kern_sig.c revision 1.240 1 /* $NetBSD: kern_sig.c,v 1.240 2006/11/22 02:02:51 elad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.240 2006/11/22 02:02:51 elad Exp $");
41
42 #include "opt_coredump.h"
43 #include "opt_ktrace.h"
44 #include "opt_ptrace.h"
45 #include "opt_multiprocessor.h"
46 #include "opt_compat_sunos.h"
47 #include "opt_compat_netbsd.h"
48 #include "opt_compat_netbsd32.h"
49 #include "opt_pax.h"
50
51 #define SIGPROP /* include signal properties table */
52 #include <sys/param.h>
53 #include <sys/signalvar.h>
54 #include <sys/resourcevar.h>
55 #include <sys/namei.h>
56 #include <sys/vnode.h>
57 #include <sys/proc.h>
58 #include <sys/systm.h>
59 #include <sys/timeb.h>
60 #include <sys/times.h>
61 #include <sys/buf.h>
62 #include <sys/acct.h>
63 #include <sys/file.h>
64 #include <sys/kernel.h>
65 #include <sys/wait.h>
66 #include <sys/ktrace.h>
67 #include <sys/syslog.h>
68 #include <sys/stat.h>
69 #include <sys/core.h>
70 #include <sys/filedesc.h>
71 #include <sys/malloc.h>
72 #include <sys/pool.h>
73 #include <sys/ucontext.h>
74 #include <sys/sa.h>
75 #include <sys/savar.h>
76 #include <sys/exec.h>
77 #include <sys/sysctl.h>
78 #include <sys/kauth.h>
79
80 #include <sys/mount.h>
81 #include <sys/syscallargs.h>
82
83 #include <machine/cpu.h>
84
85 #include <sys/user.h> /* for coredump */
86
87 #ifdef PAX_SEGVGUARD
88 #include <sys/pax.h>
89 #endif /* PAX_SEGVGUARD */
90
91 #include <uvm/uvm.h>
92 #include <uvm/uvm_extern.h>
93
94 #ifdef COREDUMP
95 static int build_corename(struct proc *, char *, const char *, size_t);
96 #endif
97 static void ksiginfo_exithook(struct proc *, void *);
98 static void ksiginfo_queue(struct proc *, const ksiginfo_t *, ksiginfo_t **);
99 static ksiginfo_t *ksiginfo_dequeue(struct proc *, int);
100 static void kpsignal2(struct proc *, const ksiginfo_t *);
101
102 sigset_t contsigmask, stopsigmask, sigcantmask;
103
104 struct pool sigacts_pool; /* memory pool for sigacts structures */
105
106 /*
107 * struct sigacts memory pool allocator.
108 */
109
110 static void *
111 sigacts_poolpage_alloc(struct pool *pp, int flags)
112 {
113
114 return (void *)uvm_km_alloc(kernel_map,
115 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
116 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
117 | UVM_KMF_WIRED);
118 }
119
120 static void
121 sigacts_poolpage_free(struct pool *pp, void *v)
122 {
123 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
124 }
125
126 static struct pool_allocator sigactspool_allocator = {
127 .pa_alloc = sigacts_poolpage_alloc,
128 .pa_free = sigacts_poolpage_free,
129 };
130
131 static POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
132 &pool_allocator_nointr);
133 static POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
134
135 static ksiginfo_t *
136 ksiginfo_alloc(int prflags)
137 {
138 int s;
139 ksiginfo_t *ksi;
140
141 s = splsoftclock();
142 ksi = pool_get(&ksiginfo_pool, prflags);
143 splx(s);
144 return ksi;
145 }
146
147 static void
148 ksiginfo_free(ksiginfo_t *ksi)
149 {
150 int s;
151
152 s = splsoftclock();
153 pool_put(&ksiginfo_pool, ksi);
154 splx(s);
155 }
156
157 /*
158 * Remove and return the first ksiginfo element that matches our requested
159 * signal, or return NULL if one not found.
160 */
161 static ksiginfo_t *
162 ksiginfo_dequeue(struct proc *p, int signo)
163 {
164 ksiginfo_t *ksi;
165 int s;
166
167 s = splsoftclock();
168 simple_lock(&p->p_sigctx.ps_silock);
169 CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
170 if (ksi->ksi_signo == signo) {
171 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
172 goto out;
173 }
174 }
175 ksi = NULL;
176 out:
177 simple_unlock(&p->p_sigctx.ps_silock);
178 splx(s);
179 return ksi;
180 }
181
182 /*
183 * Append a new ksiginfo element to the list of pending ksiginfo's, if
184 * we need to (SA_SIGINFO was requested). We replace non RT signals if
185 * they already existed in the queue and we add new entries for RT signals,
186 * or for non RT signals with non-existing entries.
187 */
188 static void
189 ksiginfo_queue(struct proc *p, const ksiginfo_t *ksi, ksiginfo_t **newkp)
190 {
191 ksiginfo_t *kp;
192 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
193 int s;
194
195 if ((sa->sa_flags & SA_SIGINFO) == 0)
196 return;
197
198 /*
199 * If there's no info, don't save it.
200 */
201 if (KSI_EMPTY_P(ksi))
202 return;
203
204 s = splsoftclock();
205 simple_lock(&p->p_sigctx.ps_silock);
206 #ifdef notyet /* XXX: QUEUING */
207 if (ksi->ksi_signo < SIGRTMIN)
208 #endif
209 {
210 CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
211 if (kp->ksi_signo == ksi->ksi_signo) {
212 KSI_COPY(ksi, kp);
213 goto out;
214 }
215 }
216 }
217 if (newkp && *newkp) {
218 kp = *newkp;
219 *newkp = NULL;
220 } else {
221 SCHED_ASSERT_UNLOCKED();
222 kp = ksiginfo_alloc(PR_NOWAIT);
223 if (kp == NULL) {
224 #ifdef DIAGNOSTIC
225 printf("Out of memory allocating siginfo for pid %d\n",
226 p->p_pid);
227 #endif
228 goto out;
229 }
230 }
231 *kp = *ksi;
232 CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
233 out:
234 simple_unlock(&p->p_sigctx.ps_silock);
235 splx(s);
236 }
237
238 /*
239 * free all pending ksiginfo on exit
240 */
241 static void
242 ksiginfo_exithook(struct proc *p, void *v)
243 {
244 int s;
245
246 s = splsoftclock();
247 simple_lock(&p->p_sigctx.ps_silock);
248 while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
249 ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
250 CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
251 ksiginfo_free(ksi);
252 }
253 simple_unlock(&p->p_sigctx.ps_silock);
254 splx(s);
255 }
256
257 /*
258 * Initialize signal-related data structures.
259 */
260 void
261 signal_init(void)
262 {
263
264 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
265
266 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
267 sizeof(struct sigacts) > PAGE_SIZE ?
268 &sigactspool_allocator : &pool_allocator_nointr);
269
270 exithook_establish(ksiginfo_exithook, NULL);
271 exechook_establish(ksiginfo_exithook, NULL);
272 }
273
274 /*
275 * Create an initial sigctx structure, using the same signal state
276 * as p. If 'share' is set, share the sigctx_proc part, otherwise just
277 * copy it from parent.
278 */
279 void
280 sigactsinit(struct proc *np, struct proc *pp, int share)
281 {
282 struct sigacts *ps;
283
284 if (share) {
285 np->p_sigacts = pp->p_sigacts;
286 pp->p_sigacts->sa_refcnt++;
287 } else {
288 ps = pool_get(&sigacts_pool, PR_WAITOK);
289 if (pp)
290 memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
291 else
292 memset(ps, '\0', sizeof(struct sigacts));
293 ps->sa_refcnt = 1;
294 np->p_sigacts = ps;
295 }
296 }
297
298 /*
299 * Make this process not share its sigctx, maintaining all
300 * signal state.
301 */
302 void
303 sigactsunshare(struct proc *p)
304 {
305 struct sigacts *oldps;
306
307 if (p->p_sigacts->sa_refcnt == 1)
308 return;
309
310 oldps = p->p_sigacts;
311 sigactsinit(p, NULL, 0);
312
313 if (--oldps->sa_refcnt == 0)
314 pool_put(&sigacts_pool, oldps);
315 }
316
317 /*
318 * Release a sigctx structure.
319 */
320 void
321 sigactsfree(struct sigacts *ps)
322 {
323
324 if (--ps->sa_refcnt > 0)
325 return;
326
327 pool_put(&sigacts_pool, ps);
328 }
329
330 int
331 sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
332 struct sigaction *osa, const void *tramp, int vers)
333 {
334 struct sigacts *ps;
335 int prop;
336
337 ps = p->p_sigacts;
338 if (signum <= 0 || signum >= NSIG)
339 return (EINVAL);
340
341 /*
342 * Trampoline ABI version 0 is reserved for the legacy
343 * kernel-provided on-stack trampoline. Conversely, if we are
344 * using a non-0 ABI version, we must have a trampoline. Only
345 * validate the vers if a new sigaction was supplied. Emulations
346 * use legacy kernel trampolines with version 0, alternatively
347 * check for that too.
348 */
349 if ((vers != 0 && tramp == NULL) ||
350 #ifdef SIGTRAMP_VALID
351 (nsa != NULL &&
352 ((vers == 0) ?
353 (p->p_emul->e_sigcode == NULL) :
354 !SIGTRAMP_VALID(vers))) ||
355 #endif
356 (vers == 0 && tramp != NULL))
357 return (EINVAL);
358
359 if (osa)
360 *osa = SIGACTION_PS(ps, signum);
361
362 if (nsa) {
363 if (nsa->sa_flags & ~SA_ALLBITS)
364 return (EINVAL);
365
366 prop = sigprop[signum];
367 if (prop & SA_CANTMASK)
368 return (EINVAL);
369
370 (void) splsched(); /* XXXSMP */
371 SIGACTION_PS(ps, signum) = *nsa;
372 ps->sa_sigdesc[signum].sd_tramp = tramp;
373 ps->sa_sigdesc[signum].sd_vers = vers;
374 sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
375 if ((prop & SA_NORESET) != 0)
376 SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
377 if (signum == SIGCHLD) {
378 if (nsa->sa_flags & SA_NOCLDSTOP)
379 p->p_flag |= P_NOCLDSTOP;
380 else
381 p->p_flag &= ~P_NOCLDSTOP;
382 if (nsa->sa_flags & SA_NOCLDWAIT) {
383 /*
384 * Paranoia: since SA_NOCLDWAIT is implemented
385 * by reparenting the dying child to PID 1 (and
386 * trust it to reap the zombie), PID 1 itself
387 * is forbidden to set SA_NOCLDWAIT.
388 */
389 if (p->p_pid == 1)
390 p->p_flag &= ~P_NOCLDWAIT;
391 else
392 p->p_flag |= P_NOCLDWAIT;
393 } else
394 p->p_flag &= ~P_NOCLDWAIT;
395
396 if (nsa->sa_handler == SIG_IGN) {
397 /*
398 * Paranoia: same as above.
399 */
400 if (p->p_pid == 1)
401 p->p_flag &= ~P_CLDSIGIGN;
402 else
403 p->p_flag |= P_CLDSIGIGN;
404 } else
405 p->p_flag &= ~P_CLDSIGIGN;
406
407 }
408 if ((nsa->sa_flags & SA_NODEFER) == 0)
409 sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
410 else
411 sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
412 /*
413 * Set bit in p_sigctx.ps_sigignore for signals that are set to
414 * SIG_IGN, and for signals set to SIG_DFL where the default is
415 * to ignore. However, don't put SIGCONT in
416 * p_sigctx.ps_sigignore, as we have to restart the process.
417 */
418 if (nsa->sa_handler == SIG_IGN ||
419 (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
420 /* never to be seen again */
421 sigdelset(&p->p_sigctx.ps_siglist, signum);
422 if (signum != SIGCONT) {
423 /* easier in psignal */
424 sigaddset(&p->p_sigctx.ps_sigignore, signum);
425 }
426 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
427 } else {
428 sigdelset(&p->p_sigctx.ps_sigignore, signum);
429 if (nsa->sa_handler == SIG_DFL)
430 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
431 else
432 sigaddset(&p->p_sigctx.ps_sigcatch, signum);
433 }
434 (void) spl0();
435 }
436
437 return (0);
438 }
439
440 #ifdef COMPAT_16
441 /* ARGSUSED */
442 int
443 compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
444 {
445 struct compat_16_sys___sigaction14_args /* {
446 syscallarg(int) signum;
447 syscallarg(const struct sigaction *) nsa;
448 syscallarg(struct sigaction *) osa;
449 } */ *uap = v;
450 struct proc *p;
451 struct sigaction nsa, osa;
452 int error;
453
454 if (SCARG(uap, nsa)) {
455 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
456 if (error)
457 return (error);
458 }
459 p = l->l_proc;
460 error = sigaction1(p, SCARG(uap, signum),
461 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
462 NULL, 0);
463 if (error)
464 return (error);
465 if (SCARG(uap, osa)) {
466 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
467 if (error)
468 return (error);
469 }
470 return (0);
471 }
472 #endif
473
474 /* ARGSUSED */
475 int
476 sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
477 {
478 struct sys___sigaction_sigtramp_args /* {
479 syscallarg(int) signum;
480 syscallarg(const struct sigaction *) nsa;
481 syscallarg(struct sigaction *) osa;
482 syscallarg(void *) tramp;
483 syscallarg(int) vers;
484 } */ *uap = v;
485 struct proc *p = l->l_proc;
486 struct sigaction nsa, osa;
487 int error;
488
489 if (SCARG(uap, nsa)) {
490 error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
491 if (error)
492 return (error);
493 }
494 error = sigaction1(p, SCARG(uap, signum),
495 SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
496 SCARG(uap, tramp), SCARG(uap, vers));
497 if (error)
498 return (error);
499 if (SCARG(uap, osa)) {
500 error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
501 if (error)
502 return (error);
503 }
504 return (0);
505 }
506
507 /*
508 * Initialize signal state for process 0;
509 * set to ignore signals that are ignored by default and disable the signal
510 * stack.
511 */
512 void
513 siginit(struct proc *p)
514 {
515 struct sigacts *ps;
516 int signum, prop;
517
518 ps = p->p_sigacts;
519 sigemptyset(&contsigmask);
520 sigemptyset(&stopsigmask);
521 sigemptyset(&sigcantmask);
522 for (signum = 1; signum < NSIG; signum++) {
523 prop = sigprop[signum];
524 if (prop & SA_CONT)
525 sigaddset(&contsigmask, signum);
526 if (prop & SA_STOP)
527 sigaddset(&stopsigmask, signum);
528 if (prop & SA_CANTMASK)
529 sigaddset(&sigcantmask, signum);
530 if (prop & SA_IGNORE && signum != SIGCONT)
531 sigaddset(&p->p_sigctx.ps_sigignore, signum);
532 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
533 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
534 }
535 sigemptyset(&p->p_sigctx.ps_sigcatch);
536 p->p_sigctx.ps_sigwaited = NULL;
537 p->p_flag &= ~P_NOCLDSTOP;
538
539 /*
540 * Reset stack state to the user stack.
541 */
542 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
543 p->p_sigctx.ps_sigstk.ss_size = 0;
544 p->p_sigctx.ps_sigstk.ss_sp = 0;
545
546 /* One reference. */
547 ps->sa_refcnt = 1;
548 }
549
550 /*
551 * Reset signals for an exec of the specified process.
552 */
553 void
554 execsigs(struct proc *p)
555 {
556 struct sigacts *ps;
557 int signum, prop;
558
559 sigactsunshare(p);
560
561 ps = p->p_sigacts;
562
563 /*
564 * Reset caught signals. Held signals remain held
565 * through p_sigctx.ps_sigmask (unless they were caught,
566 * and are now ignored by default).
567 */
568 for (signum = 1; signum < NSIG; signum++) {
569 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
570 prop = sigprop[signum];
571 if (prop & SA_IGNORE) {
572 if ((prop & SA_CONT) == 0)
573 sigaddset(&p->p_sigctx.ps_sigignore,
574 signum);
575 sigdelset(&p->p_sigctx.ps_siglist, signum);
576 }
577 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
578 }
579 sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
580 SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
581 }
582 sigemptyset(&p->p_sigctx.ps_sigcatch);
583 p->p_sigctx.ps_sigwaited = NULL;
584
585 /*
586 * Reset no zombies if child dies flag as Solaris does.
587 */
588 p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
589 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
590 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
591
592 /*
593 * Reset stack state to the user stack.
594 */
595 p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
596 p->p_sigctx.ps_sigstk.ss_size = 0;
597 p->p_sigctx.ps_sigstk.ss_sp = 0;
598 }
599
600 int
601 sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
602 {
603
604 if (oss)
605 *oss = p->p_sigctx.ps_sigmask;
606
607 if (nss) {
608 (void)splsched(); /* XXXSMP */
609 switch (how) {
610 case SIG_BLOCK:
611 sigplusset(nss, &p->p_sigctx.ps_sigmask);
612 break;
613 case SIG_UNBLOCK:
614 sigminusset(nss, &p->p_sigctx.ps_sigmask);
615 CHECKSIGS(p);
616 break;
617 case SIG_SETMASK:
618 p->p_sigctx.ps_sigmask = *nss;
619 CHECKSIGS(p);
620 break;
621 default:
622 (void)spl0(); /* XXXSMP */
623 return (EINVAL);
624 }
625 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
626 (void)spl0(); /* XXXSMP */
627 }
628
629 return (0);
630 }
631
632 /*
633 * Manipulate signal mask.
634 * Note that we receive new mask, not pointer,
635 * and return old mask as return value;
636 * the library stub does the rest.
637 */
638 int
639 sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
640 {
641 struct sys___sigprocmask14_args /* {
642 syscallarg(int) how;
643 syscallarg(const sigset_t *) set;
644 syscallarg(sigset_t *) oset;
645 } */ *uap = v;
646 struct proc *p;
647 sigset_t nss, oss;
648 int error;
649
650 if (SCARG(uap, set)) {
651 error = copyin(SCARG(uap, set), &nss, sizeof(nss));
652 if (error)
653 return (error);
654 }
655 p = l->l_proc;
656 error = sigprocmask1(p, SCARG(uap, how),
657 SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
658 if (error)
659 return (error);
660 if (SCARG(uap, oset)) {
661 error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
662 if (error)
663 return (error);
664 }
665 return (0);
666 }
667
668 void
669 sigpending1(struct proc *p, sigset_t *ss)
670 {
671
672 *ss = p->p_sigctx.ps_siglist;
673 sigminusset(&p->p_sigctx.ps_sigmask, ss);
674 }
675
676 /* ARGSUSED */
677 int
678 sys___sigpending14(struct lwp *l, void *v, register_t *retval)
679 {
680 struct sys___sigpending14_args /* {
681 syscallarg(sigset_t *) set;
682 } */ *uap = v;
683 struct proc *p;
684 sigset_t ss;
685
686 p = l->l_proc;
687 sigpending1(p, &ss);
688 return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
689 }
690
691 int
692 sigsuspend1(struct proc *p, const sigset_t *ss)
693 {
694 struct sigacts *ps;
695
696 ps = p->p_sigacts;
697 if (ss) {
698 /*
699 * When returning from sigpause, we want
700 * the old mask to be restored after the
701 * signal handler has finished. Thus, we
702 * save it here and mark the sigctx structure
703 * to indicate this.
704 */
705 p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
706 p->p_sigctx.ps_flags |= SAS_OLDMASK;
707 (void) splsched(); /* XXXSMP */
708 p->p_sigctx.ps_sigmask = *ss;
709 CHECKSIGS(p);
710 sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
711 (void) spl0(); /* XXXSMP */
712 }
713
714 while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
715 /* void */;
716
717 /* always return EINTR rather than ERESTART... */
718 return (EINTR);
719 }
720
721 /*
722 * Suspend process until signal, providing mask to be set
723 * in the meantime. Note nonstandard calling convention:
724 * libc stub passes mask, not pointer, to save a copyin.
725 */
726 /* ARGSUSED */
727 int
728 sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
729 {
730 struct sys___sigsuspend14_args /* {
731 syscallarg(const sigset_t *) set;
732 } */ *uap = v;
733 struct proc *p;
734 sigset_t ss;
735 int error;
736
737 if (SCARG(uap, set)) {
738 error = copyin(SCARG(uap, set), &ss, sizeof(ss));
739 if (error)
740 return (error);
741 }
742
743 p = l->l_proc;
744 return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
745 }
746
747 int
748 sigaltstack1(struct proc *p, const struct sigaltstack *nss,
749 struct sigaltstack *oss)
750 {
751
752 if (oss)
753 *oss = p->p_sigctx.ps_sigstk;
754
755 if (nss) {
756 if (nss->ss_flags & ~SS_ALLBITS)
757 return (EINVAL);
758
759 if (nss->ss_flags & SS_DISABLE) {
760 if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
761 return (EINVAL);
762 } else {
763 if (nss->ss_size < MINSIGSTKSZ)
764 return (ENOMEM);
765 }
766 p->p_sigctx.ps_sigstk = *nss;
767 }
768
769 return (0);
770 }
771
772 /* ARGSUSED */
773 int
774 sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
775 {
776 struct sys___sigaltstack14_args /* {
777 syscallarg(const struct sigaltstack *) nss;
778 syscallarg(struct sigaltstack *) oss;
779 } */ *uap = v;
780 struct proc *p;
781 struct sigaltstack nss, oss;
782 int error;
783
784 if (SCARG(uap, nss)) {
785 error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
786 if (error)
787 return (error);
788 }
789 p = l->l_proc;
790 error = sigaltstack1(p,
791 SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
792 if (error)
793 return (error);
794 if (SCARG(uap, oss)) {
795 error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
796 if (error)
797 return (error);
798 }
799 return (0);
800 }
801
802 /* ARGSUSED */
803 int
804 sys_kill(struct lwp *l, void *v, register_t *retval)
805 {
806 struct sys_kill_args /* {
807 syscallarg(int) pid;
808 syscallarg(int) signum;
809 } */ *uap = v;
810 struct proc *p;
811 ksiginfo_t ksi;
812 int signum = SCARG(uap, signum);
813 int error;
814
815 if ((u_int)signum >= NSIG)
816 return (EINVAL);
817 KSI_INIT(&ksi);
818 ksi.ksi_signo = signum;
819 ksi.ksi_code = SI_USER;
820 ksi.ksi_pid = l->l_proc->p_pid;
821 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
822 if (SCARG(uap, pid) > 0) {
823 /* kill single process */
824 if ((p = pfind(SCARG(uap, pid))) == NULL)
825 return (ESRCH);
826 error = kauth_authorize_process(l->l_cred,
827 KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
828 NULL, NULL);
829 if (error)
830 return error;
831 if (signum)
832 kpsignal2(p, &ksi);
833 return (0);
834 }
835 switch (SCARG(uap, pid)) {
836 case -1: /* broadcast signal */
837 return (killpg1(l, &ksi, 0, 1));
838 case 0: /* signal own process group */
839 return (killpg1(l, &ksi, 0, 0));
840 default: /* negative explicit process group */
841 return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
842 }
843 /* NOTREACHED */
844 }
845
846 /*
847 * Common code for kill process group/broadcast kill.
848 * cp is calling process.
849 */
850 int
851 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
852 {
853 struct proc *p, *cp;
854 kauth_cred_t pc;
855 struct pgrp *pgrp;
856 int nfound;
857 int signum = ksi->ksi_signo;
858
859 cp = l->l_proc;
860 pc = l->l_cred;
861 nfound = 0;
862 if (all) {
863 /*
864 * broadcast
865 */
866 proclist_lock_read();
867 PROCLIST_FOREACH(p, &allproc) {
868 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
869 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
870 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
871 continue;
872 nfound++;
873 if (signum)
874 kpsignal2(p, ksi);
875 }
876 proclist_unlock_read();
877 } else {
878 if (pgid == 0)
879 /*
880 * zero pgid means send to my process group.
881 */
882 pgrp = cp->p_pgrp;
883 else {
884 pgrp = pgfind(pgid);
885 if (pgrp == NULL)
886 return (ESRCH);
887 }
888 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
889 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
890 kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
891 p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
892 continue;
893 nfound++;
894 if (signum && P_ZOMBIE(p) == 0)
895 kpsignal2(p, ksi);
896 }
897 }
898 return (nfound ? 0 : ESRCH);
899 }
900
901 /*
902 * Send a signal to a process group.
903 */
904 void
905 gsignal(int pgid, int signum)
906 {
907 ksiginfo_t ksi;
908 KSI_INIT_EMPTY(&ksi);
909 ksi.ksi_signo = signum;
910 kgsignal(pgid, &ksi, NULL);
911 }
912
913 void
914 kgsignal(int pgid, ksiginfo_t *ksi, void *data)
915 {
916 struct pgrp *pgrp;
917
918 if (pgid && (pgrp = pgfind(pgid)))
919 kpgsignal(pgrp, ksi, data, 0);
920 }
921
922 /*
923 * Send a signal to a process group. If checktty is 1,
924 * limit to members which have a controlling terminal.
925 */
926 void
927 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
928 {
929 ksiginfo_t ksi;
930 KSI_INIT_EMPTY(&ksi);
931 ksi.ksi_signo = sig;
932 kpgsignal(pgrp, &ksi, NULL, checkctty);
933 }
934
935 void
936 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
937 {
938 struct proc *p;
939
940 if (pgrp)
941 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
942 if (checkctty == 0 || p->p_flag & P_CONTROLT)
943 kpsignal(p, ksi, data);
944 }
945
946 /*
947 * Send a signal caused by a trap to the current process.
948 * If it will be caught immediately, deliver it with correct code.
949 * Otherwise, post it normally.
950 */
951 void
952 trapsignal(struct lwp *l, const ksiginfo_t *ksi)
953 {
954 struct proc *p;
955 struct sigacts *ps;
956 int signum = ksi->ksi_signo;
957
958 KASSERT(KSI_TRAP_P(ksi));
959
960 p = l->l_proc;
961 ps = p->p_sigacts;
962 if ((p->p_flag & P_TRACED) == 0 &&
963 sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
964 !sigismember(&p->p_sigctx.ps_sigmask, signum)) {
965 p->p_stats->p_ru.ru_nsignals++;
966 #ifdef KTRACE
967 if (KTRPOINT(p, KTR_PSIG))
968 ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
969 &p->p_sigctx.ps_sigmask, ksi);
970 #endif
971 kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
972 (void) splsched(); /* XXXSMP */
973 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
974 &p->p_sigctx.ps_sigmask);
975 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
976 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
977 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
978 sigaddset(&p->p_sigctx.ps_sigignore, signum);
979 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
980 }
981 (void) spl0(); /* XXXSMP */
982 } else {
983 p->p_sigctx.ps_lwp = l->l_lid;
984 /* XXX for core dump/debugger */
985 p->p_sigctx.ps_signo = ksi->ksi_signo;
986 p->p_sigctx.ps_code = ksi->ksi_trap;
987 kpsignal2(p, ksi);
988 }
989 }
990
991 /*
992 * Fill in signal information and signal the parent for a child status change.
993 */
994 void
995 child_psignal(struct proc *p)
996 {
997 ksiginfo_t ksi;
998
999 KSI_INIT(&ksi);
1000 ksi.ksi_signo = SIGCHLD;
1001 ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
1002 ksi.ksi_pid = p->p_pid;
1003 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1004 ksi.ksi_status = p->p_xstat;
1005 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1006 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1007 kpsignal2(p->p_pptr, &ksi);
1008 }
1009
1010 /*
1011 * Send the signal to the process. If the signal has an action, the action
1012 * is usually performed by the target process rather than the caller; we add
1013 * the signal to the set of pending signals for the process.
1014 *
1015 * Exceptions:
1016 * o When a stop signal is sent to a sleeping process that takes the
1017 * default action, the process is stopped without awakening it.
1018 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1019 * regardless of the signal action (eg, blocked or ignored).
1020 *
1021 * Other ignored signals are discarded immediately.
1022 */
1023 void
1024 psignal(struct proc *p, int signum)
1025 {
1026 ksiginfo_t ksi;
1027
1028 KSI_INIT_EMPTY(&ksi);
1029 ksi.ksi_signo = signum;
1030 kpsignal2(p, &ksi);
1031 }
1032
1033 void
1034 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1035 {
1036
1037 if ((p->p_flag & P_WEXIT) == 0 && data) {
1038 size_t fd;
1039 struct filedesc *fdp = p->p_fd;
1040
1041 ksi->ksi_fd = -1;
1042 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1043 struct file *fp = fdp->fd_ofiles[fd];
1044 /* XXX: lock? */
1045 if (fp && fp->f_data == data) {
1046 ksi->ksi_fd = fd;
1047 break;
1048 }
1049 }
1050 }
1051 kpsignal2(p, ksi);
1052 }
1053
1054 static void
1055 kpsignal2(struct proc *p, const ksiginfo_t *ksi)
1056 {
1057 struct lwp *l, *suspended = NULL;
1058 struct sadata_vp *vp;
1059 ksiginfo_t *newkp;
1060 int s = 0, prop, allsusp;
1061 sig_t action;
1062 int signum = ksi->ksi_signo;
1063
1064 #ifdef DIAGNOSTIC
1065 if (signum <= 0 || signum >= NSIG)
1066 panic("psignal signal number %d", signum);
1067
1068 SCHED_ASSERT_UNLOCKED();
1069 #endif
1070
1071 /*
1072 * Notify any interested parties in the signal.
1073 */
1074 KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
1075
1076 prop = sigprop[signum];
1077
1078 /*
1079 * If proc is traced, always give parent a chance.
1080 */
1081 if (p->p_flag & P_TRACED) {
1082 action = SIG_DFL;
1083
1084 /*
1085 * If the process is being traced and the signal is being
1086 * caught, make sure to save any ksiginfo.
1087 */
1088 if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1089 SCHED_ASSERT_UNLOCKED();
1090 ksiginfo_queue(p, ksi, NULL);
1091 }
1092 } else {
1093 /*
1094 * If the signal was the result of a trap, reset it
1095 * to default action if it's currently masked, so that it would
1096 * coredump immediatelly instead of spinning repeatedly
1097 * taking the signal.
1098 */
1099 if (KSI_TRAP_P(ksi)
1100 && sigismember(&p->p_sigctx.ps_sigmask, signum)
1101 && !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
1102 sigdelset(&p->p_sigctx.ps_sigignore, signum);
1103 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1104 sigdelset(&p->p_sigctx.ps_sigmask, signum);
1105 SIGACTION(p, signum).sa_handler = SIG_DFL;
1106 }
1107
1108 /*
1109 * If the signal is being ignored,
1110 * then we forget about it immediately.
1111 * (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
1112 * and if it is set to SIG_IGN,
1113 * action will be SIG_DFL here.)
1114 */
1115 if (sigismember(&p->p_sigctx.ps_sigignore, signum))
1116 return;
1117 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1118 action = SIG_HOLD;
1119 else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
1120 action = SIG_CATCH;
1121 else {
1122 action = SIG_DFL;
1123
1124 if (prop & SA_KILL && p->p_nice > NZERO)
1125 p->p_nice = NZERO;
1126
1127 /*
1128 * If sending a tty stop signal to a member of an
1129 * orphaned process group, discard the signal here if
1130 * the action is default; don't stop the process below
1131 * if sleeping, and don't clear any pending SIGCONT.
1132 */
1133 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1134 return;
1135 }
1136 }
1137
1138 if (prop & SA_CONT)
1139 sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
1140
1141 if (prop & SA_STOP)
1142 sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
1143
1144 /*
1145 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1146 * please!), check if anything waits on it. If yes, save the
1147 * info into provided ps_sigwaited, and wake-up the waiter.
1148 * The signal won't be processed further here.
1149 */
1150 if ((prop & SA_CANTMASK) == 0
1151 && p->p_sigctx.ps_sigwaited
1152 && sigismember(p->p_sigctx.ps_sigwait, signum)
1153 && p->p_stat != SSTOP) {
1154 p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
1155 p->p_sigctx.ps_sigwaited = NULL;
1156 wakeup_one(&p->p_sigctx.ps_sigwait);
1157 return;
1158 }
1159
1160 sigaddset(&p->p_sigctx.ps_siglist, signum);
1161
1162 /* CHECKSIGS() is "inlined" here. */
1163 p->p_sigctx.ps_sigcheck = 1;
1164
1165 /*
1166 * Defer further processing for signals which are held,
1167 * except that stopped processes must be continued by SIGCONT.
1168 */
1169 if (action == SIG_HOLD &&
1170 ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
1171 SCHED_ASSERT_UNLOCKED();
1172 ksiginfo_queue(p, ksi, NULL);
1173 return;
1174 }
1175
1176 /*
1177 * Allocate a ksiginfo_t incase we need to insert it with the
1178 * scheduler lock held, but only if this ksiginfo_t isn't empty.
1179 */
1180 if (!KSI_EMPTY_P(ksi)) {
1181 newkp = ksiginfo_alloc(PR_NOWAIT);
1182 if (newkp == NULL) {
1183 #ifdef DIAGNOSTIC
1184 printf("kpsignal2: couldn't allocated ksiginfo\n");
1185 #endif
1186 return;
1187 }
1188 } else
1189 newkp = NULL;
1190
1191 SCHED_LOCK(s);
1192
1193 if (p->p_flag & P_SA) {
1194 allsusp = 0;
1195 l = NULL;
1196 if (p->p_stat == SACTIVE) {
1197 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1198 l = vp->savp_lwp;
1199 KDASSERT(l != NULL);
1200 if (l->l_flag & L_SA_IDLE) {
1201 /* wakeup idle LWP */
1202 goto found;
1203 /*NOTREACHED*/
1204 } else if (l->l_flag & L_SA_YIELD) {
1205 /* idle LWP is already waking up */
1206 goto out;
1207 /*NOTREACHED*/
1208 }
1209 }
1210 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1211 l = vp->savp_lwp;
1212 if (l->l_stat == LSRUN ||
1213 l->l_stat == LSONPROC) {
1214 signotify(p);
1215 goto out;
1216 /*NOTREACHED*/
1217 }
1218 if (l->l_stat == LSSLEEP &&
1219 l->l_flag & L_SINTR) {
1220 /* ok to signal vp lwp */
1221 break;
1222 } else
1223 l = NULL;
1224 }
1225 } else if (p->p_stat == SSTOP) {
1226 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1227 l = vp->savp_lwp;
1228 if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
1229 break;
1230 l = NULL;
1231 }
1232 }
1233 } else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
1234 /*
1235 * At least one LWP is running or on a run queue.
1236 * The signal will be noticed when one of them returns
1237 * to userspace.
1238 */
1239 signotify(p);
1240 /*
1241 * The signal will be noticed very soon.
1242 */
1243 goto out;
1244 /*NOTREACHED*/
1245 } else {
1246 /*
1247 * Find out if any of the sleeps are interruptable,
1248 * and if all the live LWPs remaining are suspended.
1249 */
1250 allsusp = 1;
1251 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1252 if (l->l_stat == LSSLEEP &&
1253 l->l_flag & L_SINTR)
1254 break;
1255 if (l->l_stat == LSSUSPENDED)
1256 suspended = l;
1257 else if ((l->l_stat != LSZOMB) &&
1258 (l->l_stat != LSDEAD))
1259 allsusp = 0;
1260 }
1261 }
1262
1263 found:
1264 switch (p->p_stat) {
1265 case SACTIVE:
1266
1267 if (l != NULL && (p->p_flag & P_TRACED))
1268 goto run;
1269
1270 /*
1271 * If SIGCONT is default (or ignored) and process is
1272 * asleep, we are finished; the process should not
1273 * be awakened.
1274 */
1275 if ((prop & SA_CONT) && action == SIG_DFL) {
1276 sigdelset(&p->p_sigctx.ps_siglist, signum);
1277 goto done;
1278 }
1279
1280 /*
1281 * When a sleeping process receives a stop
1282 * signal, process immediately if possible.
1283 */
1284 if ((prop & SA_STOP) && action == SIG_DFL) {
1285 /*
1286 * If a child holding parent blocked,
1287 * stopping could cause deadlock.
1288 */
1289 if (p->p_flag & P_PPWAIT) {
1290 goto out;
1291 }
1292 sigdelset(&p->p_sigctx.ps_siglist, signum);
1293 p->p_xstat = signum;
1294 proc_stop(p, 1); /* XXXSMP: recurse? */
1295 SCHED_UNLOCK(s);
1296 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
1297 child_psignal(p);
1298 }
1299 goto done_unlocked;
1300 }
1301
1302 if (l == NULL) {
1303 /*
1304 * Special case: SIGKILL of a process
1305 * which is entirely composed of
1306 * suspended LWPs should succeed. We
1307 * make this happen by unsuspending one of
1308 * them.
1309 */
1310 if (allsusp && (signum == SIGKILL)) {
1311 lwp_continue(suspended);
1312 }
1313 goto done;
1314 }
1315 /*
1316 * All other (caught or default) signals
1317 * cause the process to run.
1318 */
1319 goto runfast;
1320 /*NOTREACHED*/
1321 case SSTOP:
1322 /* Process is stopped */
1323 /*
1324 * If traced process is already stopped,
1325 * then no further action is necessary.
1326 */
1327 if (p->p_flag & P_TRACED)
1328 goto done;
1329
1330 /*
1331 * Kill signal always sets processes running,
1332 * if possible.
1333 */
1334 if (signum == SIGKILL) {
1335 l = proc_unstop(p);
1336 if (l)
1337 goto runfast;
1338 goto done;
1339 }
1340
1341 if (prop & SA_CONT) {
1342 /*
1343 * If SIGCONT is default (or ignored),
1344 * we continue the process but don't
1345 * leave the signal in ps_siglist, as
1346 * it has no further action. If
1347 * SIGCONT is held, we continue the
1348 * process and leave the signal in
1349 * ps_siglist. If the process catches
1350 * SIGCONT, let it handle the signal
1351 * itself. If it isn't waiting on an
1352 * event, then it goes back to run
1353 * state. Otherwise, process goes
1354 * back to sleep state.
1355 */
1356 if (action == SIG_DFL)
1357 sigdelset(&p->p_sigctx.ps_siglist,
1358 signum);
1359 l = proc_unstop(p);
1360 if (l && (action == SIG_CATCH))
1361 goto runfast;
1362 goto out;
1363 }
1364
1365 if (prop & SA_STOP) {
1366 /*
1367 * Already stopped, don't need to stop again.
1368 * (If we did the shell could get confused.)
1369 */
1370 sigdelset(&p->p_sigctx.ps_siglist, signum);
1371 goto done;
1372 }
1373
1374 /*
1375 * If a lwp is sleeping interruptibly, then
1376 * wake it up; it will run until the kernel
1377 * boundary, where it will stop in issignal(),
1378 * since p->p_stat is still SSTOP. When the
1379 * process is continued, it will be made
1380 * runnable and can look at the signal.
1381 */
1382 if (l)
1383 goto run;
1384 goto out;
1385 case SIDL:
1386 /* Process is being created by fork */
1387 /* XXX: We are not ready to receive signals yet */
1388 goto done;
1389 default:
1390 /* Else what? */
1391 panic("psignal: Invalid process state %d.", p->p_stat);
1392 }
1393 /*NOTREACHED*/
1394
1395 runfast:
1396 if (action == SIG_CATCH) {
1397 ksiginfo_queue(p, ksi, &newkp);
1398 action = SIG_HOLD;
1399 }
1400 /*
1401 * Raise priority to at least PUSER.
1402 */
1403 if (l->l_priority > PUSER)
1404 l->l_priority = PUSER;
1405 run:
1406 if (action == SIG_CATCH) {
1407 ksiginfo_queue(p, ksi, &newkp);
1408 action = SIG_HOLD;
1409 }
1410
1411 setrunnable(l); /* XXXSMP: recurse? */
1412 out:
1413 if (action == SIG_CATCH)
1414 ksiginfo_queue(p, ksi, &newkp);
1415 done:
1416 SCHED_UNLOCK(s);
1417
1418 done_unlocked:
1419 if (newkp)
1420 ksiginfo_free(newkp);
1421 }
1422
1423 siginfo_t *
1424 siginfo_alloc(int flags)
1425 {
1426
1427 return pool_get(&siginfo_pool, flags);
1428 }
1429
1430 void
1431 siginfo_free(void *arg)
1432 {
1433
1434 pool_put(&siginfo_pool, arg);
1435 }
1436
1437 void
1438 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1439 {
1440 struct proc *p = l->l_proc;
1441 struct lwp *le, *li;
1442 siginfo_t *si;
1443 int f;
1444
1445 if (p->p_flag & P_SA) {
1446
1447 /* XXXUPSXXX What if not on sa_vp ? */
1448
1449 f = l->l_flag & L_SA;
1450 l->l_flag &= ~L_SA;
1451 si = siginfo_alloc(PR_WAITOK);
1452 si->_info = ksi->ksi_info;
1453 le = li = NULL;
1454 if (KSI_TRAP_P(ksi))
1455 le = l;
1456 else
1457 li = l;
1458 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1459 sizeof(*si), si, siginfo_free) != 0) {
1460 siginfo_free(si);
1461 #if 0
1462 if (KSI_TRAP_P(ksi))
1463 /* XXX What do we do here?? */;
1464 #endif
1465 }
1466 l->l_flag |= f;
1467 return;
1468 }
1469
1470 (*p->p_emul->e_sendsig)(ksi, mask);
1471 }
1472
1473 static inline int firstsig(const sigset_t *);
1474
1475 static inline int
1476 firstsig(const sigset_t *ss)
1477 {
1478 int sig;
1479
1480 sig = ffs(ss->__bits[0]);
1481 if (sig != 0)
1482 return (sig);
1483 #if NSIG > 33
1484 sig = ffs(ss->__bits[1]);
1485 if (sig != 0)
1486 return (sig + 32);
1487 #endif
1488 #if NSIG > 65
1489 sig = ffs(ss->__bits[2]);
1490 if (sig != 0)
1491 return (sig + 64);
1492 #endif
1493 #if NSIG > 97
1494 sig = ffs(ss->__bits[3]);
1495 if (sig != 0)
1496 return (sig + 96);
1497 #endif
1498 return (0);
1499 }
1500
1501 /*
1502 * If the current process has received a signal (should be caught or cause
1503 * termination, should interrupt current syscall), return the signal number.
1504 * Stop signals with default action are processed immediately, then cleared;
1505 * they aren't returned. This is checked after each entry to the system for
1506 * a syscall or trap (though this can usually be done without calling issignal
1507 * by checking the pending signal masks in the CURSIG macro.) The normal call
1508 * sequence is
1509 *
1510 * while (signum = CURSIG(curlwp))
1511 * postsig(signum);
1512 */
1513 int
1514 issignal(struct lwp *l)
1515 {
1516 struct proc *p = l->l_proc;
1517 int s, signum, prop;
1518 sigset_t ss;
1519
1520 /* Bail out if we do not own the virtual processor */
1521 if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
1522 return 0;
1523
1524 KERNEL_PROC_LOCK(l);
1525
1526 if (p->p_stat == SSTOP) {
1527 /*
1528 * The process is stopped/stopping. Stop ourselves now that
1529 * we're on the kernel/userspace boundary.
1530 */
1531 SCHED_LOCK(s);
1532 l->l_stat = LSSTOP;
1533 p->p_nrlwps--;
1534 if (p->p_flag & P_TRACED)
1535 goto sigtraceswitch;
1536 else
1537 goto sigswitch;
1538 }
1539 for (;;) {
1540 sigpending1(p, &ss);
1541 if (p->p_flag & P_PPWAIT)
1542 sigminusset(&stopsigmask, &ss);
1543 signum = firstsig(&ss);
1544 if (signum == 0) { /* no signal to send */
1545 p->p_sigctx.ps_sigcheck = 0;
1546 KERNEL_PROC_UNLOCK(l);
1547 return (0);
1548 }
1549 /* take the signal! */
1550 sigdelset(&p->p_sigctx.ps_siglist, signum);
1551
1552 /*
1553 * We should see pending but ignored signals
1554 * only if P_TRACED was on when they were posted.
1555 */
1556 if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
1557 (p->p_flag & P_TRACED) == 0)
1558 continue;
1559
1560 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
1561 /*
1562 * If traced, always stop, and stay
1563 * stopped until released by the debugger.
1564 */
1565 p->p_xstat = signum;
1566
1567 /* Emulation-specific handling of signal trace */
1568 if ((p->p_emul->e_tracesig != NULL) &&
1569 ((*p->p_emul->e_tracesig)(p, signum) != 0))
1570 goto childresumed;
1571
1572 if ((p->p_flag & P_FSTRACE) == 0)
1573 child_psignal(p);
1574 SCHED_LOCK(s);
1575 proc_stop(p, 1);
1576 sigtraceswitch:
1577 mi_switch(l, NULL);
1578 SCHED_ASSERT_UNLOCKED();
1579 splx(s);
1580
1581 childresumed:
1582 /*
1583 * If we are no longer being traced, or the parent
1584 * didn't give us a signal, look for more signals.
1585 */
1586 if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
1587 continue;
1588
1589 /*
1590 * If the new signal is being masked, look for other
1591 * signals.
1592 */
1593 signum = p->p_xstat;
1594 p->p_xstat = 0;
1595 /*
1596 * `p->p_sigctx.ps_siglist |= mask' is done
1597 * in setrunnable().
1598 */
1599 if (sigismember(&p->p_sigctx.ps_sigmask, signum))
1600 continue;
1601 /* take the signal! */
1602 sigdelset(&p->p_sigctx.ps_siglist, signum);
1603 }
1604
1605 prop = sigprop[signum];
1606
1607 /*
1608 * Decide whether the signal should be returned.
1609 * Return the signal's number, or fall through
1610 * to clear it from the pending mask.
1611 */
1612 switch ((long)SIGACTION(p, signum).sa_handler) {
1613
1614 case (long)SIG_DFL:
1615 /*
1616 * Don't take default actions on system processes.
1617 */
1618 if (p->p_pid <= 1) {
1619 #ifdef DIAGNOSTIC
1620 /*
1621 * Are you sure you want to ignore SIGSEGV
1622 * in init? XXX
1623 */
1624 printf("Process (pid %d) got signal %d\n",
1625 p->p_pid, signum);
1626 #endif
1627 break; /* == ignore */
1628 }
1629 /*
1630 * If there is a pending stop signal to process
1631 * with default action, stop here,
1632 * then clear the signal. However,
1633 * if process is member of an orphaned
1634 * process group, ignore tty stop signals.
1635 */
1636 if (prop & SA_STOP) {
1637 if (p->p_flag & P_TRACED ||
1638 (p->p_pgrp->pg_jobc == 0 &&
1639 prop & SA_TTYSTOP))
1640 break; /* == ignore */
1641 p->p_xstat = signum;
1642 if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
1643 child_psignal(p);
1644 SCHED_LOCK(s);
1645 proc_stop(p, 1);
1646 sigswitch:
1647 mi_switch(l, NULL);
1648 SCHED_ASSERT_UNLOCKED();
1649 splx(s);
1650 break;
1651 } else if (prop & SA_IGNORE) {
1652 /*
1653 * Except for SIGCONT, shouldn't get here.
1654 * Default action is to ignore; drop it.
1655 */
1656 break; /* == ignore */
1657 } else
1658 goto keep;
1659 /*NOTREACHED*/
1660
1661 case (long)SIG_IGN:
1662 /*
1663 * Masking above should prevent us ever trying
1664 * to take action on an ignored signal other
1665 * than SIGCONT, unless process is traced.
1666 */
1667 #ifdef DEBUG_ISSIGNAL
1668 if ((prop & SA_CONT) == 0 &&
1669 (p->p_flag & P_TRACED) == 0)
1670 printf("issignal\n");
1671 #endif
1672 break; /* == ignore */
1673
1674 default:
1675 /*
1676 * This signal has an action, let
1677 * postsig() process it.
1678 */
1679 goto keep;
1680 }
1681 }
1682 /* NOTREACHED */
1683
1684 keep:
1685 /* leave the signal for later */
1686 sigaddset(&p->p_sigctx.ps_siglist, signum);
1687 CHECKSIGS(p);
1688 KERNEL_PROC_UNLOCK(l);
1689 return (signum);
1690 }
1691
1692 /*
1693 * Put the argument process into the stopped state and notify the parent
1694 * via wakeup. Signals are handled elsewhere. The process must not be
1695 * on the run queue.
1696 */
1697 void
1698 proc_stop(struct proc *p, int dowakeup)
1699 {
1700 struct lwp *l;
1701 struct proc *parent;
1702 struct sadata_vp *vp;
1703
1704 SCHED_ASSERT_LOCKED();
1705
1706 /* XXX lock process LWP state */
1707 p->p_flag &= ~P_WAITED;
1708 p->p_stat = SSTOP;
1709 parent = p->p_pptr;
1710 parent->p_nstopchild++;
1711
1712 if (p->p_flag & P_SA) {
1713 /*
1714 * Only (try to) put the LWP on the VP in stopped
1715 * state.
1716 * All other LWPs will suspend in sa_setwoken()
1717 * because the VP-LWP in stopped state cannot be
1718 * repossessed.
1719 */
1720 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1721 l = vp->savp_lwp;
1722 if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
1723 l->l_stat = LSSTOP;
1724 p->p_nrlwps--;
1725 } else if (l->l_stat == LSRUN) {
1726 /* Remove LWP from the run queue */
1727 remrunqueue(l);
1728 l->l_stat = LSSTOP;
1729 p->p_nrlwps--;
1730 } else if (l->l_stat == LSSLEEP &&
1731 l->l_flag & L_SA_IDLE) {
1732 l->l_flag &= ~L_SA_IDLE;
1733 l->l_stat = LSSTOP;
1734 }
1735 }
1736 goto out;
1737 }
1738
1739 /*
1740 * Put as many LWP's as possible in stopped state.
1741 * Sleeping ones will notice the stopped state as they try to
1742 * return to userspace.
1743 */
1744
1745 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1746 if (l->l_stat == LSONPROC) {
1747 /* XXX SMP this assumes that a LWP that is LSONPROC
1748 * is curlwp and hence is about to be mi_switched
1749 * away; the only callers of proc_stop() are:
1750 * - psignal
1751 * - issignal()
1752 * For the former, proc_stop() is only called when
1753 * no processes are running, so we don't worry.
1754 * For the latter, proc_stop() is called right
1755 * before mi_switch().
1756 */
1757 l->l_stat = LSSTOP;
1758 p->p_nrlwps--;
1759 } else if (l->l_stat == LSRUN) {
1760 /* Remove LWP from the run queue */
1761 remrunqueue(l);
1762 l->l_stat = LSSTOP;
1763 p->p_nrlwps--;
1764 } else if ((l->l_stat == LSSLEEP) ||
1765 (l->l_stat == LSSUSPENDED) ||
1766 (l->l_stat == LSZOMB) ||
1767 (l->l_stat == LSDEAD)) {
1768 /*
1769 * Don't do anything; let sleeping LWPs
1770 * discover the stopped state of the process
1771 * on their way out of the kernel; otherwise,
1772 * things like NFS threads that sleep with
1773 * locks will block the rest of the system
1774 * from getting any work done.
1775 *
1776 * Suspended/dead/zombie LWPs aren't going
1777 * anywhere, so we don't need to touch them.
1778 */
1779 }
1780 #ifdef DIAGNOSTIC
1781 else {
1782 panic("proc_stop: process %d lwp %d "
1783 "in unstoppable state %d.\n",
1784 p->p_pid, l->l_lid, l->l_stat);
1785 }
1786 #endif
1787 }
1788
1789 out:
1790 /* XXX unlock process LWP state */
1791
1792 if (dowakeup)
1793 sched_wakeup((caddr_t)p->p_pptr);
1794 }
1795
1796 /*
1797 * Given a process in state SSTOP, set the state back to SACTIVE and
1798 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
1799 *
1800 * If no LWPs ended up runnable (and therefore able to take a signal),
1801 * return a LWP that is sleeping interruptably. The caller can wake
1802 * that LWP up to take a signal.
1803 */
1804 struct lwp *
1805 proc_unstop(struct proc *p)
1806 {
1807 struct lwp *l, *lr = NULL;
1808 struct sadata_vp *vp;
1809 int cantake = 0;
1810
1811 SCHED_ASSERT_LOCKED();
1812
1813 /*
1814 * Our caller wants to be informed if there are only sleeping
1815 * and interruptable LWPs left after we have run so that it
1816 * can invoke setrunnable() if required - return one of the
1817 * interruptable LWPs if this is the case.
1818 */
1819
1820 if (!(p->p_flag & P_WAITED))
1821 p->p_pptr->p_nstopchild--;
1822 p->p_stat = SACTIVE;
1823 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1824 if (l->l_stat == LSRUN) {
1825 lr = NULL;
1826 cantake = 1;
1827 }
1828 if (l->l_stat != LSSTOP)
1829 continue;
1830
1831 if (l->l_wchan != NULL) {
1832 l->l_stat = LSSLEEP;
1833 if ((cantake == 0) && (l->l_flag & L_SINTR)) {
1834 lr = l;
1835 cantake = 1;
1836 }
1837 } else {
1838 setrunnable(l);
1839 lr = NULL;
1840 cantake = 1;
1841 }
1842 }
1843 if (p->p_flag & P_SA) {
1844 /* Only consider returning the LWP on the VP. */
1845 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1846 lr = vp->savp_lwp;
1847 if (lr->l_stat == LSSLEEP) {
1848 if (lr->l_flag & L_SA_YIELD) {
1849 setrunnable(lr);
1850 break;
1851 } else if (lr->l_flag & L_SINTR)
1852 return lr;
1853 }
1854 }
1855 return NULL;
1856 }
1857 return lr;
1858 }
1859
1860 /*
1861 * Take the action for the specified signal
1862 * from the current set of pending signals.
1863 */
1864 void
1865 postsig(int signum)
1866 {
1867 struct lwp *l;
1868 struct proc *p;
1869 struct sigacts *ps;
1870 sig_t action;
1871 sigset_t *returnmask;
1872
1873 l = curlwp;
1874 p = l->l_proc;
1875 ps = p->p_sigacts;
1876 #ifdef DIAGNOSTIC
1877 if (signum == 0)
1878 panic("postsig");
1879 #endif
1880
1881 KERNEL_PROC_LOCK(l);
1882
1883 #ifdef MULTIPROCESSOR
1884 /*
1885 * On MP, issignal() can return the same signal to multiple
1886 * LWPs. The LWPs will block above waiting for the kernel
1887 * lock and the first LWP which gets through will then remove
1888 * the signal from ps_siglist. All other LWPs exit here.
1889 */
1890 if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
1891 KERNEL_PROC_UNLOCK(l);
1892 return;
1893 }
1894 #endif
1895 sigdelset(&p->p_sigctx.ps_siglist, signum);
1896 action = SIGACTION_PS(ps, signum).sa_handler;
1897 if (action == SIG_DFL) {
1898 #ifdef KTRACE
1899 if (KTRPOINT(p, KTR_PSIG))
1900 ktrpsig(l, signum, action,
1901 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1902 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1903 NULL);
1904 #endif
1905 /*
1906 * Default action, where the default is to kill
1907 * the process. (Other cases were ignored above.)
1908 */
1909 sigexit(l, signum);
1910 /* NOTREACHED */
1911 } else {
1912 ksiginfo_t *ksi;
1913 /*
1914 * If we get here, the signal must be caught.
1915 */
1916 #ifdef DIAGNOSTIC
1917 if (action == SIG_IGN ||
1918 sigismember(&p->p_sigctx.ps_sigmask, signum))
1919 panic("postsig action");
1920 #endif
1921 /*
1922 * Set the new mask value and also defer further
1923 * occurrences of this signal.
1924 *
1925 * Special case: user has done a sigpause. Here the
1926 * current mask is not of interest, but rather the
1927 * mask from before the sigpause is what we want
1928 * restored after the signal processing is completed.
1929 */
1930 if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
1931 returnmask = &p->p_sigctx.ps_oldmask;
1932 p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
1933 } else
1934 returnmask = &p->p_sigctx.ps_sigmask;
1935 p->p_stats->p_ru.ru_nsignals++;
1936 ksi = ksiginfo_dequeue(p, signum);
1937 #ifdef KTRACE
1938 if (KTRPOINT(p, KTR_PSIG))
1939 ktrpsig(l, signum, action,
1940 p->p_sigctx.ps_flags & SAS_OLDMASK ?
1941 &p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
1942 ksi);
1943 #endif
1944 if (ksi == NULL) {
1945 ksiginfo_t ksi1;
1946 /*
1947 * we did not save any siginfo for this, either
1948 * because the signal was not caught, or because the
1949 * user did not request SA_SIGINFO
1950 */
1951 KSI_INIT_EMPTY(&ksi1);
1952 ksi1.ksi_signo = signum;
1953 kpsendsig(l, &ksi1, returnmask);
1954 } else {
1955 kpsendsig(l, ksi, returnmask);
1956 ksiginfo_free(ksi);
1957 }
1958 p->p_sigctx.ps_lwp = 0;
1959 p->p_sigctx.ps_code = 0;
1960 p->p_sigctx.ps_signo = 0;
1961 (void) splsched(); /* XXXSMP */
1962 sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
1963 &p->p_sigctx.ps_sigmask);
1964 if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
1965 sigdelset(&p->p_sigctx.ps_sigcatch, signum);
1966 if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1967 sigaddset(&p->p_sigctx.ps_sigignore, signum);
1968 SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
1969 }
1970 (void) spl0(); /* XXXSMP */
1971 }
1972
1973 KERNEL_PROC_UNLOCK(l);
1974 }
1975
1976 /*
1977 * Kill the current process for stated reason.
1978 */
1979 void
1980 killproc(struct proc *p, const char *why)
1981 {
1982 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1983 uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
1984 psignal(p, SIGKILL);
1985 }
1986
1987 /*
1988 * Force the current process to exit with the specified signal, dumping core
1989 * if appropriate. We bypass the normal tests for masked and caught signals,
1990 * allowing unrecoverable failures to terminate the process without changing
1991 * signal state. Mark the accounting record with the signal termination.
1992 * If dumping core, save the signal number for the debugger. Calls exit and
1993 * does not return.
1994 */
1995
1996 #if defined(DEBUG)
1997 int kern_logsigexit = 1; /* not static to make public for sysctl */
1998 #else
1999 int kern_logsigexit = 0; /* not static to make public for sysctl */
2000 #endif
2001
2002 static const char logcoredump[] =
2003 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
2004 static const char lognocoredump[] =
2005 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
2006
2007 /* Wrapper function for use in p_userret */
2008 static void
2009 lwp_coredump_hook(struct lwp *l, void *arg)
2010 {
2011 int s;
2012
2013 /*
2014 * Suspend ourselves, so that the kernel stack and therefore
2015 * the userland registers saved in the trapframe are around
2016 * for coredump() to write them out.
2017 */
2018 KERNEL_PROC_LOCK(l);
2019 l->l_flag &= ~L_DETACHED;
2020 SCHED_LOCK(s);
2021 l->l_stat = LSSUSPENDED;
2022 l->l_proc->p_nrlwps--;
2023 /* XXX NJWLWP check if this makes sense here: */
2024 l->l_proc->p_stats->p_ru.ru_nvcsw++;
2025 mi_switch(l, NULL);
2026 SCHED_ASSERT_UNLOCKED();
2027 splx(s);
2028
2029 lwp_exit(l);
2030 }
2031
2032 void
2033 sigexit(struct lwp *l, int signum)
2034 {
2035 struct proc *p;
2036 #if 0
2037 struct lwp *l2;
2038 #endif
2039 int exitsig;
2040 #ifdef COREDUMP
2041 int error;
2042 #endif
2043
2044 p = l->l_proc;
2045
2046 /*
2047 * Don't permit coredump() or exit1() multiple times
2048 * in the same process.
2049 */
2050 if (p->p_flag & P_WEXIT) {
2051 KERNEL_PROC_UNLOCK(l);
2052 (*p->p_userret)(l, p->p_userret_arg);
2053 }
2054 p->p_flag |= P_WEXIT;
2055 /* We don't want to switch away from exiting. */
2056 /* XXX multiprocessor: stop LWPs on other processors. */
2057 #if 0
2058 if (p->p_flag & P_SA) {
2059 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
2060 l2->l_flag &= ~L_SA;
2061 p->p_flag &= ~P_SA;
2062 }
2063 #endif
2064
2065 /* Make other LWPs stick around long enough to be dumped */
2066 p->p_userret = lwp_coredump_hook;
2067 p->p_userret_arg = NULL;
2068
2069 exitsig = signum;
2070 p->p_acflag |= AXSIG;
2071 if (sigprop[signum] & SA_CORE) {
2072 p->p_sigctx.ps_signo = signum;
2073 #ifdef COREDUMP
2074 if ((error = coredump(l, NULL)) == 0)
2075 exitsig |= WCOREFLAG;
2076 #endif
2077
2078 if (kern_logsigexit) {
2079 /* XXX What if we ever have really large UIDs? */
2080 int uid = l->l_cred ?
2081 (int)kauth_cred_geteuid(l->l_cred) : -1;
2082
2083 #ifdef COREDUMP
2084 if (error)
2085 log(LOG_INFO, lognocoredump, p->p_pid,
2086 p->p_comm, uid, signum, error);
2087 else
2088 #endif
2089 log(LOG_INFO, logcoredump, p->p_pid,
2090 p->p_comm, uid, signum);
2091 }
2092
2093 #ifdef PAX_SEGVGUARD
2094 pax_segvguard(l, p->p_textvp, p->p_comm, TRUE);
2095 #endif /* PAX_SEGVGUARD */
2096 }
2097
2098 exit1(l, W_EXITCODE(0, exitsig));
2099 /* NOTREACHED */
2100 }
2101
2102 #ifdef COREDUMP
2103 struct coredump_iostate {
2104 struct lwp *io_lwp;
2105 struct vnode *io_vp;
2106 kauth_cred_t io_cred;
2107 off_t io_offset;
2108 };
2109
2110 int
2111 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
2112 {
2113 struct coredump_iostate *io = cookie;
2114 int error;
2115
2116 error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
2117 io->io_offset, segflg,
2118 IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
2119 segflg == UIO_USERSPACE ? io->io_lwp : NULL);
2120 if (error) {
2121 printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
2122 io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
2123 segflg == UIO_USERSPACE ? "user" : "system",
2124 len, data, (long long) io->io_offset, error);
2125 return (error);
2126 }
2127
2128 io->io_offset += len;
2129 return (0);
2130 }
2131
2132 /*
2133 * Dump core, into a file named "progname.core" or "core" (depending on the
2134 * value of shortcorename), unless the process was setuid/setgid.
2135 */
2136 int
2137 coredump(struct lwp *l, const char *pattern)
2138 {
2139 struct vnode *vp;
2140 struct proc *p;
2141 struct vmspace *vm;
2142 kauth_cred_t cred;
2143 struct nameidata nd;
2144 struct vattr vattr;
2145 struct mount *mp;
2146 struct coredump_iostate io;
2147 int error, error1;
2148 char *name = NULL;
2149
2150 p = l->l_proc;
2151 vm = p->p_vmspace;
2152 cred = l->l_cred;
2153
2154 /*
2155 * Make sure the process has not set-id, to prevent data leaks,
2156 * unless it was specifically requested to allow set-id coredumps.
2157 */
2158 if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
2159 return EPERM;
2160
2161 /*
2162 * Refuse to core if the data + stack + user size is larger than
2163 * the core dump limit. XXX THIS IS WRONG, because of mapped
2164 * data.
2165 */
2166 if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
2167 p->p_rlimit[RLIMIT_CORE].rlim_cur)
2168 return EFBIG; /* better error code? */
2169
2170 restart:
2171 /*
2172 * The core dump will go in the current working directory. Make
2173 * sure that the directory is still there and that the mount flags
2174 * allow us to write core dumps there.
2175 */
2176 vp = p->p_cwdi->cwdi_cdir;
2177 if (vp->v_mount == NULL ||
2178 (vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
2179 error = EPERM;
2180 goto done;
2181 }
2182
2183 if ((p->p_flag & P_SUGID) && security_setidcore_dump)
2184 pattern = security_setidcore_path;
2185
2186 if (pattern == NULL)
2187 pattern = p->p_limit->pl_corename;
2188 if (name == NULL) {
2189 name = PNBUF_GET();
2190 }
2191 if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
2192 goto done;
2193 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
2194 if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
2195 S_IRUSR | S_IWUSR)) != 0)
2196 goto done;
2197 vp = nd.ni_vp;
2198
2199 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2200 VOP_UNLOCK(vp, 0);
2201 if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
2202 goto done;
2203 if ((error = vn_start_write(NULL, &mp,
2204 V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
2205 goto done;
2206 goto restart;
2207 }
2208
2209 /* Don't dump to non-regular files or files with links. */
2210 if (vp->v_type != VREG ||
2211 VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
2212 error = EINVAL;
2213 goto out;
2214 }
2215 VATTR_NULL(&vattr);
2216 vattr.va_size = 0;
2217
2218 if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
2219 vattr.va_uid = security_setidcore_owner;
2220 vattr.va_gid = security_setidcore_group;
2221 vattr.va_mode = security_setidcore_mode;
2222 }
2223
2224 VOP_LEASE(vp, l, cred, LEASE_WRITE);
2225 VOP_SETATTR(vp, &vattr, cred, l);
2226 p->p_acflag |= ACORE;
2227
2228 io.io_lwp = l;
2229 io.io_vp = vp;
2230 io.io_cred = cred;
2231 io.io_offset = 0;
2232
2233 /* Now dump the actual core file. */
2234 error = (*p->p_execsw->es_coredump)(l, &io);
2235 out:
2236 VOP_UNLOCK(vp, 0);
2237 vn_finished_write(mp, 0);
2238 error1 = vn_close(vp, FWRITE, cred, l);
2239 if (error == 0)
2240 error = error1;
2241 done:
2242 if (name != NULL)
2243 PNBUF_PUT(name);
2244 return error;
2245 }
2246 #endif /* COREDUMP */
2247
2248 /*
2249 * Nonexistent system call-- signal process (may want to handle it).
2250 * Flag error in case process won't see signal immediately (blocked or ignored).
2251 */
2252 #ifndef PTRACE
2253 __weak_alias(sys_ptrace, sys_nosys);
2254 #endif
2255
2256 /* ARGSUSED */
2257 int
2258 sys_nosys(struct lwp *l, void *v, register_t *retval)
2259 {
2260 struct proc *p;
2261
2262 p = l->l_proc;
2263 psignal(p, SIGSYS);
2264 return (ENOSYS);
2265 }
2266
2267 #ifdef COREDUMP
2268 static int
2269 build_corename(struct proc *p, char *dst, const char *src, size_t len)
2270 {
2271 const char *s;
2272 char *d, *end;
2273 int i;
2274
2275 for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
2276 if (*s == '%') {
2277 switch (*(s + 1)) {
2278 case 'n':
2279 i = snprintf(d, end - d, "%s", p->p_comm);
2280 break;
2281 case 'p':
2282 i = snprintf(d, end - d, "%d", p->p_pid);
2283 break;
2284 case 'u':
2285 i = snprintf(d, end - d, "%.*s",
2286 (int)sizeof p->p_pgrp->pg_session->s_login,
2287 p->p_pgrp->pg_session->s_login);
2288 break;
2289 case 't':
2290 i = snprintf(d, end - d, "%ld",
2291 p->p_stats->p_start.tv_sec);
2292 break;
2293 default:
2294 goto copy;
2295 }
2296 d += i;
2297 s++;
2298 } else {
2299 copy: *d = *s;
2300 d++;
2301 }
2302 if (d >= end)
2303 return (ENAMETOOLONG);
2304 }
2305 *d = '\0';
2306 return 0;
2307 }
2308 #endif /* COREDUMP */
2309
2310 void
2311 getucontext(struct lwp *l, ucontext_t *ucp)
2312 {
2313 struct proc *p;
2314
2315 p = l->l_proc;
2316
2317 ucp->uc_flags = 0;
2318 ucp->uc_link = l->l_ctxlink;
2319
2320 (void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
2321 ucp->uc_flags |= _UC_SIGMASK;
2322
2323 /*
2324 * The (unsupplied) definition of the `current execution stack'
2325 * in the System V Interface Definition appears to allow returning
2326 * the main context stack.
2327 */
2328 if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
2329 ucp->uc_stack.ss_sp = (void *)USRSTACK;
2330 ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
2331 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
2332 } else {
2333 /* Simply copy alternate signal execution stack. */
2334 ucp->uc_stack = p->p_sigctx.ps_sigstk;
2335 }
2336 ucp->uc_flags |= _UC_STACK;
2337
2338 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
2339 }
2340
2341 /* ARGSUSED */
2342 int
2343 sys_getcontext(struct lwp *l, void *v, register_t *retval)
2344 {
2345 struct sys_getcontext_args /* {
2346 syscallarg(struct __ucontext *) ucp;
2347 } */ *uap = v;
2348 ucontext_t uc;
2349
2350 getucontext(l, &uc);
2351
2352 return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
2353 }
2354
2355 int
2356 setucontext(struct lwp *l, const ucontext_t *ucp)
2357 {
2358 struct proc *p;
2359 int error;
2360
2361 p = l->l_proc;
2362 if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
2363 return (error);
2364 l->l_ctxlink = ucp->uc_link;
2365
2366 if ((ucp->uc_flags & _UC_SIGMASK) != 0)
2367 sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
2368
2369 /*
2370 * If there was stack information, update whether or not we are
2371 * still running on an alternate signal stack.
2372 */
2373 if ((ucp->uc_flags & _UC_STACK) != 0) {
2374 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
2375 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
2376 else
2377 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
2378 }
2379
2380 return 0;
2381 }
2382
2383 /* ARGSUSED */
2384 int
2385 sys_setcontext(struct lwp *l, void *v, register_t *retval)
2386 {
2387 struct sys_setcontext_args /* {
2388 syscallarg(const ucontext_t *) ucp;
2389 } */ *uap = v;
2390 ucontext_t uc;
2391 int error;
2392
2393 error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
2394 if (error)
2395 return (error);
2396 if (!(uc.uc_flags & _UC_CPU))
2397 return (EINVAL);
2398 error = setucontext(l, &uc);
2399 if (error)
2400 return (error);
2401
2402 return (EJUSTRETURN);
2403 }
2404
2405 /*
2406 * sigtimedwait(2) system call, used also for implementation
2407 * of sigwaitinfo() and sigwait().
2408 *
2409 * This only handles single LWP in signal wait. libpthread provides
2410 * it's own sigtimedwait() wrapper to DTRT WRT individual threads.
2411 */
2412 int
2413 sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
2414 {
2415 return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
2416 }
2417
2418 int
2419 __sigtimedwait1(struct lwp *l, void *v, register_t *retval,
2420 copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
2421 {
2422 struct sys___sigtimedwait_args /* {
2423 syscallarg(const sigset_t *) set;
2424 syscallarg(siginfo_t *) info;
2425 syscallarg(struct timespec *) timeout;
2426 } */ *uap = v;
2427 sigset_t *waitset, twaitset;
2428 struct proc *p = l->l_proc;
2429 int error, signum;
2430 int timo = 0;
2431 struct timespec ts, tsstart;
2432 ksiginfo_t *ksi;
2433
2434 memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */
2435
2436 MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
2437
2438 if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
2439 FREE(waitset, M_TEMP);
2440 return (error);
2441 }
2442
2443 /*
2444 * Silently ignore SA_CANTMASK signals. psignal() would
2445 * ignore SA_CANTMASK signals in waitset, we do this
2446 * only for the below siglist check.
2447 */
2448 sigminusset(&sigcantmask, waitset);
2449
2450 /*
2451 * First scan siglist and check if there is signal from
2452 * our waitset already pending.
2453 */
2454 twaitset = *waitset;
2455 __sigandset(&p->p_sigctx.ps_siglist, &twaitset);
2456 if ((signum = firstsig(&twaitset))) {
2457 /* found pending signal */
2458 sigdelset(&p->p_sigctx.ps_siglist, signum);
2459 ksi = ksiginfo_dequeue(p, signum);
2460 if (!ksi) {
2461 /* No queued siginfo, manufacture one */
2462 ksi = ksiginfo_alloc(PR_WAITOK);
2463 KSI_INIT(ksi);
2464 ksi->ksi_info._signo = signum;
2465 ksi->ksi_info._code = SI_USER;
2466 }
2467
2468 goto sig;
2469 }
2470
2471 /*
2472 * Calculate timeout, if it was specified.
2473 */
2474 if (SCARG(uap, timeout)) {
2475 uint64_t ms;
2476
2477 if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
2478 return (error);
2479
2480 ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
2481 timo = mstohz(ms);
2482 if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
2483 timo = 1;
2484 if (timo <= 0)
2485 return (EAGAIN);
2486
2487 /*
2488 * Remember current uptime, it would be used in
2489 * ECANCELED/ERESTART case.
2490 */
2491 getnanouptime(&tsstart);
2492 }
2493
2494 /*
2495 * Setup ps_sigwait list. Pass pointer to malloced memory
2496 * here; it's not possible to pass pointer to a structure
2497 * on current process's stack, the current process might
2498 * be swapped out at the time the signal would get delivered.
2499 */
2500 ksi = ksiginfo_alloc(PR_WAITOK);
2501 p->p_sigctx.ps_sigwaited = ksi;
2502 p->p_sigctx.ps_sigwait = waitset;
2503
2504 /*
2505 * Wait for signal to arrive. We can either be woken up or
2506 * time out.
2507 */
2508 error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
2509
2510 /*
2511 * Need to find out if we woke as a result of lwp_wakeup()
2512 * or a signal outside our wait set.
2513 */
2514 if (error == EINTR && p->p_sigctx.ps_sigwaited
2515 && !firstsig(&p->p_sigctx.ps_siglist)) {
2516 /* wakeup via _lwp_wakeup() */
2517 error = ECANCELED;
2518 } else if (!error && p->p_sigctx.ps_sigwaited) {
2519 /* spurious wakeup - arrange for syscall restart */
2520 error = ERESTART;
2521 goto fail;
2522 }
2523
2524 /*
2525 * On error, clear sigwait indication. psignal() clears it
2526 * in !error case.
2527 */
2528 if (error) {
2529 p->p_sigctx.ps_sigwaited = NULL;
2530
2531 /*
2532 * If the sleep was interrupted (either by signal or wakeup),
2533 * update the timeout and copyout new value back.
2534 * It would be used when the syscall would be restarted
2535 * or called again.
2536 */
2537 if (timo && (error == ERESTART || error == ECANCELED)) {
2538 struct timespec tsnow;
2539 int err;
2540
2541 /* XXX double check the following change */
2542 getnanouptime(&tsnow);
2543
2544 /* compute how much time has passed since start */
2545 timespecsub(&tsnow, &tsstart, &tsnow);
2546 /* substract passed time from timeout */
2547 timespecsub(&ts, &tsnow, &ts);
2548
2549 if (ts.tv_sec < 0) {
2550 error = EAGAIN;
2551 goto fail;
2552 }
2553 /* XXX double check the previous change */
2554
2555 /* copy updated timeout to userland */
2556 if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
2557 sizeof(ts)))) {
2558 error = err;
2559 goto fail;
2560 }
2561 }
2562
2563 goto fail;
2564 }
2565
2566 /*
2567 * If a signal from the wait set arrived, copy it to userland.
2568 * Copy only the used part of siginfo, the padding part is
2569 * left unchanged (userland is not supposed to touch it anyway).
2570 */
2571 sig:
2572 return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
2573
2574 fail:
2575 FREE(waitset, M_TEMP);
2576 ksiginfo_free(ksi);
2577 p->p_sigctx.ps_sigwait = NULL;
2578
2579 return (error);
2580 }
2581
2582 /*
2583 * Returns true if signal is ignored or masked for passed process.
2584 */
2585 int
2586 sigismasked(struct proc *p, int sig)
2587 {
2588
2589 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
2590 sigismember(&p->p_sigctx.ps_sigmask, sig));
2591 }
2592
2593 static int
2594 filt_sigattach(struct knote *kn)
2595 {
2596 struct proc *p = curproc;
2597
2598 kn->kn_ptr.p_proc = p;
2599 kn->kn_flags |= EV_CLEAR; /* automatically set */
2600
2601 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2602
2603 return (0);
2604 }
2605
2606 static void
2607 filt_sigdetach(struct knote *kn)
2608 {
2609 struct proc *p = kn->kn_ptr.p_proc;
2610
2611 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2612 }
2613
2614 /*
2615 * signal knotes are shared with proc knotes, so we apply a mask to
2616 * the hint in order to differentiate them from process hints. This
2617 * could be avoided by using a signal-specific knote list, but probably
2618 * isn't worth the trouble.
2619 */
2620 static int
2621 filt_signal(struct knote *kn, long hint)
2622 {
2623
2624 if (hint & NOTE_SIGNAL) {
2625 hint &= ~NOTE_SIGNAL;
2626
2627 if (kn->kn_id == hint)
2628 kn->kn_data++;
2629 }
2630 return (kn->kn_data != 0);
2631 }
2632
2633 const struct filterops sig_filtops = {
2634 0, filt_sigattach, filt_sigdetach, filt_signal
2635 };
2636