsoftclock();
137 simple_lock(&p->p_sigctx.ps_silock);
138 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
139 if (ksi->ksi_signo == signo) {
140 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
141 goto out;
142 }
143 }
144 ksi = NULL;
145 out:
146 simple_unlock(&p->p_sigctx.ps_silock);
147 splx(s);
148 return ksi;
149 }
150
151 /*
152 * Append a new ksiginfo element to the list of pending ksiginfo's, if
153 * we need to (SA_SIGINFO was requested). We replace non RT signals if
154 * they already existed in the queue and we add new entries for RT signals,
155 * or for non RT signals with non-existing entries.
156 */
157 static void
158 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
159 {
160 ksiginfo_t *kp;
161 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
162 int s;
163
164 if ((sa->sa_flags & SA_SIGINFO) == 0)
165 return;
166 /*
167 * If there's no info, don't save it.
168 */
169 if (KSI_EMPTY_P(ksi))
170 return;
171
172 s = splsoftclock();
173 simple_lock(&p->p_sigctx.ps_silock);
174 #ifdef notyet /* XXX: QUEUING */
175 if (ksi->ksi_signo < SIGRTMIN)
176 #endif
177 {
178 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
179 if (kp->ksi_signo == ksi->ksi_signo) {
180 KSI_COPY(ksi, kp);
181 goto out;
182 }
183 }
184 }
185 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
186 if (kp == NULL) {
187 #ifdef DIAGNOSTIC
188 printf("Out of memory allocating siginfo for pid %d\n",
189 p->p_pid);
190 #endif
191 goto out;
192 }
193 *kp = *ksi;
194 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
195 out:
196 simple_unlock(&p->p_sigctx.ps_silock);
197 splx(s);
198 }
199
200 /*
201 * free all pending ksiginfo on exit
202 */
203 static void
204 ksiginfo_exithook(struct proc *p, void *v)
205 {
206 int s;
207
208 s = splsoftclock();
209 simple_lock(&p->p_sigctx.ps_silock);
210 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
211 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
212 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
213 pool_put(&ksiginfo_pool, ksi);
214 }
215 simple_unlock(&p->p_sigctx.ps_silock);
216 splx(s);
217 }
218
219 /*
220 * Initialize signal-related data structures.
221 */
222 void
223 signal_init(void)
224 {
225
226 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
227
228 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
229 sizeof(struct sigacts) > PAGE_SIZE ?
230 &sigactspool_allocator : &pool_allocator_nointr);
231
232 exithook_establish(ksiginfo_exithook, NULL);
233 exechook_establish(ksiginfo_exithook, NULL);
234 }
235
236 /*
237 * Create an initial sigctx structure, using the same signal state
238 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
239 * copy it from parent.
240 */
241 void
242 sigactsinit(struct proc *np, struct proc *pp, int share)
243 {
244 struct sigacts *ps;
245
246 if (share) {
247 np->p_sigacts = pp->p_sigacts;
248 pp->p_sigacts->sa_refcnt++;
249 } else {
250 ps = pool_get(&sigacts_pool, PR_WAITOK);
251 if (pp)
252 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
253 else
254 memset(ps, '\0', sizeof(struct sigacts));
255 ps->sa_refcnt = 1;
256 np->p_sigacts = ps;
257 }
258 }
259
260 /*
261 * Make this process not share its sigctx, maintaining all
262 * signal state.
263 */
264 void
265 sigactsunshare(struct proc *p)
266 {
267 struct sigacts *oldps;
268
269 if (p->p_sigacts->sa_refcnt == 1)
270 return;
271
272 oldps = p->p_sigacts;
273 sigactsinit(p, NULL, 0);
274
275 if (--oldps->sa_refcnt == 0)
276 pool_put(&sigacts_pool, oldps);
277 }
278
279 /*
280 * Release a sigctx structure.
281 */
282 void
283 sigactsfree(struct sigacts *ps)
284 {
285
286 if (--ps->sa_refcnt > 0)
287 return;
288
289 pool_put(&sigacts_pool, ps);
290 }
291
292 int
293 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
294 struct sigaction *osa, const void *tramp, int vers)
295 {
296 struct sigacts *ps;
297 int prop;
298
299 ps = p->p_sigacts;
300 if (signum <= 0 || signum >= NSIG)
301 return (EINVAL);
302
303 /*
304 * Trampoline ABI version 0 is reserved for the legacy
305 * kernel-provided on-stack trampoline. Conversely, if we are
306 * using a non-0 ABI version, we must have a trampoline. Only
307 * validate the vers if a new sigaction was supplied. Emulations
308 * use legacy kernel trampolines with version 0, alternatively
309 * check for that too.
310 */
311 if ((vers != 0 && tramp == NULL) ||
312 #ifdef SIGTRAMP_VALID
313 (nsa != NULL &&
314 ((vers == 0) ?
315 (p->p_emul->e_sigcode == NULL) :
316 !SIGTRAMP_VALID(vers))) ||
317 #endif
318 (vers == 0 && tramp != NULL))
319 return (EINVAL);
320
321 if (osa)
322 *osa = SIGACTION_PS(ps, signum);
323
324 if (nsa) {
325 if (nsa->sa_flags & ~SA_ALLBITS)
326 return (EINVAL);
327
328 prop = sigprop[signum];
329 if (prop & SA_CANTMASK)
330 return (EINVAL);
331
332 (void) splsched(); /* XXXSMP */
333 SIGACTION_PS(ps, signum) = *nsa;
334 ps->sa_sigdesc[signum].sd_tramp = tramp;
335 ps->sa_sigdesc[signum].sd_vers = vers;
336 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
337 if ((prop & SA_NORESET) != 0)
338 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
339 if (signum == SIGCHLD) {
340 if (nsa->sa_flags & SA_NOCLDSTOP)
341 p->p_flag |= P_NOCLDSTOP;
342 else
343 p->p_flag &= ~P_NOCLDSTOP;
344 if (nsa->sa_flags & SA_NOCLDWAIT) {
345 /*
346 * Paranoia: since SA_NOCLDWAIT is implemented
347 * by reparenting the dying child to PID 1 (and
348 * trust it to reap the zombie), PID 1 itself
349 * is forbidden to set SA_NOCLDWAIT.
350 */
351 if (p->p_pid == 1)
352 p->p_flag &= ~P_NOCLDWAIT;
353 else
354 p->p_flag |= P_NOCLDWAIT;
355 } else
356 p->p_flag &= ~P_NOCLDWAIT;
357
358 if (nsa->sa_handler == SIG_IGN) {
359 /*
360 * Paranoia: same as above.
361 */
362 if (p->p_pid == 1)
363 p->p_flag &= ~P_CLDSIGIGN;
364 else
365 p->p_flag |= P_CLDSIGIGN;
366 } else
367 p->p_flag &= ~P_CLDSIGIGN;
368
369 }
370 if ((nsa->sa_flags & SA_NODEFER) == 0)
371 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
372 else
373 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
374 /*
375 * Set bit in p_sigctx.ps_sigignore for signals that are set to
376 * SIG_IGN, and for signals set to SIG_DFL where the default is
377 * to ignore. However, don't put SIGCONT in
378 * p_sigctx.ps_sigignore, as we have to restart the process.
379 */
380 if (nsa->sa_handler == SIG_IGN ||
381 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
382 /* never to be seen again */
383 sigdelset(&p->p_sigctx.ps_siglist, signum);
384 if (signum != SIGCONT) {
385 /* easier in psignal */
386 sigaddset(&p->p_sigctx.ps_sigignore, signum);
387 }
388 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
389 } else {
390 sigdelset(&p->p_sigctx.ps_sigignore, signum);
391 if (nsa->sa_handler == SIG_DFL)
392 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
393 else
394 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
395 }
396 (void) spl0();
397 }
398
399 return (0);
400 }
401
402 #ifdef COMPAT_16
403 /* ARGSUSED */
404 int
405 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
406 {
407 struct compat_16_sys___sigaction14_args /* {
408 syscallarg(int) signum;
409 syscallarg(const struct sigaction *) nsa;
410 syscallarg(struct sigaction *) osa;
411 } */ *uap = v;
412 struct proc *p;
413 struct sigaction nsa, osa;
414 int error;
415
416 if (SCARG(uap, nsa)) {
417 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
418 if (error)
419 return (error);
420 }
421 p = l->l_proc;
422 error = sigaction1(p, SCARG(uap, signum),
423 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
424 NULL, 0);
425 if (error)
426 return (error);
427 if (SCARG(uap, osa)) {
428 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
429 if (error)
430 return (error);
431 }
432 return (0);
433 }
434 #endif
435
436 /* ARGSUSED */
437 int
438 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
439 {
440 struct sys___sigaction_sigtramp_args /* {
441 syscallarg(int) signum;
442 syscallarg(const struct sigaction *) nsa;
443 syscallarg(struct sigaction *) osa;
444 syscallarg(void *) tramp;
445 syscallarg(int) vers;
446 } */ *uap = v;
447 struct proc *p = l->l_proc;
448 struct sigaction nsa, osa;
449 int error;
450
451 if (SCARG(uap, nsa)) {
452 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
453 if (error)
454 return (error);
455 }
456 error = sigaction1(p, SCARG(uap, signum),
457 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
458 SCARG(uap, tramp), SCARG(uap, vers));
459 if (error)
460 return (error);
461 if (SCARG(uap, osa)) {
462 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
463 if (error)
464 return (error);
465 }
466 return (0);
467 }
468
469 /*
470 * Initialize signal state for process 0;
471 * set to ignore signals that are ignored by default and disable the signal
472 * stack.
473 */
474 void
475 siginit(struct proc *p)
476 {
477 struct sigacts *ps;
478 int signum, prop;
479
480 ps = p->p_sigacts;
481 sigemptyset(&contsigmask);
482 sigemptyset(&stopsigmask);
483 sigemptyset(&sigcantmask);
484 for (signum = 1; signum < NSIG; signum++) {
485 prop = sigprop[signum];
486 if (prop & SA_CONT)
487 sigaddset(&contsigmask, signum);
488 if (prop & SA_STOP)
489 sigaddset(&stopsigmask, signum);
490 if (prop & SA_CANTMASK)
491 sigaddset(&sigcantmask, signum);
492 if (prop & SA_IGNORE && signum != SIGCONT)
493 sigaddset(&p->p_sigctx.ps_sigignore, signum);
494 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
495 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
496 }
497 sigemptyset(&p->p_sigctx.ps_sigcatch);
498 p->p_sigctx.ps_sigwaited = NULL;
499 p->p_flag &= ~P_NOCLDSTOP;
500
501 /*
502 * Reset stack state to the user stack.
503 */
504 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
505 p->p_sigctx.ps_sigstk.ss_size = 0;
506 p->p_sigctx.ps_sigstk.ss_sp = 0;
507
508 /* One reference. */
509 ps->sa_refcnt = 1;
510 }
511
512 /*
513 * Reset signals for an exec of the specified process.
514 */
515 void
516 execsigs(struct proc *p)
517 {
518 struct sigacts *ps;
519 int signum, prop;
520
521 sigactsunshare(p);
522
523 ps = p->p_sigacts;
524
525 /*
526 * Reset caught signals. Held signals remain held
527 * through p_sigctx.ps_sigmask (unless they were caught,
528 * and are now ignored by default).
529 */
530 for (signum = 1; signum < NSIG; signum++) {
531 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
532 prop = sigprop[signum];
533 if (prop & SA_IGNORE) {
534 if ((prop & SA_CONT) == 0)
535 sigaddset(&p->p_sigctx.ps_sigignore,
536 signum);
537 sigdelset(&p->p_sigctx.ps_siglist, signum);
538 }
539 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
540 }
541 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
542 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
543 }
544 sigemptyset(&p->p_sigctx.ps_sigcatch);
545 p->p_sigctx.ps_sigwaited = NULL;
546
547 /*
548 * Reset no zombies if child dies flag as Solaris does.
549 */
550 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
551 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
552 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
553
554 /*
555 * Reset stack state to the user stack.
556 */
557 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
558 p->p_sigctx.ps_sigstk.ss_size = 0;
559 p->p_sigctx.ps_sigstk.ss_sp = 0;
560 }
561
562 int
563 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
564 {
565
566 if (oss)
567 *oss = p->p_sigctx.ps_sigmask;
568
569 if (nss) {
570 (void)splsched(); /* XXXSMP */
571 switch (how) {
572 case SIG_BLOCK:
573 sigplusset(nss, &p->p_sigctx.ps_sigmask);
574 break;
575 case SIG_UNBLOCK:
576 sigminusset(nss, &p->p_sigctx.ps_sigmask);
577 CHECKSIGS(p);
578 break;
579 case SIG_SETMASK:
580 p->p_sigctx.ps_sigmask = *nss;
581 CHECKSIGS(p);
582 break;
583 default:
584 (void)spl0(); /* XXXSMP */
585 return (EINVAL);
586 }
587 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
588 (void)spl0(); /* XXXSMP */
589 }
590
591 return (0);
592 }
593
594 /*
595 * Manipulate signal mask.
596 * Note that we receive new mask, not pointer,
597 * and return old mask as return value;
598 * the library stub does the rest.
599 */
600 int
601 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
602 {
603 struct sys___sigprocmask14_args /* {
604 syscallarg(int) how;
605 syscallarg(const sigset_t *) set;
606 syscallarg(sigset_t *) oset;
607 } */ *uap = v;
608 struct proc *p;
609 sigset_t nss, oss;
610 int error;
611
612 if (SCARG(uap, set)) {
613 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
614 if (error)
615 return (error);
616 }
617 p = l->l_proc;
618 error = sigprocmask1(p, SCARG(uap, how),
619 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
620 if (error)
621 return (error);
622 if (SCARG(uap, oset)) {
623 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
624 if (error)
625 return (error);
626 }
627 return (0);
628 }
629
630 void
631 sigpending1(struct proc *p, sigset_t *ss)
632 {
633
634 *ss = p->p_sigctx.ps_siglist;
635 sigminusset(&p->p_sigctx.ps_sigmask, ss);
636 }
637
638 /* ARGSUSED */
639 int
640 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
641 {
642 struct sys___sigpending14_args /* {
643 syscallarg(sigset_t *) set;
644 } */ *uap = v;
645 struct proc *p;
646 sigset_t ss;
647
648 p = l->l_proc;
649 sigpending1(p, &ss);
650 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
651 }
652
653 int
654 sigsuspend1(struct proc *p, const sigset_t *ss)
655 {
656 struct sigacts *ps;
657
658 ps = p->p_sigacts;
659 if (ss) {
660 /*
661 * When returning from sigpause, we want
662 * the old mask to be restored after the
663 * signal handler has finished. Thus, we
664 * save it here and mark the sigctx structure
665 * to indicate this.
666 */
667 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
668 p->p_sigctx.ps_flags |= SAS_OLDMASK;
669 (void) splsched(); /* XXXSMP */
670 p->p_sigctx.ps_sigmask = *ss;
671 CHECKSIGS(p);
672 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
673 (void) spl0(); /* XXXSMP */
674 }
675
676 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
677 /* void */;
678
679 /* always return EINTR rather than ERESTART... */
680 return (EINTR);
681 }
682
683 /*
684 * Suspend process until signal, providing mask to be set
685 * in the meantime. Note nonstandard calling convention:
686 * libc stub passes mask, not pointer, to save a copyin.
687 */
688 /* ARGSUSED */
689 int
690 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
691 {
692 struct sys___sigsuspend14_args /* {
693 syscallarg(const sigset_t *) set;
694 } */ *uap = v;
695 struct proc *p;
696 sigset_t ss;
697 int error;
698
699 if (SCARG(uap, set)) {
700 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
701 if (error)
702 return (error);
703 }
704
705 p = l->l_proc;
706 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
707 }
708
709 int
710 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
711 struct sigaltstack *oss)
712 {
713
714 if (oss)
715 *oss = p->p_sigctx.ps_sigstk;
716
717 if (nss) {
718 if (nss->ss_flags & ~SS_ALLBITS)
719 return (EINVAL);
720
721 if (nss->ss_flags & SS_DISABLE) {
722 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
723 return (EINVAL);
724 } else {
725 if (nss->ss_size < MINSIGSTKSZ)
726 return (ENOMEM);
727 }
728 p->p_sigctx.ps_sigstk = *nss;
729 }
730
731 return (0);
732 }
733
734 /* ARGSUSED */
735 int
736 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
737 {
738 struct sys___sigaltstack14_args /* {
739 syscallarg(const struct sigaltstack *) nss;
740 syscallarg(struct sigaltstack *) oss;
741 } */ *uap = v;
742 struct proc *p;
743 struct sigaltstack nss, oss;
744 int error;
745
746 if (SCARG(uap, nss)) {
747 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
748 if (error)
749 return (error);
750 }
751 p = l->l_proc;
752 error = sigaltstack1(p,
753 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
754 if (error)
755 return (error);
756 if (SCARG(uap, oss)) {
757 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
758 if (error)
759 return (error);
760 }
761 return (0);
762 }
763
764 /* ARGSUSED */
765 int
766 sys_kill(struct lwp *l, void *v, register_t *retval)
767 {
768 struct sys_kill_args /* {
769 syscallarg(int) pid;
770 syscallarg(int) signum;
771 } */ *uap = v;
772 struct proc *p;
773 ksiginfo_t ksi;
774 int signum = SCARG(uap, signum);
775 int error;
776
777 if ((u_int)signum >= NSIG)
778 return (EINVAL);
779 KSI_INIT(&ksi);
780 ksi.ksi_signo = signum;
781 ksi.ksi_code = SI_USER;
782 ksi.ksi_pid = l->l_proc->p_pid;
783 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
784 if (SCARG(uap, pid) > 0) {
785 /* kill single process */
786 if ((p = pfind(SCARG(uap, pid))) == NULL)
787 return (ESRCH);
788 error = kauth_authorize_process(l->l_cred,
789 KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
790 NULL, NULL);
791 if (error)
792 return error;
793 if (signum)
794 kpsignal2(p, &ksi, 1);
795 return (0);
796 }
797 switch (SCARG(uap, pid)) {
798 case -1: /* broadcast signal */
799 return (killpg1(l, &ksi, 0, 1));
800 case 0: /* signal own process group */
801 return (killpg1(l, &ksi, 0, 0));
802 default: /* negative explicit process group */
803 return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
804 }
805 /* NOTREACHED */
806 }
807
808 /*
809 * Common code for kill process group/broadcast kill.
810 * cp is calling process.
811 */
812 int
813 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
814 {
815 struct proc *p, *cp;
816 kauth_cred_t pc;
817 struct pgrp *pgrp;
818 int nfound;
819 int signum = ksi->ksi_signo;
820
821 cp = l->l_proc;
822 pc = l->l_cred;
823 nfound = 0;
824 if (all) {
825 /*
826 * broadcast
827 */
828 proclist_lock_read();
829 PROCLIST_FOREACH(p, &allproc) {
830 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
831 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
832 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
833 continue;
834 nfound++;
835 if (signum)
836 kpsignal2(p, ksi, 1);
837 }
838 proclist_unlock_read();
839 } else {
840 if (pgid == 0)
841 /*
842 * zero pgid means send to my process group.
843 */
844 pgrp = cp->p_pgrp;
845 else {
846 pgrp = pgfind(pgid);
847 if (pgrp == NULL)
848 return (ESRCH);
849 }
850 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
851 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
852 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
853 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
854 continue;
855 nfound++;
856 if (signum && P_ZOMBIE(p) == 0)
857 kpsignal2(p, ksi, 1);
858 }
859 }
860 return (nfound ? 0 : ESRCH);
861 }
862
863 /*
864 * Send a signal to a process group.
865 */
866 void
867 gsignal(int pgid, int signum)
868 {
869 ksiginfo_t ksi;
870 KSI_INIT_EMPTY(&ksi);
871 ksi.ksi_signo = signum;
872 kgsignal(pgid, &ksi, NULL);
873 }
874
875 void
876 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
877 {
878 struct pgrp *pgrp;
879
880 if (pgid && (pgrp = pgfind(pgid)))
881 kpgsignal(pgrp, ksi, data, 0);
882 }
883
884 /*
885 * Send a signal to a process group. If checktty is 1,
886 * limit to members which have a controlling terminal.
887 */
888 void
889 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
890 {
891 ksiginfo_t ksi;
892 KSI_INIT_EMPTY(&ksi);
893 ksi.ksi_signo = sig;
894 kpgsignal(pgrp, &ksi, NULL, checkctty);
895 }
896
897 void
898 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
899 {
900 struct proc *p;
901
902 if (pgrp)
903 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
904 if (checkctty == 0 || p->p_flag & P_CONTROLT)
905 kpsignal(p, ksi, data);
906 }
907
908 /*
909 * Send a signal caused by a trap to the current process.
910 * If it will be caught immediately, deliver it with correct code.
911 * Otherwise, post it normally.
912 */
913 void
914 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
915 {
916 struct proc *p;
917 struct sigacts *ps;
918 int signum = ksi->ksi_signo;
919
920 KASSERT(KSI_TRAP_P(ksi));
921
922 p = l->l_proc;
923 ps = p->p_sigacts;
924 if ((p->p_flag & P_TRACED) == 0 &&
925 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
926 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
927 p->p_stats->p_ru.ru_nsignals++;
928 #ifdef KTRACE
929 if (KTRPOINT(p, KTR_PSIG))
930 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
931 &p->p_sigctx.ps_sigmask, ksi);
932 #endif
933 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
934 (void) splsched(); /* XXXSMP */
935 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
936 &p->p_sigctx.ps_sigmask);
937 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
938 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
939 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
940 sigaddset(&p->p_sigctx.ps_sigignore, signum);
941 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
942 }
943 (void) spl0(); /* XXXSMP */
944 } else {
945 p->p_sigctx.ps_lwp = l->l_lid;
946 /* XXX for core dump/debugger */
947 p->p_sigctx.ps_signo = ksi->ksi_signo;
948 p->p_sigctx.ps_code = ksi->ksi_trap;
949 kpsignal2(p, ksi, 1);
950 }
951 }
952
953 /*
954 * Fill in signal information and signal the parent for a child status change.
955 */
956 void
957 child_psignal(struct proc *p, int dolock)
958 {
959 ksiginfo_t ksi;
960
961 KSI_INIT(&ksi);
962 ksi.ksi_signo = SIGCHLD;
963 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
964 ksi.ksi_pid = p->p_pid;
965 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
966 ksi.ksi_status = p->p_xstat;
967 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
968 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
969 kpsignal2(p->p_pptr, &ksi, dolock);
970 }
971
972 /*
973 * Send the signal to the process. If the signal has an action, the action
974 * is usually performed by the target process rather than the caller; we add
975 * the signal to the set of pending signals for the process.
976 *
977 * Exceptions:
978 * o When a stop signal is sent to a sleeping process that takes the
979 * default action, the process is stopped without awakening it.
980 * o SIGCONT restarts stopped processes (or puts them back to sleep)
981 * regardless of the signal action (eg, blocked or ignored).
982 *
983 * Other ignored signals are discarded immediately.
984 *
985 * XXXSMP: Invoked as psignal() or sched_psignal().
986 */
987 void
988 psignal1(struct proc *p, int signum, int dolock)
989 {
990 ksiginfo_t ksi;
991
992 KSI_INIT_EMPTY(&ksi);
993 ksi.ksi_signo = signum;
994 kpsignal2(p, &ksi, dolock);
995 }
996
997 void
998 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
999 {
1000
1001 if ((p->p_flag & P_WEXIT) == 0 && data) {
1002 size_t fd;
1003 struct filedesc *fdp = p->p_fd;
1004
1005 ksi->ksi_fd = -1;
1006 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1007 struct file *fp = fdp->fd_ofiles[fd];
1008 /* XXX: lock? */
1009 if (fp && fp->f_data == data) {
1010 ksi->ksi_fd = fd;
1011 break;
1012 }
1013 }
1014 }
1015 kpsignal2(p, ksi, dolock);
1016 }
1017
1018 static void
1019 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1020 {
1021 struct lwp *l, *suspended = NULL;
1022 struct sadata_vp *vp;
1023 int s = 0, prop, allsusp;
1024 sig_t action;
1025 int signum = ksi->ksi_signo;
1026
1027 #ifdef DIAGNOSTIC
1028 if (signum <= 0 || signum >= NSIG)
1029 panic("psignal signal number %d", signum);
1030
1031 /* XXXSMP: works, but icky */
1032 if (dolock)
1033 SCHED_ASSERT_UNLOCKED();
1034 else
1035 SCHED_ASSERT_LOCKED();
1036 #endif
1037
1038 /*
1039 * Notify any interested parties in the signal.
1040 */
1041 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1042
1043 prop = sigprop[signum];
1044
1045 /*
1046 * If proc is traced, always give parent a chance.
1047 */
1048 if (p->p_flag & P_TRACED) {
1049 action = SIG_DFL;
1050
1051 /*
1052 * If the process is being traced and the signal is being
1053 * caught, make sure to save any ksiginfo.
1054 */
1055 if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1056 ksiginfo_put(p, ksi);
1057 } else {
1058 /*
1059 * If the signal was the result of a trap, reset it
1060 * to default action if it's currently masked, so that it would
1061 * coredump immediatelly instead of spinning repeatedly
1062 * taking the signal.
1063 */
1064 if (KSI_TRAP_P(ksi)
1065 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1066 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1067 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1068 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1069 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1070 SIGACTION(p, signum).sa_handler = SIG_DFL;
1071 }
1072
1073 /*
1074 * If the signal is being ignored,
1075 * then we forget about it immediately.
1076 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1077 * and if it is set to SIG_IGN,
1078 * action will be SIG_DFL here.)
1079 */
1080 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1081 return;
1082 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1083 action = SIG_HOLD;
1084 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1085 action = SIG_CATCH;
1086 else {
1087 action = SIG_DFL;
1088
1089 if (prop & SA_KILL && p->p_nice > NZERO)
1090 p->p_nice = NZERO;
1091
1092 /*
1093 * If sending a tty stop signal to a member of an
1094 * orphaned process group, discard the signal here if
1095 * the action is default; don't stop the process below
1096 * if sleeping, and don't clear any pending SIGCONT.
1097 */
1098 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1099 return;
1100 }
1101 }
1102
1103 if (prop & SA_CONT)
1104 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1105
1106 if (prop & SA_STOP)
1107 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1108
1109 /*
1110 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1111 * please!), check if anything waits on it. If yes, save the
1112 * info into provided ps_sigwaited, and wake-up the waiter.
1113 * The signal won't be processed further here.
1114 */
1115 if ((prop & SA_CANTMASK) == 0
1116 && p->p_sigctx.ps_sigwaited
1117 && sigismember(p->p_sigctx.ps_sigwait, signum)
1118 && p->p_stat != SSTOP) {
1119 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1120 p->p_sigctx.ps_sigwaited = NULL;
1121 if (dolock)
1122 wakeup_one(&p->p_sigctx.ps_sigwait);
1123 else
1124 sched_wakeup(&p->p_sigctx.ps_sigwait);
1125 return;
1126 }
1127
1128 sigaddset(&p->p_sigctx.ps_siglist, signum);
1129
1130 /* CHECKSIGS() is "inlined" here. */
1131 p->p_sigctx.ps_sigcheck = 1;
1132
1133 /*
1134 * Defer further processing for signals which are held,
1135 * except that stopped processes must be continued by SIGCONT.
1136 */
1137 if (action == SIG_HOLD &&
1138 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1139 ksiginfo_put(p, ksi);
1140 return;
1141 }
1142 /* XXXSMP: works, but icky */
1143 if (dolock)
1144 SCHED_LOCK(s);
1145
1146 if (p->p_flag & P_SA) {
1147 allsusp = 0;
1148 l = NULL;
1149 if (p->p_stat == SACTIVE) {
1150 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1151 l = vp->savp_lwp;
1152 KDASSERT(l != NULL);
1153 if (l->l_flag & L_SA_IDLE) {
1154 /* wakeup idle LWP */
1155 goto found;
1156 /*NOTREACHED*/
1157 } else if (l->l_flag & L_SA_YIELD) {
1158 /* idle LWP is already waking up */
1159 goto out;
1160 /*NOTREACHED*/
1161 }
1162 }
1163 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1164 l = vp->savp_lwp;
1165 if (l->l_stat == LSRUN ||
1166 l->l_stat == LSONPROC) {
1167 signotify(p);
1168 goto out;
1169 /*NOTREACHED*/
1170 }
1171 if (l->l_stat == LSSLEEP &&
1172 l->l_flag & L_SINTR) {
1173 /* ok to signal vp lwp */
1174 break;
1175 } else
1176 l = NULL;
1177 }
1178 } else if (p->p_stat == SSTOP) {
1179 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1180 l = vp->savp_lwp;
1181 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1182 break;
1183 l = NULL;
1184 }
1185 }
1186 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1187 /*
1188 * At least one LWP is running or on a run queue.
1189 * The signal will be noticed when one of them returns
1190 * to userspace.
1191 */
1192 signotify(p);
1193 /*
1194 * The signal will be noticed very soon.
1195 */
1196 goto out;
1197 /*NOTREACHED*/
1198 } else {
1199 /*
1200 * Find out if any of the sleeps are interruptable,
1201 * and if all the live LWPs remaining are suspended.
1202 */
1203 allsusp = 1;
1204 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1205 if (l->l_stat == LSSLEEP &&
1206 l->l_flag & L_SINTR)
1207 break;
1208 if (l->l_stat == LSSUSPENDED)
1209 suspended = l;
1210 else if ((l->l_stat != LSZOMB) &&
1211 (l->l_stat != LSDEAD))
1212 allsusp = 0;
1213 }
1214 }
1215
1216 found:
1217 switch (p->p_stat) {
1218 case SACTIVE:
1219
1220 if (l != NULL && (p->p_flag & P_TRACED))
1221 goto run;
1222
1223 /*
1224 * If SIGCONT is default (or ignored) and process is
1225 * asleep, we are finished; the process should not
1226 * be awakened.
1227 */
1228 if ((prop & SA_CONT) && action == SIG_DFL) {
1229 sigdelset(&p->p_sigctx.ps_siglist, signum);
1230 goto done;
1231 }
1232
1233 /*
1234 * When a sleeping process receives a stop
1235 * signal, process immediately if possible.
1236 */
1237 if ((prop & SA_STOP) && action == SIG_DFL) {
1238 /*
1239 * If a child holding parent blocked,
1240 * stopping could cause deadlock.
1241 */
1242 if (p->p_flag & P_PPWAIT) {
1243 goto out;
1244 }
1245 sigdelset(&p->p_sigctx.ps_siglist, signum);
1246 p->p_xstat = signum;
1247 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1248 /*
1249 * XXXSMP: recursive call; don't lock
1250 * the second time around.
1251 */
1252 child_psignal(p, 0);
1253 }
1254 proc_stop(p, 1); /* XXXSMP: recurse? */
1255 goto done;
1256 }
1257
1258 if (l == NULL) {
1259 /*
1260 * Special case: SIGKILL of a process
1261 * which is entirely composed of
1262 * suspended LWPs should succeed. We
1263 * make this happen by unsuspending one of
1264 * them.
1265 */
1266 if (allsusp && (signum == SIGKILL)) {
1267 lwp_continue(suspended);
1268 }
1269 goto done;
1270 }
1271 /*
1272 * All other (caught or default) signals
1273 * cause the process to run.
1274 */
1275 goto runfast;
1276 /*NOTREACHED*/
1277 case SSTOP:
1278 /* Process is stopped */
1279 /*
1280 * If traced process is already stopped,
1281 * then no further action is necessary.
1282 */
1283 if (p->p_flag & P_TRACED)
1284 goto done;
1285
1286 /*
1287 * Kill signal always sets processes running,
1288 * if possible.
1289 */
1290 if (signum == SIGKILL) {
1291 l = proc_unstop(p);
1292 if (l)
1293 goto runfast;
1294 goto done;
1295 }
1296
1297 if (prop & SA_CONT) {
1298 /*
1299 * If SIGCONT is default (or ignored),
1300 * we continue the process but don't
1301 * leave the signal in ps_siglist, as
1302 * it has no further action. If
1303 * SIGCONT is held, we continue the
1304 * process and leave the signal in
1305 * ps_siglist. If the process catches
1306 * SIGCONT, let it handle the signal
1307 * itself. If it isn't waiting on an
1308 * event, then it goes back to run
1309 * state. Otherwise, process goes
1310 * back to sleep state.
1311 */
1312 if (action == SIG_DFL)
1313 sigdelset(&p->p_sigctx.ps_siglist,
1314 signum);
1315 l = proc_unstop(p);
1316 if (l && (action == SIG_CATCH))
1317 goto runfast;
1318 goto out;
1319 }
1320
1321 if (prop & SA_STOP) {
1322 /*
1323 * Already stopped, don't need to stop again.
1324 * (If we did the shell could get confused.)
1325 */
1326 sigdelset(&p->p_sigctx.ps_siglist, signum);
1327 goto done;
1328 }
1329
1330 /*
1331 * If a lwp is sleeping interruptibly, then
1332 * wake it up; it will run until the kernel
1333 * boundary, where it will stop in issignal(),
1334 * since p->p_stat is still SSTOP. When the
1335 * process is continued, it will be made
1336 * runnable and can look at the signal.
1337 */
1338 if (l)
1339 goto run;
1340 goto out;
1341 case SIDL:
1342 /* Process is being created by fork */
1343 /* XXX: We are not ready to receive signals yet */
1344 goto done;
1345 default:
1346 /* Else what? */
1347 panic("psignal: Invalid process state %d.", p->p_stat);
1348 }
1349 /*NOTREACHED*/
1350
1351 runfast:
1352 if (action == SIG_CATCH) {
1353 ksiginfo_put(p, ksi);
1354 action = SIG_HOLD;
1355 }
1356 /*
1357 * Raise priority to at least PUSER.
1358 */
1359 if (l->l_priority > PUSER)
1360 l->l_priority = PUSER;
1361 run:
1362 if (action == SIG_CATCH) {
1363 ksiginfo_put(p, ksi);
1364 action = SIG_HOLD;
1365 }
1366
1367 setrunnable(l); /* XXXSMP: recurse? */
1368 out:
1369 if (action == SIG_CATCH)
1370 ksiginfo_put(p, ksi);
1371 done:
1372 /* XXXSMP: works, but icky */
1373 if (dolock)
1374 SCHED_UNLOCK(s);
1375 }
1376
1377 siginfo_t *
1378 siginfo_alloc(int flags)
1379 {
1380
1381 return pool_get(&siginfo_pool, flags);
1382 }
1383
1384 void
1385 siginfo_free(void *arg)
1386 {
1387
1388 pool_put(&siginfo_pool, arg);
1389 }
1390
1391 void
1392 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1393 {
1394 struct proc *p = l->l_proc;
1395 struct lwp *le, *li;
1396 siginfo_t *si;
1397 int f;
1398
1399 if (p->p_flag & P_SA) {
1400
1401 /* XXXUPSXXX What if not on sa_vp ? */
1402
1403 f = l->l_flag & L_SA;
1404 l->l_flag &= ~L_SA;
1405 si = siginfo_alloc(PR_WAITOK);
1406 si->_info = ksi->ksi_info;
1407 le = li = NULL;
1408 if (KSI_TRAP_P(ksi))
1409 le = l;
1410 else
1411 li = l;
1412 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1413 sizeof(*si), si, siginfo_free) != 0) {
1414 siginfo_free(si);
1415 if (KSI_TRAP_P(ksi))
1416 /* XXX What do we do here?? */;
1417 }
1418 l->l_flag |= f;
1419 return;
1420 }
1421
1422 (*p->p_emul->e_sendsig)(ksi, mask);
1423 }
1424
1425 static inline int firstsig(const sigset_t *);
1426
1427 static inline int
1428 firstsig(const sigset_t *ss)
1429 {
1430 int sig;
1431
1432 sig = ffs(ss->__bits[0]);
1433 if (sig != 0)
1434 return (sig);
1435 #if NSIG > 33
1436 sig = ffs(ss->__bits[1]);
1437 if (sig != 0)
1438 return (sig + 32);
1439 #endif
1440 #if NSIG > 65
1441 sig = ffs(ss->__bits[2]);
1442 if (sig != 0)
1443 return (sig + 64);
1444 #endif
1445 #if NSIG > 97
1446 sig = ffs(ss->__bits[3]);
1447 if (sig != 0)
1448 return (sig + 96);
1449 #endif
1450 return (0);
1451 }
1452
1453 /*
1454 * If the current process has received a signal (should be caught or cause
1455 * termination, should interrupt current syscall), return the signal number.
1456 * Stop signals with default action are processed immediately, then cleared;
1457 * they aren't returned. This is checked after each entry to the system for
1458 * a syscall or trap (though this can usually be done without calling issignal
1459 * by checking the pending signal masks in the CURSIG macro.) The normal call
1460 * sequence is
1461 *
1462 * while (signum = CURSIG(curlwp))
1463 * postsig(signum);
1464 */
1465 int
1466 issignal(struct lwp *l)
1467 {
1468 struct proc *p = l->l_proc;
1469 int s = 0, signum, prop;
1470 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1471 sigset_t ss;
1472
1473 /* Bail out if we do not own the virtual processor */
1474 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1475 return 0;
1476
1477 if (p->p_stat == SSTOP) {
1478 /*
1479 * The process is stopped/stopping. Stop ourselves now that
1480 * we're on the kernel/userspace boundary.
1481 */
1482 if (dolock)
1483 SCHED_LOCK(s);
1484 l->l_stat = LSSTOP;
1485 p->p_nrlwps--;
1486 if (p->p_flag & P_TRACED)
1487 goto sigtraceswitch;
1488 else
1489 goto sigswitch;
1490 }
1491 for (;;) {
1492 sigpending1(p, &ss);
1493 if (p->p_flag & P_PPWAIT)
1494 sigminusset(&stopsigmask, &ss);
1495 signum = firstsig(&ss);
1496 if (signum == 0) { /* no signal to send */
1497 p->p_sigctx.ps_sigcheck = 0;
1498 if (locked && dolock)
1499 SCHED_LOCK(s);
1500 return (0);
1501 }
1502 /* take the signal! */
1503 sigdelset(&p->p_sigctx.ps_siglist, signum);
1504
1505 /*
1506 * We should see pending but ignored signals
1507 * only if P_TRACED was on when they were posted.
1508 */
1509 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1510 (p->p_flag & P_TRACED) == 0)
1511 continue;
1512
1513 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1514 /*
1515 * If traced, always stop, and stay
1516 * stopped until released by the debugger.
1517 */
1518 p->p_xstat = signum;
1519
1520 /* Emulation-specific handling of signal trace */
1521 if ((p->p_emul->e_tracesig != NULL) &&
1522 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1523 goto childresumed;
1524
1525 if ((p->p_flag & P_FSTRACE) == 0)
1526 child_psignal(p, dolock);
1527 if (dolock)
1528 SCHED_LOCK(s);
1529 proc_stop(p, 1);
1530 sigtraceswitch:
1531 mi_switch(l, NULL);
1532 SCHED_ASSERT_UNLOCKED();
1533 if (dolock)
1534 splx(s);
1535 else
1536 dolock = 1;
1537
1538 childresumed:
1539 /*
1540 * If we are no longer being traced, or the parent
1541 * didn't give us a signal, look for more signals.
1542 */
1543 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1544 continue;
1545
1546 /*
1547 * If the new signal is being masked, look for other
1548 * signals.
1549 */
1550 signum = p->p_xstat;
1551 p->p_xstat = 0;
1552 /*
1553 * `p->p_sigctx.ps_siglist |= mask' is done
1554 * in setrunnable().
1555 */
1556 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1557 continue;
1558 /* take the signal! */
1559 sigdelset(&p->p_sigctx.ps_siglist, signum);
1560 }
1561
1562 prop = sigprop[signum];
1563
1564 /*
1565 * Decide whether the signal should be returned.
1566 * Return the signal's number, or fall through
1567 * to clear it from the pending mask.
1568 */
1569 switch ((long)SIGACTION(p, signum).sa_handler) {
1570
1571 case (long)SIG_DFL:
1572 /*
1573 * Don't take default actions on system processes.
1574 */
1575 if (p->p_pid <= 1) {
1576 #ifdef DIAGNOSTIC
1577 /*
1578 * Are you sure you want to ignore SIGSEGV
1579 * in init? XXX
1580 */
1581 printf("Process (pid %d) got signal %d\n",
1582 p->p_pid, signum);
1583 #endif
1584 break; /* == ignore */
1585 }
1586 /*
1587 * If there is a pending stop signal to process
1588 * with default action, stop here,
1589 * then clear the signal. However,
1590 * if process is member of an orphaned
1591 * process group, ignore tty stop signals.
1592 */
1593 if (prop & SA_STOP) {
1594 if (p->p_flag & P_TRACED ||
1595 (p->p_pgrp->pg_jobc == 0 &&
1596 prop & SA_TTYSTOP))
1597 break; /* == ignore */
1598 p->p_xstat = signum;
1599 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1600 child_psignal(p, dolock);
1601 if (dolock)
1602 SCHED_LOCK(s);
1603 proc_stop(p, 1);
1604 sigswitch:
1605 mi_switch(l, NULL);
1606 SCHED_ASSERT_UNLOCKED();
1607 if (dolock)
1608 splx(s);
1609 else
1610 dolock = 1;
1611 break;
1612 } else if (prop & SA_IGNORE) {
1613 /*
1614 * Except for SIGCONT, shouldn't get here.
1615 * Default action is to ignore; drop it.
1616 */
1617 break; /* == ignore */
1618 } else
1619 goto keep;
1620 /*NOTREACHED*/
1621
1622 case (long)SIG_IGN:
1623 /*
1624 * Masking above should prevent us ever trying
1625 * to take action on an ignored signal other
1626 * than SIGCONT, unless process is traced.
1627 */
1628 #ifdef DEBUG_ISSIGNAL
1629 if ((prop & SA_CONT) == 0 &&
1630 (p->p_flag & P_TRACED) == 0)
1631 printf("issignal\n");
1632 #endif
1633 break; /* == ignore */
1634
1635 default:
1636 /*
1637 * This signal has an action, let
1638 * postsig() process it.
1639 */
1640 goto keep;
1641 }
1642 }
1643 /* NOTREACHED */
1644
1645 keep:
1646 /* leave the signal for later */
1647 sigaddset(&p->p_sigctx.ps_siglist, signum);
1648 CHECKSIGS(p);
1649 if (locked && dolock)
1650 SCHED_LOCK(s);
1651 return (signum);
1652 }
1653
1654 /*
1655 * Put the argument process into the stopped state and notify the parent
1656 * via wakeup. Signals are handled elsewhere. The process must not be
1657 * on the run queue.
1658 */
1659 void
1660 proc_stop(struct proc *p, int dowakeup)
1661 {
1662 struct lwp *l;
1663 struct proc *parent;
1664 struct sadata_vp *vp;
1665
1666 SCHED_ASSERT_LOCKED();
1667
1668 /* XXX lock process LWP state */
1669 p->p_flag &= ~P_WAITED;
1670 p->p_stat = SSTOP;
1671 parent = p->p_pptr;
1672 parent->p_nstopchild++;
1673
1674 if (p->p_flag & P_SA) {
1675 /*
1676 * Only (try to) put the LWP on the VP in stopped
1677 * state.
1678 * All other LWPs will suspend in sa_setwoken()
1679 * because the VP-LWP in stopped state cannot be
1680 * repossessed.
1681 */
1682 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1683 l = vp->savp_lwp;
1684 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1685 l->l_stat = LSSTOP;
1686 p->p_nrlwps--;
1687 } else if (l->l_stat == LSRUN) {
1688 /* Remove LWP from the run queue */
1689 remrunqueue(l);
1690 l->l_stat = LSSTOP;
1691 p->p_nrlwps--;
1692 } else if (l->l_stat == LSSLEEP &&
1693 l->l_flag & L_SA_IDLE) {
1694 l->l_flag &= ~L_SA_IDLE;
1695 l->l_stat = LSSTOP;
1696 }
1697 }
1698 goto out;
1699 }
1700
1701 /*
1702 * Put as many LWP's as possible in stopped state.
1703 * Sleeping ones will notice the stopped state as they try to
1704 * return to userspace.
1705 */
1706
1707 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1708 if (l->l_stat == LSONPROC) {
1709 /* XXX SMP this assumes that a LWP that is LSONPROC
1710 * is curlwp and hence is about to be mi_switched
1711 * away; the only callers of proc_stop() are:
1712 * - psignal
1713 * - issignal()
1714 * For the former, proc_stop() is only called when
1715 * no processes are running, so we don't worry.
1716 * For the latter, proc_stop() is called right
1717 * before mi_switch().
1718 */
1719 l->l_stat = LSSTOP;
1720 p->p_nrlwps--;
1721 } else if (l->l_stat == LSRUN) {
1722 /* Remove LWP from the run queue */
1723 remrunqueue(l);
1724 l->l_stat = LSSTOP;
1725 p->p_nrlwps--;
1726 } else if ((l->l_stat == LSSLEEP) ||
1727 (l->l_stat == LSSUSPENDED) ||
1728 (l->l_stat == LSZOMB) ||
1729 (l->l_stat == LSDEAD)) {
1730 /*
1731 * Don't do anything; let sleeping LWPs
1732 * discover the stopped state of the process
1733 * on their way out of the kernel; otherwise,
1734 * things like NFS threads that sleep with
1735 * locks will block the rest of the system
1736 * from getting any work done.
1737 *
1738 * Suspended/dead/zombie LWPs aren't going
1739 * anywhere, so we don't need to touch them.
1740 */
1741 }
1742 #ifdef DIAGNOSTIC
1743 else {
1744 panic("proc_stop: process %d lwp %d "
1745 "in unstoppable state %d.\n",
1746 p->p_pid, l->l_lid, l->l_stat);
1747 }
1748 #endif
1749 }
1750
1751 out:
1752 /* XXX unlock process LWP state */
1753
1754 if (dowakeup)
1755 sched_wakeup((caddr_t)p->p_pptr);
1756 }
1757
1758 /*
1759 * Given a process in state SSTOP, set the state back to SACTIVE and
1760 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1761 *
1762 * If no LWPs ended up runnable (and therefore able to take a signal),
1763 * return a LWP that is sleeping interruptably. The caller can wake
1764 * that LWP up to take a signal.
1765 */
1766 struct lwp *
1767 proc_unstop(struct proc *p)
1768 {
1769 struct lwp *l, *lr = NULL;
1770 struct sadata_vp *vp;
1771 int cantake = 0;
1772
1773 SCHED_ASSERT_LOCKED();
1774
1775 /*
1776 * Our caller wants to be informed if there are only sleeping
1777 * and interruptable LWPs left after we have run so that it
1778 * can invoke setrunnable() if required - return one of the
1779 * interruptable LWPs if this is the case.
1780 */
1781
1782 if (!(p->p_flag & P_WAITED))
1783 p->p_pptr->p_nstopchild--;
1784 p->p_stat = SACTIVE;
1785 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1786 if (l->l_stat == LSRUN) {
1787 lr = NULL;
1788 cantake = 1;
1789 }
1790 if (l->l_stat != LSSTOP)
1791 continue;
1792
1793 if (l->l_wchan != NULL) {
1794 l->l_stat = LSSLEEP;
1795 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1796 lr = l;
1797 cantake = 1;
1798 }
1799 } else {
1800 setrunnable(l);
1801 lr = NULL;
1802 cantake = 1;
1803 }
1804 }
1805 if (p->p_flag & P_SA) {
1806 /* Only consider returning the LWP on the VP. */
1807 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1808 lr = vp->savp_lwp;
1809 if (lr->l_stat == LSSLEEP) {
1810 if (lr->l_flag & L_SA_YIELD) {
1811 setrunnable(lr);
1812 break;
1813 } else if (lr->l_flag & L_SINTR)
1814 return lr;
1815 }
1816 }
1817 return NULL;
1818 }
1819 return lr;
1820 }
1821
1822 /*
1823 * Take the action for the specified signal
1824 * from the current set of pending signals.
1825 */
1826 void
1827 postsig(int signum)
1828 {
1829 struct lwp *l;
1830 struct proc *p;
1831 struct sigacts *ps;
1832 sig_t action;
1833 sigset_t *returnmask;
1834
1835 l = curlwp;
1836 p = l->l_proc;
1837 ps = p->p_sigacts;
1838 #ifdef DIAGNOSTIC
1839 if (signum == 0)
1840 panic("postsig");
1841 #endif
1842
1843 KERNEL_PROC_LOCK(l);
1844
1845 #ifdef MULTIPROCESSOR
1846 /*
1847 * On MP, issignal() can return the same signal to multiple
1848 * LWPs. The LWPs will block above waiting for the kernel
1849 * lock and the first LWP which gets through will then remove
1850 * the signal from ps_siglist. All other LWPs exit here.
1851 */
1852 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1853 KERNEL_PROC_UNLOCK(l);
1854 return;
1855 }
1856 #endif
1857 sigdelset(&p->p_sigctx.ps_siglist, signum);
1858 action = SIGACTION_PS(ps, signum).sa_handler;
1859 if (action == SIG_DFL) {
1860 #ifdef KTRACE
1861 if (KTRPOINT(p, KTR_PSIG))
1862 ktrpsig(l, signum, action,
1863 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1864 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1865 NULL);
1866 #endif
1867 /*
1868 * Default action, where the default is to kill
1869 * the process. (Other cases were ignored above.)
1870 */
1871 sigexit(l, signum);
1872 /* NOTREACHED */
1873 } else {
1874 ksiginfo_t *ksi;
1875 /*
1876 * If we get here, the signal must be caught.
1877 */
1878 #ifdef DIAGNOSTIC
1879 if (action == SIG_IGN ||
1880 sigismember(&p->p_sigctx.ps_sigmask, signum))
1881 panic("postsig action");
1882 #endif
1883 /*
1884 * Set the new mask value and also defer further
1885 * occurrences of this signal.
1886 *
1887 * Special case: user has done a sigpause. Here the
1888 * current mask is not of interest, but rather the
1889 * mask from before the sigpause is what we want
1890 * restored after the signal processing is completed.
1891 */
1892 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1893 returnmask = &p->p_sigctx.ps_oldmask;
1894 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1895 } else
1896 returnmask = &p->p_sigctx.ps_sigmask;
1897 p->p_stats->p_ru.ru_nsignals++;
1898 ksi = ksiginfo_get(p, signum);
1899 #ifdef KTRACE
1900 if (KTRPOINT(p, KTR_PSIG))
1901 ktrpsig(l, signum, action,
1902 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1903 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1904 ksi);
1905 #endif
1906 if (ksi == NULL) {
1907 ksiginfo_t ksi1;
1908 /*
1909 * we did not save any siginfo for this, either
1910 * because the signal was not caught, or because the
1911 * user did not request SA_SIGINFO
1912 */
1913 KSI_INIT_EMPTY(&ksi1);
1914 ksi1.ksi_signo = signum;
1915 kpsendsig(l, &ksi1, returnmask);
1916 } else {
1917 kpsendsig(l, ksi, returnmask);
1918 pool_put(&ksiginfo_pool, ksi);
1919 }
1920 p->p_sigctx.ps_lwp = 0;
1921 p->p_sigctx.ps_code = 0;
1922 p->p_sigctx.ps_signo = 0;
1923 (void) splsched(); /* XXXSMP */
1924 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1925 &p->p_sigctx.ps_sigmask);
1926 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1927 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1928 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1929 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1930 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1931 }
1932 (void) spl0(); /* XXXSMP */
1933 }
1934
1935 KERNEL_PROC_UNLOCK(l);
1936 }
1937
1938 /*
1939 * Kill the current process for stated reason.
1940 */
1941 void
1942 killproc(struct proc *p, const char *why)
1943 {
1944 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1945 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1946 psignal(p, SIGKILL);
1947 }
1948
1949 /*
1950 * Force the current process to exit with the specified signal, dumping core
1951 * if appropriate. We bypass the normal tests for masked and caught signals,
1952 * allowing unrecoverable failures to terminate the process without changing
1953 * signal state. Mark the accounting record with the signal termination.
1954 * If dumping core, save the signal number for the debugger. Calls exit and
1955 * does not return.
1956 */
1957
1958 #if defined(DEBUG)
1959 int kern_logsigexit = 1; /* not static to make public for sysctl */
1960 #else
1961 int kern_logsigexit = 0; /* not static to make public for sysctl */
1962 #endif
1963
1964 static const char logcoredump[] =
1965 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1966 static const char lognocoredump[] =
1967 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
1968
1969 /* Wrapper function for use in p_userret */
1970 static void
1971 lwp_coredump_hook(struct lwp *l, void *arg)
1972 {
1973 int s;
1974
1975 /*
1976 * Suspend ourselves, so that the kernel stack and therefore
1977 * the userland registers saved in the trapframe are around
1978 * for coredump() to write them out.
1979 */
1980 KERNEL_PROC_LOCK(l);
1981 l->l_flag &= ~L_DETACHED;
1982 SCHED_LOCK(s);
1983 l->l_stat = LSSUSPENDED;
1984 l->l_proc->p_nrlwps--;
1985 /* XXX NJWLWP check if this makes sense here: */
1986 l->l_proc->p_stats->p_ru.ru_nvcsw++;
1987 mi_switch(l, NULL);
1988 SCHED_ASSERT_UNLOCKED();
1989 splx(s);
1990
1991 lwp_exit(l);
1992 }
1993
1994 void
1995 sigexit(struct lwp *l, int signum)
1996 {
1997 struct proc *p;
1998 #if 0
1999 struct lwp *l2;
2000 #endif
2001 int error, exitsig;
2002
2003 p = l->l_proc;
2004
2005 /*
2006 * Don't permit coredump() or exit1() multiple times
2007 * in the same process.
2008 */
2009 if (p->p_flag & P_WEXIT) {
2010 KERNEL_PROC_UNLOCK(l);
2011 (*p->p_userret)(l, p->p_userret_arg);
2012 }
2013 p->p_flag |= P_WEXIT;
2014 /* We don't want to switch away from exiting. */
2015 /* XXX multiprocessor: stop LWPs on other processors. */
2016 #if 0
2017 if (p->p_flag & P_SA) {
2018 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2019 l2->l_flag &= ~L_SA;
2020 p->p_flag &= ~P_SA;
2021 }
2022 #endif
2023
2024 /* Make other LWPs stick around long enough to be dumped */
2025 p->p_userret = lwp_coredump_hook;
2026 p->p_userret_arg = NULL;
2027
2028 exitsig = signum;
2029 p->p_acflag |= AXSIG;
2030 if (sigprop[signum] & SA_CORE) {
2031 p->p_sigctx.ps_signo = signum;
2032 #ifdef COREDUMP
2033 if ((error = coredump(l, NULL)) == 0)
2034 exitsig |= WCOREFLAG;
2035 #endif
2036
2037 if (kern_logsigexit) {
2038 /* XXX What if we ever have really large UIDs? */
2039 int uid = l->l_cred ?
2040 (int)kauth_cred_geteuid(l->l_cred) : -1;
2041
2042 if (error)
2043 log(LOG_INFO, lognocoredump, p->p_pid,
2044 p->p_comm, uid, signum, error);
2045 else
2046 log(LOG_INFO, logcoredump, p->p_pid,
2047 p->p_comm, uid, signum);
2048 }
2049
2050 }
2051
2052 exit1(l, W_EXITCODE(0, exitsig));
2053 /* NOTREACHED */
2054 }
2055
2056 #ifdef COREDUMP
2057 struct coredump_iostate {
2058 struct lwp *io_lwp;
2059 struct vnode *io_vp;
2060 kauth_cred_t io_cred;
2061 off_t io_offset;
2062 };
2063
2064 int
2065 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2066 {
2067 struct coredump_iostate *io = cookie;
2068 int error;
2069
2070 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2071 io->io_offset, segflg,
2072 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2073 segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2074 if (error) {
2075 printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2076 io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2077 segflg == UIO_USERSPACE ? "user" : "system",
2078 len, data, (long long) io->io_offset, error);
2079 return (error);
2080 }
2081
2082 io->io_offset += len;
2083 return (0);
2084 }
2085
2086 /*
2087 * Dump core, into a file named "progname.core" or "core" (depending on the
2088 * value of shortcorename), unless the process was setuid/setgid.
2089 */
2090 int
2091 coredump(struct lwp *l, const char *pattern)
2092 {
2093 struct vnode *vp;
2094 struct proc *p;
2095 struct vmspace *vm;
2096 kauth_cred_t cred;
2097 struct nameidata nd;
2098 struct vattr vattr;
2099 struct mount *mp;
2100 struct coredump_iostate io;
2101 int error, error1;
2102 char *name = NULL;
2103
2104 p = l->l_proc;
2105 vm = p->p_vmspace;
2106 cred = l->l_cred;
2107
2108 /*
2109 * Make sure the process has not set-id, to prevent data leaks,
2110 * unless it was specifically requested to allow set-id coredumps.
2111 */
2112 if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2113 return EPERM;
2114
2115 /*
2116 * Refuse to core if the data + stack + user size is larger than
2117 * the core dump limit. XXX THIS IS WRONG, because of mapped
2118 * data.
2119 */
2120 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2121 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2122 return EFBIG; /* better error code? */
2123
2124 restart:
2125 /*
2126 * The core dump will go in the current working directory. Make
2127 * sure that the directory is still there and that the mount flags
2128 * allow us to write core dumps there.
2129 */
2130 vp = p->p_cwdi->cwdi_cdir;
2131 if (vp->v_mount == NULL ||
2132 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2133 error = EPERM;
2134 goto done;
2135 }
2136
2137 if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2138 pattern = security_setidcore_path;
2139
2140 if (pattern == NULL)
2141 pattern = p->p_limit->pl_corename;
2142 if (name == NULL) {
2143 name = PNBUF_GET();
2144 }
2145 if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2146 goto done;
2147 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2148 if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2149 S_IRUSR | S_IWUSR)) != 0)
2150 goto done;
2151 vp = nd.ni_vp;
2152
2153 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2154 VOP_UNLOCK(vp, 0);
2155 if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2156 goto done;
2157 if ((error = vn_start_write(NULL, &mp,
2158 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2159 goto done;
2160 goto restart;
2161 }
2162
2163 /* Don't dump to non-regular files or files with links. */
2164 if (vp->v_type != VREG ||
2165 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2166 error = EINVAL;
2167 goto out;
2168 }
2169 VATTR_NULL(&vattr);
2170 vattr.va_size = 0;
2171
2172 if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2173 vattr.va_uid = security_setidcore_owner;
2174 vattr.va_gid = security_setidcore_group;
2175 vattr.va_mode = security_setidcore_mode;
2176 }
2177
2178 VOP_LEASE(vp, l, cred, LEASE_WRITE);
2179 VOP_SETATTR(vp, &vattr, cred, l);
2180 p->p_acflag |= ACORE;
2181
2182 io.io_lwp = l;
2183 io.io_vp = vp;
2184 io.io_cred = cred;
2185 io.io_offset = 0;
2186
2187 /* Now dump the actual core file. */
2188 error = (*p->p_execsw->es_coredump)(l, &io);
2189 out:
2190 VOP_UNLOCK(vp, 0);
2191 vn_finished_write(mp, 0);
2192 error1 = vn_close(vp, FWRITE, cred, l);
2193 if (error == 0)
2194 error = error1;
2195 done:
2196 if (name != NULL)
2197 PNBUF_PUT(name);
2198 return error;
2199 }
2200 #endif /* COREDUMP */
2201
2202 /*
2203 * Nonexistent system call-- signal process (may want to handle it).
2204 * Flag error in case process won't see signal immediately (blocked or ignored).
2205 */
2206 /* ARGSUSED */
2207 int
2208 sys_nosys(struct lwp *l, void *v, register_t *retval)
2209 {
2210 struct proc *p;
2211
2212 p = l->l_proc;
2213 psignal(p, SIGSYS);
2214 return (ENOSYS);
2215 }
2216
2217 #ifdef COREDUMP
2218 static int
2219 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2220 {
2221 const char *s;
2222 char *d, *end;
2223 int i;
2224
2225 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2226 if (*s == '%') {
2227 switch (*(s + 1)) {
2228 case 'n':
2229 i = snprintf(d, end - d, "%s", p->p_comm);
2230 break;
2231 case 'p':
2232 i = snprintf(d, end - d, "%d", p->p_pid);
2233 break;
2234 case 'u':
2235 i = snprintf(d, end - d, "%.*s",
2236 (int)sizeof p->p_pgrp->pg_session->s_login,
2237 p->p_pgrp->pg_session->s_login);
2238 break;
2239 case 't':
2240 i = snprintf(d, end - d, "%ld",
2241 p->p_stats->p_start.tv_sec);
2242 break;
2243 default:
2244 goto copy;
2245 }
2246 d += i;
2247 s++;
2248 } else {
2249 copy: *d = *s;
2250 d++;
2251 }
2252 if (d >= end)
2253 return (ENAMETOOLONG);
2254 }
2255 *d = '\0';
2256 return 0;
2257 }
2258 #endif /* COREDUMP */
2259
2260 void
2261 getucontext(struct lwp *l, ucontext_t *ucp)
2262 {
2263 struct proc *p;
2264
2265 p = l->l_proc;
2266
2267 ucp->uc_flags = 0;
2268 ucp->uc_link = l->l_ctxlink;
2269
2270 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2271 ucp->uc_flags |= _UC_SIGMASK;
2272
2273 /*
2274 * The (unsupplied) definition of the `current execution stack'
2275 * in the System V Interface Definition appears to allow returning
2276 * the main context stack.
2277 */
2278 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2279 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2280 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2281 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2282 } else {
2283 /* Simply copy alternate signal execution stack. */
2284 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2285 }
2286 ucp->uc_flags |= _UC_STACK;
2287
2288 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2289 }
2290
2291 /* ARGSUSED */
2292 int
2293 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2294 {
2295 struct sys_getcontext_args /* {
2296 syscallarg(struct __ucontext *) ucp;
2297 } */ *uap = v;
2298 ucontext_t uc;
2299
2300 getucontext(l, &uc);
2301
2302 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2303 }
2304
2305 int
2306 setucontext(struct lwp *l, const ucontext_t *ucp)
2307 {
2308 struct proc *p;
2309 int error;
2310
2311 p = l->l_proc;
2312 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2313 return (error);
2314 l->l_ctxlink = ucp->uc_link;
2315
2316 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2317 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2318
2319 /*
2320 * If there was stack information, update whether or not we are
2321 * still running on an alternate signal stack.
2322 */
2323 if ((ucp->uc_flags & _UC_STACK) != 0) {
2324 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2325 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2326 else
2327 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2328 }
2329
2330 return 0;
2331 }
2332
2333 /* ARGSUSED */
2334 int
2335 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2336 {
2337 struct sys_setcontext_args /* {
2338 syscallarg(const ucontext_t *) ucp;
2339 } */ *uap = v;
2340 ucontext_t uc;
2341 int error;
2342
2343 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2344 exit1(l, W_EXITCODE(0, 0));
2345 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2346 (error = setucontext(l, &uc)) != 0)
2347 return (error);
2348
2349 return (EJUSTRETURN);
2350 }
2351
2352 /*
2353 * sigtimedwait(2) system call, used also for implementation
2354 * of sigwaitinfo() and sigwait().
2355 *
2356 * This only handles single LWP in signal wait. libpthread provides
2357 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2358 */
2359 int
2360 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2361 {
2362 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2363 }
2364
2365 int
2366 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2367 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2368 {
2369 struct sys___sigtimedwait_args /* {
2370 syscallarg(const sigset_t *) set;
2371 syscallarg(siginfo_t *) info;
2372 syscallarg(struct timespec *) timeout;
2373 } */ *uap = v;
2374 sigset_t *waitset, twaitset;
2375 struct proc *p = l->l_proc;
2376 int error, signum;
2377 int timo = 0;
2378 struct timespec ts, tsstart;
2379 ksiginfo_t *ksi;
2380
2381 memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */
2382
2383 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2384
2385 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2386 FREE(waitset, M_TEMP);
2387 return (error);
2388 }
2389
2390 /*
2391 * Silently ignore SA_CANTMASK signals. psignal1() would
2392 * ignore SA_CANTMASK signals in waitset, we do this
2393 * only for the below siglist check.
2394 */
2395 sigminusset(&sigcantmask, waitset);
2396
2397 /*
2398 * First scan siglist and check if there is signal from
2399 * our waitset already pending.
2400 */
2401 twaitset = *waitset;
2402 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2403 if ((signum = firstsig(&twaitset))) {
2404 /* found pending signal */
2405 sigdelset(&p->p_sigctx.ps_siglist, signum);
2406 ksi = ksiginfo_get(p, signum);
2407 if (!ksi) {
2408 /* No queued siginfo, manufacture one */
2409 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2410 KSI_INIT(ksi);
2411 ksi->ksi_info._signo = signum;
2412 ksi->ksi_info._code = SI_USER;
2413 }
2414
2415 goto sig;
2416 }
2417
2418 /*
2419 * Calculate timeout, if it was specified.
2420 */
2421 if (SCARG(uap, timeout)) {
2422 uint64_t ms;
2423
2424 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2425 return (error);
2426
2427 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2428 timo = mstohz(ms);
2429 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2430 timo = 1;
2431 if (timo <= 0)
2432 return (EAGAIN);
2433
2434 /*
2435 * Remember current uptime, it would be used in
2436 * ECANCELED/ERESTART case.
2437 */
2438 getnanouptime(&tsstart);
2439 }
2440
2441 /*
2442 * Setup ps_sigwait list. Pass pointer to malloced memory
2443 * here; it's not possible to pass pointer to a structure
2444 * on current process's stack, the current process might
2445 * be swapped out at the time the signal would get delivered.
2446 */
2447 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2448 p->p_sigctx.ps_sigwaited = ksi;
2449 p->p_sigctx.ps_sigwait = waitset;
2450
2451 /*
2452 * Wait for signal to arrive. We can either be woken up or
2453 * time out.
2454 */
2455 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2456
2457 /*
2458 * Need to find out if we woke as a result of lwp_wakeup()
2459 * or a signal outside our wait set.
2460 */
2461 if (error == EINTR && p->p_sigctx.ps_sigwaited
2462 && !firstsig(&p->p_sigctx.ps_siglist)) {
2463 /* wakeup via _lwp_wakeup() */
2464 error = ECANCELED;
2465 } else if (!error && p->p_sigctx.ps_sigwaited) {
2466 /* spurious wakeup - arrange for syscall restart */
2467 error = ERESTART;
2468 goto fail;
2469 }
2470
2471 /*
2472 * On error, clear sigwait indication. psignal1() clears it
2473 * in !error case.
2474 */
2475 if (error) {
2476 p->p_sigctx.ps_sigwaited = NULL;
2477
2478 /*
2479 * If the sleep was interrupted (either by signal or wakeup),
2480 * update the timeout and copyout new value back.
2481 * It would be used when the syscall would be restarted
2482 * or called again.
2483 */
2484 if (timo && (error == ERESTART || error == ECANCELED)) {
2485 struct timespec tsnow;
2486 int err;
2487
2488 /* XXX double check the following change */
2489 getnanouptime(&tsnow);
2490
2491 /* compute how much time has passed since start */
2492 timespecsub(&tsnow, &tsstart, &tsnow);
2493 /* substract passed time from timeout */
2494 timespecsub(&ts, &tsnow, &ts);
2495
2496 if (ts.tv_sec < 0) {
2497 error = EAGAIN;
2498 goto fail;
2499 }
2500 /* XXX double check the previous change */
2501
2502 /* copy updated timeout to userland */
2503 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2504 sizeof(ts)))) {
2505 error = err;
2506 goto fail;
2507 }
2508 }
2509
2510 goto fail;
2511 }
2512
2513 /*
2514 * If a signal from the wait set arrived, copy it to userland.
2515 * Copy only the used part of siginfo, the padding part is
2516 * left unchanged (userland is not supposed to touch it anyway).
2517 */
2518 sig:
2519 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2520
2521 fail:
2522 FREE(waitset, M_TEMP);
2523 pool_put(&ksiginfo_pool, ksi);
2524 p->p_sigctx.ps_sigwait = NULL;
2525
2526 return (error);
2527 }
2528
2529 /*
2530 * Returns true if signal is ignored or masked for passed process.
2531 */
2532 int
2533 sigismasked(struct proc *p, int sig)
2534 {
2535
2536 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2537 sigismember(&p->p_sigctx.ps_sigmask, sig));
2538 }
2539
2540 static int
2541 filt_sigattach(struct knote *kn)
2542 {
2543 struct proc *p = curproc;
2544
2545 kn->kn_ptr.p_proc = p;
2546 kn->kn_flags |= EV_CLEAR; /* automatically set */
2547
2548 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2549
2550 return (0);
2551 }
2552
2553 static void
2554 filt_sigdetach(struct knote *kn)
2555 {
2556 struct proc *p = kn->kn_ptr.p_proc;
2557
2558 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2559 }
2560
2561 /*
2562 * signal knotes are shared with proc knotes, so we apply a mask to
2563 * the hint in order to differentiate them from process hints. This
2564 * could be avoided by using a signal-specific knote list, but probably
2565 * isn't worth the trouble.
2566 */
2567 static int
2568 filt_signal(struct knote *kn, long hint)
2569 {
2570
2571 if (hint & NOTE_SIGNAL) {
2572 hint &= ~NOTE_SIGNAL;
2573
2574 if (kn->kn_id == hint)
2575 kn->kn_data++;
2576 }
2577 return (kn->kn_data != 0);
2578 }
2579
2580 const struct filterops sig_filtops = {
2581 0, filt_sigattach, filt_sigdetach, filt_signal
2582 };
2583