Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.229
      1 /*	$NetBSD: kern_sig.c,v 1.229 2006/10/04 23:10:42 dogcow Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.229 2006/10/04 23:10:42 dogcow Exp $");
     41 
     42 #include "opt_coredump.h"
     43 #include "opt_ktrace.h"
     44 #include "opt_ptrace.h"
     45 #include "opt_multiprocessor.h"
     46 #include "opt_compat_sunos.h"
     47 #include "opt_compat_netbsd.h"
     48 #include "opt_compat_netbsd32.h"
     49 
     50 #define	SIGPROP		/* include signal properties table */
     51 #include <sys/param.h>
     52 #include <sys/signalvar.h>
     53 #include <sys/resourcevar.h>
     54 #include <sys/namei.h>
     55 #include <sys/vnode.h>
     56 #include <sys/proc.h>
     57 #include <sys/systm.h>
     58 #include <sys/timeb.h>
     59 #include <sys/times.h>
     60 #include <sys/buf.h>
     61 #include <sys/acct.h>
     62 #include <sys/file.h>
     63 #include <sys/kernel.h>
     64 #include <sys/wait.h>
     65 #include <sys/ktrace.h>
     66 #include <sys/syslog.h>
     67 #include <sys/stat.h>
     68 #include <sys/core.h>
     69 #include <sys/filedesc.h>
     70 #include <sys/malloc.h>
     71 #include <sys/pool.h>
     72 #include <sys/ucontext.h>
     73 #include <sys/sa.h>
     74 #include <sys/savar.h>
     75 #include <sys/exec.h>
     76 #include <sys/sysctl.h>
     77 #include <sys/kauth.h>
     78 
     79 #include <sys/mount.h>
     80 #include <sys/syscallargs.h>
     81 
     82 #include <machine/cpu.h>
     83 
     84 #include <sys/user.h>		/* for coredump */
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_extern.h>
     88 
     89 #ifdef COREDUMP
     90 static int	build_corename(struct proc *, char *, const char *, size_t);
     91 #endif
     92 static void	ksiginfo_exithook(struct proc *, void *);
     93 static void	ksiginfo_put(struct proc *, const ksiginfo_t *);
     94 static ksiginfo_t *ksiginfo_get(struct proc *, int);
     95 static void	kpsignal2(struct proc *, const ksiginfo_t *, int);
     96 
     97 sigset_t	contsigmask, stopsigmask, sigcantmask;
     98 
     99 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
    100 
    101 /*
    102  * struct sigacts memory pool allocator.
    103  */
    104 
    105 static void *
    106 sigacts_poolpage_alloc(struct pool *pp, int flags)
    107 {
    108 
    109 	return (void *)uvm_km_alloc(kernel_map,
    110 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    111 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    112 	    | UVM_KMF_WIRED);
    113 }
    114 
    115 static void
    116 sigacts_poolpage_free(struct pool *pp, void *v)
    117 {
    118         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    119 }
    120 
    121 static struct pool_allocator sigactspool_allocator = {
    122         .pa_alloc = sigacts_poolpage_alloc,
    123 	.pa_free = sigacts_poolpage_free,
    124 };
    125 
    126 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    127     &pool_allocator_nointr);
    128 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
    129 
    130 /*
    131  * Remove and return the first ksiginfo element that matches our requested
    132  * signal, or return NULL if one not found.
    133  */
    134 static ksiginfo_t *
    135 ksiginfo_get(struct proc *p, int signo)
    136 {
    137 	ksiginfo_t *ksi;
    138 	int s;
    139 
    140 	s = splsoftclock();
    141 	simple_lock(&p->p_sigctx.ps_silock);
    142 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    143 		if (ksi->ksi_signo == signo) {
    144 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    145 			goto out;
    146 		}
    147 	}
    148 	ksi = NULL;
    149 out:
    150 	simple_unlock(&p->p_sigctx.ps_silock);
    151 	splx(s);
    152 	return ksi;
    153 }
    154 
    155 /*
    156  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    157  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    158  * they already existed in the queue and we add new entries for RT signals,
    159  * or for non RT signals with non-existing entries.
    160  */
    161 static void
    162 ksiginfo_put(struct proc *p, const ksiginfo_t *ksi)
    163 {
    164 	ksiginfo_t *kp;
    165 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    166 	int s;
    167 
    168 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    169 		return;
    170 	/*
    171 	 * If there's no info, don't save it.
    172 	 */
    173 	if (KSI_EMPTY_P(ksi))
    174 		return;
    175 
    176 	s = splsoftclock();
    177 	simple_lock(&p->p_sigctx.ps_silock);
    178 #ifdef notyet	/* XXX: QUEUING */
    179 	if (ksi->ksi_signo < SIGRTMIN)
    180 #endif
    181 	{
    182 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    183 			if (kp->ksi_signo == ksi->ksi_signo) {
    184 				KSI_COPY(ksi, kp);
    185 				goto out;
    186 			}
    187 		}
    188 	}
    189 	kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
    190 	if (kp == NULL) {
    191 #ifdef DIAGNOSTIC
    192 		printf("Out of memory allocating siginfo for pid %d\n",
    193 		    p->p_pid);
    194 #endif
    195 		goto out;
    196 	}
    197 	*kp = *ksi;
    198 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    199 out:
    200 	simple_unlock(&p->p_sigctx.ps_silock);
    201 	splx(s);
    202 }
    203 
    204 /*
    205  * free all pending ksiginfo on exit
    206  */
    207 static void
    208 ksiginfo_exithook(struct proc *p, void *v)
    209 {
    210 	int s;
    211 
    212 	s = splsoftclock();
    213 	simple_lock(&p->p_sigctx.ps_silock);
    214 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    215 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    216 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    217 		pool_put(&ksiginfo_pool, ksi);
    218 	}
    219 	simple_unlock(&p->p_sigctx.ps_silock);
    220 	splx(s);
    221 }
    222 
    223 /*
    224  * Initialize signal-related data structures.
    225  */
    226 void
    227 signal_init(void)
    228 {
    229 
    230 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    231 
    232 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    233 	    sizeof(struct sigacts) > PAGE_SIZE ?
    234 	    &sigactspool_allocator : &pool_allocator_nointr);
    235 
    236 	exithook_establish(ksiginfo_exithook, NULL);
    237 	exechook_establish(ksiginfo_exithook, NULL);
    238 }
    239 
    240 /*
    241  * Create an initial sigctx structure, using the same signal state
    242  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    243  * copy it from parent.
    244  */
    245 void
    246 sigactsinit(struct proc *np, struct proc *pp, int share)
    247 {
    248 	struct sigacts *ps;
    249 
    250 	if (share) {
    251 		np->p_sigacts = pp->p_sigacts;
    252 		pp->p_sigacts->sa_refcnt++;
    253 	} else {
    254 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    255 		if (pp)
    256 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    257 		else
    258 			memset(ps, '\0', sizeof(struct sigacts));
    259 		ps->sa_refcnt = 1;
    260 		np->p_sigacts = ps;
    261 	}
    262 }
    263 
    264 /*
    265  * Make this process not share its sigctx, maintaining all
    266  * signal state.
    267  */
    268 void
    269 sigactsunshare(struct proc *p)
    270 {
    271 	struct sigacts *oldps;
    272 
    273 	if (p->p_sigacts->sa_refcnt == 1)
    274 		return;
    275 
    276 	oldps = p->p_sigacts;
    277 	sigactsinit(p, NULL, 0);
    278 
    279 	if (--oldps->sa_refcnt == 0)
    280 		pool_put(&sigacts_pool, oldps);
    281 }
    282 
    283 /*
    284  * Release a sigctx structure.
    285  */
    286 void
    287 sigactsfree(struct sigacts *ps)
    288 {
    289 
    290 	if (--ps->sa_refcnt > 0)
    291 		return;
    292 
    293 	pool_put(&sigacts_pool, ps);
    294 }
    295 
    296 int
    297 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    298 	struct sigaction *osa, const void *tramp, int vers)
    299 {
    300 	struct sigacts	*ps;
    301 	int		prop;
    302 
    303 	ps = p->p_sigacts;
    304 	if (signum <= 0 || signum >= NSIG)
    305 		return (EINVAL);
    306 
    307 	/*
    308 	 * Trampoline ABI version 0 is reserved for the legacy
    309 	 * kernel-provided on-stack trampoline.  Conversely, if we are
    310 	 * using a non-0 ABI version, we must have a trampoline.  Only
    311 	 * validate the vers if a new sigaction was supplied. Emulations
    312 	 * use legacy kernel trampolines with version 0, alternatively
    313 	 * check for that too.
    314 	 */
    315 	if ((vers != 0 && tramp == NULL) ||
    316 #ifdef SIGTRAMP_VALID
    317 	    (nsa != NULL &&
    318 	    ((vers == 0) ?
    319 		(p->p_emul->e_sigcode == NULL) :
    320 		!SIGTRAMP_VALID(vers))) ||
    321 #endif
    322 	    (vers == 0 && tramp != NULL))
    323 		return (EINVAL);
    324 
    325 	if (osa)
    326 		*osa = SIGACTION_PS(ps, signum);
    327 
    328 	if (nsa) {
    329 		if (nsa->sa_flags & ~SA_ALLBITS)
    330 			return (EINVAL);
    331 
    332 		prop = sigprop[signum];
    333 		if (prop & SA_CANTMASK)
    334 			return (EINVAL);
    335 
    336 		(void) splsched();	/* XXXSMP */
    337 		SIGACTION_PS(ps, signum) = *nsa;
    338 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    339 		ps->sa_sigdesc[signum].sd_vers = vers;
    340 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    341 		if ((prop & SA_NORESET) != 0)
    342 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    343 		if (signum == SIGCHLD) {
    344 			if (nsa->sa_flags & SA_NOCLDSTOP)
    345 				p->p_flag |= P_NOCLDSTOP;
    346 			else
    347 				p->p_flag &= ~P_NOCLDSTOP;
    348 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    349 				/*
    350 				 * Paranoia: since SA_NOCLDWAIT is implemented
    351 				 * by reparenting the dying child to PID 1 (and
    352 				 * trust it to reap the zombie), PID 1 itself
    353 				 * is forbidden to set SA_NOCLDWAIT.
    354 				 */
    355 				if (p->p_pid == 1)
    356 					p->p_flag &= ~P_NOCLDWAIT;
    357 				else
    358 					p->p_flag |= P_NOCLDWAIT;
    359 			} else
    360 				p->p_flag &= ~P_NOCLDWAIT;
    361 
    362 			if (nsa->sa_handler == SIG_IGN) {
    363 				/*
    364 				 * Paranoia: same as above.
    365 				 */
    366 				if (p->p_pid == 1)
    367 					p->p_flag &= ~P_CLDSIGIGN;
    368 				else
    369 					p->p_flag |= P_CLDSIGIGN;
    370 			} else
    371 				p->p_flag &= ~P_CLDSIGIGN;
    372 
    373 		}
    374 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    375 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    376 		else
    377 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    378 		/*
    379 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    380 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    381 		 * to ignore. However, don't put SIGCONT in
    382 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    383 	 	 */
    384 		if (nsa->sa_handler == SIG_IGN ||
    385 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    386 						/* never to be seen again */
    387 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    388 			if (signum != SIGCONT) {
    389 						/* easier in psignal */
    390 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    391 			}
    392 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    393 		} else {
    394 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    395 			if (nsa->sa_handler == SIG_DFL)
    396 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    397 			else
    398 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    399 		}
    400 		(void) spl0();
    401 	}
    402 
    403 	return (0);
    404 }
    405 
    406 #ifdef COMPAT_16
    407 /* ARGSUSED */
    408 int
    409 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    410 {
    411 	struct compat_16_sys___sigaction14_args /* {
    412 		syscallarg(int)				signum;
    413 		syscallarg(const struct sigaction *)	nsa;
    414 		syscallarg(struct sigaction *)		osa;
    415 	} */ *uap = v;
    416 	struct proc		*p;
    417 	struct sigaction	nsa, osa;
    418 	int			error;
    419 
    420 	if (SCARG(uap, nsa)) {
    421 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    422 		if (error)
    423 			return (error);
    424 	}
    425 	p = l->l_proc;
    426 	error = sigaction1(p, SCARG(uap, signum),
    427 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    428 	    NULL, 0);
    429 	if (error)
    430 		return (error);
    431 	if (SCARG(uap, osa)) {
    432 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    433 		if (error)
    434 			return (error);
    435 	}
    436 	return (0);
    437 }
    438 #endif
    439 
    440 /* ARGSUSED */
    441 int
    442 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    443 {
    444 	struct sys___sigaction_sigtramp_args /* {
    445 		syscallarg(int)				signum;
    446 		syscallarg(const struct sigaction *)	nsa;
    447 		syscallarg(struct sigaction *)		osa;
    448 		syscallarg(void *)			tramp;
    449 		syscallarg(int)				vers;
    450 	} */ *uap = v;
    451 	struct proc *p = l->l_proc;
    452 	struct sigaction nsa, osa;
    453 	int error;
    454 
    455 	if (SCARG(uap, nsa)) {
    456 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    457 		if (error)
    458 			return (error);
    459 	}
    460 	error = sigaction1(p, SCARG(uap, signum),
    461 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    462 	    SCARG(uap, tramp), SCARG(uap, vers));
    463 	if (error)
    464 		return (error);
    465 	if (SCARG(uap, osa)) {
    466 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    467 		if (error)
    468 			return (error);
    469 	}
    470 	return (0);
    471 }
    472 
    473 /*
    474  * Initialize signal state for process 0;
    475  * set to ignore signals that are ignored by default and disable the signal
    476  * stack.
    477  */
    478 void
    479 siginit(struct proc *p)
    480 {
    481 	struct sigacts	*ps;
    482 	int		signum, prop;
    483 
    484 	ps = p->p_sigacts;
    485 	sigemptyset(&contsigmask);
    486 	sigemptyset(&stopsigmask);
    487 	sigemptyset(&sigcantmask);
    488 	for (signum = 1; signum < NSIG; signum++) {
    489 		prop = sigprop[signum];
    490 		if (prop & SA_CONT)
    491 			sigaddset(&contsigmask, signum);
    492 		if (prop & SA_STOP)
    493 			sigaddset(&stopsigmask, signum);
    494 		if (prop & SA_CANTMASK)
    495 			sigaddset(&sigcantmask, signum);
    496 		if (prop & SA_IGNORE && signum != SIGCONT)
    497 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    498 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    499 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    500 	}
    501 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    502 	p->p_sigctx.ps_sigwaited = NULL;
    503 	p->p_flag &= ~P_NOCLDSTOP;
    504 
    505 	/*
    506 	 * Reset stack state to the user stack.
    507 	 */
    508 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    509 	p->p_sigctx.ps_sigstk.ss_size = 0;
    510 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    511 
    512 	/* One reference. */
    513 	ps->sa_refcnt = 1;
    514 }
    515 
    516 /*
    517  * Reset signals for an exec of the specified process.
    518  */
    519 void
    520 execsigs(struct proc *p)
    521 {
    522 	struct sigacts	*ps;
    523 	int		signum, prop;
    524 
    525 	sigactsunshare(p);
    526 
    527 	ps = p->p_sigacts;
    528 
    529 	/*
    530 	 * Reset caught signals.  Held signals remain held
    531 	 * through p_sigctx.ps_sigmask (unless they were caught,
    532 	 * and are now ignored by default).
    533 	 */
    534 	for (signum = 1; signum < NSIG; signum++) {
    535 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    536 			prop = sigprop[signum];
    537 			if (prop & SA_IGNORE) {
    538 				if ((prop & SA_CONT) == 0)
    539 					sigaddset(&p->p_sigctx.ps_sigignore,
    540 					    signum);
    541 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    542 			}
    543 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    544 		}
    545 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    546 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    547 	}
    548 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    549 	p->p_sigctx.ps_sigwaited = NULL;
    550 
    551 	/*
    552 	 * Reset no zombies if child dies flag as Solaris does.
    553 	 */
    554 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
    555 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    556 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    557 
    558 	/*
    559 	 * Reset stack state to the user stack.
    560 	 */
    561 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    562 	p->p_sigctx.ps_sigstk.ss_size = 0;
    563 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    564 }
    565 
    566 int
    567 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    568 {
    569 
    570 	if (oss)
    571 		*oss = p->p_sigctx.ps_sigmask;
    572 
    573 	if (nss) {
    574 		(void)splsched();	/* XXXSMP */
    575 		switch (how) {
    576 		case SIG_BLOCK:
    577 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    578 			break;
    579 		case SIG_UNBLOCK:
    580 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    581 			CHECKSIGS(p);
    582 			break;
    583 		case SIG_SETMASK:
    584 			p->p_sigctx.ps_sigmask = *nss;
    585 			CHECKSIGS(p);
    586 			break;
    587 		default:
    588 			(void)spl0();	/* XXXSMP */
    589 			return (EINVAL);
    590 		}
    591 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    592 		(void)spl0();		/* XXXSMP */
    593 	}
    594 
    595 	return (0);
    596 }
    597 
    598 /*
    599  * Manipulate signal mask.
    600  * Note that we receive new mask, not pointer,
    601  * and return old mask as return value;
    602  * the library stub does the rest.
    603  */
    604 int
    605 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    606 {
    607 	struct sys___sigprocmask14_args /* {
    608 		syscallarg(int)			how;
    609 		syscallarg(const sigset_t *)	set;
    610 		syscallarg(sigset_t *)		oset;
    611 	} */ *uap = v;
    612 	struct proc	*p;
    613 	sigset_t	nss, oss;
    614 	int		error;
    615 
    616 	if (SCARG(uap, set)) {
    617 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    618 		if (error)
    619 			return (error);
    620 	}
    621 	p = l->l_proc;
    622 	error = sigprocmask1(p, SCARG(uap, how),
    623 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    624 	if (error)
    625 		return (error);
    626 	if (SCARG(uap, oset)) {
    627 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    628 		if (error)
    629 			return (error);
    630 	}
    631 	return (0);
    632 }
    633 
    634 void
    635 sigpending1(struct proc *p, sigset_t *ss)
    636 {
    637 
    638 	*ss = p->p_sigctx.ps_siglist;
    639 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    640 }
    641 
    642 /* ARGSUSED */
    643 int
    644 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    645 {
    646 	struct sys___sigpending14_args /* {
    647 		syscallarg(sigset_t *)	set;
    648 	} */ *uap = v;
    649 	struct proc	*p;
    650 	sigset_t	ss;
    651 
    652 	p = l->l_proc;
    653 	sigpending1(p, &ss);
    654 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    655 }
    656 
    657 int
    658 sigsuspend1(struct proc *p, const sigset_t *ss)
    659 {
    660 	struct sigacts *ps;
    661 
    662 	ps = p->p_sigacts;
    663 	if (ss) {
    664 		/*
    665 		 * When returning from sigpause, we want
    666 		 * the old mask to be restored after the
    667 		 * signal handler has finished.  Thus, we
    668 		 * save it here and mark the sigctx structure
    669 		 * to indicate this.
    670 		 */
    671 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    672 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    673 		(void) splsched();	/* XXXSMP */
    674 		p->p_sigctx.ps_sigmask = *ss;
    675 		CHECKSIGS(p);
    676 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    677 		(void) spl0();		/* XXXSMP */
    678 	}
    679 
    680 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    681 		/* void */;
    682 
    683 	/* always return EINTR rather than ERESTART... */
    684 	return (EINTR);
    685 }
    686 
    687 /*
    688  * Suspend process until signal, providing mask to be set
    689  * in the meantime.  Note nonstandard calling convention:
    690  * libc stub passes mask, not pointer, to save a copyin.
    691  */
    692 /* ARGSUSED */
    693 int
    694 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    695 {
    696 	struct sys___sigsuspend14_args /* {
    697 		syscallarg(const sigset_t *)	set;
    698 	} */ *uap = v;
    699 	struct proc	*p;
    700 	sigset_t	ss;
    701 	int		error;
    702 
    703 	if (SCARG(uap, set)) {
    704 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    705 		if (error)
    706 			return (error);
    707 	}
    708 
    709 	p = l->l_proc;
    710 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    711 }
    712 
    713 int
    714 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    715 	struct sigaltstack *oss)
    716 {
    717 
    718 	if (oss)
    719 		*oss = p->p_sigctx.ps_sigstk;
    720 
    721 	if (nss) {
    722 		if (nss->ss_flags & ~SS_ALLBITS)
    723 			return (EINVAL);
    724 
    725 		if (nss->ss_flags & SS_DISABLE) {
    726 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    727 				return (EINVAL);
    728 		} else {
    729 			if (nss->ss_size < MINSIGSTKSZ)
    730 				return (ENOMEM);
    731 		}
    732 		p->p_sigctx.ps_sigstk = *nss;
    733 	}
    734 
    735 	return (0);
    736 }
    737 
    738 /* ARGSUSED */
    739 int
    740 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    741 {
    742 	struct sys___sigaltstack14_args /* {
    743 		syscallarg(const struct sigaltstack *)	nss;
    744 		syscallarg(struct sigaltstack *)	oss;
    745 	} */ *uap = v;
    746 	struct proc		*p;
    747 	struct sigaltstack	nss, oss;
    748 	int			error;
    749 
    750 	if (SCARG(uap, nss)) {
    751 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    752 		if (error)
    753 			return (error);
    754 	}
    755 	p = l->l_proc;
    756 	error = sigaltstack1(p,
    757 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    758 	if (error)
    759 		return (error);
    760 	if (SCARG(uap, oss)) {
    761 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    762 		if (error)
    763 			return (error);
    764 	}
    765 	return (0);
    766 }
    767 
    768 /* ARGSUSED */
    769 int
    770 sys_kill(struct lwp *l, void *v, register_t *retval)
    771 {
    772 	struct sys_kill_args /* {
    773 		syscallarg(int)	pid;
    774 		syscallarg(int)	signum;
    775 	} */ *uap = v;
    776 	struct proc	*p;
    777 	ksiginfo_t	ksi;
    778 	int signum = SCARG(uap, signum);
    779 	int error;
    780 
    781 	if ((u_int)signum >= NSIG)
    782 		return (EINVAL);
    783 	KSI_INIT(&ksi);
    784 	ksi.ksi_signo = signum;
    785 	ksi.ksi_code = SI_USER;
    786 	ksi.ksi_pid = l->l_proc->p_pid;
    787 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
    788 	if (SCARG(uap, pid) > 0) {
    789 		/* kill single process */
    790 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    791 			return (ESRCH);
    792 		error = kauth_authorize_process(l->l_cred,
    793 		    KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
    794 		    NULL, NULL);
    795 		if (error)
    796 			return error;
    797 		if (signum)
    798 			kpsignal2(p, &ksi, 1);
    799 		return (0);
    800 	}
    801 	switch (SCARG(uap, pid)) {
    802 	case -1:		/* broadcast signal */
    803 		return (killpg1(l, &ksi, 0, 1));
    804 	case 0:			/* signal own process group */
    805 		return (killpg1(l, &ksi, 0, 0));
    806 	default:		/* negative explicit process group */
    807 		return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
    808 	}
    809 	/* NOTREACHED */
    810 }
    811 
    812 /*
    813  * Common code for kill process group/broadcast kill.
    814  * cp is calling process.
    815  */
    816 int
    817 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    818 {
    819 	struct proc	*p, *cp;
    820 	kauth_cred_t	pc;
    821 	struct pgrp	*pgrp;
    822 	int		nfound;
    823 	int		signum = ksi->ksi_signo;
    824 
    825 	cp = l->l_proc;
    826 	pc = l->l_cred;
    827 	nfound = 0;
    828 	if (all) {
    829 		/*
    830 		 * broadcast
    831 		 */
    832 		proclist_lock_read();
    833 		PROCLIST_FOREACH(p, &allproc) {
    834 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
    835 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
    836 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
    837 				continue;
    838 			nfound++;
    839 			if (signum)
    840 				kpsignal2(p, ksi, 1);
    841 		}
    842 		proclist_unlock_read();
    843 	} else {
    844 		if (pgid == 0)
    845 			/*
    846 			 * zero pgid means send to my process group.
    847 			 */
    848 			pgrp = cp->p_pgrp;
    849 		else {
    850 			pgrp = pgfind(pgid);
    851 			if (pgrp == NULL)
    852 				return (ESRCH);
    853 		}
    854 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    855 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    856 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
    857 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
    858 				continue;
    859 			nfound++;
    860 			if (signum && P_ZOMBIE(p) == 0)
    861 				kpsignal2(p, ksi, 1);
    862 		}
    863 	}
    864 	return (nfound ? 0 : ESRCH);
    865 }
    866 
    867 /*
    868  * Send a signal to a process group.
    869  */
    870 void
    871 gsignal(int pgid, int signum)
    872 {
    873 	ksiginfo_t ksi;
    874 	KSI_INIT_EMPTY(&ksi);
    875 	ksi.ksi_signo = signum;
    876 	kgsignal(pgid, &ksi, NULL);
    877 }
    878 
    879 void
    880 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    881 {
    882 	struct pgrp *pgrp;
    883 
    884 	if (pgid && (pgrp = pgfind(pgid)))
    885 		kpgsignal(pgrp, ksi, data, 0);
    886 }
    887 
    888 /*
    889  * Send a signal to a process group. If checktty is 1,
    890  * limit to members which have a controlling terminal.
    891  */
    892 void
    893 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    894 {
    895 	ksiginfo_t ksi;
    896 	KSI_INIT_EMPTY(&ksi);
    897 	ksi.ksi_signo = sig;
    898 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    899 }
    900 
    901 void
    902 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    903 {
    904 	struct proc *p;
    905 
    906 	if (pgrp)
    907 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    908 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    909 				kpsignal(p, ksi, data);
    910 }
    911 
    912 /*
    913  * Send a signal caused by a trap to the current process.
    914  * If it will be caught immediately, deliver it with correct code.
    915  * Otherwise, post it normally.
    916  */
    917 void
    918 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    919 {
    920 	struct proc	*p;
    921 	struct sigacts	*ps;
    922 	int signum = ksi->ksi_signo;
    923 
    924 	KASSERT(KSI_TRAP_P(ksi));
    925 
    926 	p = l->l_proc;
    927 	ps = p->p_sigacts;
    928 	if ((p->p_flag & P_TRACED) == 0 &&
    929 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    930 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    931 		p->p_stats->p_ru.ru_nsignals++;
    932 #ifdef KTRACE
    933 		if (KTRPOINT(p, KTR_PSIG))
    934 			ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
    935 			    &p->p_sigctx.ps_sigmask, ksi);
    936 #endif
    937 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    938 		(void) splsched();	/* XXXSMP */
    939 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    940 		    &p->p_sigctx.ps_sigmask);
    941 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    942 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    943 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    944 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    945 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    946 		}
    947 		(void) spl0();		/* XXXSMP */
    948 	} else {
    949 		p->p_sigctx.ps_lwp = l->l_lid;
    950 		/* XXX for core dump/debugger */
    951 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    952 		p->p_sigctx.ps_code = ksi->ksi_trap;
    953 		kpsignal2(p, ksi, 1);
    954 	}
    955 }
    956 
    957 /*
    958  * Fill in signal information and signal the parent for a child status change.
    959  */
    960 void
    961 child_psignal(struct proc *p, int dolock)
    962 {
    963 	ksiginfo_t ksi;
    964 
    965 	KSI_INIT(&ksi);
    966 	ksi.ksi_signo = SIGCHLD;
    967 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    968 	ksi.ksi_pid = p->p_pid;
    969 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    970 	ksi.ksi_status = p->p_xstat;
    971 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    972 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    973 	kpsignal2(p->p_pptr, &ksi, dolock);
    974 }
    975 
    976 /*
    977  * Send the signal to the process.  If the signal has an action, the action
    978  * is usually performed by the target process rather than the caller; we add
    979  * the signal to the set of pending signals for the process.
    980  *
    981  * Exceptions:
    982  *   o When a stop signal is sent to a sleeping process that takes the
    983  *     default action, the process is stopped without awakening it.
    984  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
    985  *     regardless of the signal action (eg, blocked or ignored).
    986  *
    987  * Other ignored signals are discarded immediately.
    988  *
    989  * XXXSMP: Invoked as psignal() or sched_psignal().
    990  */
    991 void
    992 psignal1(struct proc *p, int signum, int dolock)
    993 {
    994 	ksiginfo_t ksi;
    995 
    996 	KSI_INIT_EMPTY(&ksi);
    997 	ksi.ksi_signo = signum;
    998 	kpsignal2(p, &ksi, dolock);
    999 }
   1000 
   1001 void
   1002 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
   1003 {
   1004 
   1005 	if ((p->p_flag & P_WEXIT) == 0 && data) {
   1006 		size_t fd;
   1007 		struct filedesc *fdp = p->p_fd;
   1008 
   1009 		ksi->ksi_fd = -1;
   1010 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
   1011 			struct file *fp = fdp->fd_ofiles[fd];
   1012 			/* XXX: lock? */
   1013 			if (fp && fp->f_data == data) {
   1014 				ksi->ksi_fd = fd;
   1015 				break;
   1016 			}
   1017 		}
   1018 	}
   1019 	kpsignal2(p, ksi, dolock);
   1020 }
   1021 
   1022 static void
   1023 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
   1024 {
   1025 	struct lwp *l, *suspended = NULL;
   1026 	struct sadata_vp *vp;
   1027 	int	s = 0, prop, allsusp;
   1028 	sig_t	action;
   1029 	int	signum = ksi->ksi_signo;
   1030 
   1031 #ifdef DIAGNOSTIC
   1032 	if (signum <= 0 || signum >= NSIG)
   1033 		panic("psignal signal number %d", signum);
   1034 
   1035 	/* XXXSMP: works, but icky */
   1036 	if (dolock) {
   1037 		SCHED_ASSERT_UNLOCKED();
   1038 	} else {
   1039 		SCHED_ASSERT_LOCKED();
   1040 	}
   1041 #endif
   1042 
   1043 	/*
   1044 	 * Notify any interested parties in the signal.
   1045 	 */
   1046 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
   1047 
   1048 	prop = sigprop[signum];
   1049 
   1050 	/*
   1051 	 * If proc is traced, always give parent a chance.
   1052 	 */
   1053 	if (p->p_flag & P_TRACED) {
   1054 		action = SIG_DFL;
   1055 
   1056 		/*
   1057 		 * If the process is being traced and the signal is being
   1058 		 * caught, make sure to save any ksiginfo.
   1059 		 */
   1060 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1061 			ksiginfo_put(p, ksi);
   1062 	} else {
   1063 		/*
   1064 		 * If the signal was the result of a trap, reset it
   1065 		 * to default action if it's currently masked, so that it would
   1066 		 * coredump immediatelly instead of spinning repeatedly
   1067 		 * taking the signal.
   1068 		 */
   1069 		if (KSI_TRAP_P(ksi)
   1070 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
   1071 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
   1072 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
   1073 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1074 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
   1075 			SIGACTION(p, signum).sa_handler = SIG_DFL;
   1076 		}
   1077 
   1078 		/*
   1079 		 * If the signal is being ignored,
   1080 		 * then we forget about it immediately.
   1081 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1082 		 * and if it is set to SIG_IGN,
   1083 		 * action will be SIG_DFL here.)
   1084 		 */
   1085 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1086 			return;
   1087 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1088 			action = SIG_HOLD;
   1089 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1090 			action = SIG_CATCH;
   1091 		else {
   1092 			action = SIG_DFL;
   1093 
   1094 			if (prop & SA_KILL && p->p_nice > NZERO)
   1095 				p->p_nice = NZERO;
   1096 
   1097 			/*
   1098 			 * If sending a tty stop signal to a member of an
   1099 			 * orphaned process group, discard the signal here if
   1100 			 * the action is default; don't stop the process below
   1101 			 * if sleeping, and don't clear any pending SIGCONT.
   1102 			 */
   1103 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1104 				return;
   1105 		}
   1106 	}
   1107 
   1108 	if (prop & SA_CONT)
   1109 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1110 
   1111 	if (prop & SA_STOP)
   1112 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1113 
   1114 	/*
   1115 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1116 	 * please!), check if anything waits on it. If yes, save the
   1117 	 * info into provided ps_sigwaited, and wake-up the waiter.
   1118 	 * The signal won't be processed further here.
   1119 	 */
   1120 	if ((prop & SA_CANTMASK) == 0
   1121 	    && p->p_sigctx.ps_sigwaited
   1122 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
   1123 	    && p->p_stat != SSTOP) {
   1124 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
   1125 		p->p_sigctx.ps_sigwaited = NULL;
   1126 		if (dolock)
   1127 			wakeup_one(&p->p_sigctx.ps_sigwait);
   1128 		else
   1129 			sched_wakeup(&p->p_sigctx.ps_sigwait);
   1130 		return;
   1131 	}
   1132 
   1133 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1134 
   1135 	/* CHECKSIGS() is "inlined" here. */
   1136 	p->p_sigctx.ps_sigcheck = 1;
   1137 
   1138 	/*
   1139 	 * Defer further processing for signals which are held,
   1140 	 * except that stopped processes must be continued by SIGCONT.
   1141 	 */
   1142 	if (action == SIG_HOLD &&
   1143 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1144 		ksiginfo_put(p, ksi);
   1145 		return;
   1146 	}
   1147 	/* XXXSMP: works, but icky */
   1148 	if (dolock)
   1149 		SCHED_LOCK(s);
   1150 
   1151 	if (p->p_flag & P_SA) {
   1152 		allsusp = 0;
   1153 		l = NULL;
   1154 		if (p->p_stat == SACTIVE) {
   1155 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1156 				l = vp->savp_lwp;
   1157 				KDASSERT(l != NULL);
   1158 				if (l->l_flag & L_SA_IDLE) {
   1159 					/* wakeup idle LWP */
   1160 					goto found;
   1161 					/*NOTREACHED*/
   1162 				} else if (l->l_flag & L_SA_YIELD) {
   1163 					/* idle LWP is already waking up */
   1164 					goto out;
   1165 					/*NOTREACHED*/
   1166 				}
   1167 			}
   1168 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1169 				l = vp->savp_lwp;
   1170 				if (l->l_stat == LSRUN ||
   1171 				    l->l_stat == LSONPROC) {
   1172 					signotify(p);
   1173 					goto out;
   1174 					/*NOTREACHED*/
   1175 				}
   1176 				if (l->l_stat == LSSLEEP &&
   1177 				    l->l_flag & L_SINTR) {
   1178 					/* ok to signal vp lwp */
   1179 					break;
   1180 				} else
   1181 					l = NULL;
   1182 			}
   1183 		} else if (p->p_stat == SSTOP) {
   1184 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1185 				l = vp->savp_lwp;
   1186 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
   1187 					break;
   1188 				l = NULL;
   1189 			}
   1190 		}
   1191 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
   1192 		/*
   1193 		 * At least one LWP is running or on a run queue.
   1194 		 * The signal will be noticed when one of them returns
   1195 		 * to userspace.
   1196 		 */
   1197 		signotify(p);
   1198 		/*
   1199 		 * The signal will be noticed very soon.
   1200 		 */
   1201 		goto out;
   1202 		/*NOTREACHED*/
   1203 	} else {
   1204 		/*
   1205 		 * Find out if any of the sleeps are interruptable,
   1206 		 * and if all the live LWPs remaining are suspended.
   1207 		 */
   1208 		allsusp = 1;
   1209 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1210 			if (l->l_stat == LSSLEEP &&
   1211 			    l->l_flag & L_SINTR)
   1212 				break;
   1213 			if (l->l_stat == LSSUSPENDED)
   1214 				suspended = l;
   1215 			else if ((l->l_stat != LSZOMB) &&
   1216 			    (l->l_stat != LSDEAD))
   1217 				allsusp = 0;
   1218 		}
   1219 	}
   1220 
   1221  found:
   1222 	switch (p->p_stat) {
   1223 	case SACTIVE:
   1224 
   1225 		if (l != NULL && (p->p_flag & P_TRACED))
   1226 			goto run;
   1227 
   1228 		/*
   1229 		 * If SIGCONT is default (or ignored) and process is
   1230 		 * asleep, we are finished; the process should not
   1231 		 * be awakened.
   1232 		 */
   1233 		if ((prop & SA_CONT) && action == SIG_DFL) {
   1234 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1235 			goto done;
   1236 		}
   1237 
   1238 		/*
   1239 		 * When a sleeping process receives a stop
   1240 		 * signal, process immediately if possible.
   1241 		 */
   1242 		if ((prop & SA_STOP) && action == SIG_DFL) {
   1243 			/*
   1244 			 * If a child holding parent blocked,
   1245 			 * stopping could cause deadlock.
   1246 			 */
   1247 			if (p->p_flag & P_PPWAIT) {
   1248 				goto out;
   1249 			}
   1250 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1251 			p->p_xstat = signum;
   1252 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1253 				/*
   1254 				 * XXXSMP: recursive call; don't lock
   1255 				 * the second time around.
   1256 				 */
   1257 				child_psignal(p, 0);
   1258 			}
   1259 			proc_stop(p, 1);	/* XXXSMP: recurse? */
   1260 			goto done;
   1261 		}
   1262 
   1263 		if (l == NULL) {
   1264 			/*
   1265 			 * Special case: SIGKILL of a process
   1266 			 * which is entirely composed of
   1267 			 * suspended LWPs should succeed. We
   1268 			 * make this happen by unsuspending one of
   1269 			 * them.
   1270 			 */
   1271 			if (allsusp && (signum == SIGKILL)) {
   1272 				lwp_continue(suspended);
   1273 			}
   1274 			goto done;
   1275 		}
   1276 		/*
   1277 		 * All other (caught or default) signals
   1278 		 * cause the process to run.
   1279 		 */
   1280 		goto runfast;
   1281 		/*NOTREACHED*/
   1282 	case SSTOP:
   1283 		/* Process is stopped */
   1284 		/*
   1285 		 * If traced process is already stopped,
   1286 		 * then no further action is necessary.
   1287 		 */
   1288 		if (p->p_flag & P_TRACED)
   1289 			goto done;
   1290 
   1291 		/*
   1292 		 * Kill signal always sets processes running,
   1293 		 * if possible.
   1294 		 */
   1295 		if (signum == SIGKILL) {
   1296 			l = proc_unstop(p);
   1297 			if (l)
   1298 				goto runfast;
   1299 			goto done;
   1300 		}
   1301 
   1302 		if (prop & SA_CONT) {
   1303 			/*
   1304 			 * If SIGCONT is default (or ignored),
   1305 			 * we continue the process but don't
   1306 			 * leave the signal in ps_siglist, as
   1307 			 * it has no further action.  If
   1308 			 * SIGCONT is held, we continue the
   1309 			 * process and leave the signal in
   1310 			 * ps_siglist.  If the process catches
   1311 			 * SIGCONT, let it handle the signal
   1312 			 * itself.  If it isn't waiting on an
   1313 			 * event, then it goes back to run
   1314 			 * state.  Otherwise, process goes
   1315 			 * back to sleep state.
   1316 			 */
   1317 			if (action == SIG_DFL)
   1318 				sigdelset(&p->p_sigctx.ps_siglist,
   1319 				    signum);
   1320 			l = proc_unstop(p);
   1321 			if (l && (action == SIG_CATCH))
   1322 				goto runfast;
   1323 			goto out;
   1324 		}
   1325 
   1326 		if (prop & SA_STOP) {
   1327 			/*
   1328 			 * Already stopped, don't need to stop again.
   1329 			 * (If we did the shell could get confused.)
   1330 			 */
   1331 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1332 			goto done;
   1333 		}
   1334 
   1335 		/*
   1336 		 * If a lwp is sleeping interruptibly, then
   1337 		 * wake it up; it will run until the kernel
   1338 		 * boundary, where it will stop in issignal(),
   1339 		 * since p->p_stat is still SSTOP. When the
   1340 		 * process is continued, it will be made
   1341 		 * runnable and can look at the signal.
   1342 		 */
   1343 		if (l)
   1344 			goto run;
   1345 		goto out;
   1346 	case SIDL:
   1347 		/* Process is being created by fork */
   1348 		/* XXX: We are not ready to receive signals yet */
   1349 		goto done;
   1350 	default:
   1351 		/* Else what? */
   1352 		panic("psignal: Invalid process state %d.", p->p_stat);
   1353 	}
   1354 	/*NOTREACHED*/
   1355 
   1356  runfast:
   1357 	if (action == SIG_CATCH) {
   1358 		ksiginfo_put(p, ksi);
   1359 		action = SIG_HOLD;
   1360 	}
   1361 	/*
   1362 	 * Raise priority to at least PUSER.
   1363 	 */
   1364 	if (l->l_priority > PUSER)
   1365 		l->l_priority = PUSER;
   1366  run:
   1367 	if (action == SIG_CATCH) {
   1368 		ksiginfo_put(p, ksi);
   1369 		action = SIG_HOLD;
   1370 	}
   1371 
   1372 	setrunnable(l);		/* XXXSMP: recurse? */
   1373  out:
   1374 	if (action == SIG_CATCH)
   1375 		ksiginfo_put(p, ksi);
   1376  done:
   1377 	/* XXXSMP: works, but icky */
   1378 	if (dolock)
   1379 		SCHED_UNLOCK(s);
   1380 }
   1381 
   1382 siginfo_t *
   1383 siginfo_alloc(int flags)
   1384 {
   1385 
   1386 	return pool_get(&siginfo_pool, flags);
   1387 }
   1388 
   1389 void
   1390 siginfo_free(void *arg)
   1391 {
   1392 
   1393 	pool_put(&siginfo_pool, arg);
   1394 }
   1395 
   1396 void
   1397 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1398 {
   1399 	struct proc *p = l->l_proc;
   1400 	struct lwp *le, *li;
   1401 	siginfo_t *si;
   1402 	int f;
   1403 
   1404 	if (p->p_flag & P_SA) {
   1405 
   1406 		/* XXXUPSXXX What if not on sa_vp ? */
   1407 
   1408 		f = l->l_flag & L_SA;
   1409 		l->l_flag &= ~L_SA;
   1410 		si = siginfo_alloc(PR_WAITOK);
   1411 		si->_info = ksi->ksi_info;
   1412 		le = li = NULL;
   1413 		if (KSI_TRAP_P(ksi))
   1414 			le = l;
   1415 		else
   1416 			li = l;
   1417 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1418 		    sizeof(*si), si, siginfo_free) != 0) {
   1419 			siginfo_free(si);
   1420 #if 0
   1421 			if (KSI_TRAP_P(ksi))
   1422 				/* XXX What do we do here?? */;
   1423 #endif
   1424 		}
   1425 		l->l_flag |= f;
   1426 		return;
   1427 	}
   1428 
   1429 	(*p->p_emul->e_sendsig)(ksi, mask);
   1430 }
   1431 
   1432 static inline int firstsig(const sigset_t *);
   1433 
   1434 static inline int
   1435 firstsig(const sigset_t *ss)
   1436 {
   1437 	int sig;
   1438 
   1439 	sig = ffs(ss->__bits[0]);
   1440 	if (sig != 0)
   1441 		return (sig);
   1442 #if NSIG > 33
   1443 	sig = ffs(ss->__bits[1]);
   1444 	if (sig != 0)
   1445 		return (sig + 32);
   1446 #endif
   1447 #if NSIG > 65
   1448 	sig = ffs(ss->__bits[2]);
   1449 	if (sig != 0)
   1450 		return (sig + 64);
   1451 #endif
   1452 #if NSIG > 97
   1453 	sig = ffs(ss->__bits[3]);
   1454 	if (sig != 0)
   1455 		return (sig + 96);
   1456 #endif
   1457 	return (0);
   1458 }
   1459 
   1460 /*
   1461  * If the current process has received a signal (should be caught or cause
   1462  * termination, should interrupt current syscall), return the signal number.
   1463  * Stop signals with default action are processed immediately, then cleared;
   1464  * they aren't returned.  This is checked after each entry to the system for
   1465  * a syscall or trap (though this can usually be done without calling issignal
   1466  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1467  * sequence is
   1468  *
   1469  *	while (signum = CURSIG(curlwp))
   1470  *		postsig(signum);
   1471  */
   1472 int
   1473 issignal(struct lwp *l)
   1474 {
   1475 	struct proc	*p = l->l_proc;
   1476 	int		s = 0, signum, prop;
   1477 	int		dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
   1478 	sigset_t	ss;
   1479 
   1480 	/* Bail out if we do not own the virtual processor */
   1481 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
   1482 		return 0;
   1483 
   1484 	if (p->p_stat == SSTOP) {
   1485 		/*
   1486 		 * The process is stopped/stopping. Stop ourselves now that
   1487 		 * we're on the kernel/userspace boundary.
   1488 		 */
   1489 		if (dolock)
   1490 			SCHED_LOCK(s);
   1491 		l->l_stat = LSSTOP;
   1492 		p->p_nrlwps--;
   1493 		if (p->p_flag & P_TRACED)
   1494 			goto sigtraceswitch;
   1495 		else
   1496 			goto sigswitch;
   1497 	}
   1498 	for (;;) {
   1499 		sigpending1(p, &ss);
   1500 		if (p->p_flag & P_PPWAIT)
   1501 			sigminusset(&stopsigmask, &ss);
   1502 		signum = firstsig(&ss);
   1503 		if (signum == 0) {		 	/* no signal to send */
   1504 			p->p_sigctx.ps_sigcheck = 0;
   1505 			if (locked && dolock)
   1506 				SCHED_LOCK(s);
   1507 			return (0);
   1508 		}
   1509 							/* take the signal! */
   1510 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1511 
   1512 		/*
   1513 		 * We should see pending but ignored signals
   1514 		 * only if P_TRACED was on when they were posted.
   1515 		 */
   1516 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1517 		    (p->p_flag & P_TRACED) == 0)
   1518 			continue;
   1519 
   1520 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1521 			/*
   1522 			 * If traced, always stop, and stay
   1523 			 * stopped until released by the debugger.
   1524 			 */
   1525 			p->p_xstat = signum;
   1526 
   1527 			/* Emulation-specific handling of signal trace */
   1528 			if ((p->p_emul->e_tracesig != NULL) &&
   1529 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
   1530 				goto childresumed;
   1531 
   1532 			if ((p->p_flag & P_FSTRACE) == 0)
   1533 				child_psignal(p, dolock);
   1534 			if (dolock)
   1535 				SCHED_LOCK(s);
   1536 			proc_stop(p, 1);
   1537 		sigtraceswitch:
   1538 			mi_switch(l, NULL);
   1539 			SCHED_ASSERT_UNLOCKED();
   1540 			if (dolock)
   1541 				splx(s);
   1542 			else
   1543 				dolock = 1;
   1544 
   1545 		childresumed:
   1546 			/*
   1547 			 * If we are no longer being traced, or the parent
   1548 			 * didn't give us a signal, look for more signals.
   1549 			 */
   1550 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1551 				continue;
   1552 
   1553 			/*
   1554 			 * If the new signal is being masked, look for other
   1555 			 * signals.
   1556 			 */
   1557 			signum = p->p_xstat;
   1558 			p->p_xstat = 0;
   1559 			/*
   1560 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1561 			 * in setrunnable().
   1562 			 */
   1563 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1564 				continue;
   1565 							/* take the signal! */
   1566 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1567 		}
   1568 
   1569 		prop = sigprop[signum];
   1570 
   1571 		/*
   1572 		 * Decide whether the signal should be returned.
   1573 		 * Return the signal's number, or fall through
   1574 		 * to clear it from the pending mask.
   1575 		 */
   1576 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1577 
   1578 		case (long)SIG_DFL:
   1579 			/*
   1580 			 * Don't take default actions on system processes.
   1581 			 */
   1582 			if (p->p_pid <= 1) {
   1583 #ifdef DIAGNOSTIC
   1584 				/*
   1585 				 * Are you sure you want to ignore SIGSEGV
   1586 				 * in init? XXX
   1587 				 */
   1588 				printf("Process (pid %d) got signal %d\n",
   1589 				    p->p_pid, signum);
   1590 #endif
   1591 				break;		/* == ignore */
   1592 			}
   1593 			/*
   1594 			 * If there is a pending stop signal to process
   1595 			 * with default action, stop here,
   1596 			 * then clear the signal.  However,
   1597 			 * if process is member of an orphaned
   1598 			 * process group, ignore tty stop signals.
   1599 			 */
   1600 			if (prop & SA_STOP) {
   1601 				if (p->p_flag & P_TRACED ||
   1602 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1603 				    prop & SA_TTYSTOP))
   1604 					break;	/* == ignore */
   1605 				p->p_xstat = signum;
   1606 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1607 					child_psignal(p, dolock);
   1608 				if (dolock)
   1609 					SCHED_LOCK(s);
   1610 				proc_stop(p, 1);
   1611 			sigswitch:
   1612 				mi_switch(l, NULL);
   1613 				SCHED_ASSERT_UNLOCKED();
   1614 				if (dolock)
   1615 					splx(s);
   1616 				else
   1617 					dolock = 1;
   1618 				break;
   1619 			} else if (prop & SA_IGNORE) {
   1620 				/*
   1621 				 * Except for SIGCONT, shouldn't get here.
   1622 				 * Default action is to ignore; drop it.
   1623 				 */
   1624 				break;		/* == ignore */
   1625 			} else
   1626 				goto keep;
   1627 			/*NOTREACHED*/
   1628 
   1629 		case (long)SIG_IGN:
   1630 			/*
   1631 			 * Masking above should prevent us ever trying
   1632 			 * to take action on an ignored signal other
   1633 			 * than SIGCONT, unless process is traced.
   1634 			 */
   1635 #ifdef DEBUG_ISSIGNAL
   1636 			if ((prop & SA_CONT) == 0 &&
   1637 			    (p->p_flag & P_TRACED) == 0)
   1638 				printf("issignal\n");
   1639 #endif
   1640 			break;		/* == ignore */
   1641 
   1642 		default:
   1643 			/*
   1644 			 * This signal has an action, let
   1645 			 * postsig() process it.
   1646 			 */
   1647 			goto keep;
   1648 		}
   1649 	}
   1650 	/* NOTREACHED */
   1651 
   1652  keep:
   1653 						/* leave the signal for later */
   1654 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1655 	CHECKSIGS(p);
   1656 	if (locked && dolock)
   1657 		SCHED_LOCK(s);
   1658 	return (signum);
   1659 }
   1660 
   1661 /*
   1662  * Put the argument process into the stopped state and notify the parent
   1663  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1664  * on the run queue.
   1665  */
   1666 void
   1667 proc_stop(struct proc *p, int dowakeup)
   1668 {
   1669 	struct lwp *l;
   1670 	struct proc *parent;
   1671 	struct sadata_vp *vp;
   1672 
   1673 	SCHED_ASSERT_LOCKED();
   1674 
   1675 	/* XXX lock process LWP state */
   1676 	p->p_flag &= ~P_WAITED;
   1677 	p->p_stat = SSTOP;
   1678 	parent = p->p_pptr;
   1679 	parent->p_nstopchild++;
   1680 
   1681 	if (p->p_flag & P_SA) {
   1682 		/*
   1683 		 * Only (try to) put the LWP on the VP in stopped
   1684 		 * state.
   1685 		 * All other LWPs will suspend in sa_setwoken()
   1686 		 * because the VP-LWP in stopped state cannot be
   1687 		 * repossessed.
   1688 		 */
   1689 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1690 			l = vp->savp_lwp;
   1691 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
   1692 				l->l_stat = LSSTOP;
   1693 				p->p_nrlwps--;
   1694 			} else if (l->l_stat == LSRUN) {
   1695 				/* Remove LWP from the run queue */
   1696 				remrunqueue(l);
   1697 				l->l_stat = LSSTOP;
   1698 				p->p_nrlwps--;
   1699 			} else if (l->l_stat == LSSLEEP &&
   1700 			    l->l_flag & L_SA_IDLE) {
   1701 				l->l_flag &= ~L_SA_IDLE;
   1702 				l->l_stat = LSSTOP;
   1703 			}
   1704 		}
   1705 		goto out;
   1706 	}
   1707 
   1708 	/*
   1709 	 * Put as many LWP's as possible in stopped state.
   1710 	 * Sleeping ones will notice the stopped state as they try to
   1711 	 * return to userspace.
   1712 	 */
   1713 
   1714 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1715 		if (l->l_stat == LSONPROC) {
   1716 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1717 			 * is curlwp and hence is about to be mi_switched
   1718 			 * away; the only callers of proc_stop() are:
   1719 			 * - psignal
   1720 			 * - issignal()
   1721 			 * For the former, proc_stop() is only called when
   1722 			 * no processes are running, so we don't worry.
   1723 			 * For the latter, proc_stop() is called right
   1724 			 * before mi_switch().
   1725 			 */
   1726 			l->l_stat = LSSTOP;
   1727 			p->p_nrlwps--;
   1728 		} else if (l->l_stat == LSRUN) {
   1729 			/* Remove LWP from the run queue */
   1730 			remrunqueue(l);
   1731 			l->l_stat = LSSTOP;
   1732 			p->p_nrlwps--;
   1733 		} else if ((l->l_stat == LSSLEEP) ||
   1734 		    (l->l_stat == LSSUSPENDED) ||
   1735 		    (l->l_stat == LSZOMB) ||
   1736 		    (l->l_stat == LSDEAD)) {
   1737 			/*
   1738 			 * Don't do anything; let sleeping LWPs
   1739 			 * discover the stopped state of the process
   1740 			 * on their way out of the kernel; otherwise,
   1741 			 * things like NFS threads that sleep with
   1742 			 * locks will block the rest of the system
   1743 			 * from getting any work done.
   1744 			 *
   1745 			 * Suspended/dead/zombie LWPs aren't going
   1746 			 * anywhere, so we don't need to touch them.
   1747 			 */
   1748 		}
   1749 #ifdef DIAGNOSTIC
   1750 		else {
   1751 			panic("proc_stop: process %d lwp %d "
   1752 			      "in unstoppable state %d.\n",
   1753 			    p->p_pid, l->l_lid, l->l_stat);
   1754 		}
   1755 #endif
   1756 	}
   1757 
   1758  out:
   1759 	/* XXX unlock process LWP state */
   1760 
   1761 	if (dowakeup)
   1762 		sched_wakeup((caddr_t)p->p_pptr);
   1763 }
   1764 
   1765 /*
   1766  * Given a process in state SSTOP, set the state back to SACTIVE and
   1767  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1768  *
   1769  * If no LWPs ended up runnable (and therefore able to take a signal),
   1770  * return a LWP that is sleeping interruptably. The caller can wake
   1771  * that LWP up to take a signal.
   1772  */
   1773 struct lwp *
   1774 proc_unstop(struct proc *p)
   1775 {
   1776 	struct lwp *l, *lr = NULL;
   1777 	struct sadata_vp *vp;
   1778 	int cantake = 0;
   1779 
   1780 	SCHED_ASSERT_LOCKED();
   1781 
   1782 	/*
   1783 	 * Our caller wants to be informed if there are only sleeping
   1784 	 * and interruptable LWPs left after we have run so that it
   1785 	 * can invoke setrunnable() if required - return one of the
   1786 	 * interruptable LWPs if this is the case.
   1787 	 */
   1788 
   1789 	if (!(p->p_flag & P_WAITED))
   1790 		p->p_pptr->p_nstopchild--;
   1791 	p->p_stat = SACTIVE;
   1792 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1793 		if (l->l_stat == LSRUN) {
   1794 			lr = NULL;
   1795 			cantake = 1;
   1796 		}
   1797 		if (l->l_stat != LSSTOP)
   1798 			continue;
   1799 
   1800 		if (l->l_wchan != NULL) {
   1801 			l->l_stat = LSSLEEP;
   1802 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1803 				lr = l;
   1804 				cantake = 1;
   1805 			}
   1806 		} else {
   1807 			setrunnable(l);
   1808 			lr = NULL;
   1809 			cantake = 1;
   1810 		}
   1811 	}
   1812 	if (p->p_flag & P_SA) {
   1813 		/* Only consider returning the LWP on the VP. */
   1814 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1815 			lr = vp->savp_lwp;
   1816 			if (lr->l_stat == LSSLEEP) {
   1817 				if (lr->l_flag & L_SA_YIELD) {
   1818 					setrunnable(lr);
   1819 					break;
   1820 				} else if (lr->l_flag & L_SINTR)
   1821 					return lr;
   1822 			}
   1823 		}
   1824 		return NULL;
   1825 	}
   1826 	return lr;
   1827 }
   1828 
   1829 /*
   1830  * Take the action for the specified signal
   1831  * from the current set of pending signals.
   1832  */
   1833 void
   1834 postsig(int signum)
   1835 {
   1836 	struct lwp *l;
   1837 	struct proc	*p;
   1838 	struct sigacts	*ps;
   1839 	sig_t		action;
   1840 	sigset_t	*returnmask;
   1841 
   1842 	l = curlwp;
   1843 	p = l->l_proc;
   1844 	ps = p->p_sigacts;
   1845 #ifdef DIAGNOSTIC
   1846 	if (signum == 0)
   1847 		panic("postsig");
   1848 #endif
   1849 
   1850 	KERNEL_PROC_LOCK(l);
   1851 
   1852 #ifdef MULTIPROCESSOR
   1853 	/*
   1854 	 * On MP, issignal() can return the same signal to multiple
   1855 	 * LWPs.  The LWPs will block above waiting for the kernel
   1856 	 * lock and the first LWP which gets through will then remove
   1857 	 * the signal from ps_siglist.  All other LWPs exit here.
   1858 	 */
   1859 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
   1860 		KERNEL_PROC_UNLOCK(l);
   1861 		return;
   1862 	}
   1863 #endif
   1864 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1865 	action = SIGACTION_PS(ps, signum).sa_handler;
   1866 	if (action == SIG_DFL) {
   1867 #ifdef KTRACE
   1868 		if (KTRPOINT(p, KTR_PSIG))
   1869 			ktrpsig(l, signum, action,
   1870 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1871 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1872 			    NULL);
   1873 #endif
   1874 		/*
   1875 		 * Default action, where the default is to kill
   1876 		 * the process.  (Other cases were ignored above.)
   1877 		 */
   1878 		sigexit(l, signum);
   1879 		/* NOTREACHED */
   1880 	} else {
   1881 		ksiginfo_t *ksi;
   1882 		/*
   1883 		 * If we get here, the signal must be caught.
   1884 		 */
   1885 #ifdef DIAGNOSTIC
   1886 		if (action == SIG_IGN ||
   1887 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1888 			panic("postsig action");
   1889 #endif
   1890 		/*
   1891 		 * Set the new mask value and also defer further
   1892 		 * occurrences of this signal.
   1893 		 *
   1894 		 * Special case: user has done a sigpause.  Here the
   1895 		 * current mask is not of interest, but rather the
   1896 		 * mask from before the sigpause is what we want
   1897 		 * restored after the signal processing is completed.
   1898 		 */
   1899 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1900 			returnmask = &p->p_sigctx.ps_oldmask;
   1901 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1902 		} else
   1903 			returnmask = &p->p_sigctx.ps_sigmask;
   1904 		p->p_stats->p_ru.ru_nsignals++;
   1905 		ksi = ksiginfo_get(p, signum);
   1906 #ifdef KTRACE
   1907 		if (KTRPOINT(p, KTR_PSIG))
   1908 			ktrpsig(l, signum, action,
   1909 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1910 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1911 			    ksi);
   1912 #endif
   1913 		if (ksi == NULL) {
   1914 			ksiginfo_t ksi1;
   1915 			/*
   1916 			 * we did not save any siginfo for this, either
   1917 			 * because the signal was not caught, or because the
   1918 			 * user did not request SA_SIGINFO
   1919 			 */
   1920 			KSI_INIT_EMPTY(&ksi1);
   1921 			ksi1.ksi_signo = signum;
   1922 			kpsendsig(l, &ksi1, returnmask);
   1923 		} else {
   1924 			kpsendsig(l, ksi, returnmask);
   1925 			pool_put(&ksiginfo_pool, ksi);
   1926 		}
   1927 		p->p_sigctx.ps_lwp = 0;
   1928 		p->p_sigctx.ps_code = 0;
   1929 		p->p_sigctx.ps_signo = 0;
   1930 		(void) splsched();	/* XXXSMP */
   1931 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1932 		    &p->p_sigctx.ps_sigmask);
   1933 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1934 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1935 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1936 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1937 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1938 		}
   1939 		(void) spl0();		/* XXXSMP */
   1940 	}
   1941 
   1942 	KERNEL_PROC_UNLOCK(l);
   1943 }
   1944 
   1945 /*
   1946  * Kill the current process for stated reason.
   1947  */
   1948 void
   1949 killproc(struct proc *p, const char *why)
   1950 {
   1951 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1952 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1953 	psignal(p, SIGKILL);
   1954 }
   1955 
   1956 /*
   1957  * Force the current process to exit with the specified signal, dumping core
   1958  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1959  * allowing unrecoverable failures to terminate the process without changing
   1960  * signal state.  Mark the accounting record with the signal termination.
   1961  * If dumping core, save the signal number for the debugger.  Calls exit and
   1962  * does not return.
   1963  */
   1964 
   1965 #if defined(DEBUG)
   1966 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1967 #else
   1968 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1969 #endif
   1970 
   1971 static	const char logcoredump[] =
   1972 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1973 static	const char lognocoredump[] =
   1974 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   1975 
   1976 /* Wrapper function for use in p_userret */
   1977 static void
   1978 lwp_coredump_hook(struct lwp *l, void *arg)
   1979 {
   1980 	int s;
   1981 
   1982 	/*
   1983 	 * Suspend ourselves, so that the kernel stack and therefore
   1984 	 * the userland registers saved in the trapframe are around
   1985 	 * for coredump() to write them out.
   1986 	 */
   1987 	KERNEL_PROC_LOCK(l);
   1988 	l->l_flag &= ~L_DETACHED;
   1989 	SCHED_LOCK(s);
   1990 	l->l_stat = LSSUSPENDED;
   1991 	l->l_proc->p_nrlwps--;
   1992 	/* XXX NJWLWP check if this makes sense here: */
   1993 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1994 	mi_switch(l, NULL);
   1995 	SCHED_ASSERT_UNLOCKED();
   1996 	splx(s);
   1997 
   1998 	lwp_exit(l);
   1999 }
   2000 
   2001 void
   2002 sigexit(struct lwp *l, int signum)
   2003 {
   2004 	struct proc	*p;
   2005 #if 0
   2006 	struct lwp	*l2;
   2007 #endif
   2008 	int		exitsig;
   2009 #ifdef COREDUMP
   2010 	int		error;
   2011 #endif
   2012 
   2013 	p = l->l_proc;
   2014 
   2015 	/*
   2016 	 * Don't permit coredump() or exit1() multiple times
   2017 	 * in the same process.
   2018 	 */
   2019 	if (p->p_flag & P_WEXIT) {
   2020 		KERNEL_PROC_UNLOCK(l);
   2021 		(*p->p_userret)(l, p->p_userret_arg);
   2022 	}
   2023 	p->p_flag |= P_WEXIT;
   2024 	/* We don't want to switch away from exiting. */
   2025 	/* XXX multiprocessor: stop LWPs on other processors. */
   2026 #if 0
   2027 	if (p->p_flag & P_SA) {
   2028 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   2029 		    l2->l_flag &= ~L_SA;
   2030 		p->p_flag &= ~P_SA;
   2031 	}
   2032 #endif
   2033 
   2034 	/* Make other LWPs stick around long enough to be dumped */
   2035 	p->p_userret = lwp_coredump_hook;
   2036 	p->p_userret_arg = NULL;
   2037 
   2038 	exitsig = signum;
   2039 	p->p_acflag |= AXSIG;
   2040 	if (sigprop[signum] & SA_CORE) {
   2041 		p->p_sigctx.ps_signo = signum;
   2042 #ifdef COREDUMP
   2043 		if ((error = coredump(l, NULL)) == 0)
   2044 			exitsig |= WCOREFLAG;
   2045 #endif
   2046 
   2047 		if (kern_logsigexit) {
   2048 			/* XXX What if we ever have really large UIDs? */
   2049 			int uid = l->l_cred ?
   2050 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2051 
   2052 #ifdef COREDUMP
   2053 			if (error)
   2054 				log(LOG_INFO, lognocoredump, p->p_pid,
   2055 				    p->p_comm, uid, signum, error);
   2056 			else
   2057 #endif
   2058 				log(LOG_INFO, logcoredump, p->p_pid,
   2059 				    p->p_comm, uid, signum);
   2060 		}
   2061 
   2062 	}
   2063 
   2064 	exit1(l, W_EXITCODE(0, exitsig));
   2065 	/* NOTREACHED */
   2066 }
   2067 
   2068 #ifdef COREDUMP
   2069 struct coredump_iostate {
   2070 	struct lwp *io_lwp;
   2071 	struct vnode *io_vp;
   2072 	kauth_cred_t io_cred;
   2073 	off_t io_offset;
   2074 };
   2075 
   2076 int
   2077 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
   2078 {
   2079 	struct coredump_iostate *io = cookie;
   2080 	int error;
   2081 
   2082 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
   2083 	    io->io_offset, segflg,
   2084 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
   2085 	    segflg == UIO_USERSPACE ? io->io_lwp : NULL);
   2086 	if (error) {
   2087 		printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
   2088 		    io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
   2089 		    segflg == UIO_USERSPACE ? "user" : "system",
   2090 		    len, data, (long long) io->io_offset, error);
   2091 		return (error);
   2092 	}
   2093 
   2094 	io->io_offset += len;
   2095 	return (0);
   2096 }
   2097 
   2098 /*
   2099  * Dump core, into a file named "progname.core" or "core" (depending on the
   2100  * value of shortcorename), unless the process was setuid/setgid.
   2101  */
   2102 int
   2103 coredump(struct lwp *l, const char *pattern)
   2104 {
   2105 	struct vnode		*vp;
   2106 	struct proc		*p;
   2107 	struct vmspace		*vm;
   2108 	kauth_cred_t		cred;
   2109 	struct nameidata	nd;
   2110 	struct vattr		vattr;
   2111 	struct mount		*mp;
   2112 	struct coredump_iostate	io;
   2113 	int			error, error1;
   2114 	char			*name = NULL;
   2115 
   2116 	p = l->l_proc;
   2117 	vm = p->p_vmspace;
   2118 	cred = l->l_cred;
   2119 
   2120 	/*
   2121 	 * Make sure the process has not set-id, to prevent data leaks,
   2122 	 * unless it was specifically requested to allow set-id coredumps.
   2123 	 */
   2124 	if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
   2125 		return EPERM;
   2126 
   2127 	/*
   2128 	 * Refuse to core if the data + stack + user size is larger than
   2129 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   2130 	 * data.
   2131 	 */
   2132 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   2133 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   2134 		return EFBIG;		/* better error code? */
   2135 
   2136 restart:
   2137 	/*
   2138 	 * The core dump will go in the current working directory.  Make
   2139 	 * sure that the directory is still there and that the mount flags
   2140 	 * allow us to write core dumps there.
   2141 	 */
   2142 	vp = p->p_cwdi->cwdi_cdir;
   2143 	if (vp->v_mount == NULL ||
   2144 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
   2145 		error = EPERM;
   2146 		goto done;
   2147 	}
   2148 
   2149 	if ((p->p_flag & P_SUGID) && security_setidcore_dump)
   2150 		pattern = security_setidcore_path;
   2151 
   2152 	if (pattern == NULL)
   2153 		pattern = p->p_limit->pl_corename;
   2154 	if (name == NULL) {
   2155 		name = PNBUF_GET();
   2156 	}
   2157 	if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
   2158 		goto done;
   2159 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
   2160 	if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
   2161 	    S_IRUSR | S_IWUSR)) != 0)
   2162 		goto done;
   2163 	vp = nd.ni_vp;
   2164 
   2165 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
   2166 		VOP_UNLOCK(vp, 0);
   2167 		if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
   2168 			goto done;
   2169 		if ((error = vn_start_write(NULL, &mp,
   2170 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
   2171 			goto done;
   2172 		goto restart;
   2173 	}
   2174 
   2175 	/* Don't dump to non-regular files or files with links. */
   2176 	if (vp->v_type != VREG ||
   2177 	    VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
   2178 		error = EINVAL;
   2179 		goto out;
   2180 	}
   2181 	VATTR_NULL(&vattr);
   2182 	vattr.va_size = 0;
   2183 
   2184 	if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
   2185 		vattr.va_uid = security_setidcore_owner;
   2186 		vattr.va_gid = security_setidcore_group;
   2187 		vattr.va_mode = security_setidcore_mode;
   2188 	}
   2189 
   2190 	VOP_LEASE(vp, l, cred, LEASE_WRITE);
   2191 	VOP_SETATTR(vp, &vattr, cred, l);
   2192 	p->p_acflag |= ACORE;
   2193 
   2194 	io.io_lwp = l;
   2195 	io.io_vp = vp;
   2196 	io.io_cred = cred;
   2197 	io.io_offset = 0;
   2198 
   2199 	/* Now dump the actual core file. */
   2200 	error = (*p->p_execsw->es_coredump)(l, &io);
   2201  out:
   2202 	VOP_UNLOCK(vp, 0);
   2203 	vn_finished_write(mp, 0);
   2204 	error1 = vn_close(vp, FWRITE, cred, l);
   2205 	if (error == 0)
   2206 		error = error1;
   2207 done:
   2208 	if (name != NULL)
   2209 		PNBUF_PUT(name);
   2210 	return error;
   2211 }
   2212 #endif /* COREDUMP */
   2213 
   2214 /*
   2215  * Nonexistent system call-- signal process (may want to handle it).
   2216  * Flag error in case process won't see signal immediately (blocked or ignored).
   2217  */
   2218 #ifndef PTRACE
   2219 __weak_alias(sys_ptrace, sys_nosys);
   2220 #endif
   2221 
   2222 /* ARGSUSED */
   2223 int
   2224 sys_nosys(struct lwp *l, void *v, register_t *retval)
   2225 {
   2226 	struct proc 	*p;
   2227 
   2228 	p = l->l_proc;
   2229 	psignal(p, SIGSYS);
   2230 	return (ENOSYS);
   2231 }
   2232 
   2233 #ifdef COREDUMP
   2234 static int
   2235 build_corename(struct proc *p, char *dst, const char *src, size_t len)
   2236 {
   2237 	const char	*s;
   2238 	char		*d, *end;
   2239 	int		i;
   2240 
   2241 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
   2242 		if (*s == '%') {
   2243 			switch (*(s + 1)) {
   2244 			case 'n':
   2245 				i = snprintf(d, end - d, "%s", p->p_comm);
   2246 				break;
   2247 			case 'p':
   2248 				i = snprintf(d, end - d, "%d", p->p_pid);
   2249 				break;
   2250 			case 'u':
   2251 				i = snprintf(d, end - d, "%.*s",
   2252 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2253 				    p->p_pgrp->pg_session->s_login);
   2254 				break;
   2255 			case 't':
   2256 				i = snprintf(d, end - d, "%ld",
   2257 				    p->p_stats->p_start.tv_sec);
   2258 				break;
   2259 			default:
   2260 				goto copy;
   2261 			}
   2262 			d += i;
   2263 			s++;
   2264 		} else {
   2265  copy:			*d = *s;
   2266 			d++;
   2267 		}
   2268 		if (d >= end)
   2269 			return (ENAMETOOLONG);
   2270 	}
   2271 	*d = '\0';
   2272 	return 0;
   2273 }
   2274 #endif /* COREDUMP */
   2275 
   2276 void
   2277 getucontext(struct lwp *l, ucontext_t *ucp)
   2278 {
   2279 	struct proc	*p;
   2280 
   2281 	p = l->l_proc;
   2282 
   2283 	ucp->uc_flags = 0;
   2284 	ucp->uc_link = l->l_ctxlink;
   2285 
   2286 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2287 	ucp->uc_flags |= _UC_SIGMASK;
   2288 
   2289 	/*
   2290 	 * The (unsupplied) definition of the `current execution stack'
   2291 	 * in the System V Interface Definition appears to allow returning
   2292 	 * the main context stack.
   2293 	 */
   2294 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2295 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2296 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2297 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2298 	} else {
   2299 		/* Simply copy alternate signal execution stack. */
   2300 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2301 	}
   2302 	ucp->uc_flags |= _UC_STACK;
   2303 
   2304 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2305 }
   2306 
   2307 /* ARGSUSED */
   2308 int
   2309 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2310 {
   2311 	struct sys_getcontext_args /* {
   2312 		syscallarg(struct __ucontext *) ucp;
   2313 	} */ *uap = v;
   2314 	ucontext_t uc;
   2315 
   2316 	getucontext(l, &uc);
   2317 
   2318 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2319 }
   2320 
   2321 int
   2322 setucontext(struct lwp *l, const ucontext_t *ucp)
   2323 {
   2324 	struct proc	*p;
   2325 	int		error;
   2326 
   2327 	p = l->l_proc;
   2328 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2329 		return (error);
   2330 	l->l_ctxlink = ucp->uc_link;
   2331 
   2332 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2333 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2334 
   2335 	/*
   2336 	 * If there was stack information, update whether or not we are
   2337 	 * still running on an alternate signal stack.
   2338 	 */
   2339 	if ((ucp->uc_flags & _UC_STACK) != 0) {
   2340 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
   2341 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   2342 		else
   2343 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   2344 	}
   2345 
   2346 	return 0;
   2347 }
   2348 
   2349 /* ARGSUSED */
   2350 int
   2351 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2352 {
   2353 	struct sys_setcontext_args /* {
   2354 		syscallarg(const ucontext_t *) ucp;
   2355 	} */ *uap = v;
   2356 	ucontext_t uc;
   2357 	int error;
   2358 
   2359 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2360 		exit1(l, W_EXITCODE(0, 0));
   2361 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2362 	    (error = setucontext(l, &uc)) != 0)
   2363 		return (error);
   2364 
   2365 	return (EJUSTRETURN);
   2366 }
   2367 
   2368 /*
   2369  * sigtimedwait(2) system call, used also for implementation
   2370  * of sigwaitinfo() and sigwait().
   2371  *
   2372  * This only handles single LWP in signal wait. libpthread provides
   2373  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2374  */
   2375 int
   2376 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2377 {
   2378 	return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
   2379 }
   2380 
   2381 int
   2382 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
   2383     copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
   2384 {
   2385 	struct sys___sigtimedwait_args /* {
   2386 		syscallarg(const sigset_t *) set;
   2387 		syscallarg(siginfo_t *) info;
   2388 		syscallarg(struct timespec *) timeout;
   2389 	} */ *uap = v;
   2390 	sigset_t *waitset, twaitset;
   2391 	struct proc *p = l->l_proc;
   2392 	int error, signum;
   2393 	int timo = 0;
   2394 	struct timespec ts, tsstart;
   2395 	ksiginfo_t *ksi;
   2396 
   2397 	memset(&tsstart, 0, sizeof tsstart);	 /* XXX gcc */
   2398 
   2399 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
   2400 
   2401 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
   2402 		FREE(waitset, M_TEMP);
   2403 		return (error);
   2404 	}
   2405 
   2406 	/*
   2407 	 * Silently ignore SA_CANTMASK signals. psignal1() would
   2408 	 * ignore SA_CANTMASK signals in waitset, we do this
   2409 	 * only for the below siglist check.
   2410 	 */
   2411 	sigminusset(&sigcantmask, waitset);
   2412 
   2413 	/*
   2414 	 * First scan siglist and check if there is signal from
   2415 	 * our waitset already pending.
   2416 	 */
   2417 	twaitset = *waitset;
   2418 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2419 	if ((signum = firstsig(&twaitset))) {
   2420 		/* found pending signal */
   2421 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2422 		ksi = ksiginfo_get(p, signum);
   2423 		if (!ksi) {
   2424 			/* No queued siginfo, manufacture one */
   2425 			ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2426 			KSI_INIT(ksi);
   2427 			ksi->ksi_info._signo = signum;
   2428 			ksi->ksi_info._code = SI_USER;
   2429 		}
   2430 
   2431 		goto sig;
   2432 	}
   2433 
   2434 	/*
   2435 	 * Calculate timeout, if it was specified.
   2436 	 */
   2437 	if (SCARG(uap, timeout)) {
   2438 		uint64_t ms;
   2439 
   2440 		if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
   2441 			return (error);
   2442 
   2443 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2444 		timo = mstohz(ms);
   2445 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2446 			timo = 1;
   2447 		if (timo <= 0)
   2448 			return (EAGAIN);
   2449 
   2450 		/*
   2451 		 * Remember current uptime, it would be used in
   2452 		 * ECANCELED/ERESTART case.
   2453 		 */
   2454 		getnanouptime(&tsstart);
   2455 	}
   2456 
   2457 	/*
   2458 	 * Setup ps_sigwait list. Pass pointer to malloced memory
   2459 	 * here; it's not possible to pass pointer to a structure
   2460 	 * on current process's stack, the current process might
   2461 	 * be swapped out at the time the signal would get delivered.
   2462 	 */
   2463 	ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
   2464 	p->p_sigctx.ps_sigwaited = ksi;
   2465 	p->p_sigctx.ps_sigwait = waitset;
   2466 
   2467 	/*
   2468 	 * Wait for signal to arrive. We can either be woken up or
   2469 	 * time out.
   2470 	 */
   2471 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2472 
   2473 	/*
   2474 	 * Need to find out if we woke as a result of lwp_wakeup()
   2475 	 * or a signal outside our wait set.
   2476 	 */
   2477 	if (error == EINTR && p->p_sigctx.ps_sigwaited
   2478 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
   2479 		/* wakeup via _lwp_wakeup() */
   2480 		error = ECANCELED;
   2481 	} else if (!error && p->p_sigctx.ps_sigwaited) {
   2482 		/* spurious wakeup - arrange for syscall restart */
   2483 		error = ERESTART;
   2484 		goto fail;
   2485 	}
   2486 
   2487 	/*
   2488 	 * On error, clear sigwait indication. psignal1() clears it
   2489 	 * in !error case.
   2490 	 */
   2491 	if (error) {
   2492 		p->p_sigctx.ps_sigwaited = NULL;
   2493 
   2494 		/*
   2495 		 * If the sleep was interrupted (either by signal or wakeup),
   2496 		 * update the timeout and copyout new value back.
   2497 		 * It would be used when the syscall would be restarted
   2498 		 * or called again.
   2499 		 */
   2500 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2501 			struct timespec tsnow;
   2502 			int err;
   2503 
   2504 /* XXX double check the following change */
   2505 			getnanouptime(&tsnow);
   2506 
   2507 			/* compute how much time has passed since start */
   2508 			timespecsub(&tsnow, &tsstart, &tsnow);
   2509 			/* substract passed time from timeout */
   2510 			timespecsub(&ts, &tsnow, &ts);
   2511 
   2512 			if (ts.tv_sec < 0) {
   2513 				error = EAGAIN;
   2514 				goto fail;
   2515 			}
   2516 /* XXX double check the previous change */
   2517 
   2518 			/* copy updated timeout to userland */
   2519 			if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
   2520 			    sizeof(ts)))) {
   2521 				error = err;
   2522 				goto fail;
   2523 			}
   2524 		}
   2525 
   2526 		goto fail;
   2527 	}
   2528 
   2529 	/*
   2530 	 * If a signal from the wait set arrived, copy it to userland.
   2531 	 * Copy only the used part of siginfo, the padding part is
   2532 	 * left unchanged (userland is not supposed to touch it anyway).
   2533 	 */
   2534  sig:
   2535 	return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
   2536 
   2537  fail:
   2538 	FREE(waitset, M_TEMP);
   2539 	pool_put(&ksiginfo_pool, ksi);
   2540 	p->p_sigctx.ps_sigwait = NULL;
   2541 
   2542 	return (error);
   2543 }
   2544 
   2545 /*
   2546  * Returns true if signal is ignored or masked for passed process.
   2547  */
   2548 int
   2549 sigismasked(struct proc *p, int sig)
   2550 {
   2551 
   2552 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2553 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2554 }
   2555 
   2556 static int
   2557 filt_sigattach(struct knote *kn)
   2558 {
   2559 	struct proc *p = curproc;
   2560 
   2561 	kn->kn_ptr.p_proc = p;
   2562 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2563 
   2564 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2565 
   2566 	return (0);
   2567 }
   2568 
   2569 static void
   2570 filt_sigdetach(struct knote *kn)
   2571 {
   2572 	struct proc *p = kn->kn_ptr.p_proc;
   2573 
   2574 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2575 }
   2576 
   2577 /*
   2578  * signal knotes are shared with proc knotes, so we apply a mask to
   2579  * the hint in order to differentiate them from process hints.  This
   2580  * could be avoided by using a signal-specific knote list, but probably
   2581  * isn't worth the trouble.
   2582  */
   2583 static int
   2584 filt_signal(struct knote *kn, long hint)
   2585 {
   2586 
   2587 	if (hint & NOTE_SIGNAL) {
   2588 		hint &= ~NOTE_SIGNAL;
   2589 
   2590 		if (kn->kn_id == hint)
   2591 			kn->kn_data++;
   2592 	}
   2593 	return (kn->kn_data != 0);
   2594 }
   2595 
   2596 const struct filterops sig_filtops = {
   2597 	0, filt_sigattach, filt_sigdetach, filt_signal
   2598 };
   2599