kern_sig.c revision 1.232 1 /* $NetBSD: kern_sig.c,v 1.232 2006/10/28 08:09:31 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.232 2006/10/28 08:09:31 mrg Exp $");
41
42 #include "opt_coredump.h"
43 #include "opt_ktrace.h"
44 #include "opt_ptrace.h"
45 #include "opt_multiprocessor.h"
46 #include "opt_compat_sunos.h"
47 #include "opt_compat_netbsd.h"
48 #include "opt_compat_netbsd32.h"
49
50 #define SIGPROP /* include signal properties table */
51 #include <sys/param.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/namei.h>
55 #include <sys/vnode.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58 #include <sys/timeb.h>
59 #include <sys/times.h>
60 #include <sys/buf.h>
61 #include <sys/acct.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/wait.h>
65 #include <sys/ktrace.h>
66 #include <sys/syslog.h>
67 #include <sys/stat.h>
68 #include <sys/core.h>
69 #include <sys/filedesc.h>
70 #include <sys/malloc.h>
71 #include <sys/pool.h>
72 #include <sys/ucontext.h>
73 #include <sys/sa.h>
74 #include <sys/savar.h>
75 #include <sys/exec.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78
79 #include <sys/mount.h>
80 #include <sys/syscallargs.h>
81
82 #include <machine/cpu.h>
83
84 #include <sys/user.h> /* for coredump */
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_extern.h>
88
89 #ifdef COREDUMP
90 static int build_corename(struct proc *, char *, const char *, size_t);
91 #endif
92 static void ksiginfo_exithook(struct proc *, void *);
93 static void ksiginfo_queue(struct proc *, const ksiginfo_t *, ksiginfo_t **);
94 static ksiginfo_t *ksiginfo_dequeue(struct proc *, int);
95 static void kpsignal2(struct proc *, const ksiginfo_t *, int);
96
97 sigset_t contsigmask, stopsigmask, sigcantmask;
98
99 struct pool sigacts_pool; /* memory pool for sigacts structures */
100
101 /*
102 * struct sigacts memory pool allocator.
103 */
104
105 static void *
106 sigacts_poolpage_alloc(struct pool *pp __unused, int flags)
107 {
108
109 return (void *)uvm_km_alloc(kernel_map,
110 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
111 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
112 | UVM_KMF_WIRED);
113 }
114
115 static void
116 sigacts_poolpage_free(struct pool *pp __unused, void *v)
117 {
118 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
119 }
120
121 static struct pool_allocator sigactspool_allocator = {
122 .pa_alloc = sigacts_poolpage_alloc,
123 .pa_free = sigacts_poolpage_free,
124 };
125
126 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
127 &pool_allocator_nointr);
128 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
129
130 /*
131 * Remove and return the first ksiginfo element that matches our requested
132 * signal, or return NULL if one not found.
133 */
134 static ksiginfo_t *
135 ksiginfo_dequeue(struct proc *p, int signo)
136 {
137 ksiginfo_t *ksi;
138 int s;
139
140 s = splsoftclock();
141 simple_lock(&p->p_sigctx.ps_silock);
142 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
143 if (ksi->ksi_signo == signo) {
144 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
145 goto out;
146 }
147 }
148 ksi = NULL;
149 out:
150 simple_unlock(&p->p_sigctx.ps_silock);
151 splx(s);
152 return ksi;
153 }
154
155 /*
156 * Append a new ksiginfo element to the list of pending ksiginfo's, if
157 * we need to (SA_SIGINFO was requested). We replace non RT signals if
158 * they already existed in the queue and we add new entries for RT signals,
159 * or for non RT signals with non-existing entries.
160 */
161 static void
162 ksiginfo_queue(struct proc *p, const ksiginfo_t *ksi, ksiginfo_t **newkp)
163 {
164 ksiginfo_t *kp;
165 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
166 int s;
167
168 if ((sa->sa_flags & SA_SIGINFO) == 0)
169 return;
170
171 /*
172 * If there's no info, don't save it.
173 */
174 if (KSI_EMPTY_P(ksi))
175 return;
176
177 s = splsoftclock();
178 simple_lock(&p->p_sigctx.ps_silock);
179 #ifdef notyet /* XXX: QUEUING */
180 if (ksi->ksi_signo < SIGRTMIN)
181 #endif
182 {
183 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
184 if (kp->ksi_signo == ksi->ksi_signo) {
185 KSI_COPY(ksi, kp);
186 goto out;
187 }
188 }
189 }
190 if (newkp && *newkp) {
191 kp = *newkp;
192 *newkp = NULL;
193 } else {
194 SCHED_ASSERT_UNLOCKED();
195 kp = pool_get(&ksiginfo_pool, PR_NOWAIT);
196 if (kp == NULL) {
197 #ifdef DIAGNOSTIC
198 printf("Out of memory allocating siginfo for pid %d\n",
199 p->p_pid);
200 #endif
201 goto out;
202 }
203 }
204 *kp = *ksi;
205 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
206 out:
207 simple_unlock(&p->p_sigctx.ps_silock);
208 splx(s);
209 }
210
211 /*
212 * free all pending ksiginfo on exit
213 */
214 static void
215 ksiginfo_exithook(struct proc *p, void *v __unused)
216 {
217 int s;
218
219 s = splsoftclock();
220 simple_lock(&p->p_sigctx.ps_silock);
221 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
222 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
223 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
224 pool_put(&ksiginfo_pool, ksi);
225 }
226 simple_unlock(&p->p_sigctx.ps_silock);
227 splx(s);
228 }
229
230 /*
231 * Initialize signal-related data structures.
232 */
233 void
234 signal_init(void)
235 {
236
237 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
238
239 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
240 sizeof(struct sigacts) > PAGE_SIZE ?
241 &sigactspool_allocator : &pool_allocator_nointr);
242
243 exithook_establish(ksiginfo_exithook, NULL);
244 exechook_establish(ksiginfo_exithook, NULL);
245 }
246
247 /*
248 * Create an initial sigctx structure, using the same signal state
249 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
250 * copy it from parent.
251 */
252 void
253 sigactsinit(struct proc *np, struct proc *pp, int share)
254 {
255 struct sigacts *ps;
256
257 if (share) {
258 np->p_sigacts = pp->p_sigacts;
259 pp->p_sigacts->sa_refcnt++;
260 } else {
261 ps = pool_get(&sigacts_pool, PR_WAITOK);
262 if (pp)
263 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
264 else
265 memset(ps, '\0', sizeof(struct sigacts));
266 ps->sa_refcnt = 1;
267 np->p_sigacts = ps;
268 }
269 }
270
271 /*
272 * Make this process not share its sigctx, maintaining all
273 * signal state.
274 */
275 void
276 sigactsunshare(struct proc *p)
277 {
278 struct sigacts *oldps;
279
280 if (p->p_sigacts->sa_refcnt == 1)
281 return;
282
283 oldps = p->p_sigacts;
284 sigactsinit(p, NULL, 0);
285
286 if (--oldps->sa_refcnt == 0)
287 pool_put(&sigacts_pool, oldps);
288 }
289
290 /*
291 * Release a sigctx structure.
292 */
293 void
294 sigactsfree(struct sigacts *ps)
295 {
296
297 if (--ps->sa_refcnt > 0)
298 return;
299
300 pool_put(&sigacts_pool, ps);
301 }
302
303 int
304 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
305 struct sigaction *osa, const void *tramp, int vers)
306 {
307 struct sigacts *ps;
308 int prop;
309
310 ps = p->p_sigacts;
311 if (signum <= 0 || signum >= NSIG)
312 return (EINVAL);
313
314 /*
315 * Trampoline ABI version 0 is reserved for the legacy
316 * kernel-provided on-stack trampoline. Conversely, if we are
317 * using a non-0 ABI version, we must have a trampoline. Only
318 * validate the vers if a new sigaction was supplied. Emulations
319 * use legacy kernel trampolines with version 0, alternatively
320 * check for that too.
321 */
322 if ((vers != 0 && tramp == NULL) ||
323 #ifdef SIGTRAMP_VALID
324 (nsa != NULL &&
325 ((vers == 0) ?
326 (p->p_emul->e_sigcode == NULL) :
327 !SIGTRAMP_VALID(vers))) ||
328 #endif
329 (vers == 0 && tramp != NULL))
330 return (EINVAL);
331
332 if (osa)
333 *osa = SIGACTION_PS(ps, signum);
334
335 if (nsa) {
336 if (nsa->sa_flags & ~SA_ALLBITS)
337 return (EINVAL);
338
339 prop = sigprop[signum];
340 if (prop & SA_CANTMASK)
341 return (EINVAL);
342
343 (void) splsched(); /* XXXSMP */
344 SIGACTION_PS(ps, signum) = *nsa;
345 ps->sa_sigdesc[signum].sd_tramp = tramp;
346 ps->sa_sigdesc[signum].sd_vers = vers;
347 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
348 if ((prop & SA_NORESET) != 0)
349 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
350 if (signum == SIGCHLD) {
351 if (nsa->sa_flags & SA_NOCLDSTOP)
352 p->p_flag |= P_NOCLDSTOP;
353 else
354 p->p_flag &= ~P_NOCLDSTOP;
355 if (nsa->sa_flags & SA_NOCLDWAIT) {
356 /*
357 * Paranoia: since SA_NOCLDWAIT is implemented
358 * by reparenting the dying child to PID 1 (and
359 * trust it to reap the zombie), PID 1 itself
360 * is forbidden to set SA_NOCLDWAIT.
361 */
362 if (p->p_pid == 1)
363 p->p_flag &= ~P_NOCLDWAIT;
364 else
365 p->p_flag |= P_NOCLDWAIT;
366 } else
367 p->p_flag &= ~P_NOCLDWAIT;
368
369 if (nsa->sa_handler == SIG_IGN) {
370 /*
371 * Paranoia: same as above.
372 */
373 if (p->p_pid == 1)
374 p->p_flag &= ~P_CLDSIGIGN;
375 else
376 p->p_flag |= P_CLDSIGIGN;
377 } else
378 p->p_flag &= ~P_CLDSIGIGN;
379
380 }
381 if ((nsa->sa_flags & SA_NODEFER) == 0)
382 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
383 else
384 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
385 /*
386 * Set bit in p_sigctx.ps_sigignore for signals that are set to
387 * SIG_IGN, and for signals set to SIG_DFL where the default is
388 * to ignore. However, don't put SIGCONT in
389 * p_sigctx.ps_sigignore, as we have to restart the process.
390 */
391 if (nsa->sa_handler == SIG_IGN ||
392 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
393 /* never to be seen again */
394 sigdelset(&p->p_sigctx.ps_siglist, signum);
395 if (signum != SIGCONT) {
396 /* easier in psignal */
397 sigaddset(&p->p_sigctx.ps_sigignore, signum);
398 }
399 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
400 } else {
401 sigdelset(&p->p_sigctx.ps_sigignore, signum);
402 if (nsa->sa_handler == SIG_DFL)
403 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
404 else
405 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
406 }
407 (void) spl0();
408 }
409
410 return (0);
411 }
412
413 #ifdef COMPAT_16
414 /* ARGSUSED */
415 int
416 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval __unused)
417 {
418 struct compat_16_sys___sigaction14_args /* {
419 syscallarg(int) signum;
420 syscallarg(const struct sigaction *) nsa;
421 syscallarg(struct sigaction *) osa;
422 } */ *uap = v;
423 struct proc *p;
424 struct sigaction nsa, osa;
425 int error;
426
427 if (SCARG(uap, nsa)) {
428 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
429 if (error)
430 return (error);
431 }
432 p = l->l_proc;
433 error = sigaction1(p, SCARG(uap, signum),
434 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
435 NULL, 0);
436 if (error)
437 return (error);
438 if (SCARG(uap, osa)) {
439 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
440 if (error)
441 return (error);
442 }
443 return (0);
444 }
445 #endif
446
447 /* ARGSUSED */
448 int
449 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval __unused)
450 {
451 struct sys___sigaction_sigtramp_args /* {
452 syscallarg(int) signum;
453 syscallarg(const struct sigaction *) nsa;
454 syscallarg(struct sigaction *) osa;
455 syscallarg(void *) tramp;
456 syscallarg(int) vers;
457 } */ *uap = v;
458 struct proc *p = l->l_proc;
459 struct sigaction nsa, osa;
460 int error;
461
462 if (SCARG(uap, nsa)) {
463 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
464 if (error)
465 return (error);
466 }
467 error = sigaction1(p, SCARG(uap, signum),
468 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
469 SCARG(uap, tramp), SCARG(uap, vers));
470 if (error)
471 return (error);
472 if (SCARG(uap, osa)) {
473 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
474 if (error)
475 return (error);
476 }
477 return (0);
478 }
479
480 /*
481 * Initialize signal state for process 0;
482 * set to ignore signals that are ignored by default and disable the signal
483 * stack.
484 */
485 void
486 siginit(struct proc *p)
487 {
488 struct sigacts *ps;
489 int signum, prop;
490
491 ps = p->p_sigacts;
492 sigemptyset(&contsigmask);
493 sigemptyset(&stopsigmask);
494 sigemptyset(&sigcantmask);
495 for (signum = 1; signum < NSIG; signum++) {
496 prop = sigprop[signum];
497 if (prop & SA_CONT)
498 sigaddset(&contsigmask, signum);
499 if (prop & SA_STOP)
500 sigaddset(&stopsigmask, signum);
501 if (prop & SA_CANTMASK)
502 sigaddset(&sigcantmask, signum);
503 if (prop & SA_IGNORE && signum != SIGCONT)
504 sigaddset(&p->p_sigctx.ps_sigignore, signum);
505 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
506 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
507 }
508 sigemptyset(&p->p_sigctx.ps_sigcatch);
509 p->p_sigctx.ps_sigwaited = NULL;
510 p->p_flag &= ~P_NOCLDSTOP;
511
512 /*
513 * Reset stack state to the user stack.
514 */
515 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
516 p->p_sigctx.ps_sigstk.ss_size = 0;
517 p->p_sigctx.ps_sigstk.ss_sp = 0;
518
519 /* One reference. */
520 ps->sa_refcnt = 1;
521 }
522
523 /*
524 * Reset signals for an exec of the specified process.
525 */
526 void
527 execsigs(struct proc *p)
528 {
529 struct sigacts *ps;
530 int signum, prop;
531
532 sigactsunshare(p);
533
534 ps = p->p_sigacts;
535
536 /*
537 * Reset caught signals. Held signals remain held
538 * through p_sigctx.ps_sigmask (unless they were caught,
539 * and are now ignored by default).
540 */
541 for (signum = 1; signum < NSIG; signum++) {
542 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
543 prop = sigprop[signum];
544 if (prop & SA_IGNORE) {
545 if ((prop & SA_CONT) == 0)
546 sigaddset(&p->p_sigctx.ps_sigignore,
547 signum);
548 sigdelset(&p->p_sigctx.ps_siglist, signum);
549 }
550 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
551 }
552 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
553 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
554 }
555 sigemptyset(&p->p_sigctx.ps_sigcatch);
556 p->p_sigctx.ps_sigwaited = NULL;
557
558 /*
559 * Reset no zombies if child dies flag as Solaris does.
560 */
561 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
562 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
563 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
564
565 /*
566 * Reset stack state to the user stack.
567 */
568 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
569 p->p_sigctx.ps_sigstk.ss_size = 0;
570 p->p_sigctx.ps_sigstk.ss_sp = 0;
571 }
572
573 int
574 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
575 {
576
577 if (oss)
578 *oss = p->p_sigctx.ps_sigmask;
579
580 if (nss) {
581 (void)splsched(); /* XXXSMP */
582 switch (how) {
583 case SIG_BLOCK:
584 sigplusset(nss, &p->p_sigctx.ps_sigmask);
585 break;
586 case SIG_UNBLOCK:
587 sigminusset(nss, &p->p_sigctx.ps_sigmask);
588 CHECKSIGS(p);
589 break;
590 case SIG_SETMASK:
591 p->p_sigctx.ps_sigmask = *nss;
592 CHECKSIGS(p);
593 break;
594 default:
595 (void)spl0(); /* XXXSMP */
596 return (EINVAL);
597 }
598 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
599 (void)spl0(); /* XXXSMP */
600 }
601
602 return (0);
603 }
604
605 /*
606 * Manipulate signal mask.
607 * Note that we receive new mask, not pointer,
608 * and return old mask as return value;
609 * the library stub does the rest.
610 */
611 int
612 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval __unused)
613 {
614 struct sys___sigprocmask14_args /* {
615 syscallarg(int) how;
616 syscallarg(const sigset_t *) set;
617 syscallarg(sigset_t *) oset;
618 } */ *uap = v;
619 struct proc *p;
620 sigset_t nss, oss;
621 int error;
622
623 if (SCARG(uap, set)) {
624 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
625 if (error)
626 return (error);
627 }
628 p = l->l_proc;
629 error = sigprocmask1(p, SCARG(uap, how),
630 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
631 if (error)
632 return (error);
633 if (SCARG(uap, oset)) {
634 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
635 if (error)
636 return (error);
637 }
638 return (0);
639 }
640
641 void
642 sigpending1(struct proc *p, sigset_t *ss)
643 {
644
645 *ss = p->p_sigctx.ps_siglist;
646 sigminusset(&p->p_sigctx.ps_sigmask, ss);
647 }
648
649 /* ARGSUSED */
650 int
651 sys___sigpending14(struct lwp *l, void *v, register_t *retval __unused)
652 {
653 struct sys___sigpending14_args /* {
654 syscallarg(sigset_t *) set;
655 } */ *uap = v;
656 struct proc *p;
657 sigset_t ss;
658
659 p = l->l_proc;
660 sigpending1(p, &ss);
661 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
662 }
663
664 int
665 sigsuspend1(struct proc *p, const sigset_t *ss)
666 {
667 struct sigacts *ps;
668
669 ps = p->p_sigacts;
670 if (ss) {
671 /*
672 * When returning from sigpause, we want
673 * the old mask to be restored after the
674 * signal handler has finished. Thus, we
675 * save it here and mark the sigctx structure
676 * to indicate this.
677 */
678 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
679 p->p_sigctx.ps_flags |= SAS_OLDMASK;
680 (void) splsched(); /* XXXSMP */
681 p->p_sigctx.ps_sigmask = *ss;
682 CHECKSIGS(p);
683 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
684 (void) spl0(); /* XXXSMP */
685 }
686
687 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
688 /* void */;
689
690 /* always return EINTR rather than ERESTART... */
691 return (EINTR);
692 }
693
694 /*
695 * Suspend process until signal, providing mask to be set
696 * in the meantime. Note nonstandard calling convention:
697 * libc stub passes mask, not pointer, to save a copyin.
698 */
699 /* ARGSUSED */
700 int
701 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval __unused)
702 {
703 struct sys___sigsuspend14_args /* {
704 syscallarg(const sigset_t *) set;
705 } */ *uap = v;
706 struct proc *p;
707 sigset_t ss;
708 int error;
709
710 if (SCARG(uap, set)) {
711 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
712 if (error)
713 return (error);
714 }
715
716 p = l->l_proc;
717 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
718 }
719
720 int
721 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
722 struct sigaltstack *oss)
723 {
724
725 if (oss)
726 *oss = p->p_sigctx.ps_sigstk;
727
728 if (nss) {
729 if (nss->ss_flags & ~SS_ALLBITS)
730 return (EINVAL);
731
732 if (nss->ss_flags & SS_DISABLE) {
733 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
734 return (EINVAL);
735 } else {
736 if (nss->ss_size < MINSIGSTKSZ)
737 return (ENOMEM);
738 }
739 p->p_sigctx.ps_sigstk = *nss;
740 }
741
742 return (0);
743 }
744
745 /* ARGSUSED */
746 int
747 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval __unused)
748 {
749 struct sys___sigaltstack14_args /* {
750 syscallarg(const struct sigaltstack *) nss;
751 syscallarg(struct sigaltstack *) oss;
752 } */ *uap = v;
753 struct proc *p;
754 struct sigaltstack nss, oss;
755 int error;
756
757 if (SCARG(uap, nss)) {
758 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
759 if (error)
760 return (error);
761 }
762 p = l->l_proc;
763 error = sigaltstack1(p,
764 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
765 if (error)
766 return (error);
767 if (SCARG(uap, oss)) {
768 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
769 if (error)
770 return (error);
771 }
772 return (0);
773 }
774
775 /* ARGSUSED */
776 int
777 sys_kill(struct lwp *l, void *v, register_t *retval __unused)
778 {
779 struct sys_kill_args /* {
780 syscallarg(int) pid;
781 syscallarg(int) signum;
782 } */ *uap = v;
783 struct proc *p;
784 ksiginfo_t ksi;
785 int signum = SCARG(uap, signum);
786 int error;
787
788 if ((u_int)signum >= NSIG)
789 return (EINVAL);
790 KSI_INIT(&ksi);
791 ksi.ksi_signo = signum;
792 ksi.ksi_code = SI_USER;
793 ksi.ksi_pid = l->l_proc->p_pid;
794 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
795 if (SCARG(uap, pid) > 0) {
796 /* kill single process */
797 if ((p = pfind(SCARG(uap, pid))) == NULL)
798 return (ESRCH);
799 error = kauth_authorize_process(l->l_cred,
800 KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
801 NULL, NULL);
802 if (error)
803 return error;
804 if (signum)
805 kpsignal2(p, &ksi, 1);
806 return (0);
807 }
808 switch (SCARG(uap, pid)) {
809 case -1: /* broadcast signal */
810 return (killpg1(l, &ksi, 0, 1));
811 case 0: /* signal own process group */
812 return (killpg1(l, &ksi, 0, 0));
813 default: /* negative explicit process group */
814 return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
815 }
816 /* NOTREACHED */
817 }
818
819 /*
820 * Common code for kill process group/broadcast kill.
821 * cp is calling process.
822 */
823 int
824 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
825 {
826 struct proc *p, *cp;
827 kauth_cred_t pc;
828 struct pgrp *pgrp;
829 int nfound;
830 int signum = ksi->ksi_signo;
831
832 cp = l->l_proc;
833 pc = l->l_cred;
834 nfound = 0;
835 if (all) {
836 /*
837 * broadcast
838 */
839 proclist_lock_read();
840 PROCLIST_FOREACH(p, &allproc) {
841 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
842 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
843 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
844 continue;
845 nfound++;
846 if (signum)
847 kpsignal2(p, ksi, 1);
848 }
849 proclist_unlock_read();
850 } else {
851 if (pgid == 0)
852 /*
853 * zero pgid means send to my process group.
854 */
855 pgrp = cp->p_pgrp;
856 else {
857 pgrp = pgfind(pgid);
858 if (pgrp == NULL)
859 return (ESRCH);
860 }
861 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
862 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
863 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
864 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
865 continue;
866 nfound++;
867 if (signum && P_ZOMBIE(p) == 0)
868 kpsignal2(p, ksi, 1);
869 }
870 }
871 return (nfound ? 0 : ESRCH);
872 }
873
874 /*
875 * Send a signal to a process group.
876 */
877 void
878 gsignal(int pgid, int signum)
879 {
880 ksiginfo_t ksi;
881 KSI_INIT_EMPTY(&ksi);
882 ksi.ksi_signo = signum;
883 kgsignal(pgid, &ksi, NULL);
884 }
885
886 void
887 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
888 {
889 struct pgrp *pgrp;
890
891 if (pgid && (pgrp = pgfind(pgid)))
892 kpgsignal(pgrp, ksi, data, 0);
893 }
894
895 /*
896 * Send a signal to a process group. If checktty is 1,
897 * limit to members which have a controlling terminal.
898 */
899 void
900 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
901 {
902 ksiginfo_t ksi;
903 KSI_INIT_EMPTY(&ksi);
904 ksi.ksi_signo = sig;
905 kpgsignal(pgrp, &ksi, NULL, checkctty);
906 }
907
908 void
909 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
910 {
911 struct proc *p;
912
913 if (pgrp)
914 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
915 if (checkctty == 0 || p->p_flag & P_CONTROLT)
916 kpsignal(p, ksi, data);
917 }
918
919 /*
920 * Send a signal caused by a trap to the current process.
921 * If it will be caught immediately, deliver it with correct code.
922 * Otherwise, post it normally.
923 */
924 void
925 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
926 {
927 struct proc *p;
928 struct sigacts *ps;
929 int signum = ksi->ksi_signo;
930
931 KASSERT(KSI_TRAP_P(ksi));
932
933 p = l->l_proc;
934 ps = p->p_sigacts;
935 if ((p->p_flag & P_TRACED) == 0 &&
936 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
937 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
938 p->p_stats->p_ru.ru_nsignals++;
939 #ifdef KTRACE
940 if (KTRPOINT(p, KTR_PSIG))
941 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
942 &p->p_sigctx.ps_sigmask, ksi);
943 #endif
944 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
945 (void) splsched(); /* XXXSMP */
946 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
947 &p->p_sigctx.ps_sigmask);
948 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
949 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
950 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
951 sigaddset(&p->p_sigctx.ps_sigignore, signum);
952 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
953 }
954 (void) spl0(); /* XXXSMP */
955 } else {
956 p->p_sigctx.ps_lwp = l->l_lid;
957 /* XXX for core dump/debugger */
958 p->p_sigctx.ps_signo = ksi->ksi_signo;
959 p->p_sigctx.ps_code = ksi->ksi_trap;
960 kpsignal2(p, ksi, 1);
961 }
962 }
963
964 /*
965 * Fill in signal information and signal the parent for a child status change.
966 */
967 void
968 child_psignal(struct proc *p, int dolock)
969 {
970 ksiginfo_t ksi;
971
972 KSI_INIT(&ksi);
973 ksi.ksi_signo = SIGCHLD;
974 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
975 ksi.ksi_pid = p->p_pid;
976 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
977 ksi.ksi_status = p->p_xstat;
978 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
979 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
980 kpsignal2(p->p_pptr, &ksi, dolock);
981 }
982
983 /*
984 * Send the signal to the process. If the signal has an action, the action
985 * is usually performed by the target process rather than the caller; we add
986 * the signal to the set of pending signals for the process.
987 *
988 * Exceptions:
989 * o When a stop signal is sent to a sleeping process that takes the
990 * default action, the process is stopped without awakening it.
991 * o SIGCONT restarts stopped processes (or puts them back to sleep)
992 * regardless of the signal action (eg, blocked or ignored).
993 *
994 * Other ignored signals are discarded immediately.
995 *
996 * XXXSMP: Invoked as psignal() or sched_psignal().
997 */
998 void
999 psignal1(struct proc *p, int signum, int dolock)
1000 {
1001 ksiginfo_t ksi;
1002
1003 KSI_INIT_EMPTY(&ksi);
1004 ksi.ksi_signo = signum;
1005 kpsignal2(p, &ksi, dolock);
1006 }
1007
1008 void
1009 kpsignal1(struct proc *p, ksiginfo_t *ksi, void *data, int dolock)
1010 {
1011
1012 if ((p->p_flag & P_WEXIT) == 0 && data) {
1013 size_t fd;
1014 struct filedesc *fdp = p->p_fd;
1015
1016 ksi->ksi_fd = -1;
1017 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1018 struct file *fp = fdp->fd_ofiles[fd];
1019 /* XXX: lock? */
1020 if (fp && fp->f_data == data) {
1021 ksi->ksi_fd = fd;
1022 break;
1023 }
1024 }
1025 }
1026 kpsignal2(p, ksi, dolock);
1027 }
1028
1029 static void
1030 kpsignal2(struct proc *p, const ksiginfo_t *ksi, int dolock)
1031 {
1032 struct lwp *l, *suspended = NULL;
1033 struct sadata_vp *vp;
1034 ksiginfo_t *newkp;
1035 int s = 0, prop, allsusp;
1036 sig_t action;
1037 int signum = ksi->ksi_signo;
1038
1039 #ifdef DIAGNOSTIC
1040 if (signum <= 0 || signum >= NSIG)
1041 panic("psignal signal number %d", signum);
1042
1043 /* XXXSMP: works, but icky */
1044 if (dolock) {
1045 SCHED_ASSERT_UNLOCKED();
1046 } else {
1047 SCHED_ASSERT_LOCKED();
1048 }
1049 #endif
1050
1051 /*
1052 * Notify any interested parties in the signal.
1053 */
1054 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1055
1056 prop = sigprop[signum];
1057
1058 /*
1059 * If proc is traced, always give parent a chance.
1060 */
1061 if (p->p_flag & P_TRACED) {
1062 action = SIG_DFL;
1063
1064 /*
1065 * If the process is being traced and the signal is being
1066 * caught, make sure to save any ksiginfo.
1067 */
1068 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1069 SCHED_ASSERT_UNLOCKED();
1070 ksiginfo_queue(p, ksi, NULL);
1071 }
1072 } else {
1073 /*
1074 * If the signal was the result of a trap, reset it
1075 * to default action if it's currently masked, so that it would
1076 * coredump immediatelly instead of spinning repeatedly
1077 * taking the signal.
1078 */
1079 if (KSI_TRAP_P(ksi)
1080 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1081 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1082 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1083 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1084 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1085 SIGACTION(p, signum).sa_handler = SIG_DFL;
1086 }
1087
1088 /*
1089 * If the signal is being ignored,
1090 * then we forget about it immediately.
1091 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1092 * and if it is set to SIG_IGN,
1093 * action will be SIG_DFL here.)
1094 */
1095 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1096 return;
1097 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1098 action = SIG_HOLD;
1099 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1100 action = SIG_CATCH;
1101 else {
1102 action = SIG_DFL;
1103
1104 if (prop & SA_KILL && p->p_nice > NZERO)
1105 p->p_nice = NZERO;
1106
1107 /*
1108 * If sending a tty stop signal to a member of an
1109 * orphaned process group, discard the signal here if
1110 * the action is default; don't stop the process below
1111 * if sleeping, and don't clear any pending SIGCONT.
1112 */
1113 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1114 return;
1115 }
1116 }
1117
1118 if (prop & SA_CONT)
1119 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1120
1121 if (prop & SA_STOP)
1122 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1123
1124 /*
1125 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1126 * please!), check if anything waits on it. If yes, save the
1127 * info into provided ps_sigwaited, and wake-up the waiter.
1128 * The signal won't be processed further here.
1129 */
1130 if ((prop & SA_CANTMASK) == 0
1131 && p->p_sigctx.ps_sigwaited
1132 && sigismember(p->p_sigctx.ps_sigwait, signum)
1133 && p->p_stat != SSTOP) {
1134 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1135 p->p_sigctx.ps_sigwaited = NULL;
1136 if (dolock)
1137 wakeup_one(&p->p_sigctx.ps_sigwait);
1138 else
1139 sched_wakeup(&p->p_sigctx.ps_sigwait);
1140 return;
1141 }
1142
1143 sigaddset(&p->p_sigctx.ps_siglist, signum);
1144
1145 /* CHECKSIGS() is "inlined" here. */
1146 p->p_sigctx.ps_sigcheck = 1;
1147
1148 /*
1149 * Defer further processing for signals which are held,
1150 * except that stopped processes must be continued by SIGCONT.
1151 */
1152 if (action == SIG_HOLD &&
1153 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1154 SCHED_ASSERT_UNLOCKED();
1155 ksiginfo_queue(p, ksi, NULL);
1156 return;
1157 }
1158
1159 /*
1160 * Allocate a ksiginfo_t incase we need to insert it with the
1161 * scheduler lock held, but only if this ksiginfo_t isn't empty.
1162 */
1163 if (dolock && !KSI_EMPTY_P(ksi)) {
1164 newkp = pool_get(&ksiginfo_pool, PR_NOWAIT);
1165 if (newkp == NULL) {
1166 #ifdef DIAGNOSTIC
1167 printf("kpsignal2: couldn't allocated from ksiginfo_pool\n");
1168 #endif
1169 return;
1170 }
1171 } else
1172 newkp = NULL;
1173
1174 /* XXXSMP: works, but icky */
1175 if (dolock)
1176 SCHED_LOCK(s);
1177
1178 if (p->p_flag & P_SA) {
1179 allsusp = 0;
1180 l = NULL;
1181 if (p->p_stat == SACTIVE) {
1182 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1183 l = vp->savp_lwp;
1184 KDASSERT(l != NULL);
1185 if (l->l_flag & L_SA_IDLE) {
1186 /* wakeup idle LWP */
1187 goto found;
1188 /*NOTREACHED*/
1189 } else if (l->l_flag & L_SA_YIELD) {
1190 /* idle LWP is already waking up */
1191 goto out;
1192 /*NOTREACHED*/
1193 }
1194 }
1195 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1196 l = vp->savp_lwp;
1197 if (l->l_stat == LSRUN ||
1198 l->l_stat == LSONPROC) {
1199 signotify(p);
1200 goto out;
1201 /*NOTREACHED*/
1202 }
1203 if (l->l_stat == LSSLEEP &&
1204 l->l_flag & L_SINTR) {
1205 /* ok to signal vp lwp */
1206 break;
1207 } else
1208 l = NULL;
1209 }
1210 } else if (p->p_stat == SSTOP) {
1211 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1212 l = vp->savp_lwp;
1213 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1214 break;
1215 l = NULL;
1216 }
1217 }
1218 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1219 /*
1220 * At least one LWP is running or on a run queue.
1221 * The signal will be noticed when one of them returns
1222 * to userspace.
1223 */
1224 signotify(p);
1225 /*
1226 * The signal will be noticed very soon.
1227 */
1228 goto out;
1229 /*NOTREACHED*/
1230 } else {
1231 /*
1232 * Find out if any of the sleeps are interruptable,
1233 * and if all the live LWPs remaining are suspended.
1234 */
1235 allsusp = 1;
1236 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1237 if (l->l_stat == LSSLEEP &&
1238 l->l_flag & L_SINTR)
1239 break;
1240 if (l->l_stat == LSSUSPENDED)
1241 suspended = l;
1242 else if ((l->l_stat != LSZOMB) &&
1243 (l->l_stat != LSDEAD))
1244 allsusp = 0;
1245 }
1246 }
1247
1248 found:
1249 switch (p->p_stat) {
1250 case SACTIVE:
1251
1252 if (l != NULL && (p->p_flag & P_TRACED))
1253 goto run;
1254
1255 /*
1256 * If SIGCONT is default (or ignored) and process is
1257 * asleep, we are finished; the process should not
1258 * be awakened.
1259 */
1260 if ((prop & SA_CONT) && action == SIG_DFL) {
1261 sigdelset(&p->p_sigctx.ps_siglist, signum);
1262 goto done;
1263 }
1264
1265 /*
1266 * When a sleeping process receives a stop
1267 * signal, process immediately if possible.
1268 */
1269 if ((prop & SA_STOP) && action == SIG_DFL) {
1270 /*
1271 * If a child holding parent blocked,
1272 * stopping could cause deadlock.
1273 */
1274 if (p->p_flag & P_PPWAIT) {
1275 goto out;
1276 }
1277 sigdelset(&p->p_sigctx.ps_siglist, signum);
1278 p->p_xstat = signum;
1279 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1280 /*
1281 * XXXSMP: recursive call; don't lock
1282 * the second time around.
1283 */
1284 child_psignal(p, 0);
1285 }
1286 proc_stop(p, 1); /* XXXSMP: recurse? */
1287 goto done;
1288 }
1289
1290 if (l == NULL) {
1291 /*
1292 * Special case: SIGKILL of a process
1293 * which is entirely composed of
1294 * suspended LWPs should succeed. We
1295 * make this happen by unsuspending one of
1296 * them.
1297 */
1298 if (allsusp && (signum == SIGKILL)) {
1299 lwp_continue(suspended);
1300 }
1301 goto done;
1302 }
1303 /*
1304 * All other (caught or default) signals
1305 * cause the process to run.
1306 */
1307 goto runfast;
1308 /*NOTREACHED*/
1309 case SSTOP:
1310 /* Process is stopped */
1311 /*
1312 * If traced process is already stopped,
1313 * then no further action is necessary.
1314 */
1315 if (p->p_flag & P_TRACED)
1316 goto done;
1317
1318 /*
1319 * Kill signal always sets processes running,
1320 * if possible.
1321 */
1322 if (signum == SIGKILL) {
1323 l = proc_unstop(p);
1324 if (l)
1325 goto runfast;
1326 goto done;
1327 }
1328
1329 if (prop & SA_CONT) {
1330 /*
1331 * If SIGCONT is default (or ignored),
1332 * we continue the process but don't
1333 * leave the signal in ps_siglist, as
1334 * it has no further action. If
1335 * SIGCONT is held, we continue the
1336 * process and leave the signal in
1337 * ps_siglist. If the process catches
1338 * SIGCONT, let it handle the signal
1339 * itself. If it isn't waiting on an
1340 * event, then it goes back to run
1341 * state. Otherwise, process goes
1342 * back to sleep state.
1343 */
1344 if (action == SIG_DFL)
1345 sigdelset(&p->p_sigctx.ps_siglist,
1346 signum);
1347 l = proc_unstop(p);
1348 if (l && (action == SIG_CATCH))
1349 goto runfast;
1350 goto out;
1351 }
1352
1353 if (prop & SA_STOP) {
1354 /*
1355 * Already stopped, don't need to stop again.
1356 * (If we did the shell could get confused.)
1357 */
1358 sigdelset(&p->p_sigctx.ps_siglist, signum);
1359 goto done;
1360 }
1361
1362 /*
1363 * If a lwp is sleeping interruptibly, then
1364 * wake it up; it will run until the kernel
1365 * boundary, where it will stop in issignal(),
1366 * since p->p_stat is still SSTOP. When the
1367 * process is continued, it will be made
1368 * runnable and can look at the signal.
1369 */
1370 if (l)
1371 goto run;
1372 goto out;
1373 case SIDL:
1374 /* Process is being created by fork */
1375 /* XXX: We are not ready to receive signals yet */
1376 goto done;
1377 default:
1378 /* Else what? */
1379 panic("psignal: Invalid process state %d.", p->p_stat);
1380 }
1381 /*NOTREACHED*/
1382
1383 runfast:
1384 if (action == SIG_CATCH) {
1385 ksiginfo_queue(p, ksi, &newkp);
1386 action = SIG_HOLD;
1387 }
1388 /*
1389 * Raise priority to at least PUSER.
1390 */
1391 if (l->l_priority > PUSER)
1392 l->l_priority = PUSER;
1393 run:
1394 if (action == SIG_CATCH) {
1395 ksiginfo_queue(p, ksi, &newkp);
1396 action = SIG_HOLD;
1397 }
1398
1399 setrunnable(l); /* XXXSMP: recurse? */
1400 out:
1401 if (action == SIG_CATCH)
1402 ksiginfo_queue(p, ksi, &newkp);
1403 done:
1404 /* XXXSMP: works, but icky */
1405 if (dolock)
1406 SCHED_UNLOCK(s);
1407
1408 if (newkp)
1409 pool_put(&ksiginfo_pool, newkp);
1410 }
1411
1412 siginfo_t *
1413 siginfo_alloc(int flags)
1414 {
1415
1416 return pool_get(&siginfo_pool, flags);
1417 }
1418
1419 void
1420 siginfo_free(void *arg)
1421 {
1422
1423 pool_put(&siginfo_pool, arg);
1424 }
1425
1426 void
1427 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1428 {
1429 struct proc *p = l->l_proc;
1430 struct lwp *le, *li;
1431 siginfo_t *si;
1432 int f;
1433
1434 if (p->p_flag & P_SA) {
1435
1436 /* XXXUPSXXX What if not on sa_vp ? */
1437
1438 f = l->l_flag & L_SA;
1439 l->l_flag &= ~L_SA;
1440 si = siginfo_alloc(PR_WAITOK);
1441 si->_info = ksi->ksi_info;
1442 le = li = NULL;
1443 if (KSI_TRAP_P(ksi))
1444 le = l;
1445 else
1446 li = l;
1447 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1448 sizeof(*si), si, siginfo_free) != 0) {
1449 siginfo_free(si);
1450 #if 0
1451 if (KSI_TRAP_P(ksi))
1452 /* XXX What do we do here?? */;
1453 #endif
1454 }
1455 l->l_flag |= f;
1456 return;
1457 }
1458
1459 (*p->p_emul->e_sendsig)(ksi, mask);
1460 }
1461
1462 static inline int firstsig(const sigset_t *);
1463
1464 static inline int
1465 firstsig(const sigset_t *ss)
1466 {
1467 int sig;
1468
1469 sig = ffs(ss->__bits[0]);
1470 if (sig != 0)
1471 return (sig);
1472 #if NSIG > 33
1473 sig = ffs(ss->__bits[1]);
1474 if (sig != 0)
1475 return (sig + 32);
1476 #endif
1477 #if NSIG > 65
1478 sig = ffs(ss->__bits[2]);
1479 if (sig != 0)
1480 return (sig + 64);
1481 #endif
1482 #if NSIG > 97
1483 sig = ffs(ss->__bits[3]);
1484 if (sig != 0)
1485 return (sig + 96);
1486 #endif
1487 return (0);
1488 }
1489
1490 /*
1491 * If the current process has received a signal (should be caught or cause
1492 * termination, should interrupt current syscall), return the signal number.
1493 * Stop signals with default action are processed immediately, then cleared;
1494 * they aren't returned. This is checked after each entry to the system for
1495 * a syscall or trap (though this can usually be done without calling issignal
1496 * by checking the pending signal masks in the CURSIG macro.) The normal call
1497 * sequence is
1498 *
1499 * while (signum = CURSIG(curlwp))
1500 * postsig(signum);
1501 */
1502 int
1503 issignal(struct lwp *l)
1504 {
1505 struct proc *p = l->l_proc;
1506 int s = 0, signum, prop;
1507 int dolock = (l->l_flag & L_SINTR) == 0, locked = !dolock;
1508 sigset_t ss;
1509
1510 /* Bail out if we do not own the virtual processor */
1511 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1512 return 0;
1513
1514 if (p->p_stat == SSTOP) {
1515 /*
1516 * The process is stopped/stopping. Stop ourselves now that
1517 * we're on the kernel/userspace boundary.
1518 */
1519 if (dolock)
1520 SCHED_LOCK(s);
1521 l->l_stat = LSSTOP;
1522 p->p_nrlwps--;
1523 if (p->p_flag & P_TRACED)
1524 goto sigtraceswitch;
1525 else
1526 goto sigswitch;
1527 }
1528 for (;;) {
1529 sigpending1(p, &ss);
1530 if (p->p_flag & P_PPWAIT)
1531 sigminusset(&stopsigmask, &ss);
1532 signum = firstsig(&ss);
1533 if (signum == 0) { /* no signal to send */
1534 p->p_sigctx.ps_sigcheck = 0;
1535 if (locked && dolock)
1536 SCHED_LOCK(s);
1537 return (0);
1538 }
1539 /* take the signal! */
1540 sigdelset(&p->p_sigctx.ps_siglist, signum);
1541
1542 /*
1543 * We should see pending but ignored signals
1544 * only if P_TRACED was on when they were posted.
1545 */
1546 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1547 (p->p_flag & P_TRACED) == 0)
1548 continue;
1549
1550 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1551 /*
1552 * If traced, always stop, and stay
1553 * stopped until released by the debugger.
1554 */
1555 p->p_xstat = signum;
1556
1557 /* Emulation-specific handling of signal trace */
1558 if ((p->p_emul->e_tracesig != NULL) &&
1559 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1560 goto childresumed;
1561
1562 if ((p->p_flag & P_FSTRACE) == 0)
1563 child_psignal(p, dolock);
1564 if (dolock)
1565 SCHED_LOCK(s);
1566 proc_stop(p, 1);
1567 sigtraceswitch:
1568 mi_switch(l, NULL);
1569 SCHED_ASSERT_UNLOCKED();
1570 if (dolock)
1571 splx(s);
1572 else
1573 dolock = 1;
1574
1575 childresumed:
1576 /*
1577 * If we are no longer being traced, or the parent
1578 * didn't give us a signal, look for more signals.
1579 */
1580 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1581 continue;
1582
1583 /*
1584 * If the new signal is being masked, look for other
1585 * signals.
1586 */
1587 signum = p->p_xstat;
1588 p->p_xstat = 0;
1589 /*
1590 * `p->p_sigctx.ps_siglist |= mask' is done
1591 * in setrunnable().
1592 */
1593 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1594 continue;
1595 /* take the signal! */
1596 sigdelset(&p->p_sigctx.ps_siglist, signum);
1597 }
1598
1599 prop = sigprop[signum];
1600
1601 /*
1602 * Decide whether the signal should be returned.
1603 * Return the signal's number, or fall through
1604 * to clear it from the pending mask.
1605 */
1606 switch ((long)SIGACTION(p, signum).sa_handler) {
1607
1608 case (long)SIG_DFL:
1609 /*
1610 * Don't take default actions on system processes.
1611 */
1612 if (p->p_pid <= 1) {
1613 #ifdef DIAGNOSTIC
1614 /*
1615 * Are you sure you want to ignore SIGSEGV
1616 * in init? XXX
1617 */
1618 printf("Process (pid %d) got signal %d\n",
1619 p->p_pid, signum);
1620 #endif
1621 break; /* == ignore */
1622 }
1623 /*
1624 * If there is a pending stop signal to process
1625 * with default action, stop here,
1626 * then clear the signal. However,
1627 * if process is member of an orphaned
1628 * process group, ignore tty stop signals.
1629 */
1630 if (prop & SA_STOP) {
1631 if (p->p_flag & P_TRACED ||
1632 (p->p_pgrp->pg_jobc == 0 &&
1633 prop & SA_TTYSTOP))
1634 break; /* == ignore */
1635 p->p_xstat = signum;
1636 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1637 child_psignal(p, dolock);
1638 if (dolock)
1639 SCHED_LOCK(s);
1640 proc_stop(p, 1);
1641 sigswitch:
1642 mi_switch(l, NULL);
1643 SCHED_ASSERT_UNLOCKED();
1644 if (dolock)
1645 splx(s);
1646 else
1647 dolock = 1;
1648 break;
1649 } else if (prop & SA_IGNORE) {
1650 /*
1651 * Except for SIGCONT, shouldn't get here.
1652 * Default action is to ignore; drop it.
1653 */
1654 break; /* == ignore */
1655 } else
1656 goto keep;
1657 /*NOTREACHED*/
1658
1659 case (long)SIG_IGN:
1660 /*
1661 * Masking above should prevent us ever trying
1662 * to take action on an ignored signal other
1663 * than SIGCONT, unless process is traced.
1664 */
1665 #ifdef DEBUG_ISSIGNAL
1666 if ((prop & SA_CONT) == 0 &&
1667 (p->p_flag & P_TRACED) == 0)
1668 printf("issignal\n");
1669 #endif
1670 break; /* == ignore */
1671
1672 default:
1673 /*
1674 * This signal has an action, let
1675 * postsig() process it.
1676 */
1677 goto keep;
1678 }
1679 }
1680 /* NOTREACHED */
1681
1682 keep:
1683 /* leave the signal for later */
1684 sigaddset(&p->p_sigctx.ps_siglist, signum);
1685 CHECKSIGS(p);
1686 if (locked && dolock)
1687 SCHED_LOCK(s);
1688 return (signum);
1689 }
1690
1691 /*
1692 * Put the argument process into the stopped state and notify the parent
1693 * via wakeup. Signals are handled elsewhere. The process must not be
1694 * on the run queue.
1695 */
1696 void
1697 proc_stop(struct proc *p, int dowakeup)
1698 {
1699 struct lwp *l;
1700 struct proc *parent;
1701 struct sadata_vp *vp;
1702
1703 SCHED_ASSERT_LOCKED();
1704
1705 /* XXX lock process LWP state */
1706 p->p_flag &= ~P_WAITED;
1707 p->p_stat = SSTOP;
1708 parent = p->p_pptr;
1709 parent->p_nstopchild++;
1710
1711 if (p->p_flag & P_SA) {
1712 /*
1713 * Only (try to) put the LWP on the VP in stopped
1714 * state.
1715 * All other LWPs will suspend in sa_setwoken()
1716 * because the VP-LWP in stopped state cannot be
1717 * repossessed.
1718 */
1719 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1720 l = vp->savp_lwp;
1721 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1722 l->l_stat = LSSTOP;
1723 p->p_nrlwps--;
1724 } else if (l->l_stat == LSRUN) {
1725 /* Remove LWP from the run queue */
1726 remrunqueue(l);
1727 l->l_stat = LSSTOP;
1728 p->p_nrlwps--;
1729 } else if (l->l_stat == LSSLEEP &&
1730 l->l_flag & L_SA_IDLE) {
1731 l->l_flag &= ~L_SA_IDLE;
1732 l->l_stat = LSSTOP;
1733 }
1734 }
1735 goto out;
1736 }
1737
1738 /*
1739 * Put as many LWP's as possible in stopped state.
1740 * Sleeping ones will notice the stopped state as they try to
1741 * return to userspace.
1742 */
1743
1744 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1745 if (l->l_stat == LSONPROC) {
1746 /* XXX SMP this assumes that a LWP that is LSONPROC
1747 * is curlwp and hence is about to be mi_switched
1748 * away; the only callers of proc_stop() are:
1749 * - psignal
1750 * - issignal()
1751 * For the former, proc_stop() is only called when
1752 * no processes are running, so we don't worry.
1753 * For the latter, proc_stop() is called right
1754 * before mi_switch().
1755 */
1756 l->l_stat = LSSTOP;
1757 p->p_nrlwps--;
1758 } else if (l->l_stat == LSRUN) {
1759 /* Remove LWP from the run queue */
1760 remrunqueue(l);
1761 l->l_stat = LSSTOP;
1762 p->p_nrlwps--;
1763 } else if ((l->l_stat == LSSLEEP) ||
1764 (l->l_stat == LSSUSPENDED) ||
1765 (l->l_stat == LSZOMB) ||
1766 (l->l_stat == LSDEAD)) {
1767 /*
1768 * Don't do anything; let sleeping LWPs
1769 * discover the stopped state of the process
1770 * on their way out of the kernel; otherwise,
1771 * things like NFS threads that sleep with
1772 * locks will block the rest of the system
1773 * from getting any work done.
1774 *
1775 * Suspended/dead/zombie LWPs aren't going
1776 * anywhere, so we don't need to touch them.
1777 */
1778 }
1779 #ifdef DIAGNOSTIC
1780 else {
1781 panic("proc_stop: process %d lwp %d "
1782 "in unstoppable state %d.\n",
1783 p->p_pid, l->l_lid, l->l_stat);
1784 }
1785 #endif
1786 }
1787
1788 out:
1789 /* XXX unlock process LWP state */
1790
1791 if (dowakeup)
1792 sched_wakeup((caddr_t)p->p_pptr);
1793 }
1794
1795 /*
1796 * Given a process in state SSTOP, set the state back to SACTIVE and
1797 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1798 *
1799 * If no LWPs ended up runnable (and therefore able to take a signal),
1800 * return a LWP that is sleeping interruptably. The caller can wake
1801 * that LWP up to take a signal.
1802 */
1803 struct lwp *
1804 proc_unstop(struct proc *p)
1805 {
1806 struct lwp *l, *lr = NULL;
1807 struct sadata_vp *vp;
1808 int cantake = 0;
1809
1810 SCHED_ASSERT_LOCKED();
1811
1812 /*
1813 * Our caller wants to be informed if there are only sleeping
1814 * and interruptable LWPs left after we have run so that it
1815 * can invoke setrunnable() if required - return one of the
1816 * interruptable LWPs if this is the case.
1817 */
1818
1819 if (!(p->p_flag & P_WAITED))
1820 p->p_pptr->p_nstopchild--;
1821 p->p_stat = SACTIVE;
1822 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1823 if (l->l_stat == LSRUN) {
1824 lr = NULL;
1825 cantake = 1;
1826 }
1827 if (l->l_stat != LSSTOP)
1828 continue;
1829
1830 if (l->l_wchan != NULL) {
1831 l->l_stat = LSSLEEP;
1832 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1833 lr = l;
1834 cantake = 1;
1835 }
1836 } else {
1837 setrunnable(l);
1838 lr = NULL;
1839 cantake = 1;
1840 }
1841 }
1842 if (p->p_flag & P_SA) {
1843 /* Only consider returning the LWP on the VP. */
1844 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1845 lr = vp->savp_lwp;
1846 if (lr->l_stat == LSSLEEP) {
1847 if (lr->l_flag & L_SA_YIELD) {
1848 setrunnable(lr);
1849 break;
1850 } else if (lr->l_flag & L_SINTR)
1851 return lr;
1852 }
1853 }
1854 return NULL;
1855 }
1856 return lr;
1857 }
1858
1859 /*
1860 * Take the action for the specified signal
1861 * from the current set of pending signals.
1862 */
1863 void
1864 postsig(int signum)
1865 {
1866 struct lwp *l;
1867 struct proc *p;
1868 struct sigacts *ps;
1869 sig_t action;
1870 sigset_t *returnmask;
1871
1872 l = curlwp;
1873 p = l->l_proc;
1874 ps = p->p_sigacts;
1875 #ifdef DIAGNOSTIC
1876 if (signum == 0)
1877 panic("postsig");
1878 #endif
1879
1880 KERNEL_PROC_LOCK(l);
1881
1882 #ifdef MULTIPROCESSOR
1883 /*
1884 * On MP, issignal() can return the same signal to multiple
1885 * LWPs. The LWPs will block above waiting for the kernel
1886 * lock and the first LWP which gets through will then remove
1887 * the signal from ps_siglist. All other LWPs exit here.
1888 */
1889 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1890 KERNEL_PROC_UNLOCK(l);
1891 return;
1892 }
1893 #endif
1894 sigdelset(&p->p_sigctx.ps_siglist, signum);
1895 action = SIGACTION_PS(ps, signum).sa_handler;
1896 if (action == SIG_DFL) {
1897 #ifdef KTRACE
1898 if (KTRPOINT(p, KTR_PSIG))
1899 ktrpsig(l, signum, action,
1900 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1901 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1902 NULL);
1903 #endif
1904 /*
1905 * Default action, where the default is to kill
1906 * the process. (Other cases were ignored above.)
1907 */
1908 sigexit(l, signum);
1909 /* NOTREACHED */
1910 } else {
1911 ksiginfo_t *ksi;
1912 /*
1913 * If we get here, the signal must be caught.
1914 */
1915 #ifdef DIAGNOSTIC
1916 if (action == SIG_IGN ||
1917 sigismember(&p->p_sigctx.ps_sigmask, signum))
1918 panic("postsig action");
1919 #endif
1920 /*
1921 * Set the new mask value and also defer further
1922 * occurrences of this signal.
1923 *
1924 * Special case: user has done a sigpause. Here the
1925 * current mask is not of interest, but rather the
1926 * mask from before the sigpause is what we want
1927 * restored after the signal processing is completed.
1928 */
1929 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1930 returnmask = &p->p_sigctx.ps_oldmask;
1931 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1932 } else
1933 returnmask = &p->p_sigctx.ps_sigmask;
1934 p->p_stats->p_ru.ru_nsignals++;
1935 ksi = ksiginfo_dequeue(p, signum);
1936 #ifdef KTRACE
1937 if (KTRPOINT(p, KTR_PSIG))
1938 ktrpsig(l, signum, action,
1939 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1940 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1941 ksi);
1942 #endif
1943 if (ksi == NULL) {
1944 ksiginfo_t ksi1;
1945 /*
1946 * we did not save any siginfo for this, either
1947 * because the signal was not caught, or because the
1948 * user did not request SA_SIGINFO
1949 */
1950 KSI_INIT_EMPTY(&ksi1);
1951 ksi1.ksi_signo = signum;
1952 kpsendsig(l, &ksi1, returnmask);
1953 } else {
1954 kpsendsig(l, ksi, returnmask);
1955 pool_put(&ksiginfo_pool, ksi);
1956 }
1957 p->p_sigctx.ps_lwp = 0;
1958 p->p_sigctx.ps_code = 0;
1959 p->p_sigctx.ps_signo = 0;
1960 (void) splsched(); /* XXXSMP */
1961 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1962 &p->p_sigctx.ps_sigmask);
1963 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1964 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1965 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1966 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1967 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1968 }
1969 (void) spl0(); /* XXXSMP */
1970 }
1971
1972 KERNEL_PROC_UNLOCK(l);
1973 }
1974
1975 /*
1976 * Kill the current process for stated reason.
1977 */
1978 void
1979 killproc(struct proc *p, const char *why)
1980 {
1981 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1982 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1983 psignal(p, SIGKILL);
1984 }
1985
1986 /*
1987 * Force the current process to exit with the specified signal, dumping core
1988 * if appropriate. We bypass the normal tests for masked and caught signals,
1989 * allowing unrecoverable failures to terminate the process without changing
1990 * signal state. Mark the accounting record with the signal termination.
1991 * If dumping core, save the signal number for the debugger. Calls exit and
1992 * does not return.
1993 */
1994
1995 #if defined(DEBUG)
1996 int kern_logsigexit = 1; /* not static to make public for sysctl */
1997 #else
1998 int kern_logsigexit = 0; /* not static to make public for sysctl */
1999 #endif
2000
2001 static const char logcoredump[] =
2002 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
2003 static const char lognocoredump[] =
2004 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
2005
2006 /* Wrapper function for use in p_userret */
2007 static void
2008 lwp_coredump_hook(struct lwp *l, void *arg __unused)
2009 {
2010 int s;
2011
2012 /*
2013 * Suspend ourselves, so that the kernel stack and therefore
2014 * the userland registers saved in the trapframe are around
2015 * for coredump() to write them out.
2016 */
2017 KERNEL_PROC_LOCK(l);
2018 l->l_flag &= ~L_DETACHED;
2019 SCHED_LOCK(s);
2020 l->l_stat = LSSUSPENDED;
2021 l->l_proc->p_nrlwps--;
2022 /* XXX NJWLWP check if this makes sense here: */
2023 l->l_proc->p_stats->p_ru.ru_nvcsw++;
2024 mi_switch(l, NULL);
2025 SCHED_ASSERT_UNLOCKED();
2026 splx(s);
2027
2028 lwp_exit(l);
2029 }
2030
2031 void
2032 sigexit(struct lwp *l, int signum)
2033 {
2034 struct proc *p;
2035 #if 0
2036 struct lwp *l2;
2037 #endif
2038 int exitsig;
2039 #ifdef COREDUMP
2040 int error;
2041 #endif
2042
2043 p = l->l_proc;
2044
2045 /*
2046 * Don't permit coredump() or exit1() multiple times
2047 * in the same process.
2048 */
2049 if (p->p_flag & P_WEXIT) {
2050 KERNEL_PROC_UNLOCK(l);
2051 (*p->p_userret)(l, p->p_userret_arg);
2052 }
2053 p->p_flag |= P_WEXIT;
2054 /* We don't want to switch away from exiting. */
2055 /* XXX multiprocessor: stop LWPs on other processors. */
2056 #if 0
2057 if (p->p_flag & P_SA) {
2058 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2059 l2->l_flag &= ~L_SA;
2060 p->p_flag &= ~P_SA;
2061 }
2062 #endif
2063
2064 /* Make other LWPs stick around long enough to be dumped */
2065 p->p_userret = lwp_coredump_hook;
2066 p->p_userret_arg = NULL;
2067
2068 exitsig = signum;
2069 p->p_acflag |= AXSIG;
2070 if (sigprop[signum] & SA_CORE) {
2071 p->p_sigctx.ps_signo = signum;
2072 #ifdef COREDUMP
2073 if ((error = coredump(l, NULL)) == 0)
2074 exitsig |= WCOREFLAG;
2075 #endif
2076
2077 if (kern_logsigexit) {
2078 /* XXX What if we ever have really large UIDs? */
2079 int uid = l->l_cred ?
2080 (int)kauth_cred_geteuid(l->l_cred) : -1;
2081
2082 #ifdef COREDUMP
2083 if (error)
2084 log(LOG_INFO, lognocoredump, p->p_pid,
2085 p->p_comm, uid, signum, error);
2086 else
2087 #endif
2088 log(LOG_INFO, logcoredump, p->p_pid,
2089 p->p_comm, uid, signum);
2090 }
2091
2092 }
2093
2094 exit1(l, W_EXITCODE(0, exitsig));
2095 /* NOTREACHED */
2096 }
2097
2098 #ifdef COREDUMP
2099 struct coredump_iostate {
2100 struct lwp *io_lwp;
2101 struct vnode *io_vp;
2102 kauth_cred_t io_cred;
2103 off_t io_offset;
2104 };
2105
2106 int
2107 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2108 {
2109 struct coredump_iostate *io = cookie;
2110 int error;
2111
2112 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2113 io->io_offset, segflg,
2114 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2115 segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2116 if (error) {
2117 printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2118 io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2119 segflg == UIO_USERSPACE ? "user" : "system",
2120 len, data, (long long) io->io_offset, error);
2121 return (error);
2122 }
2123
2124 io->io_offset += len;
2125 return (0);
2126 }
2127
2128 /*
2129 * Dump core, into a file named "progname.core" or "core" (depending on the
2130 * value of shortcorename), unless the process was setuid/setgid.
2131 */
2132 int
2133 coredump(struct lwp *l, const char *pattern)
2134 {
2135 struct vnode *vp;
2136 struct proc *p;
2137 struct vmspace *vm;
2138 kauth_cred_t cred;
2139 struct nameidata nd;
2140 struct vattr vattr;
2141 struct mount *mp;
2142 struct coredump_iostate io;
2143 int error, error1;
2144 char *name = NULL;
2145
2146 p = l->l_proc;
2147 vm = p->p_vmspace;
2148 cred = l->l_cred;
2149
2150 /*
2151 * Make sure the process has not set-id, to prevent data leaks,
2152 * unless it was specifically requested to allow set-id coredumps.
2153 */
2154 if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2155 return EPERM;
2156
2157 /*
2158 * Refuse to core if the data + stack + user size is larger than
2159 * the core dump limit. XXX THIS IS WRONG, because of mapped
2160 * data.
2161 */
2162 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2163 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2164 return EFBIG; /* better error code? */
2165
2166 restart:
2167 /*
2168 * The core dump will go in the current working directory. Make
2169 * sure that the directory is still there and that the mount flags
2170 * allow us to write core dumps there.
2171 */
2172 vp = p->p_cwdi->cwdi_cdir;
2173 if (vp->v_mount == NULL ||
2174 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2175 error = EPERM;
2176 goto done;
2177 }
2178
2179 if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2180 pattern = security_setidcore_path;
2181
2182 if (pattern == NULL)
2183 pattern = p->p_limit->pl_corename;
2184 if (name == NULL) {
2185 name = PNBUF_GET();
2186 }
2187 if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2188 goto done;
2189 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2190 if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2191 S_IRUSR | S_IWUSR)) != 0)
2192 goto done;
2193 vp = nd.ni_vp;
2194
2195 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2196 VOP_UNLOCK(vp, 0);
2197 if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2198 goto done;
2199 if ((error = vn_start_write(NULL, &mp,
2200 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2201 goto done;
2202 goto restart;
2203 }
2204
2205 /* Don't dump to non-regular files or files with links. */
2206 if (vp->v_type != VREG ||
2207 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2208 error = EINVAL;
2209 goto out;
2210 }
2211 VATTR_NULL(&vattr);
2212 vattr.va_size = 0;
2213
2214 if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2215 vattr.va_uid = security_setidcore_owner;
2216 vattr.va_gid = security_setidcore_group;
2217 vattr.va_mode = security_setidcore_mode;
2218 }
2219
2220 VOP_LEASE(vp, l, cred, LEASE_WRITE);
2221 VOP_SETATTR(vp, &vattr, cred, l);
2222 p->p_acflag |= ACORE;
2223
2224 io.io_lwp = l;
2225 io.io_vp = vp;
2226 io.io_cred = cred;
2227 io.io_offset = 0;
2228
2229 /* Now dump the actual core file. */
2230 error = (*p->p_execsw->es_coredump)(l, &io);
2231 out:
2232 VOP_UNLOCK(vp, 0);
2233 vn_finished_write(mp, 0);
2234 error1 = vn_close(vp, FWRITE, cred, l);
2235 if (error == 0)
2236 error = error1;
2237 done:
2238 if (name != NULL)
2239 PNBUF_PUT(name);
2240 return error;
2241 }
2242 #endif /* COREDUMP */
2243
2244 /*
2245 * Nonexistent system call-- signal process (may want to handle it).
2246 * Flag error in case process won't see signal immediately (blocked or ignored).
2247 */
2248 #ifndef PTRACE
2249 __weak_alias(sys_ptrace, sys_nosys);
2250 #endif
2251
2252 /* ARGSUSED */
2253 int
2254 sys_nosys(struct lwp *l, void *v __unused, register_t *retval __unused)
2255 {
2256 struct proc *p;
2257
2258 p = l->l_proc;
2259 psignal(p, SIGSYS);
2260 return (ENOSYS);
2261 }
2262
2263 #ifdef COREDUMP
2264 static int
2265 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2266 {
2267 const char *s;
2268 char *d, *end;
2269 int i;
2270
2271 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2272 if (*s == '%') {
2273 switch (*(s + 1)) {
2274 case 'n':
2275 i = snprintf(d, end - d, "%s", p->p_comm);
2276 break;
2277 case 'p':
2278 i = snprintf(d, end - d, "%d", p->p_pid);
2279 break;
2280 case 'u':
2281 i = snprintf(d, end - d, "%.*s",
2282 (int)sizeof p->p_pgrp->pg_session->s_login,
2283 p->p_pgrp->pg_session->s_login);
2284 break;
2285 case 't':
2286 i = snprintf(d, end - d, "%ld",
2287 p->p_stats->p_start.tv_sec);
2288 break;
2289 default:
2290 goto copy;
2291 }
2292 d += i;
2293 s++;
2294 } else {
2295 copy: *d = *s;
2296 d++;
2297 }
2298 if (d >= end)
2299 return (ENAMETOOLONG);
2300 }
2301 *d = '\0';
2302 return 0;
2303 }
2304 #endif /* COREDUMP */
2305
2306 void
2307 getucontext(struct lwp *l, ucontext_t *ucp)
2308 {
2309 struct proc *p;
2310
2311 p = l->l_proc;
2312
2313 ucp->uc_flags = 0;
2314 ucp->uc_link = l->l_ctxlink;
2315
2316 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2317 ucp->uc_flags |= _UC_SIGMASK;
2318
2319 /*
2320 * The (unsupplied) definition of the `current execution stack'
2321 * in the System V Interface Definition appears to allow returning
2322 * the main context stack.
2323 */
2324 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2325 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2326 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2327 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2328 } else {
2329 /* Simply copy alternate signal execution stack. */
2330 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2331 }
2332 ucp->uc_flags |= _UC_STACK;
2333
2334 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2335 }
2336
2337 /* ARGSUSED */
2338 int
2339 sys_getcontext(struct lwp *l, void *v, register_t *retval __unused)
2340 {
2341 struct sys_getcontext_args /* {
2342 syscallarg(struct __ucontext *) ucp;
2343 } */ *uap = v;
2344 ucontext_t uc;
2345
2346 getucontext(l, &uc);
2347
2348 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2349 }
2350
2351 int
2352 setucontext(struct lwp *l, const ucontext_t *ucp)
2353 {
2354 struct proc *p;
2355 int error;
2356
2357 p = l->l_proc;
2358 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2359 return (error);
2360 l->l_ctxlink = ucp->uc_link;
2361
2362 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2363 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2364
2365 /*
2366 * If there was stack information, update whether or not we are
2367 * still running on an alternate signal stack.
2368 */
2369 if ((ucp->uc_flags & _UC_STACK) != 0) {
2370 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2371 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2372 else
2373 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2374 }
2375
2376 return 0;
2377 }
2378
2379 /* ARGSUSED */
2380 int
2381 sys_setcontext(struct lwp *l, void *v, register_t *retval __unused)
2382 {
2383 struct sys_setcontext_args /* {
2384 syscallarg(const ucontext_t *) ucp;
2385 } */ *uap = v;
2386 ucontext_t uc;
2387 int error;
2388
2389 if (SCARG(uap, ucp) == NULL) /* i.e. end of uc_link chain */
2390 exit1(l, W_EXITCODE(0, 0));
2391 else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
2392 (error = setucontext(l, &uc)) != 0)
2393 return (error);
2394
2395 return (EJUSTRETURN);
2396 }
2397
2398 /*
2399 * sigtimedwait(2) system call, used also for implementation
2400 * of sigwaitinfo() and sigwait().
2401 *
2402 * This only handles single LWP in signal wait. libpthread provides
2403 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2404 */
2405 int
2406 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2407 {
2408 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2409 }
2410
2411 int
2412 __sigtimedwait1(struct lwp *l, void *v, register_t *retval __unused,
2413 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2414 {
2415 struct sys___sigtimedwait_args /* {
2416 syscallarg(const sigset_t *) set;
2417 syscallarg(siginfo_t *) info;
2418 syscallarg(struct timespec *) timeout;
2419 } */ *uap = v;
2420 sigset_t *waitset, twaitset;
2421 struct proc *p = l->l_proc;
2422 int error, signum;
2423 int timo = 0;
2424 struct timespec ts, tsstart;
2425 ksiginfo_t *ksi;
2426
2427 memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */
2428
2429 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2430
2431 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2432 FREE(waitset, M_TEMP);
2433 return (error);
2434 }
2435
2436 /*
2437 * Silently ignore SA_CANTMASK signals. psignal1() would
2438 * ignore SA_CANTMASK signals in waitset, we do this
2439 * only for the below siglist check.
2440 */
2441 sigminusset(&sigcantmask, waitset);
2442
2443 /*
2444 * First scan siglist and check if there is signal from
2445 * our waitset already pending.
2446 */
2447 twaitset = *waitset;
2448 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2449 if ((signum = firstsig(&twaitset))) {
2450 /* found pending signal */
2451 sigdelset(&p->p_sigctx.ps_siglist, signum);
2452 ksi = ksiginfo_dequeue(p, signum);
2453 if (!ksi) {
2454 /* No queued siginfo, manufacture one */
2455 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2456 KSI_INIT(ksi);
2457 ksi->ksi_info._signo = signum;
2458 ksi->ksi_info._code = SI_USER;
2459 }
2460
2461 goto sig;
2462 }
2463
2464 /*
2465 * Calculate timeout, if it was specified.
2466 */
2467 if (SCARG(uap, timeout)) {
2468 uint64_t ms;
2469
2470 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2471 return (error);
2472
2473 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2474 timo = mstohz(ms);
2475 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2476 timo = 1;
2477 if (timo <= 0)
2478 return (EAGAIN);
2479
2480 /*
2481 * Remember current uptime, it would be used in
2482 * ECANCELED/ERESTART case.
2483 */
2484 getnanouptime(&tsstart);
2485 }
2486
2487 /*
2488 * Setup ps_sigwait list. Pass pointer to malloced memory
2489 * here; it's not possible to pass pointer to a structure
2490 * on current process's stack, the current process might
2491 * be swapped out at the time the signal would get delivered.
2492 */
2493 ksi = pool_get(&ksiginfo_pool, PR_WAITOK);
2494 p->p_sigctx.ps_sigwaited = ksi;
2495 p->p_sigctx.ps_sigwait = waitset;
2496
2497 /*
2498 * Wait for signal to arrive. We can either be woken up or
2499 * time out.
2500 */
2501 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2502
2503 /*
2504 * Need to find out if we woke as a result of lwp_wakeup()
2505 * or a signal outside our wait set.
2506 */
2507 if (error == EINTR && p->p_sigctx.ps_sigwaited
2508 && !firstsig(&p->p_sigctx.ps_siglist)) {
2509 /* wakeup via _lwp_wakeup() */
2510 error = ECANCELED;
2511 } else if (!error && p->p_sigctx.ps_sigwaited) {
2512 /* spurious wakeup - arrange for syscall restart */
2513 error = ERESTART;
2514 goto fail;
2515 }
2516
2517 /*
2518 * On error, clear sigwait indication. psignal1() clears it
2519 * in !error case.
2520 */
2521 if (error) {
2522 p->p_sigctx.ps_sigwaited = NULL;
2523
2524 /*
2525 * If the sleep was interrupted (either by signal or wakeup),
2526 * update the timeout and copyout new value back.
2527 * It would be used when the syscall would be restarted
2528 * or called again.
2529 */
2530 if (timo && (error == ERESTART || error == ECANCELED)) {
2531 struct timespec tsnow;
2532 int err;
2533
2534 /* XXX double check the following change */
2535 getnanouptime(&tsnow);
2536
2537 /* compute how much time has passed since start */
2538 timespecsub(&tsnow, &tsstart, &tsnow);
2539 /* substract passed time from timeout */
2540 timespecsub(&ts, &tsnow, &ts);
2541
2542 if (ts.tv_sec < 0) {
2543 error = EAGAIN;
2544 goto fail;
2545 }
2546 /* XXX double check the previous change */
2547
2548 /* copy updated timeout to userland */
2549 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2550 sizeof(ts)))) {
2551 error = err;
2552 goto fail;
2553 }
2554 }
2555
2556 goto fail;
2557 }
2558
2559 /*
2560 * If a signal from the wait set arrived, copy it to userland.
2561 * Copy only the used part of siginfo, the padding part is
2562 * left unchanged (userland is not supposed to touch it anyway).
2563 */
2564 sig:
2565 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2566
2567 fail:
2568 FREE(waitset, M_TEMP);
2569 pool_put(&ksiginfo_pool, ksi);
2570 p->p_sigctx.ps_sigwait = NULL;
2571
2572 return (error);
2573 }
2574
2575 /*
2576 * Returns true if signal is ignored or masked for passed process.
2577 */
2578 int
2579 sigismasked(struct proc *p, int sig)
2580 {
2581
2582 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2583 sigismember(&p->p_sigctx.ps_sigmask, sig));
2584 }
2585
2586 static int
2587 filt_sigattach(struct knote *kn)
2588 {
2589 struct proc *p = curproc;
2590
2591 kn->kn_ptr.p_proc = p;
2592 kn->kn_flags |= EV_CLEAR; /* automatically set */
2593
2594 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2595
2596 return (0);
2597 }
2598
2599 static void
2600 filt_sigdetach(struct knote *kn)
2601 {
2602 struct proc *p = kn->kn_ptr.p_proc;
2603
2604 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2605 }
2606
2607 /*
2608 * signal knotes are shared with proc knotes, so we apply a mask to
2609 * the hint in order to differentiate them from process hints. This
2610 * could be avoided by using a signal-specific knote list, but probably
2611 * isn't worth the trouble.
2612 */
2613 static int
2614 filt_signal(struct knote *kn, long hint)
2615 {
2616
2617 if (hint & NOTE_SIGNAL) {
2618 hint &= ~NOTE_SIGNAL;
2619
2620 if (kn->kn_id == hint)
2621 kn->kn_data++;
2622 }
2623 return (kn->kn_data != 0);
2624 }
2625
2626 const struct filterops sig_filtops = {
2627 0, filt_sigattach, filt_sigdetach, filt_signal
2628 };
2629