kern_sig.c revision 1.239 1 /* $NetBSD: kern_sig.c,v 1.239 2006/11/08 20:18:33 drochner Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.239 2006/11/08 20:18:33 drochner Exp $");
41
42 #include "opt_coredump.h"
43 #include "opt_ktrace.h"
44 #include "opt_ptrace.h"
45 #include "opt_multiprocessor.h"
46 #include "opt_compat_sunos.h"
47 #include "opt_compat_netbsd.h"
48 #include "opt_compat_netbsd32.h"
49
50 #define SIGPROP /* include signal properties table */
51 #include <sys/param.h>
52 #include <sys/signalvar.h>
53 #include <sys/resourcevar.h>
54 #include <sys/namei.h>
55 #include <sys/vnode.h>
56 #include <sys/proc.h>
57 #include <sys/systm.h>
58 #include <sys/timeb.h>
59 #include <sys/times.h>
60 #include <sys/buf.h>
61 #include <sys/acct.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/wait.h>
65 #include <sys/ktrace.h>
66 #include <sys/syslog.h>
67 #include <sys/stat.h>
68 #include <sys/core.h>
69 #include <sys/filedesc.h>
70 #include <sys/malloc.h>
71 #include <sys/pool.h>
72 #include <sys/ucontext.h>
73 #include <sys/sa.h>
74 #include <sys/savar.h>
75 #include <sys/exec.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78
79 #include <sys/mount.h>
80 #include <sys/syscallargs.h>
81
82 #include <machine/cpu.h>
83
84 #include <sys/user.h> /* for coredump */
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_extern.h>
88
89 #ifdef COREDUMP
90 static int build_corename(struct proc *, char *, const char *, size_t);
91 #endif
92 static void ksiginfo_exithook(struct proc *, void *);
93 static void ksiginfo_queue(struct proc *, const ksiginfo_t *, ksiginfo_t **);
94 static ksiginfo_t *ksiginfo_dequeue(struct proc *, int);
95 static void kpsignal2(struct proc *, const ksiginfo_t *);
96
97 sigset_t contsigmask, stopsigmask, sigcantmask;
98
99 struct pool sigacts_pool; /* memory pool for sigacts structures */
100
101 /*
102 * struct sigacts memory pool allocator.
103 */
104
105 static void *
106 sigacts_poolpage_alloc(struct pool *pp, int flags)
107 {
108
109 return (void *)uvm_km_alloc(kernel_map,
110 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
111 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
112 | UVM_KMF_WIRED);
113 }
114
115 static void
116 sigacts_poolpage_free(struct pool *pp, void *v)
117 {
118 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
119 }
120
121 static struct pool_allocator sigactspool_allocator = {
122 .pa_alloc = sigacts_poolpage_alloc,
123 .pa_free = sigacts_poolpage_free,
124 };
125
126 static POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
127 &pool_allocator_nointr);
128 static POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
129
130 static ksiginfo_t *
131 ksiginfo_alloc(int prflags)
132 {
133 int s;
134 ksiginfo_t *ksi;
135
136 s = splsoftclock();
137 ksi = pool_get(&ksiginfo_pool, prflags);
138 splx(s);
139 return ksi;
140 }
141
142 static void
143 ksiginfo_free(ksiginfo_t *ksi)
144 {
145 int s;
146
147 s = splsoftclock();
148 pool_put(&ksiginfo_pool, ksi);
149 splx(s);
150 }
151
152 /*
153 * Remove and return the first ksiginfo element that matches our requested
154 * signal, or return NULL if one not found.
155 */
156 static ksiginfo_t *
157 ksiginfo_dequeue(struct proc *p, int signo)
158 {
159 ksiginfo_t *ksi;
160 int s;
161
162 s = splsoftclock();
163 simple_lock(&p->p_sigctx.ps_silock);
164 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
165 if (ksi->ksi_signo == signo) {
166 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
167 goto out;
168 }
169 }
170 ksi = NULL;
171 out:
172 simple_unlock(&p->p_sigctx.ps_silock);
173 splx(s);
174 return ksi;
175 }
176
177 /*
178 * Append a new ksiginfo element to the list of pending ksiginfo's, if
179 * we need to (SA_SIGINFO was requested). We replace non RT signals if
180 * they already existed in the queue and we add new entries for RT signals,
181 * or for non RT signals with non-existing entries.
182 */
183 static void
184 ksiginfo_queue(struct proc *p, const ksiginfo_t *ksi, ksiginfo_t **newkp)
185 {
186 ksiginfo_t *kp;
187 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
188 int s;
189
190 if ((sa->sa_flags & SA_SIGINFO) == 0)
191 return;
192
193 /*
194 * If there's no info, don't save it.
195 */
196 if (KSI_EMPTY_P(ksi))
197 return;
198
199 s = splsoftclock();
200 simple_lock(&p->p_sigctx.ps_silock);
201 #ifdef notyet /* XXX: QUEUING */
202 if (ksi->ksi_signo < SIGRTMIN)
203 #endif
204 {
205 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
206 if (kp->ksi_signo == ksi->ksi_signo) {
207 KSI_COPY(ksi, kp);
208 goto out;
209 }
210 }
211 }
212 if (newkp && *newkp) {
213 kp = *newkp;
214 *newkp = NULL;
215 } else {
216 SCHED_ASSERT_UNLOCKED();
217 kp = ksiginfo_alloc(PR_NOWAIT);
218 if (kp == NULL) {
219 #ifdef DIAGNOSTIC
220 printf("Out of memory allocating siginfo for pid %d\n",
221 p->p_pid);
222 #endif
223 goto out;
224 }
225 }
226 *kp = *ksi;
227 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
228 out:
229 simple_unlock(&p->p_sigctx.ps_silock);
230 splx(s);
231 }
232
233 /*
234 * free all pending ksiginfo on exit
235 */
236 static void
237 ksiginfo_exithook(struct proc *p, void *v)
238 {
239 int s;
240
241 s = splsoftclock();
242 simple_lock(&p->p_sigctx.ps_silock);
243 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
244 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
245 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
246 ksiginfo_free(ksi);
247 }
248 simple_unlock(&p->p_sigctx.ps_silock);
249 splx(s);
250 }
251
252 /*
253 * Initialize signal-related data structures.
254 */
255 void
256 signal_init(void)
257 {
258
259 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
260
261 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
262 sizeof(struct sigacts) > PAGE_SIZE ?
263 &sigactspool_allocator : &pool_allocator_nointr);
264
265 exithook_establish(ksiginfo_exithook, NULL);
266 exechook_establish(ksiginfo_exithook, NULL);
267 }
268
269 /*
270 * Create an initial sigctx structure, using the same signal state
271 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
272 * copy it from parent.
273 */
274 void
275 sigactsinit(struct proc *np, struct proc *pp, int share)
276 {
277 struct sigacts *ps;
278
279 if (share) {
280 np->p_sigacts = pp->p_sigacts;
281 pp->p_sigacts->sa_refcnt++;
282 } else {
283 ps = pool_get(&sigacts_pool, PR_WAITOK);
284 if (pp)
285 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
286 else
287 memset(ps, '\0', sizeof(struct sigacts));
288 ps->sa_refcnt = 1;
289 np->p_sigacts = ps;
290 }
291 }
292
293 /*
294 * Make this process not share its sigctx, maintaining all
295 * signal state.
296 */
297 void
298 sigactsunshare(struct proc *p)
299 {
300 struct sigacts *oldps;
301
302 if (p->p_sigacts->sa_refcnt == 1)
303 return;
304
305 oldps = p->p_sigacts;
306 sigactsinit(p, NULL, 0);
307
308 if (--oldps->sa_refcnt == 0)
309 pool_put(&sigacts_pool, oldps);
310 }
311
312 /*
313 * Release a sigctx structure.
314 */
315 void
316 sigactsfree(struct sigacts *ps)
317 {
318
319 if (--ps->sa_refcnt > 0)
320 return;
321
322 pool_put(&sigacts_pool, ps);
323 }
324
325 int
326 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
327 struct sigaction *osa, const void *tramp, int vers)
328 {
329 struct sigacts *ps;
330 int prop;
331
332 ps = p->p_sigacts;
333 if (signum <= 0 || signum >= NSIG)
334 return (EINVAL);
335
336 /*
337 * Trampoline ABI version 0 is reserved for the legacy
338 * kernel-provided on-stack trampoline. Conversely, if we are
339 * using a non-0 ABI version, we must have a trampoline. Only
340 * validate the vers if a new sigaction was supplied. Emulations
341 * use legacy kernel trampolines with version 0, alternatively
342 * check for that too.
343 */
344 if ((vers != 0 && tramp == NULL) ||
345 #ifdef SIGTRAMP_VALID
346 (nsa != NULL &&
347 ((vers == 0) ?
348 (p->p_emul->e_sigcode == NULL) :
349 !SIGTRAMP_VALID(vers))) ||
350 #endif
351 (vers == 0 && tramp != NULL))
352 return (EINVAL);
353
354 if (osa)
355 *osa = SIGACTION_PS(ps, signum);
356
357 if (nsa) {
358 if (nsa->sa_flags & ~SA_ALLBITS)
359 return (EINVAL);
360
361 prop = sigprop[signum];
362 if (prop & SA_CANTMASK)
363 return (EINVAL);
364
365 (void) splsched(); /* XXXSMP */
366 SIGACTION_PS(ps, signum) = *nsa;
367 ps->sa_sigdesc[signum].sd_tramp = tramp;
368 ps->sa_sigdesc[signum].sd_vers = vers;
369 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
370 if ((prop & SA_NORESET) != 0)
371 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
372 if (signum == SIGCHLD) {
373 if (nsa->sa_flags & SA_NOCLDSTOP)
374 p->p_flag |= P_NOCLDSTOP;
375 else
376 p->p_flag &= ~P_NOCLDSTOP;
377 if (nsa->sa_flags & SA_NOCLDWAIT) {
378 /*
379 * Paranoia: since SA_NOCLDWAIT is implemented
380 * by reparenting the dying child to PID 1 (and
381 * trust it to reap the zombie), PID 1 itself
382 * is forbidden to set SA_NOCLDWAIT.
383 */
384 if (p->p_pid == 1)
385 p->p_flag &= ~P_NOCLDWAIT;
386 else
387 p->p_flag |= P_NOCLDWAIT;
388 } else
389 p->p_flag &= ~P_NOCLDWAIT;
390
391 if (nsa->sa_handler == SIG_IGN) {
392 /*
393 * Paranoia: same as above.
394 */
395 if (p->p_pid == 1)
396 p->p_flag &= ~P_CLDSIGIGN;
397 else
398 p->p_flag |= P_CLDSIGIGN;
399 } else
400 p->p_flag &= ~P_CLDSIGIGN;
401
402 }
403 if ((nsa->sa_flags & SA_NODEFER) == 0)
404 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
405 else
406 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
407 /*
408 * Set bit in p_sigctx.ps_sigignore for signals that are set to
409 * SIG_IGN, and for signals set to SIG_DFL where the default is
410 * to ignore. However, don't put SIGCONT in
411 * p_sigctx.ps_sigignore, as we have to restart the process.
412 */
413 if (nsa->sa_handler == SIG_IGN ||
414 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
415 /* never to be seen again */
416 sigdelset(&p->p_sigctx.ps_siglist, signum);
417 if (signum != SIGCONT) {
418 /* easier in psignal */
419 sigaddset(&p->p_sigctx.ps_sigignore, signum);
420 }
421 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
422 } else {
423 sigdelset(&p->p_sigctx.ps_sigignore, signum);
424 if (nsa->sa_handler == SIG_DFL)
425 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
426 else
427 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
428 }
429 (void) spl0();
430 }
431
432 return (0);
433 }
434
435 #ifdef COMPAT_16
436 /* ARGSUSED */
437 int
438 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
439 {
440 struct compat_16_sys___sigaction14_args /* {
441 syscallarg(int) signum;
442 syscallarg(const struct sigaction *) nsa;
443 syscallarg(struct sigaction *) osa;
444 } */ *uap = v;
445 struct proc *p;
446 struct sigaction nsa, osa;
447 int error;
448
449 if (SCARG(uap, nsa)) {
450 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
451 if (error)
452 return (error);
453 }
454 p = l->l_proc;
455 error = sigaction1(p, SCARG(uap, signum),
456 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
457 NULL, 0);
458 if (error)
459 return (error);
460 if (SCARG(uap, osa)) {
461 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
462 if (error)
463 return (error);
464 }
465 return (0);
466 }
467 #endif
468
469 /* ARGSUSED */
470 int
471 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
472 {
473 struct sys___sigaction_sigtramp_args /* {
474 syscallarg(int) signum;
475 syscallarg(const struct sigaction *) nsa;
476 syscallarg(struct sigaction *) osa;
477 syscallarg(void *) tramp;
478 syscallarg(int) vers;
479 } */ *uap = v;
480 struct proc *p = l->l_proc;
481 struct sigaction nsa, osa;
482 int error;
483
484 if (SCARG(uap, nsa)) {
485 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
486 if (error)
487 return (error);
488 }
489 error = sigaction1(p, SCARG(uap, signum),
490 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
491 SCARG(uap, tramp), SCARG(uap, vers));
492 if (error)
493 return (error);
494 if (SCARG(uap, osa)) {
495 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
496 if (error)
497 return (error);
498 }
499 return (0);
500 }
501
502 /*
503 * Initialize signal state for process 0;
504 * set to ignore signals that are ignored by default and disable the signal
505 * stack.
506 */
507 void
508 siginit(struct proc *p)
509 {
510 struct sigacts *ps;
511 int signum, prop;
512
513 ps = p->p_sigacts;
514 sigemptyset(&contsigmask);
515 sigemptyset(&stopsigmask);
516 sigemptyset(&sigcantmask);
517 for (signum = 1; signum < NSIG; signum++) {
518 prop = sigprop[signum];
519 if (prop & SA_CONT)
520 sigaddset(&contsigmask, signum);
521 if (prop & SA_STOP)
522 sigaddset(&stopsigmask, signum);
523 if (prop & SA_CANTMASK)
524 sigaddset(&sigcantmask, signum);
525 if (prop & SA_IGNORE && signum != SIGCONT)
526 sigaddset(&p->p_sigctx.ps_sigignore, signum);
527 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
528 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
529 }
530 sigemptyset(&p->p_sigctx.ps_sigcatch);
531 p->p_sigctx.ps_sigwaited = NULL;
532 p->p_flag &= ~P_NOCLDSTOP;
533
534 /*
535 * Reset stack state to the user stack.
536 */
537 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
538 p->p_sigctx.ps_sigstk.ss_size = 0;
539 p->p_sigctx.ps_sigstk.ss_sp = 0;
540
541 /* One reference. */
542 ps->sa_refcnt = 1;
543 }
544
545 /*
546 * Reset signals for an exec of the specified process.
547 */
548 void
549 execsigs(struct proc *p)
550 {
551 struct sigacts *ps;
552 int signum, prop;
553
554 sigactsunshare(p);
555
556 ps = p->p_sigacts;
557
558 /*
559 * Reset caught signals. Held signals remain held
560 * through p_sigctx.ps_sigmask (unless they were caught,
561 * and are now ignored by default).
562 */
563 for (signum = 1; signum < NSIG; signum++) {
564 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
565 prop = sigprop[signum];
566 if (prop & SA_IGNORE) {
567 if ((prop & SA_CONT) == 0)
568 sigaddset(&p->p_sigctx.ps_sigignore,
569 signum);
570 sigdelset(&p->p_sigctx.ps_siglist, signum);
571 }
572 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
573 }
574 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
575 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
576 }
577 sigemptyset(&p->p_sigctx.ps_sigcatch);
578 p->p_sigctx.ps_sigwaited = NULL;
579
580 /*
581 * Reset no zombies if child dies flag as Solaris does.
582 */
583 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
584 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
585 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
586
587 /*
588 * Reset stack state to the user stack.
589 */
590 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
591 p->p_sigctx.ps_sigstk.ss_size = 0;
592 p->p_sigctx.ps_sigstk.ss_sp = 0;
593 }
594
595 int
596 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
597 {
598
599 if (oss)
600 *oss = p->p_sigctx.ps_sigmask;
601
602 if (nss) {
603 (void)splsched(); /* XXXSMP */
604 switch (how) {
605 case SIG_BLOCK:
606 sigplusset(nss, &p->p_sigctx.ps_sigmask);
607 break;
608 case SIG_UNBLOCK:
609 sigminusset(nss, &p->p_sigctx.ps_sigmask);
610 CHECKSIGS(p);
611 break;
612 case SIG_SETMASK:
613 p->p_sigctx.ps_sigmask = *nss;
614 CHECKSIGS(p);
615 break;
616 default:
617 (void)spl0(); /* XXXSMP */
618 return (EINVAL);
619 }
620 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
621 (void)spl0(); /* XXXSMP */
622 }
623
624 return (0);
625 }
626
627 /*
628 * Manipulate signal mask.
629 * Note that we receive new mask, not pointer,
630 * and return old mask as return value;
631 * the library stub does the rest.
632 */
633 int
634 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
635 {
636 struct sys___sigprocmask14_args /* {
637 syscallarg(int) how;
638 syscallarg(const sigset_t *) set;
639 syscallarg(sigset_t *) oset;
640 } */ *uap = v;
641 struct proc *p;
642 sigset_t nss, oss;
643 int error;
644
645 if (SCARG(uap, set)) {
646 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
647 if (error)
648 return (error);
649 }
650 p = l->l_proc;
651 error = sigprocmask1(p, SCARG(uap, how),
652 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
653 if (error)
654 return (error);
655 if (SCARG(uap, oset)) {
656 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
657 if (error)
658 return (error);
659 }
660 return (0);
661 }
662
663 void
664 sigpending1(struct proc *p, sigset_t *ss)
665 {
666
667 *ss = p->p_sigctx.ps_siglist;
668 sigminusset(&p->p_sigctx.ps_sigmask, ss);
669 }
670
671 /* ARGSUSED */
672 int
673 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
674 {
675 struct sys___sigpending14_args /* {
676 syscallarg(sigset_t *) set;
677 } */ *uap = v;
678 struct proc *p;
679 sigset_t ss;
680
681 p = l->l_proc;
682 sigpending1(p, &ss);
683 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
684 }
685
686 int
687 sigsuspend1(struct proc *p, const sigset_t *ss)
688 {
689 struct sigacts *ps;
690
691 ps = p->p_sigacts;
692 if (ss) {
693 /*
694 * When returning from sigpause, we want
695 * the old mask to be restored after the
696 * signal handler has finished. Thus, we
697 * save it here and mark the sigctx structure
698 * to indicate this.
699 */
700 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
701 p->p_sigctx.ps_flags |= SAS_OLDMASK;
702 (void) splsched(); /* XXXSMP */
703 p->p_sigctx.ps_sigmask = *ss;
704 CHECKSIGS(p);
705 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
706 (void) spl0(); /* XXXSMP */
707 }
708
709 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
710 /* void */;
711
712 /* always return EINTR rather than ERESTART... */
713 return (EINTR);
714 }
715
716 /*
717 * Suspend process until signal, providing mask to be set
718 * in the meantime. Note nonstandard calling convention:
719 * libc stub passes mask, not pointer, to save a copyin.
720 */
721 /* ARGSUSED */
722 int
723 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
724 {
725 struct sys___sigsuspend14_args /* {
726 syscallarg(const sigset_t *) set;
727 } */ *uap = v;
728 struct proc *p;
729 sigset_t ss;
730 int error;
731
732 if (SCARG(uap, set)) {
733 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
734 if (error)
735 return (error);
736 }
737
738 p = l->l_proc;
739 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
740 }
741
742 int
743 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
744 struct sigaltstack *oss)
745 {
746
747 if (oss)
748 *oss = p->p_sigctx.ps_sigstk;
749
750 if (nss) {
751 if (nss->ss_flags & ~SS_ALLBITS)
752 return (EINVAL);
753
754 if (nss->ss_flags & SS_DISABLE) {
755 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
756 return (EINVAL);
757 } else {
758 if (nss->ss_size < MINSIGSTKSZ)
759 return (ENOMEM);
760 }
761 p->p_sigctx.ps_sigstk = *nss;
762 }
763
764 return (0);
765 }
766
767 /* ARGSUSED */
768 int
769 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
770 {
771 struct sys___sigaltstack14_args /* {
772 syscallarg(const struct sigaltstack *) nss;
773 syscallarg(struct sigaltstack *) oss;
774 } */ *uap = v;
775 struct proc *p;
776 struct sigaltstack nss, oss;
777 int error;
778
779 if (SCARG(uap, nss)) {
780 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
781 if (error)
782 return (error);
783 }
784 p = l->l_proc;
785 error = sigaltstack1(p,
786 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
787 if (error)
788 return (error);
789 if (SCARG(uap, oss)) {
790 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
791 if (error)
792 return (error);
793 }
794 return (0);
795 }
796
797 /* ARGSUSED */
798 int
799 sys_kill(struct lwp *l, void *v, register_t *retval)
800 {
801 struct sys_kill_args /* {
802 syscallarg(int) pid;
803 syscallarg(int) signum;
804 } */ *uap = v;
805 struct proc *p;
806 ksiginfo_t ksi;
807 int signum = SCARG(uap, signum);
808 int error;
809
810 if ((u_int)signum >= NSIG)
811 return (EINVAL);
812 KSI_INIT(&ksi);
813 ksi.ksi_signo = signum;
814 ksi.ksi_code = SI_USER;
815 ksi.ksi_pid = l->l_proc->p_pid;
816 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
817 if (SCARG(uap, pid) > 0) {
818 /* kill single process */
819 if ((p = pfind(SCARG(uap, pid))) == NULL)
820 return (ESRCH);
821 error = kauth_authorize_process(l->l_cred,
822 KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
823 NULL, NULL);
824 if (error)
825 return error;
826 if (signum)
827 kpsignal2(p, &ksi);
828 return (0);
829 }
830 switch (SCARG(uap, pid)) {
831 case -1: /* broadcast signal */
832 return (killpg1(l, &ksi, 0, 1));
833 case 0: /* signal own process group */
834 return (killpg1(l, &ksi, 0, 0));
835 default: /* negative explicit process group */
836 return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
837 }
838 /* NOTREACHED */
839 }
840
841 /*
842 * Common code for kill process group/broadcast kill.
843 * cp is calling process.
844 */
845 int
846 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
847 {
848 struct proc *p, *cp;
849 kauth_cred_t pc;
850 struct pgrp *pgrp;
851 int nfound;
852 int signum = ksi->ksi_signo;
853
854 cp = l->l_proc;
855 pc = l->l_cred;
856 nfound = 0;
857 if (all) {
858 /*
859 * broadcast
860 */
861 proclist_lock_read();
862 PROCLIST_FOREACH(p, &allproc) {
863 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
864 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
865 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
866 continue;
867 nfound++;
868 if (signum)
869 kpsignal2(p, ksi);
870 }
871 proclist_unlock_read();
872 } else {
873 if (pgid == 0)
874 /*
875 * zero pgid means send to my process group.
876 */
877 pgrp = cp->p_pgrp;
878 else {
879 pgrp = pgfind(pgid);
880 if (pgrp == NULL)
881 return (ESRCH);
882 }
883 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
884 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
885 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
886 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
887 continue;
888 nfound++;
889 if (signum && P_ZOMBIE(p) == 0)
890 kpsignal2(p, ksi);
891 }
892 }
893 return (nfound ? 0 : ESRCH);
894 }
895
896 /*
897 * Send a signal to a process group.
898 */
899 void
900 gsignal(int pgid, int signum)
901 {
902 ksiginfo_t ksi;
903 KSI_INIT_EMPTY(&ksi);
904 ksi.ksi_signo = signum;
905 kgsignal(pgid, &ksi, NULL);
906 }
907
908 void
909 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
910 {
911 struct pgrp *pgrp;
912
913 if (pgid && (pgrp = pgfind(pgid)))
914 kpgsignal(pgrp, ksi, data, 0);
915 }
916
917 /*
918 * Send a signal to a process group. If checktty is 1,
919 * limit to members which have a controlling terminal.
920 */
921 void
922 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
923 {
924 ksiginfo_t ksi;
925 KSI_INIT_EMPTY(&ksi);
926 ksi.ksi_signo = sig;
927 kpgsignal(pgrp, &ksi, NULL, checkctty);
928 }
929
930 void
931 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
932 {
933 struct proc *p;
934
935 if (pgrp)
936 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
937 if (checkctty == 0 || p->p_flag & P_CONTROLT)
938 kpsignal(p, ksi, data);
939 }
940
941 /*
942 * Send a signal caused by a trap to the current process.
943 * If it will be caught immediately, deliver it with correct code.
944 * Otherwise, post it normally.
945 */
946 void
947 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
948 {
949 struct proc *p;
950 struct sigacts *ps;
951 int signum = ksi->ksi_signo;
952
953 KASSERT(KSI_TRAP_P(ksi));
954
955 p = l->l_proc;
956 ps = p->p_sigacts;
957 if ((p->p_flag & P_TRACED) == 0 &&
958 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
959 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
960 p->p_stats->p_ru.ru_nsignals++;
961 #ifdef KTRACE
962 if (KTRPOINT(p, KTR_PSIG))
963 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
964 &p->p_sigctx.ps_sigmask, ksi);
965 #endif
966 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
967 (void) splsched(); /* XXXSMP */
968 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
969 &p->p_sigctx.ps_sigmask);
970 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
971 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
972 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
973 sigaddset(&p->p_sigctx.ps_sigignore, signum);
974 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
975 }
976 (void) spl0(); /* XXXSMP */
977 } else {
978 p->p_sigctx.ps_lwp = l->l_lid;
979 /* XXX for core dump/debugger */
980 p->p_sigctx.ps_signo = ksi->ksi_signo;
981 p->p_sigctx.ps_code = ksi->ksi_trap;
982 kpsignal2(p, ksi);
983 }
984 }
985
986 /*
987 * Fill in signal information and signal the parent for a child status change.
988 */
989 void
990 child_psignal(struct proc *p)
991 {
992 ksiginfo_t ksi;
993
994 KSI_INIT(&ksi);
995 ksi.ksi_signo = SIGCHLD;
996 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
997 ksi.ksi_pid = p->p_pid;
998 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
999 ksi.ksi_status = p->p_xstat;
1000 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1001 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1002 kpsignal2(p->p_pptr, &ksi);
1003 }
1004
1005 /*
1006 * Send the signal to the process. If the signal has an action, the action
1007 * is usually performed by the target process rather than the caller; we add
1008 * the signal to the set of pending signals for the process.
1009 *
1010 * Exceptions:
1011 * o When a stop signal is sent to a sleeping process that takes the
1012 * default action, the process is stopped without awakening it.
1013 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1014 * regardless of the signal action (eg, blocked or ignored).
1015 *
1016 * Other ignored signals are discarded immediately.
1017 */
1018 void
1019 psignal(struct proc *p, int signum)
1020 {
1021 ksiginfo_t ksi;
1022
1023 KSI_INIT_EMPTY(&ksi);
1024 ksi.ksi_signo = signum;
1025 kpsignal2(p, &ksi);
1026 }
1027
1028 void
1029 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1030 {
1031
1032 if ((p->p_flag & P_WEXIT) == 0 && data) {
1033 size_t fd;
1034 struct filedesc *fdp = p->p_fd;
1035
1036 ksi->ksi_fd = -1;
1037 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1038 struct file *fp = fdp->fd_ofiles[fd];
1039 /* XXX: lock? */
1040 if (fp && fp->f_data == data) {
1041 ksi->ksi_fd = fd;
1042 break;
1043 }
1044 }
1045 }
1046 kpsignal2(p, ksi);
1047 }
1048
1049 static void
1050 kpsignal2(struct proc *p, const ksiginfo_t *ksi)
1051 {
1052 struct lwp *l, *suspended = NULL;
1053 struct sadata_vp *vp;
1054 ksiginfo_t *newkp;
1055 int s = 0, prop, allsusp;
1056 sig_t action;
1057 int signum = ksi->ksi_signo;
1058
1059 #ifdef DIAGNOSTIC
1060 if (signum <= 0 || signum >= NSIG)
1061 panic("psignal signal number %d", signum);
1062
1063 SCHED_ASSERT_UNLOCKED();
1064 #endif
1065
1066 /*
1067 * Notify any interested parties in the signal.
1068 */
1069 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1070
1071 prop = sigprop[signum];
1072
1073 /*
1074 * If proc is traced, always give parent a chance.
1075 */
1076 if (p->p_flag & P_TRACED) {
1077 action = SIG_DFL;
1078
1079 /*
1080 * If the process is being traced and the signal is being
1081 * caught, make sure to save any ksiginfo.
1082 */
1083 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1084 SCHED_ASSERT_UNLOCKED();
1085 ksiginfo_queue(p, ksi, NULL);
1086 }
1087 } else {
1088 /*
1089 * If the signal was the result of a trap, reset it
1090 * to default action if it's currently masked, so that it would
1091 * coredump immediatelly instead of spinning repeatedly
1092 * taking the signal.
1093 */
1094 if (KSI_TRAP_P(ksi)
1095 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1096 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1097 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1098 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1099 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1100 SIGACTION(p, signum).sa_handler = SIG_DFL;
1101 }
1102
1103 /*
1104 * If the signal is being ignored,
1105 * then we forget about it immediately.
1106 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1107 * and if it is set to SIG_IGN,
1108 * action will be SIG_DFL here.)
1109 */
1110 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1111 return;
1112 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1113 action = SIG_HOLD;
1114 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1115 action = SIG_CATCH;
1116 else {
1117 action = SIG_DFL;
1118
1119 if (prop & SA_KILL && p->p_nice > NZERO)
1120 p->p_nice = NZERO;
1121
1122 /*
1123 * If sending a tty stop signal to a member of an
1124 * orphaned process group, discard the signal here if
1125 * the action is default; don't stop the process below
1126 * if sleeping, and don't clear any pending SIGCONT.
1127 */
1128 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1129 return;
1130 }
1131 }
1132
1133 if (prop & SA_CONT)
1134 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1135
1136 if (prop & SA_STOP)
1137 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1138
1139 /*
1140 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1141 * please!), check if anything waits on it. If yes, save the
1142 * info into provided ps_sigwaited, and wake-up the waiter.
1143 * The signal won't be processed further here.
1144 */
1145 if ((prop & SA_CANTMASK) == 0
1146 && p->p_sigctx.ps_sigwaited
1147 && sigismember(p->p_sigctx.ps_sigwait, signum)
1148 && p->p_stat != SSTOP) {
1149 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1150 p->p_sigctx.ps_sigwaited = NULL;
1151 wakeup_one(&p->p_sigctx.ps_sigwait);
1152 return;
1153 }
1154
1155 sigaddset(&p->p_sigctx.ps_siglist, signum);
1156
1157 /* CHECKSIGS() is "inlined" here. */
1158 p->p_sigctx.ps_sigcheck = 1;
1159
1160 /*
1161 * Defer further processing for signals which are held,
1162 * except that stopped processes must be continued by SIGCONT.
1163 */
1164 if (action == SIG_HOLD &&
1165 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1166 SCHED_ASSERT_UNLOCKED();
1167 ksiginfo_queue(p, ksi, NULL);
1168 return;
1169 }
1170
1171 /*
1172 * Allocate a ksiginfo_t incase we need to insert it with the
1173 * scheduler lock held, but only if this ksiginfo_t isn't empty.
1174 */
1175 if (!KSI_EMPTY_P(ksi)) {
1176 newkp = ksiginfo_alloc(PR_NOWAIT);
1177 if (newkp == NULL) {
1178 #ifdef DIAGNOSTIC
1179 printf("kpsignal2: couldn't allocated ksiginfo\n");
1180 #endif
1181 return;
1182 }
1183 } else
1184 newkp = NULL;
1185
1186 SCHED_LOCK(s);
1187
1188 if (p->p_flag & P_SA) {
1189 allsusp = 0;
1190 l = NULL;
1191 if (p->p_stat == SACTIVE) {
1192 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1193 l = vp->savp_lwp;
1194 KDASSERT(l != NULL);
1195 if (l->l_flag & L_SA_IDLE) {
1196 /* wakeup idle LWP */
1197 goto found;
1198 /*NOTREACHED*/
1199 } else if (l->l_flag & L_SA_YIELD) {
1200 /* idle LWP is already waking up */
1201 goto out;
1202 /*NOTREACHED*/
1203 }
1204 }
1205 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1206 l = vp->savp_lwp;
1207 if (l->l_stat == LSRUN ||
1208 l->l_stat == LSONPROC) {
1209 signotify(p);
1210 goto out;
1211 /*NOTREACHED*/
1212 }
1213 if (l->l_stat == LSSLEEP &&
1214 l->l_flag & L_SINTR) {
1215 /* ok to signal vp lwp */
1216 break;
1217 } else
1218 l = NULL;
1219 }
1220 } else if (p->p_stat == SSTOP) {
1221 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1222 l = vp->savp_lwp;
1223 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1224 break;
1225 l = NULL;
1226 }
1227 }
1228 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1229 /*
1230 * At least one LWP is running or on a run queue.
1231 * The signal will be noticed when one of them returns
1232 * to userspace.
1233 */
1234 signotify(p);
1235 /*
1236 * The signal will be noticed very soon.
1237 */
1238 goto out;
1239 /*NOTREACHED*/
1240 } else {
1241 /*
1242 * Find out if any of the sleeps are interruptable,
1243 * and if all the live LWPs remaining are suspended.
1244 */
1245 allsusp = 1;
1246 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1247 if (l->l_stat == LSSLEEP &&
1248 l->l_flag & L_SINTR)
1249 break;
1250 if (l->l_stat == LSSUSPENDED)
1251 suspended = l;
1252 else if ((l->l_stat != LSZOMB) &&
1253 (l->l_stat != LSDEAD))
1254 allsusp = 0;
1255 }
1256 }
1257
1258 found:
1259 switch (p->p_stat) {
1260 case SACTIVE:
1261
1262 if (l != NULL && (p->p_flag & P_TRACED))
1263 goto run;
1264
1265 /*
1266 * If SIGCONT is default (or ignored) and process is
1267 * asleep, we are finished; the process should not
1268 * be awakened.
1269 */
1270 if ((prop & SA_CONT) && action == SIG_DFL) {
1271 sigdelset(&p->p_sigctx.ps_siglist, signum);
1272 goto done;
1273 }
1274
1275 /*
1276 * When a sleeping process receives a stop
1277 * signal, process immediately if possible.
1278 */
1279 if ((prop & SA_STOP) && action == SIG_DFL) {
1280 /*
1281 * If a child holding parent blocked,
1282 * stopping could cause deadlock.
1283 */
1284 if (p->p_flag & P_PPWAIT) {
1285 goto out;
1286 }
1287 sigdelset(&p->p_sigctx.ps_siglist, signum);
1288 p->p_xstat = signum;
1289 proc_stop(p, 1); /* XXXSMP: recurse? */
1290 SCHED_UNLOCK(s);
1291 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1292 child_psignal(p);
1293 }
1294 goto done_unlocked;
1295 }
1296
1297 if (l == NULL) {
1298 /*
1299 * Special case: SIGKILL of a process
1300 * which is entirely composed of
1301 * suspended LWPs should succeed. We
1302 * make this happen by unsuspending one of
1303 * them.
1304 */
1305 if (allsusp && (signum == SIGKILL)) {
1306 lwp_continue(suspended);
1307 }
1308 goto done;
1309 }
1310 /*
1311 * All other (caught or default) signals
1312 * cause the process to run.
1313 */
1314 goto runfast;
1315 /*NOTREACHED*/
1316 case SSTOP:
1317 /* Process is stopped */
1318 /*
1319 * If traced process is already stopped,
1320 * then no further action is necessary.
1321 */
1322 if (p->p_flag & P_TRACED)
1323 goto done;
1324
1325 /*
1326 * Kill signal always sets processes running,
1327 * if possible.
1328 */
1329 if (signum == SIGKILL) {
1330 l = proc_unstop(p);
1331 if (l)
1332 goto runfast;
1333 goto done;
1334 }
1335
1336 if (prop & SA_CONT) {
1337 /*
1338 * If SIGCONT is default (or ignored),
1339 * we continue the process but don't
1340 * leave the signal in ps_siglist, as
1341 * it has no further action. If
1342 * SIGCONT is held, we continue the
1343 * process and leave the signal in
1344 * ps_siglist. If the process catches
1345 * SIGCONT, let it handle the signal
1346 * itself. If it isn't waiting on an
1347 * event, then it goes back to run
1348 * state. Otherwise, process goes
1349 * back to sleep state.
1350 */
1351 if (action == SIG_DFL)
1352 sigdelset(&p->p_sigctx.ps_siglist,
1353 signum);
1354 l = proc_unstop(p);
1355 if (l && (action == SIG_CATCH))
1356 goto runfast;
1357 goto out;
1358 }
1359
1360 if (prop & SA_STOP) {
1361 /*
1362 * Already stopped, don't need to stop again.
1363 * (If we did the shell could get confused.)
1364 */
1365 sigdelset(&p->p_sigctx.ps_siglist, signum);
1366 goto done;
1367 }
1368
1369 /*
1370 * If a lwp is sleeping interruptibly, then
1371 * wake it up; it will run until the kernel
1372 * boundary, where it will stop in issignal(),
1373 * since p->p_stat is still SSTOP. When the
1374 * process is continued, it will be made
1375 * runnable and can look at the signal.
1376 */
1377 if (l)
1378 goto run;
1379 goto out;
1380 case SIDL:
1381 /* Process is being created by fork */
1382 /* XXX: We are not ready to receive signals yet */
1383 goto done;
1384 default:
1385 /* Else what? */
1386 panic("psignal: Invalid process state %d.", p->p_stat);
1387 }
1388 /*NOTREACHED*/
1389
1390 runfast:
1391 if (action == SIG_CATCH) {
1392 ksiginfo_queue(p, ksi, &newkp);
1393 action = SIG_HOLD;
1394 }
1395 /*
1396 * Raise priority to at least PUSER.
1397 */
1398 if (l->l_priority > PUSER)
1399 l->l_priority = PUSER;
1400 run:
1401 if (action == SIG_CATCH) {
1402 ksiginfo_queue(p, ksi, &newkp);
1403 action = SIG_HOLD;
1404 }
1405
1406 setrunnable(l); /* XXXSMP: recurse? */
1407 out:
1408 if (action == SIG_CATCH)
1409 ksiginfo_queue(p, ksi, &newkp);
1410 done:
1411 SCHED_UNLOCK(s);
1412
1413 done_unlocked:
1414 if (newkp)
1415 ksiginfo_free(newkp);
1416 }
1417
1418 siginfo_t *
1419 siginfo_alloc(int flags)
1420 {
1421
1422 return pool_get(&siginfo_pool, flags);
1423 }
1424
1425 void
1426 siginfo_free(void *arg)
1427 {
1428
1429 pool_put(&siginfo_pool, arg);
1430 }
1431
1432 void
1433 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1434 {
1435 struct proc *p = l->l_proc;
1436 struct lwp *le, *li;
1437 siginfo_t *si;
1438 int f;
1439
1440 if (p->p_flag & P_SA) {
1441
1442 /* XXXUPSXXX What if not on sa_vp ? */
1443
1444 f = l->l_flag & L_SA;
1445 l->l_flag &= ~L_SA;
1446 si = siginfo_alloc(PR_WAITOK);
1447 si->_info = ksi->ksi_info;
1448 le = li = NULL;
1449 if (KSI_TRAP_P(ksi))
1450 le = l;
1451 else
1452 li = l;
1453 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1454 sizeof(*si), si, siginfo_free) != 0) {
1455 siginfo_free(si);
1456 #if 0
1457 if (KSI_TRAP_P(ksi))
1458 /* XXX What do we do here?? */;
1459 #endif
1460 }
1461 l->l_flag |= f;
1462 return;
1463 }
1464
1465 (*p->p_emul->e_sendsig)(ksi, mask);
1466 }
1467
1468 static inline int firstsig(const sigset_t *);
1469
1470 static inline int
1471 firstsig(const sigset_t *ss)
1472 {
1473 int sig;
1474
1475 sig = ffs(ss->__bits[0]);
1476 if (sig != 0)
1477 return (sig);
1478 #if NSIG > 33
1479 sig = ffs(ss->__bits[1]);
1480 if (sig != 0)
1481 return (sig + 32);
1482 #endif
1483 #if NSIG > 65
1484 sig = ffs(ss->__bits[2]);
1485 if (sig != 0)
1486 return (sig + 64);
1487 #endif
1488 #if NSIG > 97
1489 sig = ffs(ss->__bits[3]);
1490 if (sig != 0)
1491 return (sig + 96);
1492 #endif
1493 return (0);
1494 }
1495
1496 /*
1497 * If the current process has received a signal (should be caught or cause
1498 * termination, should interrupt current syscall), return the signal number.
1499 * Stop signals with default action are processed immediately, then cleared;
1500 * they aren't returned. This is checked after each entry to the system for
1501 * a syscall or trap (though this can usually be done without calling issignal
1502 * by checking the pending signal masks in the CURSIG macro.) The normal call
1503 * sequence is
1504 *
1505 * while (signum = CURSIG(curlwp))
1506 * postsig(signum);
1507 */
1508 int
1509 issignal(struct lwp *l)
1510 {
1511 struct proc *p = l->l_proc;
1512 int s, signum, prop;
1513 sigset_t ss;
1514
1515 /* Bail out if we do not own the virtual processor */
1516 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1517 return 0;
1518
1519 KERNEL_PROC_LOCK(l);
1520
1521 if (p->p_stat == SSTOP) {
1522 /*
1523 * The process is stopped/stopping. Stop ourselves now that
1524 * we're on the kernel/userspace boundary.
1525 */
1526 SCHED_LOCK(s);
1527 l->l_stat = LSSTOP;
1528 p->p_nrlwps--;
1529 if (p->p_flag & P_TRACED)
1530 goto sigtraceswitch;
1531 else
1532 goto sigswitch;
1533 }
1534 for (;;) {
1535 sigpending1(p, &ss);
1536 if (p->p_flag & P_PPWAIT)
1537 sigminusset(&stopsigmask, &ss);
1538 signum = firstsig(&ss);
1539 if (signum == 0) { /* no signal to send */
1540 p->p_sigctx.ps_sigcheck = 0;
1541 KERNEL_PROC_UNLOCK(l);
1542 return (0);
1543 }
1544 /* take the signal! */
1545 sigdelset(&p->p_sigctx.ps_siglist, signum);
1546
1547 /*
1548 * We should see pending but ignored signals
1549 * only if P_TRACED was on when they were posted.
1550 */
1551 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1552 (p->p_flag & P_TRACED) == 0)
1553 continue;
1554
1555 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1556 /*
1557 * If traced, always stop, and stay
1558 * stopped until released by the debugger.
1559 */
1560 p->p_xstat = signum;
1561
1562 /* Emulation-specific handling of signal trace */
1563 if ((p->p_emul->e_tracesig != NULL) &&
1564 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1565 goto childresumed;
1566
1567 if ((p->p_flag & P_FSTRACE) == 0)
1568 child_psignal(p);
1569 SCHED_LOCK(s);
1570 proc_stop(p, 1);
1571 sigtraceswitch:
1572 mi_switch(l, NULL);
1573 SCHED_ASSERT_UNLOCKED();
1574 splx(s);
1575
1576 childresumed:
1577 /*
1578 * If we are no longer being traced, or the parent
1579 * didn't give us a signal, look for more signals.
1580 */
1581 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1582 continue;
1583
1584 /*
1585 * If the new signal is being masked, look for other
1586 * signals.
1587 */
1588 signum = p->p_xstat;
1589 p->p_xstat = 0;
1590 /*
1591 * `p->p_sigctx.ps_siglist |= mask' is done
1592 * in setrunnable().
1593 */
1594 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1595 continue;
1596 /* take the signal! */
1597 sigdelset(&p->p_sigctx.ps_siglist, signum);
1598 }
1599
1600 prop = sigprop[signum];
1601
1602 /*
1603 * Decide whether the signal should be returned.
1604 * Return the signal's number, or fall through
1605 * to clear it from the pending mask.
1606 */
1607 switch ((long)SIGACTION(p, signum).sa_handler) {
1608
1609 case (long)SIG_DFL:
1610 /*
1611 * Don't take default actions on system processes.
1612 */
1613 if (p->p_pid <= 1) {
1614 #ifdef DIAGNOSTIC
1615 /*
1616 * Are you sure you want to ignore SIGSEGV
1617 * in init? XXX
1618 */
1619 printf("Process (pid %d) got signal %d\n",
1620 p->p_pid, signum);
1621 #endif
1622 break; /* == ignore */
1623 }
1624 /*
1625 * If there is a pending stop signal to process
1626 * with default action, stop here,
1627 * then clear the signal. However,
1628 * if process is member of an orphaned
1629 * process group, ignore tty stop signals.
1630 */
1631 if (prop & SA_STOP) {
1632 if (p->p_flag & P_TRACED ||
1633 (p->p_pgrp->pg_jobc == 0 &&
1634 prop & SA_TTYSTOP))
1635 break; /* == ignore */
1636 p->p_xstat = signum;
1637 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1638 child_psignal(p);
1639 SCHED_LOCK(s);
1640 proc_stop(p, 1);
1641 sigswitch:
1642 mi_switch(l, NULL);
1643 SCHED_ASSERT_UNLOCKED();
1644 splx(s);
1645 break;
1646 } else if (prop & SA_IGNORE) {
1647 /*
1648 * Except for SIGCONT, shouldn't get here.
1649 * Default action is to ignore; drop it.
1650 */
1651 break; /* == ignore */
1652 } else
1653 goto keep;
1654 /*NOTREACHED*/
1655
1656 case (long)SIG_IGN:
1657 /*
1658 * Masking above should prevent us ever trying
1659 * to take action on an ignored signal other
1660 * than SIGCONT, unless process is traced.
1661 */
1662 #ifdef DEBUG_ISSIGNAL
1663 if ((prop & SA_CONT) == 0 &&
1664 (p->p_flag & P_TRACED) == 0)
1665 printf("issignal\n");
1666 #endif
1667 break; /* == ignore */
1668
1669 default:
1670 /*
1671 * This signal has an action, let
1672 * postsig() process it.
1673 */
1674 goto keep;
1675 }
1676 }
1677 /* NOTREACHED */
1678
1679 keep:
1680 /* leave the signal for later */
1681 sigaddset(&p->p_sigctx.ps_siglist, signum);
1682 CHECKSIGS(p);
1683 KERNEL_PROC_UNLOCK(l);
1684 return (signum);
1685 }
1686
1687 /*
1688 * Put the argument process into the stopped state and notify the parent
1689 * via wakeup. Signals are handled elsewhere. The process must not be
1690 * on the run queue.
1691 */
1692 void
1693 proc_stop(struct proc *p, int dowakeup)
1694 {
1695 struct lwp *l;
1696 struct proc *parent;
1697 struct sadata_vp *vp;
1698
1699 SCHED_ASSERT_LOCKED();
1700
1701 /* XXX lock process LWP state */
1702 p->p_flag &= ~P_WAITED;
1703 p->p_stat = SSTOP;
1704 parent = p->p_pptr;
1705 parent->p_nstopchild++;
1706
1707 if (p->p_flag & P_SA) {
1708 /*
1709 * Only (try to) put the LWP on the VP in stopped
1710 * state.
1711 * All other LWPs will suspend in sa_setwoken()
1712 * because the VP-LWP in stopped state cannot be
1713 * repossessed.
1714 */
1715 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1716 l = vp->savp_lwp;
1717 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1718 l->l_stat = LSSTOP;
1719 p->p_nrlwps--;
1720 } else if (l->l_stat == LSRUN) {
1721 /* Remove LWP from the run queue */
1722 remrunqueue(l);
1723 l->l_stat = LSSTOP;
1724 p->p_nrlwps--;
1725 } else if (l->l_stat == LSSLEEP &&
1726 l->l_flag & L_SA_IDLE) {
1727 l->l_flag &= ~L_SA_IDLE;
1728 l->l_stat = LSSTOP;
1729 }
1730 }
1731 goto out;
1732 }
1733
1734 /*
1735 * Put as many LWP's as possible in stopped state.
1736 * Sleeping ones will notice the stopped state as they try to
1737 * return to userspace.
1738 */
1739
1740 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1741 if (l->l_stat == LSONPROC) {
1742 /* XXX SMP this assumes that a LWP that is LSONPROC
1743 * is curlwp and hence is about to be mi_switched
1744 * away; the only callers of proc_stop() are:
1745 * - psignal
1746 * - issignal()
1747 * For the former, proc_stop() is only called when
1748 * no processes are running, so we don't worry.
1749 * For the latter, proc_stop() is called right
1750 * before mi_switch().
1751 */
1752 l->l_stat = LSSTOP;
1753 p->p_nrlwps--;
1754 } else if (l->l_stat == LSRUN) {
1755 /* Remove LWP from the run queue */
1756 remrunqueue(l);
1757 l->l_stat = LSSTOP;
1758 p->p_nrlwps--;
1759 } else if ((l->l_stat == LSSLEEP) ||
1760 (l->l_stat == LSSUSPENDED) ||
1761 (l->l_stat == LSZOMB) ||
1762 (l->l_stat == LSDEAD)) {
1763 /*
1764 * Don't do anything; let sleeping LWPs
1765 * discover the stopped state of the process
1766 * on their way out of the kernel; otherwise,
1767 * things like NFS threads that sleep with
1768 * locks will block the rest of the system
1769 * from getting any work done.
1770 *
1771 * Suspended/dead/zombie LWPs aren't going
1772 * anywhere, so we don't need to touch them.
1773 */
1774 }
1775 #ifdef DIAGNOSTIC
1776 else {
1777 panic("proc_stop: process %d lwp %d "
1778 "in unstoppable state %d.\n",
1779 p->p_pid, l->l_lid, l->l_stat);
1780 }
1781 #endif
1782 }
1783
1784 out:
1785 /* XXX unlock process LWP state */
1786
1787 if (dowakeup)
1788 sched_wakeup((caddr_t)p->p_pptr);
1789 }
1790
1791 /*
1792 * Given a process in state SSTOP, set the state back to SACTIVE and
1793 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1794 *
1795 * If no LWPs ended up runnable (and therefore able to take a signal),
1796 * return a LWP that is sleeping interruptably. The caller can wake
1797 * that LWP up to take a signal.
1798 */
1799 struct lwp *
1800 proc_unstop(struct proc *p)
1801 {
1802 struct lwp *l, *lr = NULL;
1803 struct sadata_vp *vp;
1804 int cantake = 0;
1805
1806 SCHED_ASSERT_LOCKED();
1807
1808 /*
1809 * Our caller wants to be informed if there are only sleeping
1810 * and interruptable LWPs left after we have run so that it
1811 * can invoke setrunnable() if required - return one of the
1812 * interruptable LWPs if this is the case.
1813 */
1814
1815 if (!(p->p_flag & P_WAITED))
1816 p->p_pptr->p_nstopchild--;
1817 p->p_stat = SACTIVE;
1818 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1819 if (l->l_stat == LSRUN) {
1820 lr = NULL;
1821 cantake = 1;
1822 }
1823 if (l->l_stat != LSSTOP)
1824 continue;
1825
1826 if (l->l_wchan != NULL) {
1827 l->l_stat = LSSLEEP;
1828 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1829 lr = l;
1830 cantake = 1;
1831 }
1832 } else {
1833 setrunnable(l);
1834 lr = NULL;
1835 cantake = 1;
1836 }
1837 }
1838 if (p->p_flag & P_SA) {
1839 /* Only consider returning the LWP on the VP. */
1840 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1841 lr = vp->savp_lwp;
1842 if (lr->l_stat == LSSLEEP) {
1843 if (lr->l_flag & L_SA_YIELD) {
1844 setrunnable(lr);
1845 break;
1846 } else if (lr->l_flag & L_SINTR)
1847 return lr;
1848 }
1849 }
1850 return NULL;
1851 }
1852 return lr;
1853 }
1854
1855 /*
1856 * Take the action for the specified signal
1857 * from the current set of pending signals.
1858 */
1859 void
1860 postsig(int signum)
1861 {
1862 struct lwp *l;
1863 struct proc *p;
1864 struct sigacts *ps;
1865 sig_t action;
1866 sigset_t *returnmask;
1867
1868 l = curlwp;
1869 p = l->l_proc;
1870 ps = p->p_sigacts;
1871 #ifdef DIAGNOSTIC
1872 if (signum == 0)
1873 panic("postsig");
1874 #endif
1875
1876 KERNEL_PROC_LOCK(l);
1877
1878 #ifdef MULTIPROCESSOR
1879 /*
1880 * On MP, issignal() can return the same signal to multiple
1881 * LWPs. The LWPs will block above waiting for the kernel
1882 * lock and the first LWP which gets through will then remove
1883 * the signal from ps_siglist. All other LWPs exit here.
1884 */
1885 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1886 KERNEL_PROC_UNLOCK(l);
1887 return;
1888 }
1889 #endif
1890 sigdelset(&p->p_sigctx.ps_siglist, signum);
1891 action = SIGACTION_PS(ps, signum).sa_handler;
1892 if (action == SIG_DFL) {
1893 #ifdef KTRACE
1894 if (KTRPOINT(p, KTR_PSIG))
1895 ktrpsig(l, signum, action,
1896 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1897 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1898 NULL);
1899 #endif
1900 /*
1901 * Default action, where the default is to kill
1902 * the process. (Other cases were ignored above.)
1903 */
1904 sigexit(l, signum);
1905 /* NOTREACHED */
1906 } else {
1907 ksiginfo_t *ksi;
1908 /*
1909 * If we get here, the signal must be caught.
1910 */
1911 #ifdef DIAGNOSTIC
1912 if (action == SIG_IGN ||
1913 sigismember(&p->p_sigctx.ps_sigmask, signum))
1914 panic("postsig action");
1915 #endif
1916 /*
1917 * Set the new mask value and also defer further
1918 * occurrences of this signal.
1919 *
1920 * Special case: user has done a sigpause. Here the
1921 * current mask is not of interest, but rather the
1922 * mask from before the sigpause is what we want
1923 * restored after the signal processing is completed.
1924 */
1925 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1926 returnmask = &p->p_sigctx.ps_oldmask;
1927 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1928 } else
1929 returnmask = &p->p_sigctx.ps_sigmask;
1930 p->p_stats->p_ru.ru_nsignals++;
1931 ksi = ksiginfo_dequeue(p, signum);
1932 #ifdef KTRACE
1933 if (KTRPOINT(p, KTR_PSIG))
1934 ktrpsig(l, signum, action,
1935 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1936 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1937 ksi);
1938 #endif
1939 if (ksi == NULL) {
1940 ksiginfo_t ksi1;
1941 /*
1942 * we did not save any siginfo for this, either
1943 * because the signal was not caught, or because the
1944 * user did not request SA_SIGINFO
1945 */
1946 KSI_INIT_EMPTY(&ksi1);
1947 ksi1.ksi_signo = signum;
1948 kpsendsig(l, &ksi1, returnmask);
1949 } else {
1950 kpsendsig(l, ksi, returnmask);
1951 ksiginfo_free(ksi);
1952 }
1953 p->p_sigctx.ps_lwp = 0;
1954 p->p_sigctx.ps_code = 0;
1955 p->p_sigctx.ps_signo = 0;
1956 (void) splsched(); /* XXXSMP */
1957 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1958 &p->p_sigctx.ps_sigmask);
1959 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1960 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1961 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1962 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1963 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1964 }
1965 (void) spl0(); /* XXXSMP */
1966 }
1967
1968 KERNEL_PROC_UNLOCK(l);
1969 }
1970
1971 /*
1972 * Kill the current process for stated reason.
1973 */
1974 void
1975 killproc(struct proc *p, const char *why)
1976 {
1977 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1978 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1979 psignal(p, SIGKILL);
1980 }
1981
1982 /*
1983 * Force the current process to exit with the specified signal, dumping core
1984 * if appropriate. We bypass the normal tests for masked and caught signals,
1985 * allowing unrecoverable failures to terminate the process without changing
1986 * signal state. Mark the accounting record with the signal termination.
1987 * If dumping core, save the signal number for the debugger. Calls exit and
1988 * does not return.
1989 */
1990
1991 #if defined(DEBUG)
1992 int kern_logsigexit = 1; /* not static to make public for sysctl */
1993 #else
1994 int kern_logsigexit = 0; /* not static to make public for sysctl */
1995 #endif
1996
1997 static const char logcoredump[] =
1998 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
1999 static const char lognocoredump[] =
2000 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
2001
2002 /* Wrapper function for use in p_userret */
2003 static void
2004 lwp_coredump_hook(struct lwp *l, void *arg)
2005 {
2006 int s;
2007
2008 /*
2009 * Suspend ourselves, so that the kernel stack and therefore
2010 * the userland registers saved in the trapframe are around
2011 * for coredump() to write them out.
2012 */
2013 KERNEL_PROC_LOCK(l);
2014 l->l_flag &= ~L_DETACHED;
2015 SCHED_LOCK(s);
2016 l->l_stat = LSSUSPENDED;
2017 l->l_proc->p_nrlwps--;
2018 /* XXX NJWLWP check if this makes sense here: */
2019 l->l_proc->p_stats->p_ru.ru_nvcsw++;
2020 mi_switch(l, NULL);
2021 SCHED_ASSERT_UNLOCKED();
2022 splx(s);
2023
2024 lwp_exit(l);
2025 }
2026
2027 void
2028 sigexit(struct lwp *l, int signum)
2029 {
2030 struct proc *p;
2031 #if 0
2032 struct lwp *l2;
2033 #endif
2034 int exitsig;
2035 #ifdef COREDUMP
2036 int error;
2037 #endif
2038
2039 p = l->l_proc;
2040
2041 /*
2042 * Don't permit coredump() or exit1() multiple times
2043 * in the same process.
2044 */
2045 if (p->p_flag & P_WEXIT) {
2046 KERNEL_PROC_UNLOCK(l);
2047 (*p->p_userret)(l, p->p_userret_arg);
2048 }
2049 p->p_flag |= P_WEXIT;
2050 /* We don't want to switch away from exiting. */
2051 /* XXX multiprocessor: stop LWPs on other processors. */
2052 #if 0
2053 if (p->p_flag & P_SA) {
2054 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2055 l2->l_flag &= ~L_SA;
2056 p->p_flag &= ~P_SA;
2057 }
2058 #endif
2059
2060 /* Make other LWPs stick around long enough to be dumped */
2061 p->p_userret = lwp_coredump_hook;
2062 p->p_userret_arg = NULL;
2063
2064 exitsig = signum;
2065 p->p_acflag |= AXSIG;
2066 if (sigprop[signum] & SA_CORE) {
2067 p->p_sigctx.ps_signo = signum;
2068 #ifdef COREDUMP
2069 if ((error = coredump(l, NULL)) == 0)
2070 exitsig |= WCOREFLAG;
2071 #endif
2072
2073 if (kern_logsigexit) {
2074 /* XXX What if we ever have really large UIDs? */
2075 int uid = l->l_cred ?
2076 (int)kauth_cred_geteuid(l->l_cred) : -1;
2077
2078 #ifdef COREDUMP
2079 if (error)
2080 log(LOG_INFO, lognocoredump, p->p_pid,
2081 p->p_comm, uid, signum, error);
2082 else
2083 #endif
2084 log(LOG_INFO, logcoredump, p->p_pid,
2085 p->p_comm, uid, signum);
2086 }
2087
2088 }
2089
2090 exit1(l, W_EXITCODE(0, exitsig));
2091 /* NOTREACHED */
2092 }
2093
2094 #ifdef COREDUMP
2095 struct coredump_iostate {
2096 struct lwp *io_lwp;
2097 struct vnode *io_vp;
2098 kauth_cred_t io_cred;
2099 off_t io_offset;
2100 };
2101
2102 int
2103 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2104 {
2105 struct coredump_iostate *io = cookie;
2106 int error;
2107
2108 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2109 io->io_offset, segflg,
2110 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2111 segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2112 if (error) {
2113 printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2114 io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2115 segflg == UIO_USERSPACE ? "user" : "system",
2116 len, data, (long long) io->io_offset, error);
2117 return (error);
2118 }
2119
2120 io->io_offset += len;
2121 return (0);
2122 }
2123
2124 /*
2125 * Dump core, into a file named "progname.core" or "core" (depending on the
2126 * value of shortcorename), unless the process was setuid/setgid.
2127 */
2128 int
2129 coredump(struct lwp *l, const char *pattern)
2130 {
2131 struct vnode *vp;
2132 struct proc *p;
2133 struct vmspace *vm;
2134 kauth_cred_t cred;
2135 struct nameidata nd;
2136 struct vattr vattr;
2137 struct mount *mp;
2138 struct coredump_iostate io;
2139 int error, error1;
2140 char *name = NULL;
2141
2142 p = l->l_proc;
2143 vm = p->p_vmspace;
2144 cred = l->l_cred;
2145
2146 /*
2147 * Make sure the process has not set-id, to prevent data leaks,
2148 * unless it was specifically requested to allow set-id coredumps.
2149 */
2150 if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2151 return EPERM;
2152
2153 /*
2154 * Refuse to core if the data + stack + user size is larger than
2155 * the core dump limit. XXX THIS IS WRONG, because of mapped
2156 * data.
2157 */
2158 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2159 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2160 return EFBIG; /* better error code? */
2161
2162 restart:
2163 /*
2164 * The core dump will go in the current working directory. Make
2165 * sure that the directory is still there and that the mount flags
2166 * allow us to write core dumps there.
2167 */
2168 vp = p->p_cwdi->cwdi_cdir;
2169 if (vp->v_mount == NULL ||
2170 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2171 error = EPERM;
2172 goto done;
2173 }
2174
2175 if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2176 pattern = security_setidcore_path;
2177
2178 if (pattern == NULL)
2179 pattern = p->p_limit->pl_corename;
2180 if (name == NULL) {
2181 name = PNBUF_GET();
2182 }
2183 if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2184 goto done;
2185 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2186 if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2187 S_IRUSR | S_IWUSR)) != 0)
2188 goto done;
2189 vp = nd.ni_vp;
2190
2191 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2192 VOP_UNLOCK(vp, 0);
2193 if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2194 goto done;
2195 if ((error = vn_start_write(NULL, &mp,
2196 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2197 goto done;
2198 goto restart;
2199 }
2200
2201 /* Don't dump to non-regular files or files with links. */
2202 if (vp->v_type != VREG ||
2203 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2204 error = EINVAL;
2205 goto out;
2206 }
2207 VATTR_NULL(&vattr);
2208 vattr.va_size = 0;
2209
2210 if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2211 vattr.va_uid = security_setidcore_owner;
2212 vattr.va_gid = security_setidcore_group;
2213 vattr.va_mode = security_setidcore_mode;
2214 }
2215
2216 VOP_LEASE(vp, l, cred, LEASE_WRITE);
2217 VOP_SETATTR(vp, &vattr, cred, l);
2218 p->p_acflag |= ACORE;
2219
2220 io.io_lwp = l;
2221 io.io_vp = vp;
2222 io.io_cred = cred;
2223 io.io_offset = 0;
2224
2225 /* Now dump the actual core file. */
2226 error = (*p->p_execsw->es_coredump)(l, &io);
2227 out:
2228 VOP_UNLOCK(vp, 0);
2229 vn_finished_write(mp, 0);
2230 error1 = vn_close(vp, FWRITE, cred, l);
2231 if (error == 0)
2232 error = error1;
2233 done:
2234 if (name != NULL)
2235 PNBUF_PUT(name);
2236 return error;
2237 }
2238 #endif /* COREDUMP */
2239
2240 /*
2241 * Nonexistent system call-- signal process (may want to handle it).
2242 * Flag error in case process won't see signal immediately (blocked or ignored).
2243 */
2244 #ifndef PTRACE
2245 __weak_alias(sys_ptrace, sys_nosys);
2246 #endif
2247
2248 /* ARGSUSED */
2249 int
2250 sys_nosys(struct lwp *l, void *v, register_t *retval)
2251 {
2252 struct proc *p;
2253
2254 p = l->l_proc;
2255 psignal(p, SIGSYS);
2256 return (ENOSYS);
2257 }
2258
2259 #ifdef COREDUMP
2260 static int
2261 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2262 {
2263 const char *s;
2264 char *d, *end;
2265 int i;
2266
2267 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2268 if (*s == '%') {
2269 switch (*(s + 1)) {
2270 case 'n':
2271 i = snprintf(d, end - d, "%s", p->p_comm);
2272 break;
2273 case 'p':
2274 i = snprintf(d, end - d, "%d", p->p_pid);
2275 break;
2276 case 'u':
2277 i = snprintf(d, end - d, "%.*s",
2278 (int)sizeof p->p_pgrp->pg_session->s_login,
2279 p->p_pgrp->pg_session->s_login);
2280 break;
2281 case 't':
2282 i = snprintf(d, end - d, "%ld",
2283 p->p_stats->p_start.tv_sec);
2284 break;
2285 default:
2286 goto copy;
2287 }
2288 d += i;
2289 s++;
2290 } else {
2291 copy: *d = *s;
2292 d++;
2293 }
2294 if (d >= end)
2295 return (ENAMETOOLONG);
2296 }
2297 *d = '\0';
2298 return 0;
2299 }
2300 #endif /* COREDUMP */
2301
2302 void
2303 getucontext(struct lwp *l, ucontext_t *ucp)
2304 {
2305 struct proc *p;
2306
2307 p = l->l_proc;
2308
2309 ucp->uc_flags = 0;
2310 ucp->uc_link = l->l_ctxlink;
2311
2312 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2313 ucp->uc_flags |= _UC_SIGMASK;
2314
2315 /*
2316 * The (unsupplied) definition of the `current execution stack'
2317 * in the System V Interface Definition appears to allow returning
2318 * the main context stack.
2319 */
2320 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2321 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2322 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2323 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2324 } else {
2325 /* Simply copy alternate signal execution stack. */
2326 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2327 }
2328 ucp->uc_flags |= _UC_STACK;
2329
2330 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2331 }
2332
2333 /* ARGSUSED */
2334 int
2335 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2336 {
2337 struct sys_getcontext_args /* {
2338 syscallarg(struct __ucontext *) ucp;
2339 } */ *uap = v;
2340 ucontext_t uc;
2341
2342 getucontext(l, &uc);
2343
2344 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2345 }
2346
2347 int
2348 setucontext(struct lwp *l, const ucontext_t *ucp)
2349 {
2350 struct proc *p;
2351 int error;
2352
2353 p = l->l_proc;
2354 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2355 return (error);
2356 l->l_ctxlink = ucp->uc_link;
2357
2358 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2359 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2360
2361 /*
2362 * If there was stack information, update whether or not we are
2363 * still running on an alternate signal stack.
2364 */
2365 if ((ucp->uc_flags & _UC_STACK) != 0) {
2366 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2367 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2368 else
2369 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2370 }
2371
2372 return 0;
2373 }
2374
2375 /* ARGSUSED */
2376 int
2377 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2378 {
2379 struct sys_setcontext_args /* {
2380 syscallarg(const ucontext_t *) ucp;
2381 } */ *uap = v;
2382 ucontext_t uc;
2383 int error;
2384
2385 error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
2386 if (error)
2387 return (error);
2388 if (!(uc.uc_flags & _UC_CPU))
2389 return (EINVAL);
2390 error = setucontext(l, &uc);
2391 if (error)
2392 return (error);
2393
2394 return (EJUSTRETURN);
2395 }
2396
2397 /*
2398 * sigtimedwait(2) system call, used also for implementation
2399 * of sigwaitinfo() and sigwait().
2400 *
2401 * This only handles single LWP in signal wait. libpthread provides
2402 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2403 */
2404 int
2405 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2406 {
2407 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2408 }
2409
2410 int
2411 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2412 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2413 {
2414 struct sys___sigtimedwait_args /* {
2415 syscallarg(const sigset_t *) set;
2416 syscallarg(siginfo_t *) info;
2417 syscallarg(struct timespec *) timeout;
2418 } */ *uap = v;
2419 sigset_t *waitset, twaitset;
2420 struct proc *p = l->l_proc;
2421 int error, signum;
2422 int timo = 0;
2423 struct timespec ts, tsstart;
2424 ksiginfo_t *ksi;
2425
2426 memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */
2427
2428 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2429
2430 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2431 FREE(waitset, M_TEMP);
2432 return (error);
2433 }
2434
2435 /*
2436 * Silently ignore SA_CANTMASK signals. psignal() would
2437 * ignore SA_CANTMASK signals in waitset, we do this
2438 * only for the below siglist check.
2439 */
2440 sigminusset(&sigcantmask, waitset);
2441
2442 /*
2443 * First scan siglist and check if there is signal from
2444 * our waitset already pending.
2445 */
2446 twaitset = *waitset;
2447 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2448 if ((signum = firstsig(&twaitset))) {
2449 /* found pending signal */
2450 sigdelset(&p->p_sigctx.ps_siglist, signum);
2451 ksi = ksiginfo_dequeue(p, signum);
2452 if (!ksi) {
2453 /* No queued siginfo, manufacture one */
2454 ksi = ksiginfo_alloc(PR_WAITOK);
2455 KSI_INIT(ksi);
2456 ksi->ksi_info._signo = signum;
2457 ksi->ksi_info._code = SI_USER;
2458 }
2459
2460 goto sig;
2461 }
2462
2463 /*
2464 * Calculate timeout, if it was specified.
2465 */
2466 if (SCARG(uap, timeout)) {
2467 uint64_t ms;
2468
2469 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2470 return (error);
2471
2472 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2473 timo = mstohz(ms);
2474 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2475 timo = 1;
2476 if (timo <= 0)
2477 return (EAGAIN);
2478
2479 /*
2480 * Remember current uptime, it would be used in
2481 * ECANCELED/ERESTART case.
2482 */
2483 getnanouptime(&tsstart);
2484 }
2485
2486 /*
2487 * Setup ps_sigwait list. Pass pointer to malloced memory
2488 * here; it's not possible to pass pointer to a structure
2489 * on current process's stack, the current process might
2490 * be swapped out at the time the signal would get delivered.
2491 */
2492 ksi = ksiginfo_alloc(PR_WAITOK);
2493 p->p_sigctx.ps_sigwaited = ksi;
2494 p->p_sigctx.ps_sigwait = waitset;
2495
2496 /*
2497 * Wait for signal to arrive. We can either be woken up or
2498 * time out.
2499 */
2500 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2501
2502 /*
2503 * Need to find out if we woke as a result of lwp_wakeup()
2504 * or a signal outside our wait set.
2505 */
2506 if (error == EINTR && p->p_sigctx.ps_sigwaited
2507 && !firstsig(&p->p_sigctx.ps_siglist)) {
2508 /* wakeup via _lwp_wakeup() */
2509 error = ECANCELED;
2510 } else if (!error && p->p_sigctx.ps_sigwaited) {
2511 /* spurious wakeup - arrange for syscall restart */
2512 error = ERESTART;
2513 goto fail;
2514 }
2515
2516 /*
2517 * On error, clear sigwait indication. psignal() clears it
2518 * in !error case.
2519 */
2520 if (error) {
2521 p->p_sigctx.ps_sigwaited = NULL;
2522
2523 /*
2524 * If the sleep was interrupted (either by signal or wakeup),
2525 * update the timeout and copyout new value back.
2526 * It would be used when the syscall would be restarted
2527 * or called again.
2528 */
2529 if (timo && (error == ERESTART || error == ECANCELED)) {
2530 struct timespec tsnow;
2531 int err;
2532
2533 /* XXX double check the following change */
2534 getnanouptime(&tsnow);
2535
2536 /* compute how much time has passed since start */
2537 timespecsub(&tsnow, &tsstart, &tsnow);
2538 /* substract passed time from timeout */
2539 timespecsub(&ts, &tsnow, &ts);
2540
2541 if (ts.tv_sec < 0) {
2542 error = EAGAIN;
2543 goto fail;
2544 }
2545 /* XXX double check the previous change */
2546
2547 /* copy updated timeout to userland */
2548 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2549 sizeof(ts)))) {
2550 error = err;
2551 goto fail;
2552 }
2553 }
2554
2555 goto fail;
2556 }
2557
2558 /*
2559 * If a signal from the wait set arrived, copy it to userland.
2560 * Copy only the used part of siginfo, the padding part is
2561 * left unchanged (userland is not supposed to touch it anyway).
2562 */
2563 sig:
2564 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2565
2566 fail:
2567 FREE(waitset, M_TEMP);
2568 ksiginfo_free(ksi);
2569 p->p_sigctx.ps_sigwait = NULL;
2570
2571 return (error);
2572 }
2573
2574 /*
2575 * Returns true if signal is ignored or masked for passed process.
2576 */
2577 int
2578 sigismasked(struct proc *p, int sig)
2579 {
2580
2581 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2582 sigismember(&p->p_sigctx.ps_sigmask, sig));
2583 }
2584
2585 static int
2586 filt_sigattach(struct knote *kn)
2587 {
2588 struct proc *p = curproc;
2589
2590 kn->kn_ptr.p_proc = p;
2591 kn->kn_flags |= EV_CLEAR; /* automatically set */
2592
2593 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2594
2595 return (0);
2596 }
2597
2598 static void
2599 filt_sigdetach(struct knote *kn)
2600 {
2601 struct proc *p = kn->kn_ptr.p_proc;
2602
2603 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2604 }
2605
2606 /*
2607 * signal knotes are shared with proc knotes, so we apply a mask to
2608 * the hint in order to differentiate them from process hints. This
2609 * could be avoided by using a signal-specific knote list, but probably
2610 * isn't worth the trouble.
2611 */
2612 static int
2613 filt_signal(struct knote *kn, long hint)
2614 {
2615
2616 if (hint & NOTE_SIGNAL) {
2617 hint &= ~NOTE_SIGNAL;
2618
2619 if (kn->kn_id == hint)
2620 kn->kn_data++;
2621 }
2622 return (kn->kn_data != 0);
2623 }
2624
2625 const struct filterops sig_filtops = {
2626 0, filt_sigattach, filt_sigdetach, filt_signal
2627 };
2628