Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.238
      1 /*	$NetBSD: kern_sig.c,v 1.238 2006/11/03 19:46:03 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.238 2006/11/03 19:46:03 ad Exp $");
     41 
     42 #include "opt_coredump.h"
     43 #include "opt_ktrace.h"
     44 #include "opt_ptrace.h"
     45 #include "opt_multiprocessor.h"
     46 #include "opt_compat_sunos.h"
     47 #include "opt_compat_netbsd.h"
     48 #include "opt_compat_netbsd32.h"
     49 
     50 #define	SIGPROP		/* include signal properties table */
     51 #include <sys/param.h>
     52 #include <sys/signalvar.h>
     53 #include <sys/resourcevar.h>
     54 #include <sys/namei.h>
     55 #include <sys/vnode.h>
     56 #include <sys/proc.h>
     57 #include <sys/systm.h>
     58 #include <sys/timeb.h>
     59 #include <sys/times.h>
     60 #include <sys/buf.h>
     61 #include <sys/acct.h>
     62 #include <sys/file.h>
     63 #include <sys/kernel.h>
     64 #include <sys/wait.h>
     65 #include <sys/ktrace.h>
     66 #include <sys/syslog.h>
     67 #include <sys/stat.h>
     68 #include <sys/core.h>
     69 #include <sys/filedesc.h>
     70 #include <sys/malloc.h>
     71 #include <sys/pool.h>
     72 #include <sys/ucontext.h>
     73 #include <sys/sa.h>
     74 #include <sys/savar.h>
     75 #include <sys/exec.h>
     76 #include <sys/sysctl.h>
     77 #include <sys/kauth.h>
     78 
     79 #include <sys/mount.h>
     80 #include <sys/syscallargs.h>
     81 
     82 #include <machine/cpu.h>
     83 
     84 #include <sys/user.h>		/* for coredump */
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_extern.h>
     88 
     89 #ifdef COREDUMP
     90 static int	build_corename(struct proc *, char *, const char *, size_t);
     91 #endif
     92 static void	ksiginfo_exithook(struct proc *, void *);
     93 static void	ksiginfo_queue(struct proc *, const ksiginfo_t *, ksiginfo_t **);
     94 static ksiginfo_t *ksiginfo_dequeue(struct proc *, int);
     95 static void	kpsignal2(struct proc *, const ksiginfo_t *);
     96 
     97 sigset_t	contsigmask, stopsigmask, sigcantmask;
     98 
     99 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
    100 
    101 /*
    102  * struct sigacts memory pool allocator.
    103  */
    104 
    105 static void *
    106 sigacts_poolpage_alloc(struct pool *pp, int flags)
    107 {
    108 
    109 	return (void *)uvm_km_alloc(kernel_map,
    110 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    111 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    112 	    | UVM_KMF_WIRED);
    113 }
    114 
    115 static void
    116 sigacts_poolpage_free(struct pool *pp, void *v)
    117 {
    118         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    119 }
    120 
    121 static struct pool_allocator sigactspool_allocator = {
    122         .pa_alloc = sigacts_poolpage_alloc,
    123 	.pa_free = sigacts_poolpage_free,
    124 };
    125 
    126 static POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    127     &pool_allocator_nointr);
    128 static POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
    129 
    130 static ksiginfo_t *
    131 ksiginfo_alloc(int prflags)
    132 {
    133 	int s;
    134 	ksiginfo_t *ksi;
    135 
    136 	s = splsoftclock();
    137 	ksi = pool_get(&ksiginfo_pool, prflags);
    138 	splx(s);
    139 	return ksi;
    140 }
    141 
    142 static void
    143 ksiginfo_free(ksiginfo_t *ksi)
    144 {
    145 	int s;
    146 
    147 	s = splsoftclock();
    148 	pool_put(&ksiginfo_pool, ksi);
    149 	splx(s);
    150 }
    151 
    152 /*
    153  * Remove and return the first ksiginfo element that matches our requested
    154  * signal, or return NULL if one not found.
    155  */
    156 static ksiginfo_t *
    157 ksiginfo_dequeue(struct proc *p, int signo)
    158 {
    159 	ksiginfo_t *ksi;
    160 	int s;
    161 
    162 	s = splsoftclock();
    163 	simple_lock(&p->p_sigctx.ps_silock);
    164 	CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
    165 		if (ksi->ksi_signo == signo) {
    166 			CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    167 			goto out;
    168 		}
    169 	}
    170 	ksi = NULL;
    171 out:
    172 	simple_unlock(&p->p_sigctx.ps_silock);
    173 	splx(s);
    174 	return ksi;
    175 }
    176 
    177 /*
    178  * Append a new ksiginfo element to the list of pending ksiginfo's, if
    179  * we need to (SA_SIGINFO was requested). We replace non RT signals if
    180  * they already existed in the queue and we add new entries for RT signals,
    181  * or for non RT signals with non-existing entries.
    182  */
    183 static void
    184 ksiginfo_queue(struct proc *p, const ksiginfo_t *ksi, ksiginfo_t **newkp)
    185 {
    186 	ksiginfo_t *kp;
    187 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    188 	int s;
    189 
    190 	if ((sa->sa_flags & SA_SIGINFO) == 0)
    191 		return;
    192 
    193 	/*
    194 	 * If there's no info, don't save it.
    195 	 */
    196 	if (KSI_EMPTY_P(ksi))
    197 		return;
    198 
    199 	s = splsoftclock();
    200 	simple_lock(&p->p_sigctx.ps_silock);
    201 #ifdef notyet	/* XXX: QUEUING */
    202 	if (ksi->ksi_signo < SIGRTMIN)
    203 #endif
    204 	{
    205 		CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
    206 			if (kp->ksi_signo == ksi->ksi_signo) {
    207 				KSI_COPY(ksi, kp);
    208 				goto out;
    209 			}
    210 		}
    211 	}
    212 	if (newkp && *newkp) {
    213 		kp = *newkp;
    214 		*newkp = NULL;
    215 	} else {
    216 		SCHED_ASSERT_UNLOCKED();
    217 		kp = ksiginfo_alloc(PR_NOWAIT);
    218 		if (kp == NULL) {
    219 #ifdef DIAGNOSTIC
    220 			printf("Out of memory allocating siginfo for pid %d\n",
    221 			    p->p_pid);
    222 #endif
    223 			goto out;
    224 		}
    225 	}
    226 	*kp = *ksi;
    227 	CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
    228 out:
    229 	simple_unlock(&p->p_sigctx.ps_silock);
    230 	splx(s);
    231 }
    232 
    233 /*
    234  * free all pending ksiginfo on exit
    235  */
    236 static void
    237 ksiginfo_exithook(struct proc *p, void *v)
    238 {
    239 	int s;
    240 
    241 	s = splsoftclock();
    242 	simple_lock(&p->p_sigctx.ps_silock);
    243 	while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
    244 		ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
    245 		CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
    246 		ksiginfo_free(ksi);
    247 	}
    248 	simple_unlock(&p->p_sigctx.ps_silock);
    249 	splx(s);
    250 }
    251 
    252 /*
    253  * Initialize signal-related data structures.
    254  */
    255 void
    256 signal_init(void)
    257 {
    258 
    259 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    260 
    261 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    262 	    sizeof(struct sigacts) > PAGE_SIZE ?
    263 	    &sigactspool_allocator : &pool_allocator_nointr);
    264 
    265 	exithook_establish(ksiginfo_exithook, NULL);
    266 	exechook_establish(ksiginfo_exithook, NULL);
    267 }
    268 
    269 /*
    270  * Create an initial sigctx structure, using the same signal state
    271  * as p. If 'share' is set, share the sigctx_proc part, otherwise just
    272  * copy it from parent.
    273  */
    274 void
    275 sigactsinit(struct proc *np, struct proc *pp, int share)
    276 {
    277 	struct sigacts *ps;
    278 
    279 	if (share) {
    280 		np->p_sigacts = pp->p_sigacts;
    281 		pp->p_sigacts->sa_refcnt++;
    282 	} else {
    283 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    284 		if (pp)
    285 			memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
    286 		else
    287 			memset(ps, '\0', sizeof(struct sigacts));
    288 		ps->sa_refcnt = 1;
    289 		np->p_sigacts = ps;
    290 	}
    291 }
    292 
    293 /*
    294  * Make this process not share its sigctx, maintaining all
    295  * signal state.
    296  */
    297 void
    298 sigactsunshare(struct proc *p)
    299 {
    300 	struct sigacts *oldps;
    301 
    302 	if (p->p_sigacts->sa_refcnt == 1)
    303 		return;
    304 
    305 	oldps = p->p_sigacts;
    306 	sigactsinit(p, NULL, 0);
    307 
    308 	if (--oldps->sa_refcnt == 0)
    309 		pool_put(&sigacts_pool, oldps);
    310 }
    311 
    312 /*
    313  * Release a sigctx structure.
    314  */
    315 void
    316 sigactsfree(struct sigacts *ps)
    317 {
    318 
    319 	if (--ps->sa_refcnt > 0)
    320 		return;
    321 
    322 	pool_put(&sigacts_pool, ps);
    323 }
    324 
    325 int
    326 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
    327 	struct sigaction *osa, const void *tramp, int vers)
    328 {
    329 	struct sigacts	*ps;
    330 	int		prop;
    331 
    332 	ps = p->p_sigacts;
    333 	if (signum <= 0 || signum >= NSIG)
    334 		return (EINVAL);
    335 
    336 	/*
    337 	 * Trampoline ABI version 0 is reserved for the legacy
    338 	 * kernel-provided on-stack trampoline.  Conversely, if we are
    339 	 * using a non-0 ABI version, we must have a trampoline.  Only
    340 	 * validate the vers if a new sigaction was supplied. Emulations
    341 	 * use legacy kernel trampolines with version 0, alternatively
    342 	 * check for that too.
    343 	 */
    344 	if ((vers != 0 && tramp == NULL) ||
    345 #ifdef SIGTRAMP_VALID
    346 	    (nsa != NULL &&
    347 	    ((vers == 0) ?
    348 		(p->p_emul->e_sigcode == NULL) :
    349 		!SIGTRAMP_VALID(vers))) ||
    350 #endif
    351 	    (vers == 0 && tramp != NULL))
    352 		return (EINVAL);
    353 
    354 	if (osa)
    355 		*osa = SIGACTION_PS(ps, signum);
    356 
    357 	if (nsa) {
    358 		if (nsa->sa_flags & ~SA_ALLBITS)
    359 			return (EINVAL);
    360 
    361 		prop = sigprop[signum];
    362 		if (prop & SA_CANTMASK)
    363 			return (EINVAL);
    364 
    365 		(void) splsched();	/* XXXSMP */
    366 		SIGACTION_PS(ps, signum) = *nsa;
    367 		ps->sa_sigdesc[signum].sd_tramp = tramp;
    368 		ps->sa_sigdesc[signum].sd_vers = vers;
    369 		sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
    370 		if ((prop & SA_NORESET) != 0)
    371 			SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
    372 		if (signum == SIGCHLD) {
    373 			if (nsa->sa_flags & SA_NOCLDSTOP)
    374 				p->p_flag |= P_NOCLDSTOP;
    375 			else
    376 				p->p_flag &= ~P_NOCLDSTOP;
    377 			if (nsa->sa_flags & SA_NOCLDWAIT) {
    378 				/*
    379 				 * Paranoia: since SA_NOCLDWAIT is implemented
    380 				 * by reparenting the dying child to PID 1 (and
    381 				 * trust it to reap the zombie), PID 1 itself
    382 				 * is forbidden to set SA_NOCLDWAIT.
    383 				 */
    384 				if (p->p_pid == 1)
    385 					p->p_flag &= ~P_NOCLDWAIT;
    386 				else
    387 					p->p_flag |= P_NOCLDWAIT;
    388 			} else
    389 				p->p_flag &= ~P_NOCLDWAIT;
    390 
    391 			if (nsa->sa_handler == SIG_IGN) {
    392 				/*
    393 				 * Paranoia: same as above.
    394 				 */
    395 				if (p->p_pid == 1)
    396 					p->p_flag &= ~P_CLDSIGIGN;
    397 				else
    398 					p->p_flag |= P_CLDSIGIGN;
    399 			} else
    400 				p->p_flag &= ~P_CLDSIGIGN;
    401 
    402 		}
    403 		if ((nsa->sa_flags & SA_NODEFER) == 0)
    404 			sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    405 		else
    406 			sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
    407 		/*
    408 	 	 * Set bit in p_sigctx.ps_sigignore for signals that are set to
    409 		 * SIG_IGN, and for signals set to SIG_DFL where the default is
    410 		 * to ignore. However, don't put SIGCONT in
    411 		 * p_sigctx.ps_sigignore, as we have to restart the process.
    412 	 	 */
    413 		if (nsa->sa_handler == SIG_IGN ||
    414 		    (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
    415 						/* never to be seen again */
    416 			sigdelset(&p->p_sigctx.ps_siglist, signum);
    417 			if (signum != SIGCONT) {
    418 						/* easier in psignal */
    419 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    420 			}
    421 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    422 		} else {
    423 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
    424 			if (nsa->sa_handler == SIG_DFL)
    425 				sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    426 			else
    427 				sigaddset(&p->p_sigctx.ps_sigcatch, signum);
    428 		}
    429 		(void) spl0();
    430 	}
    431 
    432 	return (0);
    433 }
    434 
    435 #ifdef COMPAT_16
    436 /* ARGSUSED */
    437 int
    438 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
    439 {
    440 	struct compat_16_sys___sigaction14_args /* {
    441 		syscallarg(int)				signum;
    442 		syscallarg(const struct sigaction *)	nsa;
    443 		syscallarg(struct sigaction *)		osa;
    444 	} */ *uap = v;
    445 	struct proc		*p;
    446 	struct sigaction	nsa, osa;
    447 	int			error;
    448 
    449 	if (SCARG(uap, nsa)) {
    450 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    451 		if (error)
    452 			return (error);
    453 	}
    454 	p = l->l_proc;
    455 	error = sigaction1(p, SCARG(uap, signum),
    456 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    457 	    NULL, 0);
    458 	if (error)
    459 		return (error);
    460 	if (SCARG(uap, osa)) {
    461 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    462 		if (error)
    463 			return (error);
    464 	}
    465 	return (0);
    466 }
    467 #endif
    468 
    469 /* ARGSUSED */
    470 int
    471 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
    472 {
    473 	struct sys___sigaction_sigtramp_args /* {
    474 		syscallarg(int)				signum;
    475 		syscallarg(const struct sigaction *)	nsa;
    476 		syscallarg(struct sigaction *)		osa;
    477 		syscallarg(void *)			tramp;
    478 		syscallarg(int)				vers;
    479 	} */ *uap = v;
    480 	struct proc *p = l->l_proc;
    481 	struct sigaction nsa, osa;
    482 	int error;
    483 
    484 	if (SCARG(uap, nsa)) {
    485 		error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
    486 		if (error)
    487 			return (error);
    488 	}
    489 	error = sigaction1(p, SCARG(uap, signum),
    490 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
    491 	    SCARG(uap, tramp), SCARG(uap, vers));
    492 	if (error)
    493 		return (error);
    494 	if (SCARG(uap, osa)) {
    495 		error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
    496 		if (error)
    497 			return (error);
    498 	}
    499 	return (0);
    500 }
    501 
    502 /*
    503  * Initialize signal state for process 0;
    504  * set to ignore signals that are ignored by default and disable the signal
    505  * stack.
    506  */
    507 void
    508 siginit(struct proc *p)
    509 {
    510 	struct sigacts	*ps;
    511 	int		signum, prop;
    512 
    513 	ps = p->p_sigacts;
    514 	sigemptyset(&contsigmask);
    515 	sigemptyset(&stopsigmask);
    516 	sigemptyset(&sigcantmask);
    517 	for (signum = 1; signum < NSIG; signum++) {
    518 		prop = sigprop[signum];
    519 		if (prop & SA_CONT)
    520 			sigaddset(&contsigmask, signum);
    521 		if (prop & SA_STOP)
    522 			sigaddset(&stopsigmask, signum);
    523 		if (prop & SA_CANTMASK)
    524 			sigaddset(&sigcantmask, signum);
    525 		if (prop & SA_IGNORE && signum != SIGCONT)
    526 			sigaddset(&p->p_sigctx.ps_sigignore, signum);
    527 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    528 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    529 	}
    530 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    531 	p->p_sigctx.ps_sigwaited = NULL;
    532 	p->p_flag &= ~P_NOCLDSTOP;
    533 
    534 	/*
    535 	 * Reset stack state to the user stack.
    536 	 */
    537 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    538 	p->p_sigctx.ps_sigstk.ss_size = 0;
    539 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    540 
    541 	/* One reference. */
    542 	ps->sa_refcnt = 1;
    543 }
    544 
    545 /*
    546  * Reset signals for an exec of the specified process.
    547  */
    548 void
    549 execsigs(struct proc *p)
    550 {
    551 	struct sigacts	*ps;
    552 	int		signum, prop;
    553 
    554 	sigactsunshare(p);
    555 
    556 	ps = p->p_sigacts;
    557 
    558 	/*
    559 	 * Reset caught signals.  Held signals remain held
    560 	 * through p_sigctx.ps_sigmask (unless they were caught,
    561 	 * and are now ignored by default).
    562 	 */
    563 	for (signum = 1; signum < NSIG; signum++) {
    564 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
    565 			prop = sigprop[signum];
    566 			if (prop & SA_IGNORE) {
    567 				if ((prop & SA_CONT) == 0)
    568 					sigaddset(&p->p_sigctx.ps_sigignore,
    569 					    signum);
    570 				sigdelset(&p->p_sigctx.ps_siglist, signum);
    571 			}
    572 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    573 		}
    574 		sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
    575 		SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
    576 	}
    577 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    578 	p->p_sigctx.ps_sigwaited = NULL;
    579 
    580 	/*
    581 	 * Reset no zombies if child dies flag as Solaris does.
    582 	 */
    583 	p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
    584 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    585 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    586 
    587 	/*
    588 	 * Reset stack state to the user stack.
    589 	 */
    590 	p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
    591 	p->p_sigctx.ps_sigstk.ss_size = 0;
    592 	p->p_sigctx.ps_sigstk.ss_sp = 0;
    593 }
    594 
    595 int
    596 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
    597 {
    598 
    599 	if (oss)
    600 		*oss = p->p_sigctx.ps_sigmask;
    601 
    602 	if (nss) {
    603 		(void)splsched();	/* XXXSMP */
    604 		switch (how) {
    605 		case SIG_BLOCK:
    606 			sigplusset(nss, &p->p_sigctx.ps_sigmask);
    607 			break;
    608 		case SIG_UNBLOCK:
    609 			sigminusset(nss, &p->p_sigctx.ps_sigmask);
    610 			CHECKSIGS(p);
    611 			break;
    612 		case SIG_SETMASK:
    613 			p->p_sigctx.ps_sigmask = *nss;
    614 			CHECKSIGS(p);
    615 			break;
    616 		default:
    617 			(void)spl0();	/* XXXSMP */
    618 			return (EINVAL);
    619 		}
    620 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    621 		(void)spl0();		/* XXXSMP */
    622 	}
    623 
    624 	return (0);
    625 }
    626 
    627 /*
    628  * Manipulate signal mask.
    629  * Note that we receive new mask, not pointer,
    630  * and return old mask as return value;
    631  * the library stub does the rest.
    632  */
    633 int
    634 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
    635 {
    636 	struct sys___sigprocmask14_args /* {
    637 		syscallarg(int)			how;
    638 		syscallarg(const sigset_t *)	set;
    639 		syscallarg(sigset_t *)		oset;
    640 	} */ *uap = v;
    641 	struct proc	*p;
    642 	sigset_t	nss, oss;
    643 	int		error;
    644 
    645 	if (SCARG(uap, set)) {
    646 		error = copyin(SCARG(uap, set), &nss, sizeof(nss));
    647 		if (error)
    648 			return (error);
    649 	}
    650 	p = l->l_proc;
    651 	error = sigprocmask1(p, SCARG(uap, how),
    652 	    SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
    653 	if (error)
    654 		return (error);
    655 	if (SCARG(uap, oset)) {
    656 		error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
    657 		if (error)
    658 			return (error);
    659 	}
    660 	return (0);
    661 }
    662 
    663 void
    664 sigpending1(struct proc *p, sigset_t *ss)
    665 {
    666 
    667 	*ss = p->p_sigctx.ps_siglist;
    668 	sigminusset(&p->p_sigctx.ps_sigmask, ss);
    669 }
    670 
    671 /* ARGSUSED */
    672 int
    673 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
    674 {
    675 	struct sys___sigpending14_args /* {
    676 		syscallarg(sigset_t *)	set;
    677 	} */ *uap = v;
    678 	struct proc	*p;
    679 	sigset_t	ss;
    680 
    681 	p = l->l_proc;
    682 	sigpending1(p, &ss);
    683 	return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
    684 }
    685 
    686 int
    687 sigsuspend1(struct proc *p, const sigset_t *ss)
    688 {
    689 	struct sigacts *ps;
    690 
    691 	ps = p->p_sigacts;
    692 	if (ss) {
    693 		/*
    694 		 * When returning from sigpause, we want
    695 		 * the old mask to be restored after the
    696 		 * signal handler has finished.  Thus, we
    697 		 * save it here and mark the sigctx structure
    698 		 * to indicate this.
    699 		 */
    700 		p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
    701 		p->p_sigctx.ps_flags |= SAS_OLDMASK;
    702 		(void) splsched();	/* XXXSMP */
    703 		p->p_sigctx.ps_sigmask = *ss;
    704 		CHECKSIGS(p);
    705 		sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
    706 		(void) spl0();		/* XXXSMP */
    707 	}
    708 
    709 	while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
    710 		/* void */;
    711 
    712 	/* always return EINTR rather than ERESTART... */
    713 	return (EINTR);
    714 }
    715 
    716 /*
    717  * Suspend process until signal, providing mask to be set
    718  * in the meantime.  Note nonstandard calling convention:
    719  * libc stub passes mask, not pointer, to save a copyin.
    720  */
    721 /* ARGSUSED */
    722 int
    723 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
    724 {
    725 	struct sys___sigsuspend14_args /* {
    726 		syscallarg(const sigset_t *)	set;
    727 	} */ *uap = v;
    728 	struct proc	*p;
    729 	sigset_t	ss;
    730 	int		error;
    731 
    732 	if (SCARG(uap, set)) {
    733 		error = copyin(SCARG(uap, set), &ss, sizeof(ss));
    734 		if (error)
    735 			return (error);
    736 	}
    737 
    738 	p = l->l_proc;
    739 	return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
    740 }
    741 
    742 int
    743 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
    744 	struct sigaltstack *oss)
    745 {
    746 
    747 	if (oss)
    748 		*oss = p->p_sigctx.ps_sigstk;
    749 
    750 	if (nss) {
    751 		if (nss->ss_flags & ~SS_ALLBITS)
    752 			return (EINVAL);
    753 
    754 		if (nss->ss_flags & SS_DISABLE) {
    755 			if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
    756 				return (EINVAL);
    757 		} else {
    758 			if (nss->ss_size < MINSIGSTKSZ)
    759 				return (ENOMEM);
    760 		}
    761 		p->p_sigctx.ps_sigstk = *nss;
    762 	}
    763 
    764 	return (0);
    765 }
    766 
    767 /* ARGSUSED */
    768 int
    769 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
    770 {
    771 	struct sys___sigaltstack14_args /* {
    772 		syscallarg(const struct sigaltstack *)	nss;
    773 		syscallarg(struct sigaltstack *)	oss;
    774 	} */ *uap = v;
    775 	struct proc		*p;
    776 	struct sigaltstack	nss, oss;
    777 	int			error;
    778 
    779 	if (SCARG(uap, nss)) {
    780 		error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
    781 		if (error)
    782 			return (error);
    783 	}
    784 	p = l->l_proc;
    785 	error = sigaltstack1(p,
    786 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
    787 	if (error)
    788 		return (error);
    789 	if (SCARG(uap, oss)) {
    790 		error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
    791 		if (error)
    792 			return (error);
    793 	}
    794 	return (0);
    795 }
    796 
    797 /* ARGSUSED */
    798 int
    799 sys_kill(struct lwp *l, void *v, register_t *retval)
    800 {
    801 	struct sys_kill_args /* {
    802 		syscallarg(int)	pid;
    803 		syscallarg(int)	signum;
    804 	} */ *uap = v;
    805 	struct proc	*p;
    806 	ksiginfo_t	ksi;
    807 	int signum = SCARG(uap, signum);
    808 	int error;
    809 
    810 	if ((u_int)signum >= NSIG)
    811 		return (EINVAL);
    812 	KSI_INIT(&ksi);
    813 	ksi.ksi_signo = signum;
    814 	ksi.ksi_code = SI_USER;
    815 	ksi.ksi_pid = l->l_proc->p_pid;
    816 	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
    817 	if (SCARG(uap, pid) > 0) {
    818 		/* kill single process */
    819 		if ((p = pfind(SCARG(uap, pid))) == NULL)
    820 			return (ESRCH);
    821 		error = kauth_authorize_process(l->l_cred,
    822 		    KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
    823 		    NULL, NULL);
    824 		if (error)
    825 			return error;
    826 		if (signum)
    827 			kpsignal2(p, &ksi);
    828 		return (0);
    829 	}
    830 	switch (SCARG(uap, pid)) {
    831 	case -1:		/* broadcast signal */
    832 		return (killpg1(l, &ksi, 0, 1));
    833 	case 0:			/* signal own process group */
    834 		return (killpg1(l, &ksi, 0, 0));
    835 	default:		/* negative explicit process group */
    836 		return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
    837 	}
    838 	/* NOTREACHED */
    839 }
    840 
    841 /*
    842  * Common code for kill process group/broadcast kill.
    843  * cp is calling process.
    844  */
    845 int
    846 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    847 {
    848 	struct proc	*p, *cp;
    849 	kauth_cred_t	pc;
    850 	struct pgrp	*pgrp;
    851 	int		nfound;
    852 	int		signum = ksi->ksi_signo;
    853 
    854 	cp = l->l_proc;
    855 	pc = l->l_cred;
    856 	nfound = 0;
    857 	if (all) {
    858 		/*
    859 		 * broadcast
    860 		 */
    861 		proclist_lock_read();
    862 		PROCLIST_FOREACH(p, &allproc) {
    863 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
    864 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
    865 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
    866 				continue;
    867 			nfound++;
    868 			if (signum)
    869 				kpsignal2(p, ksi);
    870 		}
    871 		proclist_unlock_read();
    872 	} else {
    873 		if (pgid == 0)
    874 			/*
    875 			 * zero pgid means send to my process group.
    876 			 */
    877 			pgrp = cp->p_pgrp;
    878 		else {
    879 			pgrp = pgfind(pgid);
    880 			if (pgrp == NULL)
    881 				return (ESRCH);
    882 		}
    883 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    884 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
    885 			    kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
    886 			    p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
    887 				continue;
    888 			nfound++;
    889 			if (signum && P_ZOMBIE(p) == 0)
    890 				kpsignal2(p, ksi);
    891 		}
    892 	}
    893 	return (nfound ? 0 : ESRCH);
    894 }
    895 
    896 /*
    897  * Send a signal to a process group.
    898  */
    899 void
    900 gsignal(int pgid, int signum)
    901 {
    902 	ksiginfo_t ksi;
    903 	KSI_INIT_EMPTY(&ksi);
    904 	ksi.ksi_signo = signum;
    905 	kgsignal(pgid, &ksi, NULL);
    906 }
    907 
    908 void
    909 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
    910 {
    911 	struct pgrp *pgrp;
    912 
    913 	if (pgid && (pgrp = pgfind(pgid)))
    914 		kpgsignal(pgrp, ksi, data, 0);
    915 }
    916 
    917 /*
    918  * Send a signal to a process group. If checktty is 1,
    919  * limit to members which have a controlling terminal.
    920  */
    921 void
    922 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    923 {
    924 	ksiginfo_t ksi;
    925 	KSI_INIT_EMPTY(&ksi);
    926 	ksi.ksi_signo = sig;
    927 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    928 }
    929 
    930 void
    931 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    932 {
    933 	struct proc *p;
    934 
    935 	if (pgrp)
    936 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    937 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
    938 				kpsignal(p, ksi, data);
    939 }
    940 
    941 /*
    942  * Send a signal caused by a trap to the current process.
    943  * If it will be caught immediately, deliver it with correct code.
    944  * Otherwise, post it normally.
    945  */
    946 void
    947 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
    948 {
    949 	struct proc	*p;
    950 	struct sigacts	*ps;
    951 	int signum = ksi->ksi_signo;
    952 
    953 	KASSERT(KSI_TRAP_P(ksi));
    954 
    955 	p = l->l_proc;
    956 	ps = p->p_sigacts;
    957 	if ((p->p_flag & P_TRACED) == 0 &&
    958 	    sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
    959 	    !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
    960 		p->p_stats->p_ru.ru_nsignals++;
    961 #ifdef KTRACE
    962 		if (KTRPOINT(p, KTR_PSIG))
    963 			ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
    964 			    &p->p_sigctx.ps_sigmask, ksi);
    965 #endif
    966 		kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
    967 		(void) splsched();	/* XXXSMP */
    968 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
    969 		    &p->p_sigctx.ps_sigmask);
    970 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
    971 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
    972 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
    973 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
    974 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
    975 		}
    976 		(void) spl0();		/* XXXSMP */
    977 	} else {
    978 		p->p_sigctx.ps_lwp = l->l_lid;
    979 		/* XXX for core dump/debugger */
    980 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    981 		p->p_sigctx.ps_code = ksi->ksi_trap;
    982 		kpsignal2(p, ksi);
    983 	}
    984 }
    985 
    986 /*
    987  * Fill in signal information and signal the parent for a child status change.
    988  */
    989 void
    990 child_psignal(struct proc *p)
    991 {
    992 	ksiginfo_t ksi;
    993 
    994 	KSI_INIT(&ksi);
    995 	ksi.ksi_signo = SIGCHLD;
    996 	ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
    997 	ksi.ksi_pid = p->p_pid;
    998 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    999 	ksi.ksi_status = p->p_xstat;
   1000 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1001 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1002 	kpsignal2(p->p_pptr, &ksi);
   1003 }
   1004 
   1005 /*
   1006  * Send the signal to the process.  If the signal has an action, the action
   1007  * is usually performed by the target process rather than the caller; we add
   1008  * the signal to the set of pending signals for the process.
   1009  *
   1010  * Exceptions:
   1011  *   o When a stop signal is sent to a sleeping process that takes the
   1012  *     default action, the process is stopped without awakening it.
   1013  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1014  *     regardless of the signal action (eg, blocked or ignored).
   1015  *
   1016  * Other ignored signals are discarded immediately.
   1017  */
   1018 void
   1019 psignal(struct proc *p, int signum)
   1020 {
   1021 	ksiginfo_t ksi;
   1022 
   1023 	KSI_INIT_EMPTY(&ksi);
   1024 	ksi.ksi_signo = signum;
   1025 	kpsignal2(p, &ksi);
   1026 }
   1027 
   1028 void
   1029 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1030 {
   1031 
   1032 	if ((p->p_flag & P_WEXIT) == 0 && data) {
   1033 		size_t fd;
   1034 		struct filedesc *fdp = p->p_fd;
   1035 
   1036 		ksi->ksi_fd = -1;
   1037 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
   1038 			struct file *fp = fdp->fd_ofiles[fd];
   1039 			/* XXX: lock? */
   1040 			if (fp && fp->f_data == data) {
   1041 				ksi->ksi_fd = fd;
   1042 				break;
   1043 			}
   1044 		}
   1045 	}
   1046 	kpsignal2(p, ksi);
   1047 }
   1048 
   1049 static void
   1050 kpsignal2(struct proc *p, const ksiginfo_t *ksi)
   1051 {
   1052 	struct lwp *l, *suspended = NULL;
   1053 	struct sadata_vp *vp;
   1054 	ksiginfo_t *newkp;
   1055 	int	s = 0, prop, allsusp;
   1056 	sig_t	action;
   1057 	int	signum = ksi->ksi_signo;
   1058 
   1059 #ifdef DIAGNOSTIC
   1060 	if (signum <= 0 || signum >= NSIG)
   1061 		panic("psignal signal number %d", signum);
   1062 
   1063 	SCHED_ASSERT_UNLOCKED();
   1064 #endif
   1065 
   1066 	/*
   1067 	 * Notify any interested parties in the signal.
   1068 	 */
   1069 	KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
   1070 
   1071 	prop = sigprop[signum];
   1072 
   1073 	/*
   1074 	 * If proc is traced, always give parent a chance.
   1075 	 */
   1076 	if (p->p_flag & P_TRACED) {
   1077 		action = SIG_DFL;
   1078 
   1079 		/*
   1080 		 * If the process is being traced and the signal is being
   1081 		 * caught, make sure to save any ksiginfo.
   1082 		 */
   1083 		if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
   1084 			SCHED_ASSERT_UNLOCKED();
   1085 			ksiginfo_queue(p, ksi, NULL);
   1086 		}
   1087 	} else {
   1088 		/*
   1089 		 * If the signal was the result of a trap, reset it
   1090 		 * to default action if it's currently masked, so that it would
   1091 		 * coredump immediatelly instead of spinning repeatedly
   1092 		 * taking the signal.
   1093 		 */
   1094 		if (KSI_TRAP_P(ksi)
   1095 		    && sigismember(&p->p_sigctx.ps_sigmask, signum)
   1096 		    && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
   1097 			sigdelset(&p->p_sigctx.ps_sigignore, signum);
   1098 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1099 			sigdelset(&p->p_sigctx.ps_sigmask, signum);
   1100 			SIGACTION(p, signum).sa_handler = SIG_DFL;
   1101 		}
   1102 
   1103 		/*
   1104 		 * If the signal is being ignored,
   1105 		 * then we forget about it immediately.
   1106 		 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
   1107 		 * and if it is set to SIG_IGN,
   1108 		 * action will be SIG_DFL here.)
   1109 		 */
   1110 		if (sigismember(&p->p_sigctx.ps_sigignore, signum))
   1111 			return;
   1112 		if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1113 			action = SIG_HOLD;
   1114 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
   1115 			action = SIG_CATCH;
   1116 		else {
   1117 			action = SIG_DFL;
   1118 
   1119 			if (prop & SA_KILL && p->p_nice > NZERO)
   1120 				p->p_nice = NZERO;
   1121 
   1122 			/*
   1123 			 * If sending a tty stop signal to a member of an
   1124 			 * orphaned process group, discard the signal here if
   1125 			 * the action is default; don't stop the process below
   1126 			 * if sleeping, and don't clear any pending SIGCONT.
   1127 			 */
   1128 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1129 				return;
   1130 		}
   1131 	}
   1132 
   1133 	if (prop & SA_CONT)
   1134 		sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
   1135 
   1136 	if (prop & SA_STOP)
   1137 		sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
   1138 
   1139 	/*
   1140 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1141 	 * please!), check if anything waits on it. If yes, save the
   1142 	 * info into provided ps_sigwaited, and wake-up the waiter.
   1143 	 * The signal won't be processed further here.
   1144 	 */
   1145 	if ((prop & SA_CANTMASK) == 0
   1146 	    && p->p_sigctx.ps_sigwaited
   1147 	    && sigismember(p->p_sigctx.ps_sigwait, signum)
   1148 	    && p->p_stat != SSTOP) {
   1149 		p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
   1150 		p->p_sigctx.ps_sigwaited = NULL;
   1151 		wakeup_one(&p->p_sigctx.ps_sigwait);
   1152 		return;
   1153 	}
   1154 
   1155 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1156 
   1157 	/* CHECKSIGS() is "inlined" here. */
   1158 	p->p_sigctx.ps_sigcheck = 1;
   1159 
   1160 	/*
   1161 	 * Defer further processing for signals which are held,
   1162 	 * except that stopped processes must be continued by SIGCONT.
   1163 	 */
   1164 	if (action == SIG_HOLD &&
   1165 	    ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
   1166 		SCHED_ASSERT_UNLOCKED();
   1167 		ksiginfo_queue(p, ksi, NULL);
   1168 		return;
   1169 	}
   1170 
   1171 	/*
   1172 	 * Allocate a ksiginfo_t incase we need to insert it with the
   1173 	 * scheduler lock held, but only if this ksiginfo_t isn't empty.
   1174 	 */
   1175 	if (!KSI_EMPTY_P(ksi)) {
   1176 		newkp = ksiginfo_alloc(PR_NOWAIT);
   1177 		if (newkp == NULL) {
   1178 #ifdef DIAGNOSTIC
   1179 			printf("kpsignal2: couldn't allocated ksiginfo\n");
   1180 #endif
   1181 			return;
   1182 		}
   1183 	} else
   1184 		newkp = NULL;
   1185 
   1186 	SCHED_LOCK(s);
   1187 
   1188 	if (p->p_flag & P_SA) {
   1189 		allsusp = 0;
   1190 		l = NULL;
   1191 		if (p->p_stat == SACTIVE) {
   1192 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1193 				l = vp->savp_lwp;
   1194 				KDASSERT(l != NULL);
   1195 				if (l->l_flag & L_SA_IDLE) {
   1196 					/* wakeup idle LWP */
   1197 					goto found;
   1198 					/*NOTREACHED*/
   1199 				} else if (l->l_flag & L_SA_YIELD) {
   1200 					/* idle LWP is already waking up */
   1201 					goto out;
   1202 					/*NOTREACHED*/
   1203 				}
   1204 			}
   1205 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1206 				l = vp->savp_lwp;
   1207 				if (l->l_stat == LSRUN ||
   1208 				    l->l_stat == LSONPROC) {
   1209 					signotify(p);
   1210 					goto out;
   1211 					/*NOTREACHED*/
   1212 				}
   1213 				if (l->l_stat == LSSLEEP &&
   1214 				    l->l_flag & L_SINTR) {
   1215 					/* ok to signal vp lwp */
   1216 					break;
   1217 				} else
   1218 					l = NULL;
   1219 			}
   1220 		} else if (p->p_stat == SSTOP) {
   1221 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1222 				l = vp->savp_lwp;
   1223 				if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
   1224 					break;
   1225 				l = NULL;
   1226 			}
   1227 		}
   1228 	} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
   1229 		/*
   1230 		 * At least one LWP is running or on a run queue.
   1231 		 * The signal will be noticed when one of them returns
   1232 		 * to userspace.
   1233 		 */
   1234 		signotify(p);
   1235 		/*
   1236 		 * The signal will be noticed very soon.
   1237 		 */
   1238 		goto out;
   1239 		/*NOTREACHED*/
   1240 	} else {
   1241 		/*
   1242 		 * Find out if any of the sleeps are interruptable,
   1243 		 * and if all the live LWPs remaining are suspended.
   1244 		 */
   1245 		allsusp = 1;
   1246 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1247 			if (l->l_stat == LSSLEEP &&
   1248 			    l->l_flag & L_SINTR)
   1249 				break;
   1250 			if (l->l_stat == LSSUSPENDED)
   1251 				suspended = l;
   1252 			else if ((l->l_stat != LSZOMB) &&
   1253 			    (l->l_stat != LSDEAD))
   1254 				allsusp = 0;
   1255 		}
   1256 	}
   1257 
   1258  found:
   1259 	switch (p->p_stat) {
   1260 	case SACTIVE:
   1261 
   1262 		if (l != NULL && (p->p_flag & P_TRACED))
   1263 			goto run;
   1264 
   1265 		/*
   1266 		 * If SIGCONT is default (or ignored) and process is
   1267 		 * asleep, we are finished; the process should not
   1268 		 * be awakened.
   1269 		 */
   1270 		if ((prop & SA_CONT) && action == SIG_DFL) {
   1271 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1272 			goto done;
   1273 		}
   1274 
   1275 		/*
   1276 		 * When a sleeping process receives a stop
   1277 		 * signal, process immediately if possible.
   1278 		 */
   1279 		if ((prop & SA_STOP) && action == SIG_DFL) {
   1280 			/*
   1281 			 * If a child holding parent blocked,
   1282 			 * stopping could cause deadlock.
   1283 			 */
   1284 			if (p->p_flag & P_PPWAIT) {
   1285 				goto out;
   1286 			}
   1287 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1288 			p->p_xstat = signum;
   1289 			proc_stop(p, 1);	/* XXXSMP: recurse? */
   1290 			SCHED_UNLOCK(s);
   1291 			if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
   1292 				child_psignal(p);
   1293 			}
   1294 			goto done_unlocked;
   1295 		}
   1296 
   1297 		if (l == NULL) {
   1298 			/*
   1299 			 * Special case: SIGKILL of a process
   1300 			 * which is entirely composed of
   1301 			 * suspended LWPs should succeed. We
   1302 			 * make this happen by unsuspending one of
   1303 			 * them.
   1304 			 */
   1305 			if (allsusp && (signum == SIGKILL)) {
   1306 				lwp_continue(suspended);
   1307 			}
   1308 			goto done;
   1309 		}
   1310 		/*
   1311 		 * All other (caught or default) signals
   1312 		 * cause the process to run.
   1313 		 */
   1314 		goto runfast;
   1315 		/*NOTREACHED*/
   1316 	case SSTOP:
   1317 		/* Process is stopped */
   1318 		/*
   1319 		 * If traced process is already stopped,
   1320 		 * then no further action is necessary.
   1321 		 */
   1322 		if (p->p_flag & P_TRACED)
   1323 			goto done;
   1324 
   1325 		/*
   1326 		 * Kill signal always sets processes running,
   1327 		 * if possible.
   1328 		 */
   1329 		if (signum == SIGKILL) {
   1330 			l = proc_unstop(p);
   1331 			if (l)
   1332 				goto runfast;
   1333 			goto done;
   1334 		}
   1335 
   1336 		if (prop & SA_CONT) {
   1337 			/*
   1338 			 * If SIGCONT is default (or ignored),
   1339 			 * we continue the process but don't
   1340 			 * leave the signal in ps_siglist, as
   1341 			 * it has no further action.  If
   1342 			 * SIGCONT is held, we continue the
   1343 			 * process and leave the signal in
   1344 			 * ps_siglist.  If the process catches
   1345 			 * SIGCONT, let it handle the signal
   1346 			 * itself.  If it isn't waiting on an
   1347 			 * event, then it goes back to run
   1348 			 * state.  Otherwise, process goes
   1349 			 * back to sleep state.
   1350 			 */
   1351 			if (action == SIG_DFL)
   1352 				sigdelset(&p->p_sigctx.ps_siglist,
   1353 				    signum);
   1354 			l = proc_unstop(p);
   1355 			if (l && (action == SIG_CATCH))
   1356 				goto runfast;
   1357 			goto out;
   1358 		}
   1359 
   1360 		if (prop & SA_STOP) {
   1361 			/*
   1362 			 * Already stopped, don't need to stop again.
   1363 			 * (If we did the shell could get confused.)
   1364 			 */
   1365 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1366 			goto done;
   1367 		}
   1368 
   1369 		/*
   1370 		 * If a lwp is sleeping interruptibly, then
   1371 		 * wake it up; it will run until the kernel
   1372 		 * boundary, where it will stop in issignal(),
   1373 		 * since p->p_stat is still SSTOP. When the
   1374 		 * process is continued, it will be made
   1375 		 * runnable and can look at the signal.
   1376 		 */
   1377 		if (l)
   1378 			goto run;
   1379 		goto out;
   1380 	case SIDL:
   1381 		/* Process is being created by fork */
   1382 		/* XXX: We are not ready to receive signals yet */
   1383 		goto done;
   1384 	default:
   1385 		/* Else what? */
   1386 		panic("psignal: Invalid process state %d.", p->p_stat);
   1387 	}
   1388 	/*NOTREACHED*/
   1389 
   1390  runfast:
   1391 	if (action == SIG_CATCH) {
   1392 		ksiginfo_queue(p, ksi, &newkp);
   1393 		action = SIG_HOLD;
   1394 	}
   1395 	/*
   1396 	 * Raise priority to at least PUSER.
   1397 	 */
   1398 	if (l->l_priority > PUSER)
   1399 		l->l_priority = PUSER;
   1400  run:
   1401 	if (action == SIG_CATCH) {
   1402 		ksiginfo_queue(p, ksi, &newkp);
   1403 		action = SIG_HOLD;
   1404 	}
   1405 
   1406 	setrunnable(l);		/* XXXSMP: recurse? */
   1407  out:
   1408 	if (action == SIG_CATCH)
   1409 		ksiginfo_queue(p, ksi, &newkp);
   1410  done:
   1411 	SCHED_UNLOCK(s);
   1412 
   1413  done_unlocked:
   1414 	if (newkp)
   1415 		ksiginfo_free(newkp);
   1416 }
   1417 
   1418 siginfo_t *
   1419 siginfo_alloc(int flags)
   1420 {
   1421 
   1422 	return pool_get(&siginfo_pool, flags);
   1423 }
   1424 
   1425 void
   1426 siginfo_free(void *arg)
   1427 {
   1428 
   1429 	pool_put(&siginfo_pool, arg);
   1430 }
   1431 
   1432 void
   1433 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1434 {
   1435 	struct proc *p = l->l_proc;
   1436 	struct lwp *le, *li;
   1437 	siginfo_t *si;
   1438 	int f;
   1439 
   1440 	if (p->p_flag & P_SA) {
   1441 
   1442 		/* XXXUPSXXX What if not on sa_vp ? */
   1443 
   1444 		f = l->l_flag & L_SA;
   1445 		l->l_flag &= ~L_SA;
   1446 		si = siginfo_alloc(PR_WAITOK);
   1447 		si->_info = ksi->ksi_info;
   1448 		le = li = NULL;
   1449 		if (KSI_TRAP_P(ksi))
   1450 			le = l;
   1451 		else
   1452 			li = l;
   1453 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1454 		    sizeof(*si), si, siginfo_free) != 0) {
   1455 			siginfo_free(si);
   1456 #if 0
   1457 			if (KSI_TRAP_P(ksi))
   1458 				/* XXX What do we do here?? */;
   1459 #endif
   1460 		}
   1461 		l->l_flag |= f;
   1462 		return;
   1463 	}
   1464 
   1465 	(*p->p_emul->e_sendsig)(ksi, mask);
   1466 }
   1467 
   1468 static inline int firstsig(const sigset_t *);
   1469 
   1470 static inline int
   1471 firstsig(const sigset_t *ss)
   1472 {
   1473 	int sig;
   1474 
   1475 	sig = ffs(ss->__bits[0]);
   1476 	if (sig != 0)
   1477 		return (sig);
   1478 #if NSIG > 33
   1479 	sig = ffs(ss->__bits[1]);
   1480 	if (sig != 0)
   1481 		return (sig + 32);
   1482 #endif
   1483 #if NSIG > 65
   1484 	sig = ffs(ss->__bits[2]);
   1485 	if (sig != 0)
   1486 		return (sig + 64);
   1487 #endif
   1488 #if NSIG > 97
   1489 	sig = ffs(ss->__bits[3]);
   1490 	if (sig != 0)
   1491 		return (sig + 96);
   1492 #endif
   1493 	return (0);
   1494 }
   1495 
   1496 /*
   1497  * If the current process has received a signal (should be caught or cause
   1498  * termination, should interrupt current syscall), return the signal number.
   1499  * Stop signals with default action are processed immediately, then cleared;
   1500  * they aren't returned.  This is checked after each entry to the system for
   1501  * a syscall or trap (though this can usually be done without calling issignal
   1502  * by checking the pending signal masks in the CURSIG macro.) The normal call
   1503  * sequence is
   1504  *
   1505  *	while (signum = CURSIG(curlwp))
   1506  *		postsig(signum);
   1507  */
   1508 int
   1509 issignal(struct lwp *l)
   1510 {
   1511 	struct proc	*p = l->l_proc;
   1512 	int		s, signum, prop;
   1513 	sigset_t	ss;
   1514 
   1515 	/* Bail out if we do not own the virtual processor */
   1516 	if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
   1517 		return 0;
   1518 
   1519 	KERNEL_PROC_LOCK(l);
   1520 
   1521 	if (p->p_stat == SSTOP) {
   1522 		/*
   1523 		 * The process is stopped/stopping. Stop ourselves now that
   1524 		 * we're on the kernel/userspace boundary.
   1525 		 */
   1526 		SCHED_LOCK(s);
   1527 		l->l_stat = LSSTOP;
   1528 		p->p_nrlwps--;
   1529 		if (p->p_flag & P_TRACED)
   1530 			goto sigtraceswitch;
   1531 		else
   1532 			goto sigswitch;
   1533 	}
   1534 	for (;;) {
   1535 		sigpending1(p, &ss);
   1536 		if (p->p_flag & P_PPWAIT)
   1537 			sigminusset(&stopsigmask, &ss);
   1538 		signum = firstsig(&ss);
   1539 		if (signum == 0) {		 	/* no signal to send */
   1540 			p->p_sigctx.ps_sigcheck = 0;
   1541 			KERNEL_PROC_UNLOCK(l);
   1542 			return (0);
   1543 		}
   1544 							/* take the signal! */
   1545 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   1546 
   1547 		/*
   1548 		 * We should see pending but ignored signals
   1549 		 * only if P_TRACED was on when they were posted.
   1550 		 */
   1551 		if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
   1552 		    (p->p_flag & P_TRACED) == 0)
   1553 			continue;
   1554 
   1555 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
   1556 			/*
   1557 			 * If traced, always stop, and stay
   1558 			 * stopped until released by the debugger.
   1559 			 */
   1560 			p->p_xstat = signum;
   1561 
   1562 			/* Emulation-specific handling of signal trace */
   1563 			if ((p->p_emul->e_tracesig != NULL) &&
   1564 			    ((*p->p_emul->e_tracesig)(p, signum) != 0))
   1565 				goto childresumed;
   1566 
   1567 			if ((p->p_flag & P_FSTRACE) == 0)
   1568 				child_psignal(p);
   1569 			SCHED_LOCK(s);
   1570 			proc_stop(p, 1);
   1571 		sigtraceswitch:
   1572 			mi_switch(l, NULL);
   1573 			SCHED_ASSERT_UNLOCKED();
   1574 			splx(s);
   1575 
   1576 		childresumed:
   1577 			/*
   1578 			 * If we are no longer being traced, or the parent
   1579 			 * didn't give us a signal, look for more signals.
   1580 			 */
   1581 			if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
   1582 				continue;
   1583 
   1584 			/*
   1585 			 * If the new signal is being masked, look for other
   1586 			 * signals.
   1587 			 */
   1588 			signum = p->p_xstat;
   1589 			p->p_xstat = 0;
   1590 			/*
   1591 			 * `p->p_sigctx.ps_siglist |= mask' is done
   1592 			 * in setrunnable().
   1593 			 */
   1594 			if (sigismember(&p->p_sigctx.ps_sigmask, signum))
   1595 				continue;
   1596 							/* take the signal! */
   1597 			sigdelset(&p->p_sigctx.ps_siglist, signum);
   1598 		}
   1599 
   1600 		prop = sigprop[signum];
   1601 
   1602 		/*
   1603 		 * Decide whether the signal should be returned.
   1604 		 * Return the signal's number, or fall through
   1605 		 * to clear it from the pending mask.
   1606 		 */
   1607 		switch ((long)SIGACTION(p, signum).sa_handler) {
   1608 
   1609 		case (long)SIG_DFL:
   1610 			/*
   1611 			 * Don't take default actions on system processes.
   1612 			 */
   1613 			if (p->p_pid <= 1) {
   1614 #ifdef DIAGNOSTIC
   1615 				/*
   1616 				 * Are you sure you want to ignore SIGSEGV
   1617 				 * in init? XXX
   1618 				 */
   1619 				printf("Process (pid %d) got signal %d\n",
   1620 				    p->p_pid, signum);
   1621 #endif
   1622 				break;		/* == ignore */
   1623 			}
   1624 			/*
   1625 			 * If there is a pending stop signal to process
   1626 			 * with default action, stop here,
   1627 			 * then clear the signal.  However,
   1628 			 * if process is member of an orphaned
   1629 			 * process group, ignore tty stop signals.
   1630 			 */
   1631 			if (prop & SA_STOP) {
   1632 				if (p->p_flag & P_TRACED ||
   1633 		    		    (p->p_pgrp->pg_jobc == 0 &&
   1634 				    prop & SA_TTYSTOP))
   1635 					break;	/* == ignore */
   1636 				p->p_xstat = signum;
   1637 				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
   1638 					child_psignal(p);
   1639 				SCHED_LOCK(s);
   1640 				proc_stop(p, 1);
   1641 			sigswitch:
   1642 				mi_switch(l, NULL);
   1643 				SCHED_ASSERT_UNLOCKED();
   1644 				splx(s);
   1645 				break;
   1646 			} else if (prop & SA_IGNORE) {
   1647 				/*
   1648 				 * Except for SIGCONT, shouldn't get here.
   1649 				 * Default action is to ignore; drop it.
   1650 				 */
   1651 				break;		/* == ignore */
   1652 			} else
   1653 				goto keep;
   1654 			/*NOTREACHED*/
   1655 
   1656 		case (long)SIG_IGN:
   1657 			/*
   1658 			 * Masking above should prevent us ever trying
   1659 			 * to take action on an ignored signal other
   1660 			 * than SIGCONT, unless process is traced.
   1661 			 */
   1662 #ifdef DEBUG_ISSIGNAL
   1663 			if ((prop & SA_CONT) == 0 &&
   1664 			    (p->p_flag & P_TRACED) == 0)
   1665 				printf("issignal\n");
   1666 #endif
   1667 			break;		/* == ignore */
   1668 
   1669 		default:
   1670 			/*
   1671 			 * This signal has an action, let
   1672 			 * postsig() process it.
   1673 			 */
   1674 			goto keep;
   1675 		}
   1676 	}
   1677 	/* NOTREACHED */
   1678 
   1679  keep:
   1680 						/* leave the signal for later */
   1681 	sigaddset(&p->p_sigctx.ps_siglist, signum);
   1682 	CHECKSIGS(p);
   1683 	KERNEL_PROC_UNLOCK(l);
   1684 	return (signum);
   1685 }
   1686 
   1687 /*
   1688  * Put the argument process into the stopped state and notify the parent
   1689  * via wakeup.  Signals are handled elsewhere.  The process must not be
   1690  * on the run queue.
   1691  */
   1692 void
   1693 proc_stop(struct proc *p, int dowakeup)
   1694 {
   1695 	struct lwp *l;
   1696 	struct proc *parent;
   1697 	struct sadata_vp *vp;
   1698 
   1699 	SCHED_ASSERT_LOCKED();
   1700 
   1701 	/* XXX lock process LWP state */
   1702 	p->p_flag &= ~P_WAITED;
   1703 	p->p_stat = SSTOP;
   1704 	parent = p->p_pptr;
   1705 	parent->p_nstopchild++;
   1706 
   1707 	if (p->p_flag & P_SA) {
   1708 		/*
   1709 		 * Only (try to) put the LWP on the VP in stopped
   1710 		 * state.
   1711 		 * All other LWPs will suspend in sa_setwoken()
   1712 		 * because the VP-LWP in stopped state cannot be
   1713 		 * repossessed.
   1714 		 */
   1715 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1716 			l = vp->savp_lwp;
   1717 			if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
   1718 				l->l_stat = LSSTOP;
   1719 				p->p_nrlwps--;
   1720 			} else if (l->l_stat == LSRUN) {
   1721 				/* Remove LWP from the run queue */
   1722 				remrunqueue(l);
   1723 				l->l_stat = LSSTOP;
   1724 				p->p_nrlwps--;
   1725 			} else if (l->l_stat == LSSLEEP &&
   1726 			    l->l_flag & L_SA_IDLE) {
   1727 				l->l_flag &= ~L_SA_IDLE;
   1728 				l->l_stat = LSSTOP;
   1729 			}
   1730 		}
   1731 		goto out;
   1732 	}
   1733 
   1734 	/*
   1735 	 * Put as many LWP's as possible in stopped state.
   1736 	 * Sleeping ones will notice the stopped state as they try to
   1737 	 * return to userspace.
   1738 	 */
   1739 
   1740 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1741 		if (l->l_stat == LSONPROC) {
   1742 			/* XXX SMP this assumes that a LWP that is LSONPROC
   1743 			 * is curlwp and hence is about to be mi_switched
   1744 			 * away; the only callers of proc_stop() are:
   1745 			 * - psignal
   1746 			 * - issignal()
   1747 			 * For the former, proc_stop() is only called when
   1748 			 * no processes are running, so we don't worry.
   1749 			 * For the latter, proc_stop() is called right
   1750 			 * before mi_switch().
   1751 			 */
   1752 			l->l_stat = LSSTOP;
   1753 			p->p_nrlwps--;
   1754 		} else if (l->l_stat == LSRUN) {
   1755 			/* Remove LWP from the run queue */
   1756 			remrunqueue(l);
   1757 			l->l_stat = LSSTOP;
   1758 			p->p_nrlwps--;
   1759 		} else if ((l->l_stat == LSSLEEP) ||
   1760 		    (l->l_stat == LSSUSPENDED) ||
   1761 		    (l->l_stat == LSZOMB) ||
   1762 		    (l->l_stat == LSDEAD)) {
   1763 			/*
   1764 			 * Don't do anything; let sleeping LWPs
   1765 			 * discover the stopped state of the process
   1766 			 * on their way out of the kernel; otherwise,
   1767 			 * things like NFS threads that sleep with
   1768 			 * locks will block the rest of the system
   1769 			 * from getting any work done.
   1770 			 *
   1771 			 * Suspended/dead/zombie LWPs aren't going
   1772 			 * anywhere, so we don't need to touch them.
   1773 			 */
   1774 		}
   1775 #ifdef DIAGNOSTIC
   1776 		else {
   1777 			panic("proc_stop: process %d lwp %d "
   1778 			      "in unstoppable state %d.\n",
   1779 			    p->p_pid, l->l_lid, l->l_stat);
   1780 		}
   1781 #endif
   1782 	}
   1783 
   1784  out:
   1785 	/* XXX unlock process LWP state */
   1786 
   1787 	if (dowakeup)
   1788 		sched_wakeup((caddr_t)p->p_pptr);
   1789 }
   1790 
   1791 /*
   1792  * Given a process in state SSTOP, set the state back to SACTIVE and
   1793  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   1794  *
   1795  * If no LWPs ended up runnable (and therefore able to take a signal),
   1796  * return a LWP that is sleeping interruptably. The caller can wake
   1797  * that LWP up to take a signal.
   1798  */
   1799 struct lwp *
   1800 proc_unstop(struct proc *p)
   1801 {
   1802 	struct lwp *l, *lr = NULL;
   1803 	struct sadata_vp *vp;
   1804 	int cantake = 0;
   1805 
   1806 	SCHED_ASSERT_LOCKED();
   1807 
   1808 	/*
   1809 	 * Our caller wants to be informed if there are only sleeping
   1810 	 * and interruptable LWPs left after we have run so that it
   1811 	 * can invoke setrunnable() if required - return one of the
   1812 	 * interruptable LWPs if this is the case.
   1813 	 */
   1814 
   1815 	if (!(p->p_flag & P_WAITED))
   1816 		p->p_pptr->p_nstopchild--;
   1817 	p->p_stat = SACTIVE;
   1818 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1819 		if (l->l_stat == LSRUN) {
   1820 			lr = NULL;
   1821 			cantake = 1;
   1822 		}
   1823 		if (l->l_stat != LSSTOP)
   1824 			continue;
   1825 
   1826 		if (l->l_wchan != NULL) {
   1827 			l->l_stat = LSSLEEP;
   1828 			if ((cantake == 0) && (l->l_flag & L_SINTR)) {
   1829 				lr = l;
   1830 				cantake = 1;
   1831 			}
   1832 		} else {
   1833 			setrunnable(l);
   1834 			lr = NULL;
   1835 			cantake = 1;
   1836 		}
   1837 	}
   1838 	if (p->p_flag & P_SA) {
   1839 		/* Only consider returning the LWP on the VP. */
   1840 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1841 			lr = vp->savp_lwp;
   1842 			if (lr->l_stat == LSSLEEP) {
   1843 				if (lr->l_flag & L_SA_YIELD) {
   1844 					setrunnable(lr);
   1845 					break;
   1846 				} else if (lr->l_flag & L_SINTR)
   1847 					return lr;
   1848 			}
   1849 		}
   1850 		return NULL;
   1851 	}
   1852 	return lr;
   1853 }
   1854 
   1855 /*
   1856  * Take the action for the specified signal
   1857  * from the current set of pending signals.
   1858  */
   1859 void
   1860 postsig(int signum)
   1861 {
   1862 	struct lwp *l;
   1863 	struct proc	*p;
   1864 	struct sigacts	*ps;
   1865 	sig_t		action;
   1866 	sigset_t	*returnmask;
   1867 
   1868 	l = curlwp;
   1869 	p = l->l_proc;
   1870 	ps = p->p_sigacts;
   1871 #ifdef DIAGNOSTIC
   1872 	if (signum == 0)
   1873 		panic("postsig");
   1874 #endif
   1875 
   1876 	KERNEL_PROC_LOCK(l);
   1877 
   1878 #ifdef MULTIPROCESSOR
   1879 	/*
   1880 	 * On MP, issignal() can return the same signal to multiple
   1881 	 * LWPs.  The LWPs will block above waiting for the kernel
   1882 	 * lock and the first LWP which gets through will then remove
   1883 	 * the signal from ps_siglist.  All other LWPs exit here.
   1884 	 */
   1885 	if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
   1886 		KERNEL_PROC_UNLOCK(l);
   1887 		return;
   1888 	}
   1889 #endif
   1890 	sigdelset(&p->p_sigctx.ps_siglist, signum);
   1891 	action = SIGACTION_PS(ps, signum).sa_handler;
   1892 	if (action == SIG_DFL) {
   1893 #ifdef KTRACE
   1894 		if (KTRPOINT(p, KTR_PSIG))
   1895 			ktrpsig(l, signum, action,
   1896 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1897 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1898 			    NULL);
   1899 #endif
   1900 		/*
   1901 		 * Default action, where the default is to kill
   1902 		 * the process.  (Other cases were ignored above.)
   1903 		 */
   1904 		sigexit(l, signum);
   1905 		/* NOTREACHED */
   1906 	} else {
   1907 		ksiginfo_t *ksi;
   1908 		/*
   1909 		 * If we get here, the signal must be caught.
   1910 		 */
   1911 #ifdef DIAGNOSTIC
   1912 		if (action == SIG_IGN ||
   1913 		    sigismember(&p->p_sigctx.ps_sigmask, signum))
   1914 			panic("postsig action");
   1915 #endif
   1916 		/*
   1917 		 * Set the new mask value and also defer further
   1918 		 * occurrences of this signal.
   1919 		 *
   1920 		 * Special case: user has done a sigpause.  Here the
   1921 		 * current mask is not of interest, but rather the
   1922 		 * mask from before the sigpause is what we want
   1923 		 * restored after the signal processing is completed.
   1924 		 */
   1925 		if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
   1926 			returnmask = &p->p_sigctx.ps_oldmask;
   1927 			p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
   1928 		} else
   1929 			returnmask = &p->p_sigctx.ps_sigmask;
   1930 		p->p_stats->p_ru.ru_nsignals++;
   1931 		ksi = ksiginfo_dequeue(p, signum);
   1932 #ifdef KTRACE
   1933 		if (KTRPOINT(p, KTR_PSIG))
   1934 			ktrpsig(l, signum, action,
   1935 			    p->p_sigctx.ps_flags & SAS_OLDMASK ?
   1936 			    &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
   1937 			    ksi);
   1938 #endif
   1939 		if (ksi == NULL) {
   1940 			ksiginfo_t ksi1;
   1941 			/*
   1942 			 * we did not save any siginfo for this, either
   1943 			 * because the signal was not caught, or because the
   1944 			 * user did not request SA_SIGINFO
   1945 			 */
   1946 			KSI_INIT_EMPTY(&ksi1);
   1947 			ksi1.ksi_signo = signum;
   1948 			kpsendsig(l, &ksi1, returnmask);
   1949 		} else {
   1950 			kpsendsig(l, ksi, returnmask);
   1951 			ksiginfo_free(ksi);
   1952 		}
   1953 		p->p_sigctx.ps_lwp = 0;
   1954 		p->p_sigctx.ps_code = 0;
   1955 		p->p_sigctx.ps_signo = 0;
   1956 		(void) splsched();	/* XXXSMP */
   1957 		sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
   1958 		    &p->p_sigctx.ps_sigmask);
   1959 		if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
   1960 			sigdelset(&p->p_sigctx.ps_sigcatch, signum);
   1961 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
   1962 				sigaddset(&p->p_sigctx.ps_sigignore, signum);
   1963 			SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
   1964 		}
   1965 		(void) spl0();		/* XXXSMP */
   1966 	}
   1967 
   1968 	KERNEL_PROC_UNLOCK(l);
   1969 }
   1970 
   1971 /*
   1972  * Kill the current process for stated reason.
   1973  */
   1974 void
   1975 killproc(struct proc *p, const char *why)
   1976 {
   1977 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1978 	uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1979 	psignal(p, SIGKILL);
   1980 }
   1981 
   1982 /*
   1983  * Force the current process to exit with the specified signal, dumping core
   1984  * if appropriate.  We bypass the normal tests for masked and caught signals,
   1985  * allowing unrecoverable failures to terminate the process without changing
   1986  * signal state.  Mark the accounting record with the signal termination.
   1987  * If dumping core, save the signal number for the debugger.  Calls exit and
   1988  * does not return.
   1989  */
   1990 
   1991 #if defined(DEBUG)
   1992 int	kern_logsigexit = 1;	/* not static to make public for sysctl */
   1993 #else
   1994 int	kern_logsigexit = 0;	/* not static to make public for sysctl */
   1995 #endif
   1996 
   1997 static	const char logcoredump[] =
   1998 	"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
   1999 static	const char lognocoredump[] =
   2000 	"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
   2001 
   2002 /* Wrapper function for use in p_userret */
   2003 static void
   2004 lwp_coredump_hook(struct lwp *l, void *arg)
   2005 {
   2006 	int s;
   2007 
   2008 	/*
   2009 	 * Suspend ourselves, so that the kernel stack and therefore
   2010 	 * the userland registers saved in the trapframe are around
   2011 	 * for coredump() to write them out.
   2012 	 */
   2013 	KERNEL_PROC_LOCK(l);
   2014 	l->l_flag &= ~L_DETACHED;
   2015 	SCHED_LOCK(s);
   2016 	l->l_stat = LSSUSPENDED;
   2017 	l->l_proc->p_nrlwps--;
   2018 	/* XXX NJWLWP check if this makes sense here: */
   2019 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   2020 	mi_switch(l, NULL);
   2021 	SCHED_ASSERT_UNLOCKED();
   2022 	splx(s);
   2023 
   2024 	lwp_exit(l);
   2025 }
   2026 
   2027 void
   2028 sigexit(struct lwp *l, int signum)
   2029 {
   2030 	struct proc	*p;
   2031 #if 0
   2032 	struct lwp	*l2;
   2033 #endif
   2034 	int		exitsig;
   2035 #ifdef COREDUMP
   2036 	int		error;
   2037 #endif
   2038 
   2039 	p = l->l_proc;
   2040 
   2041 	/*
   2042 	 * Don't permit coredump() or exit1() multiple times
   2043 	 * in the same process.
   2044 	 */
   2045 	if (p->p_flag & P_WEXIT) {
   2046 		KERNEL_PROC_UNLOCK(l);
   2047 		(*p->p_userret)(l, p->p_userret_arg);
   2048 	}
   2049 	p->p_flag |= P_WEXIT;
   2050 	/* We don't want to switch away from exiting. */
   2051 	/* XXX multiprocessor: stop LWPs on other processors. */
   2052 #if 0
   2053 	if (p->p_flag & P_SA) {
   2054 		LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   2055 		    l2->l_flag &= ~L_SA;
   2056 		p->p_flag &= ~P_SA;
   2057 	}
   2058 #endif
   2059 
   2060 	/* Make other LWPs stick around long enough to be dumped */
   2061 	p->p_userret = lwp_coredump_hook;
   2062 	p->p_userret_arg = NULL;
   2063 
   2064 	exitsig = signum;
   2065 	p->p_acflag |= AXSIG;
   2066 	if (sigprop[signum] & SA_CORE) {
   2067 		p->p_sigctx.ps_signo = signum;
   2068 #ifdef COREDUMP
   2069 		if ((error = coredump(l, NULL)) == 0)
   2070 			exitsig |= WCOREFLAG;
   2071 #endif
   2072 
   2073 		if (kern_logsigexit) {
   2074 			/* XXX What if we ever have really large UIDs? */
   2075 			int uid = l->l_cred ?
   2076 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2077 
   2078 #ifdef COREDUMP
   2079 			if (error)
   2080 				log(LOG_INFO, lognocoredump, p->p_pid,
   2081 				    p->p_comm, uid, signum, error);
   2082 			else
   2083 #endif
   2084 				log(LOG_INFO, logcoredump, p->p_pid,
   2085 				    p->p_comm, uid, signum);
   2086 		}
   2087 
   2088 	}
   2089 
   2090 	exit1(l, W_EXITCODE(0, exitsig));
   2091 	/* NOTREACHED */
   2092 }
   2093 
   2094 #ifdef COREDUMP
   2095 struct coredump_iostate {
   2096 	struct lwp *io_lwp;
   2097 	struct vnode *io_vp;
   2098 	kauth_cred_t io_cred;
   2099 	off_t io_offset;
   2100 };
   2101 
   2102 int
   2103 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
   2104 {
   2105 	struct coredump_iostate *io = cookie;
   2106 	int error;
   2107 
   2108 	error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
   2109 	    io->io_offset, segflg,
   2110 	    IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
   2111 	    segflg == UIO_USERSPACE ? io->io_lwp : NULL);
   2112 	if (error) {
   2113 		printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
   2114 		    io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
   2115 		    segflg == UIO_USERSPACE ? "user" : "system",
   2116 		    len, data, (long long) io->io_offset, error);
   2117 		return (error);
   2118 	}
   2119 
   2120 	io->io_offset += len;
   2121 	return (0);
   2122 }
   2123 
   2124 /*
   2125  * Dump core, into a file named "progname.core" or "core" (depending on the
   2126  * value of shortcorename), unless the process was setuid/setgid.
   2127  */
   2128 int
   2129 coredump(struct lwp *l, const char *pattern)
   2130 {
   2131 	struct vnode		*vp;
   2132 	struct proc		*p;
   2133 	struct vmspace		*vm;
   2134 	kauth_cred_t		cred;
   2135 	struct nameidata	nd;
   2136 	struct vattr		vattr;
   2137 	struct mount		*mp;
   2138 	struct coredump_iostate	io;
   2139 	int			error, error1;
   2140 	char			*name = NULL;
   2141 
   2142 	p = l->l_proc;
   2143 	vm = p->p_vmspace;
   2144 	cred = l->l_cred;
   2145 
   2146 	/*
   2147 	 * Make sure the process has not set-id, to prevent data leaks,
   2148 	 * unless it was specifically requested to allow set-id coredumps.
   2149 	 */
   2150 	if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
   2151 		return EPERM;
   2152 
   2153 	/*
   2154 	 * Refuse to core if the data + stack + user size is larger than
   2155 	 * the core dump limit.  XXX THIS IS WRONG, because of mapped
   2156 	 * data.
   2157 	 */
   2158 	if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
   2159 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
   2160 		return EFBIG;		/* better error code? */
   2161 
   2162 restart:
   2163 	/*
   2164 	 * The core dump will go in the current working directory.  Make
   2165 	 * sure that the directory is still there and that the mount flags
   2166 	 * allow us to write core dumps there.
   2167 	 */
   2168 	vp = p->p_cwdi->cwdi_cdir;
   2169 	if (vp->v_mount == NULL ||
   2170 	    (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
   2171 		error = EPERM;
   2172 		goto done;
   2173 	}
   2174 
   2175 	if ((p->p_flag & P_SUGID) && security_setidcore_dump)
   2176 		pattern = security_setidcore_path;
   2177 
   2178 	if (pattern == NULL)
   2179 		pattern = p->p_limit->pl_corename;
   2180 	if (name == NULL) {
   2181 		name = PNBUF_GET();
   2182 	}
   2183 	if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
   2184 		goto done;
   2185 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
   2186 	if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
   2187 	    S_IRUSR | S_IWUSR)) != 0)
   2188 		goto done;
   2189 	vp = nd.ni_vp;
   2190 
   2191 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
   2192 		VOP_UNLOCK(vp, 0);
   2193 		if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
   2194 			goto done;
   2195 		if ((error = vn_start_write(NULL, &mp,
   2196 		    V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
   2197 			goto done;
   2198 		goto restart;
   2199 	}
   2200 
   2201 	/* Don't dump to non-regular files or files with links. */
   2202 	if (vp->v_type != VREG ||
   2203 	    VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
   2204 		error = EINVAL;
   2205 		goto out;
   2206 	}
   2207 	VATTR_NULL(&vattr);
   2208 	vattr.va_size = 0;
   2209 
   2210 	if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
   2211 		vattr.va_uid = security_setidcore_owner;
   2212 		vattr.va_gid = security_setidcore_group;
   2213 		vattr.va_mode = security_setidcore_mode;
   2214 	}
   2215 
   2216 	VOP_LEASE(vp, l, cred, LEASE_WRITE);
   2217 	VOP_SETATTR(vp, &vattr, cred, l);
   2218 	p->p_acflag |= ACORE;
   2219 
   2220 	io.io_lwp = l;
   2221 	io.io_vp = vp;
   2222 	io.io_cred = cred;
   2223 	io.io_offset = 0;
   2224 
   2225 	/* Now dump the actual core file. */
   2226 	error = (*p->p_execsw->es_coredump)(l, &io);
   2227  out:
   2228 	VOP_UNLOCK(vp, 0);
   2229 	vn_finished_write(mp, 0);
   2230 	error1 = vn_close(vp, FWRITE, cred, l);
   2231 	if (error == 0)
   2232 		error = error1;
   2233 done:
   2234 	if (name != NULL)
   2235 		PNBUF_PUT(name);
   2236 	return error;
   2237 }
   2238 #endif /* COREDUMP */
   2239 
   2240 /*
   2241  * Nonexistent system call-- signal process (may want to handle it).
   2242  * Flag error in case process won't see signal immediately (blocked or ignored).
   2243  */
   2244 #ifndef PTRACE
   2245 __weak_alias(sys_ptrace, sys_nosys);
   2246 #endif
   2247 
   2248 /* ARGSUSED */
   2249 int
   2250 sys_nosys(struct lwp *l, void *v, register_t *retval)
   2251 {
   2252 	struct proc 	*p;
   2253 
   2254 	p = l->l_proc;
   2255 	psignal(p, SIGSYS);
   2256 	return (ENOSYS);
   2257 }
   2258 
   2259 #ifdef COREDUMP
   2260 static int
   2261 build_corename(struct proc *p, char *dst, const char *src, size_t len)
   2262 {
   2263 	const char	*s;
   2264 	char		*d, *end;
   2265 	int		i;
   2266 
   2267 	for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
   2268 		if (*s == '%') {
   2269 			switch (*(s + 1)) {
   2270 			case 'n':
   2271 				i = snprintf(d, end - d, "%s", p->p_comm);
   2272 				break;
   2273 			case 'p':
   2274 				i = snprintf(d, end - d, "%d", p->p_pid);
   2275 				break;
   2276 			case 'u':
   2277 				i = snprintf(d, end - d, "%.*s",
   2278 				    (int)sizeof p->p_pgrp->pg_session->s_login,
   2279 				    p->p_pgrp->pg_session->s_login);
   2280 				break;
   2281 			case 't':
   2282 				i = snprintf(d, end - d, "%ld",
   2283 				    p->p_stats->p_start.tv_sec);
   2284 				break;
   2285 			default:
   2286 				goto copy;
   2287 			}
   2288 			d += i;
   2289 			s++;
   2290 		} else {
   2291  copy:			*d = *s;
   2292 			d++;
   2293 		}
   2294 		if (d >= end)
   2295 			return (ENAMETOOLONG);
   2296 	}
   2297 	*d = '\0';
   2298 	return 0;
   2299 }
   2300 #endif /* COREDUMP */
   2301 
   2302 void
   2303 getucontext(struct lwp *l, ucontext_t *ucp)
   2304 {
   2305 	struct proc	*p;
   2306 
   2307 	p = l->l_proc;
   2308 
   2309 	ucp->uc_flags = 0;
   2310 	ucp->uc_link = l->l_ctxlink;
   2311 
   2312 	(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
   2313 	ucp->uc_flags |= _UC_SIGMASK;
   2314 
   2315 	/*
   2316 	 * The (unsupplied) definition of the `current execution stack'
   2317 	 * in the System V Interface Definition appears to allow returning
   2318 	 * the main context stack.
   2319 	 */
   2320 	if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
   2321 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
   2322 		ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
   2323 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
   2324 	} else {
   2325 		/* Simply copy alternate signal execution stack. */
   2326 		ucp->uc_stack = p->p_sigctx.ps_sigstk;
   2327 	}
   2328 	ucp->uc_flags |= _UC_STACK;
   2329 
   2330 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
   2331 }
   2332 
   2333 /* ARGSUSED */
   2334 int
   2335 sys_getcontext(struct lwp *l, void *v, register_t *retval)
   2336 {
   2337 	struct sys_getcontext_args /* {
   2338 		syscallarg(struct __ucontext *) ucp;
   2339 	} */ *uap = v;
   2340 	ucontext_t uc;
   2341 
   2342 	getucontext(l, &uc);
   2343 
   2344 	return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
   2345 }
   2346 
   2347 int
   2348 setucontext(struct lwp *l, const ucontext_t *ucp)
   2349 {
   2350 	struct proc	*p;
   2351 	int		error;
   2352 
   2353 	p = l->l_proc;
   2354 	if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
   2355 		return (error);
   2356 	l->l_ctxlink = ucp->uc_link;
   2357 
   2358 	if ((ucp->uc_flags & _UC_SIGMASK) != 0)
   2359 		sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
   2360 
   2361 	/*
   2362 	 * If there was stack information, update whether or not we are
   2363 	 * still running on an alternate signal stack.
   2364 	 */
   2365 	if ((ucp->uc_flags & _UC_STACK) != 0) {
   2366 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
   2367 			p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   2368 		else
   2369 			p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   2370 	}
   2371 
   2372 	return 0;
   2373 }
   2374 
   2375 /* ARGSUSED */
   2376 int
   2377 sys_setcontext(struct lwp *l, void *v, register_t *retval)
   2378 {
   2379 	struct sys_setcontext_args /* {
   2380 		syscallarg(const ucontext_t *) ucp;
   2381 	} */ *uap = v;
   2382 	ucontext_t uc;
   2383 	int error;
   2384 
   2385 	if (SCARG(uap, ucp) == NULL)	/* i.e. end of uc_link chain */
   2386 		exit1(l, W_EXITCODE(0, 0));
   2387 	else if ((error = copyin(SCARG(uap, ucp), &uc, sizeof (uc))) != 0 ||
   2388 	    (error = setucontext(l, &uc)) != 0)
   2389 		return (error);
   2390 
   2391 	return (EJUSTRETURN);
   2392 }
   2393 
   2394 /*
   2395  * sigtimedwait(2) system call, used also for implementation
   2396  * of sigwaitinfo() and sigwait().
   2397  *
   2398  * This only handles single LWP in signal wait. libpthread provides
   2399  * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
   2400  */
   2401 int
   2402 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
   2403 {
   2404 	return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
   2405 }
   2406 
   2407 int
   2408 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
   2409     copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
   2410 {
   2411 	struct sys___sigtimedwait_args /* {
   2412 		syscallarg(const sigset_t *) set;
   2413 		syscallarg(siginfo_t *) info;
   2414 		syscallarg(struct timespec *) timeout;
   2415 	} */ *uap = v;
   2416 	sigset_t *waitset, twaitset;
   2417 	struct proc *p = l->l_proc;
   2418 	int error, signum;
   2419 	int timo = 0;
   2420 	struct timespec ts, tsstart;
   2421 	ksiginfo_t *ksi;
   2422 
   2423 	memset(&tsstart, 0, sizeof tsstart);	 /* XXX gcc */
   2424 
   2425 	MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
   2426 
   2427 	if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
   2428 		FREE(waitset, M_TEMP);
   2429 		return (error);
   2430 	}
   2431 
   2432 	/*
   2433 	 * Silently ignore SA_CANTMASK signals. psignal() would
   2434 	 * ignore SA_CANTMASK signals in waitset, we do this
   2435 	 * only for the below siglist check.
   2436 	 */
   2437 	sigminusset(&sigcantmask, waitset);
   2438 
   2439 	/*
   2440 	 * First scan siglist and check if there is signal from
   2441 	 * our waitset already pending.
   2442 	 */
   2443 	twaitset = *waitset;
   2444 	__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
   2445 	if ((signum = firstsig(&twaitset))) {
   2446 		/* found pending signal */
   2447 		sigdelset(&p->p_sigctx.ps_siglist, signum);
   2448 		ksi = ksiginfo_dequeue(p, signum);
   2449 		if (!ksi) {
   2450 			/* No queued siginfo, manufacture one */
   2451 			ksi = ksiginfo_alloc(PR_WAITOK);
   2452 			KSI_INIT(ksi);
   2453 			ksi->ksi_info._signo = signum;
   2454 			ksi->ksi_info._code = SI_USER;
   2455 		}
   2456 
   2457 		goto sig;
   2458 	}
   2459 
   2460 	/*
   2461 	 * Calculate timeout, if it was specified.
   2462 	 */
   2463 	if (SCARG(uap, timeout)) {
   2464 		uint64_t ms;
   2465 
   2466 		if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
   2467 			return (error);
   2468 
   2469 		ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
   2470 		timo = mstohz(ms);
   2471 		if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
   2472 			timo = 1;
   2473 		if (timo <= 0)
   2474 			return (EAGAIN);
   2475 
   2476 		/*
   2477 		 * Remember current uptime, it would be used in
   2478 		 * ECANCELED/ERESTART case.
   2479 		 */
   2480 		getnanouptime(&tsstart);
   2481 	}
   2482 
   2483 	/*
   2484 	 * Setup ps_sigwait list. Pass pointer to malloced memory
   2485 	 * here; it's not possible to pass pointer to a structure
   2486 	 * on current process's stack, the current process might
   2487 	 * be swapped out at the time the signal would get delivered.
   2488 	 */
   2489 	ksi = ksiginfo_alloc(PR_WAITOK);
   2490 	p->p_sigctx.ps_sigwaited = ksi;
   2491 	p->p_sigctx.ps_sigwait = waitset;
   2492 
   2493 	/*
   2494 	 * Wait for signal to arrive. We can either be woken up or
   2495 	 * time out.
   2496 	 */
   2497 	error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
   2498 
   2499 	/*
   2500 	 * Need to find out if we woke as a result of lwp_wakeup()
   2501 	 * or a signal outside our wait set.
   2502 	 */
   2503 	if (error == EINTR && p->p_sigctx.ps_sigwaited
   2504 	    && !firstsig(&p->p_sigctx.ps_siglist)) {
   2505 		/* wakeup via _lwp_wakeup() */
   2506 		error = ECANCELED;
   2507 	} else if (!error && p->p_sigctx.ps_sigwaited) {
   2508 		/* spurious wakeup - arrange for syscall restart */
   2509 		error = ERESTART;
   2510 		goto fail;
   2511 	}
   2512 
   2513 	/*
   2514 	 * On error, clear sigwait indication. psignal() clears it
   2515 	 * in !error case.
   2516 	 */
   2517 	if (error) {
   2518 		p->p_sigctx.ps_sigwaited = NULL;
   2519 
   2520 		/*
   2521 		 * If the sleep was interrupted (either by signal or wakeup),
   2522 		 * update the timeout and copyout new value back.
   2523 		 * It would be used when the syscall would be restarted
   2524 		 * or called again.
   2525 		 */
   2526 		if (timo && (error == ERESTART || error == ECANCELED)) {
   2527 			struct timespec tsnow;
   2528 			int err;
   2529 
   2530 /* XXX double check the following change */
   2531 			getnanouptime(&tsnow);
   2532 
   2533 			/* compute how much time has passed since start */
   2534 			timespecsub(&tsnow, &tsstart, &tsnow);
   2535 			/* substract passed time from timeout */
   2536 			timespecsub(&ts, &tsnow, &ts);
   2537 
   2538 			if (ts.tv_sec < 0) {
   2539 				error = EAGAIN;
   2540 				goto fail;
   2541 			}
   2542 /* XXX double check the previous change */
   2543 
   2544 			/* copy updated timeout to userland */
   2545 			if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
   2546 			    sizeof(ts)))) {
   2547 				error = err;
   2548 				goto fail;
   2549 			}
   2550 		}
   2551 
   2552 		goto fail;
   2553 	}
   2554 
   2555 	/*
   2556 	 * If a signal from the wait set arrived, copy it to userland.
   2557 	 * Copy only the used part of siginfo, the padding part is
   2558 	 * left unchanged (userland is not supposed to touch it anyway).
   2559 	 */
   2560  sig:
   2561 	return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
   2562 
   2563  fail:
   2564 	FREE(waitset, M_TEMP);
   2565 	ksiginfo_free(ksi);
   2566 	p->p_sigctx.ps_sigwait = NULL;
   2567 
   2568 	return (error);
   2569 }
   2570 
   2571 /*
   2572  * Returns true if signal is ignored or masked for passed process.
   2573  */
   2574 int
   2575 sigismasked(struct proc *p, int sig)
   2576 {
   2577 
   2578 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   2579 	    sigismember(&p->p_sigctx.ps_sigmask, sig));
   2580 }
   2581 
   2582 static int
   2583 filt_sigattach(struct knote *kn)
   2584 {
   2585 	struct proc *p = curproc;
   2586 
   2587 	kn->kn_ptr.p_proc = p;
   2588 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2589 
   2590 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2591 
   2592 	return (0);
   2593 }
   2594 
   2595 static void
   2596 filt_sigdetach(struct knote *kn)
   2597 {
   2598 	struct proc *p = kn->kn_ptr.p_proc;
   2599 
   2600 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2601 }
   2602 
   2603 /*
   2604  * signal knotes are shared with proc knotes, so we apply a mask to
   2605  * the hint in order to differentiate them from process hints.  This
   2606  * could be avoided by using a signal-specific knote list, but probably
   2607  * isn't worth the trouble.
   2608  */
   2609 static int
   2610 filt_signal(struct knote *kn, long hint)
   2611 {
   2612 
   2613 	if (hint & NOTE_SIGNAL) {
   2614 		hint &= ~NOTE_SIGNAL;
   2615 
   2616 		if (kn->kn_id == hint)
   2617 			kn->kn_data++;
   2618 	}
   2619 	return (kn->kn_data != 0);
   2620 }
   2621 
   2622 const struct filterops sig_filtops = {
   2623 	0, filt_sigattach, filt_sigdetach, filt_signal
   2624 };
   2625