Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.252
      1 /*	$NetBSD: kern_sig.c,v 1.252 2007/03/12 18:18:33 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  * (c) UNIX System Laboratories, Inc.
     43  * All or some portions of this file are derived from material licensed
     44  * to the University of California by American Telephone and Telegraph
     45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     46  * the permission of UNIX System Laboratories, Inc.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that the following conditions
     50  * are met:
     51  * 1. Redistributions of source code must retain the above copyright
     52  *    notice, this list of conditions and the following disclaimer.
     53  * 2. Redistributions in binary form must reproduce the above copyright
     54  *    notice, this list of conditions and the following disclaimer in the
     55  *    documentation and/or other materials provided with the distribution.
     56  * 3. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.252 2007/03/12 18:18:33 ad Exp $");
     77 
     78 #include "opt_ktrace.h"
     79 #include "opt_ptrace.h"
     80 #include "opt_multiprocessor.h"
     81 #include "opt_compat_sunos.h"
     82 #include "opt_compat_netbsd.h"
     83 #include "opt_compat_netbsd32.h"
     84 #include "opt_pax.h"
     85 
     86 #define	SIGPROP		/* include signal properties table */
     87 #include <sys/param.h>
     88 #include <sys/signalvar.h>
     89 #include <sys/proc.h>
     90 #include <sys/systm.h>
     91 #include <sys/wait.h>
     92 #include <sys/ktrace.h>
     93 #include <sys/syslog.h>
     94 #include <sys/filedesc.h>
     95 #include <sys/file.h>
     96 #include <sys/malloc.h>
     97 #include <sys/pool.h>
     98 #include <sys/ucontext.h>
     99 #include <sys/exec.h>
    100 #include <sys/kauth.h>
    101 #include <sys/acct.h>
    102 #include <sys/callout.h>
    103 
    104 #include <machine/cpu.h>
    105 
    106 #ifdef PAX_SEGVGUARD
    107 #include <sys/pax.h>
    108 #endif /* PAX_SEGVGUARD */
    109 
    110 #include <uvm/uvm.h>
    111 #include <uvm/uvm_extern.h>
    112 
    113 static void	ksiginfo_exechook(struct proc *, void *);
    114 static void	proc_stop_callout(void *);
    115 
    116 int	sigunwait(struct proc *, const ksiginfo_t *);
    117 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    118 int	sigpost(struct lwp *, sig_t, int, int);
    119 int	sigchecktrace(sigpend_t **);
    120 void	sigswitch(bool, int, int);
    121 void	sigrealloc(ksiginfo_t *);
    122 
    123 sigset_t	contsigmask, stopsigmask, sigcantmask;
    124 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
    125 static void	sigacts_poolpage_free(struct pool *, void *);
    126 static void	*sigacts_poolpage_alloc(struct pool *, int);
    127 static struct	callout proc_stop_ch;
    128 
    129 static struct pool_allocator sigactspool_allocator = {
    130         .pa_alloc = sigacts_poolpage_alloc,
    131 	.pa_free = sigacts_poolpage_free,
    132 };
    133 
    134 #ifdef DEBUG
    135 int	kern_logsigexit = 1;
    136 #else
    137 int	kern_logsigexit = 0;
    138 #endif
    139 
    140 static	const char logcoredump[] =
    141     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    142 static	const char lognocoredump[] =
    143     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    144 
    145 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    146     &pool_allocator_nointr, IPL_NONE);
    147 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    148     NULL, IPL_SOFTCLOCK);
    149 
    150 /*
    151  * signal_init:
    152  *
    153  * 	Initialize global signal-related data structures.
    154  */
    155 void
    156 signal_init(void)
    157 {
    158 
    159 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    160 
    161 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    162 	    sizeof(struct sigacts) > PAGE_SIZE ?
    163 	    &sigactspool_allocator : &pool_allocator_nointr,
    164 	    IPL_NONE);
    165 
    166 	exechook_establish(ksiginfo_exechook, NULL);
    167 
    168 	callout_init(&proc_stop_ch);
    169 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    170 }
    171 
    172 /*
    173  * sigacts_poolpage_alloc:
    174  *
    175  *	 Allocate a page for the sigacts memory pool.
    176  */
    177 static void *
    178 sigacts_poolpage_alloc(struct pool *pp, int flags)
    179 {
    180 
    181 	return (void *)uvm_km_alloc(kernel_map,
    182 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    183 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    184 	    | UVM_KMF_WIRED);
    185 }
    186 
    187 /*
    188  * sigacts_poolpage_free:
    189  *
    190  *	 Free a page on behalf of the sigacts memory pool.
    191  */
    192 static void
    193 sigacts_poolpage_free(struct pool *pp, void *v)
    194 {
    195         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    196 }
    197 
    198 /*
    199  * sigactsinit:
    200  *
    201  *	 Create an initial sigctx structure, using the same signal state as
    202  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    203  *	 copy it from parent.
    204  */
    205 struct sigacts *
    206 sigactsinit(struct proc *pp, int share)
    207 {
    208 	struct sigacts *ps;
    209 
    210 	if (pp != NULL) {
    211 		KASSERT(mutex_owned(&pp->p_smutex));
    212 	}
    213 
    214 	if (share) {
    215 		ps = pp->p_sigacts;
    216 		mutex_enter(&ps->sa_mutex);
    217 		ps->sa_refcnt++;
    218 		mutex_exit(&ps->sa_mutex);
    219 	} else {
    220 		if (pp)
    221 			mutex_exit(&pp->p_smutex);
    222 		ps = pool_get(&sigacts_pool, PR_WAITOK);
    223 		mutex_init(&ps->sa_mutex, MUTEX_SPIN, IPL_NONE);
    224 		if (pp) {
    225 			mutex_enter(&pp->p_smutex);
    226 			memcpy(&ps->sa_sigdesc, pp->p_sigacts->sa_sigdesc,
    227 			    sizeof(ps->sa_sigdesc));
    228 		} else
    229 			memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    230 		ps->sa_refcnt = 1;
    231 	}
    232 
    233 	return ps;
    234 }
    235 
    236 /*
    237  * sigactsunshare:
    238  *
    239  *	Make this process not share its sigctx, maintaining all
    240  *	signal state.
    241  */
    242 void
    243 sigactsunshare(struct proc *p)
    244 {
    245 	struct sigacts *ps, *oldps;
    246 	int refcnt;
    247 
    248 	KASSERT(mutex_owned(&p->p_smutex));
    249 
    250 	oldps = p->p_sigacts;
    251 
    252 	mutex_enter(&oldps->sa_mutex);
    253 	refcnt = oldps->sa_refcnt;
    254 	mutex_exit(&oldps->sa_mutex);
    255 	if (refcnt == 1)
    256 		return;
    257 
    258 	mutex_exit(&p->p_smutex);
    259 	ps = sigactsinit(NULL, 0);
    260 	mutex_enter(&p->p_smutex);
    261 	p->p_sigacts = ps;
    262 
    263 	sigactsfree(oldps);
    264 }
    265 
    266 /*
    267  * sigactsfree;
    268  *
    269  *	Release a sigctx structure.
    270  */
    271 void
    272 sigactsfree(struct sigacts *ps)
    273 {
    274 	int refcnt;
    275 
    276 	mutex_enter(&ps->sa_mutex);
    277 	refcnt = --ps->sa_refcnt;
    278 	mutex_exit(&ps->sa_mutex);
    279 
    280 	if (refcnt == 0) {
    281 		mutex_destroy(&ps->sa_mutex);
    282 		pool_put(&sigacts_pool, ps);
    283 	}
    284 }
    285 
    286 /*
    287  * siginit:
    288  *
    289  *	Initialize signal state for process 0; set to ignore signals that
    290  *	are ignored by default and disable the signal stack.  Locking not
    291  *	required as the system is still cold.
    292  */
    293 void
    294 siginit(struct proc *p)
    295 {
    296 	struct lwp *l;
    297 	struct sigacts *ps;
    298 	int signo, prop;
    299 
    300 	ps = p->p_sigacts;
    301 	sigemptyset(&contsigmask);
    302 	sigemptyset(&stopsigmask);
    303 	sigemptyset(&sigcantmask);
    304 	for (signo = 1; signo < NSIG; signo++) {
    305 		prop = sigprop[signo];
    306 		if (prop & SA_CONT)
    307 			sigaddset(&contsigmask, signo);
    308 		if (prop & SA_STOP)
    309 			sigaddset(&stopsigmask, signo);
    310 		if (prop & SA_CANTMASK)
    311 			sigaddset(&sigcantmask, signo);
    312 		if (prop & SA_IGNORE && signo != SIGCONT)
    313 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    314 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    315 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    316 	}
    317 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    318 	p->p_sflag &= ~PS_NOCLDSTOP;
    319 
    320 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    321 	sigemptyset(&p->p_sigpend.sp_set);
    322 
    323 	/*
    324 	 * Reset per LWP state.
    325 	 */
    326 	l = LIST_FIRST(&p->p_lwps);
    327 	l->l_sigwaited = NULL;
    328 	l->l_sigstk.ss_flags = SS_DISABLE;
    329 	l->l_sigstk.ss_size = 0;
    330 	l->l_sigstk.ss_sp = 0;
    331 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    332 	sigemptyset(&l->l_sigpend.sp_set);
    333 
    334 	/* One reference. */
    335 	ps->sa_refcnt = 1;
    336 }
    337 
    338 /*
    339  * execsigs:
    340  *
    341  *	Reset signals for an exec of the specified process.
    342  */
    343 void
    344 execsigs(struct proc *p)
    345 {
    346 	struct sigacts *ps;
    347 	struct lwp *l;
    348 	int signo, prop;
    349 	sigset_t tset;
    350 	ksiginfoq_t kq;
    351 
    352 	KASSERT(p->p_nlwps == 1);
    353 
    354 	mutex_enter(&p->p_smutex);
    355 
    356 	sigactsunshare(p);
    357 
    358 	ps = p->p_sigacts;
    359 
    360 	/*
    361 	 * Reset caught signals.  Held signals remain held through
    362 	 * l->l_sigmask (unless they were caught, and are now ignored
    363 	 * by default).
    364 	 */
    365 	sigemptyset(&tset);
    366 	for (signo = 1; signo < NSIG; signo++) {
    367 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    368 			prop = sigprop[signo];
    369 			if (prop & SA_IGNORE) {
    370 				if ((prop & SA_CONT) == 0)
    371 					sigaddset(&p->p_sigctx.ps_sigignore,
    372 					    signo);
    373 				sigaddset(&tset, signo);
    374 			}
    375 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    376 		}
    377 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    378 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    379 	}
    380 	ksiginfo_queue_init(&kq);
    381 	sigclearall(p, &tset, &kq);
    382 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    383 
    384 	/*
    385 	 * Reset no zombies if child dies flag as Solaris does.
    386 	 */
    387 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    388 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    389 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    390 
    391 	/*
    392 	 * Reset per-LWP state.
    393 	 */
    394 	l = LIST_FIRST(&p->p_lwps);
    395 	l->l_sigwaited = NULL;
    396 	l->l_sigstk.ss_flags = SS_DISABLE;
    397 	l->l_sigstk.ss_size = 0;
    398 	l->l_sigstk.ss_sp = 0;
    399 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    400 	sigemptyset(&l->l_sigpend.sp_set);
    401 
    402 	mutex_exit(&p->p_smutex);
    403 	ksiginfo_queue_drain(&kq);
    404 }
    405 
    406 /*
    407  * ksiginfo_exechook:
    408  *
    409  *	Free all pending ksiginfo entries from a process on exec.
    410  *	Additionally, drain any unused ksiginfo structures in the
    411  *	system back to the pool.
    412  *
    413  *	XXX This should not be a hook, every process has signals.
    414  */
    415 static void
    416 ksiginfo_exechook(struct proc *p, void *v)
    417 {
    418 	ksiginfoq_t kq;
    419 
    420 	ksiginfo_queue_init(&kq);
    421 
    422 	mutex_enter(&p->p_smutex);
    423 	sigclearall(p, NULL, &kq);
    424 	mutex_exit(&p->p_smutex);
    425 
    426 	ksiginfo_queue_drain(&kq);
    427 }
    428 
    429 /*
    430  * ksiginfo_alloc:
    431  *
    432  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    433  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    434  *	has not been queued somewhere, then just return it.  Additionally,
    435  *	if the existing ksiginfo_t does not contain any information beyond
    436  *	the signal number, then just return it.
    437  */
    438 ksiginfo_t *
    439 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    440 {
    441 	ksiginfo_t *kp;
    442 	int s;
    443 
    444 	if (ok != NULL) {
    445 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    446 		    KSI_FROMPOOL)
    447 		    	return ok;
    448 		if (KSI_EMPTY_P(ok))
    449 			return ok;
    450 	}
    451 
    452 	s = splsoftclock();
    453 	kp = pool_get(&ksiginfo_pool, flags);
    454 	splx(s);
    455 	if (kp == NULL) {
    456 #ifdef DIAGNOSTIC
    457 		printf("Out of memory allocating ksiginfo for pid %d\n",
    458 		    p->p_pid);
    459 #endif
    460 		return NULL;
    461 	}
    462 
    463 	if (ok != NULL) {
    464 		memcpy(kp, ok, sizeof(*kp));
    465 		kp->ksi_flags &= ~KSI_QUEUED;
    466 	} else
    467 		KSI_INIT_EMPTY(kp);
    468 
    469 	kp->ksi_flags |= KSI_FROMPOOL;
    470 
    471 	return kp;
    472 }
    473 
    474 /*
    475  * ksiginfo_free:
    476  *
    477  *	If the given ksiginfo_t is from the pool and has not been queued,
    478  *	then free it.
    479  */
    480 void
    481 ksiginfo_free(ksiginfo_t *kp)
    482 {
    483 	int s;
    484 
    485 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    486 		return;
    487 	s = splsoftclock();
    488 	pool_put(&ksiginfo_pool, kp);
    489 	splx(s);
    490 }
    491 
    492 /*
    493  * ksiginfo_queue_drain:
    494  *
    495  *	Drain a non-empty ksiginfo_t queue.
    496  */
    497 void
    498 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    499 {
    500 	ksiginfo_t *ksi;
    501 	int s;
    502 
    503 	KASSERT(!CIRCLEQ_EMPTY(kq));
    504 
    505 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    506 	while (!CIRCLEQ_EMPTY(kq)) {
    507 		ksi = CIRCLEQ_FIRST(kq);
    508 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    509 		s = splsoftclock();
    510 		pool_put(&ksiginfo_pool, ksi);
    511 		splx(s);
    512 	}
    513 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    514 }
    515 
    516 /*
    517  * sigget:
    518  *
    519  *	Fetch the first pending signal from a set.  Optionally, also fetch
    520  *	or manufacture a ksiginfo element.  Returns the number of the first
    521  *	pending signal, or zero.
    522  */
    523 int
    524 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, sigset_t *mask)
    525 {
    526         ksiginfo_t *ksi;
    527 	sigset_t tset;
    528 
    529 	/* If there's no pending set, the signal is from the debugger. */
    530 	if (sp == NULL) {
    531 		if (out != NULL) {
    532 			KSI_INIT(out);
    533 			out->ksi_info._signo = signo;
    534 			out->ksi_info._code = SI_USER;
    535 		}
    536 		return signo;
    537 	}
    538 
    539 	/* Construct mask from signo, and 'mask'. */
    540 	if (signo == 0) {
    541 		if (mask != NULL) {
    542 			tset = *mask;
    543 			__sigandset(&sp->sp_set, &tset);
    544 		} else
    545 			tset = sp->sp_set;
    546 
    547 		/* If there are no signals pending, that's it. */
    548 		if ((signo = firstsig(&tset)) == 0)
    549 			return 0;
    550 	} else {
    551 		KASSERT(sigismember(&sp->sp_set, signo));
    552 	}
    553 
    554 	sigdelset(&sp->sp_set, signo);
    555 
    556 	/* Find siginfo and copy it out. */
    557 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    558 		if (ksi->ksi_signo == signo) {
    559 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    560 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    561 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    562 			ksi->ksi_flags &= ~KSI_QUEUED;
    563 			if (out != NULL) {
    564 				memcpy(out, ksi, sizeof(*out));
    565 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    566 			}
    567 			ksiginfo_free(ksi);
    568 			return signo;
    569 		}
    570 	}
    571 
    572 	/* If there's no siginfo, then manufacture it. */
    573 	if (out != NULL) {
    574 		KSI_INIT(out);
    575 		out->ksi_info._signo = signo;
    576 		out->ksi_info._code = SI_USER;
    577 	}
    578 
    579 	return signo;
    580 }
    581 
    582 /*
    583  * sigput:
    584  *
    585  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    586  *	we need to (e.g. SA_SIGINFO was requested).
    587  */
    588 void
    589 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    590 {
    591 	ksiginfo_t *kp;
    592 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    593 
    594 	KASSERT(mutex_owned(&p->p_smutex));
    595 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    596 
    597 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    598 
    599 	/*
    600 	 * If siginfo is not required, or there is none, then just mark the
    601 	 * signal as pending.
    602 	 */
    603 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
    604 		return;
    605 
    606 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    607 
    608 #ifdef notyet	/* XXX: QUEUING */
    609 	if (ksi->ksi_signo < SIGRTMIN)
    610 #endif
    611 	{
    612 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    613 			if (kp->ksi_signo == ksi->ksi_signo) {
    614 				KSI_COPY(ksi, kp);
    615 				kp->ksi_flags |= KSI_QUEUED;
    616 				return;
    617 			}
    618 		}
    619 	}
    620 
    621 	ksi->ksi_flags |= KSI_QUEUED;
    622 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    623 }
    624 
    625 /*
    626  * sigclear:
    627  *
    628  *	Clear all pending signals in the specified set.
    629  */
    630 void
    631 sigclear(sigpend_t *sp, sigset_t *mask, ksiginfoq_t *kq)
    632 {
    633 	ksiginfo_t *ksi, *next;
    634 
    635 	if (mask == NULL)
    636 		sigemptyset(&sp->sp_set);
    637 	else
    638 		sigminusset(mask, &sp->sp_set);
    639 
    640 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    641 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    642 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    643 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    644 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    645 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    646 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    647 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    648 		}
    649 	}
    650 }
    651 
    652 /*
    653  * sigclearall:
    654  *
    655  *	Clear all pending signals in the specified set from a process and
    656  *	its LWPs.
    657  */
    658 void
    659 sigclearall(struct proc *p, sigset_t *mask, ksiginfoq_t *kq)
    660 {
    661 	struct lwp *l;
    662 
    663 	KASSERT(mutex_owned(&p->p_smutex));
    664 
    665 	sigclear(&p->p_sigpend, mask, kq);
    666 
    667 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    668 		sigclear(&l->l_sigpend, mask, kq);
    669 	}
    670 }
    671 
    672 /*
    673  * sigispending:
    674  *
    675  *	Return true if there are pending signals for the current LWP.  May
    676  *	be called unlocked provided that L_PENDSIG is set, and that the
    677  *	signal has been posted to the appopriate queue before L_PENDSIG is
    678  *	set.
    679  */
    680 int
    681 sigispending(struct lwp *l, int signo)
    682 {
    683 	struct proc *p = l->l_proc;
    684 	sigset_t tset;
    685 
    686 	mb_read();
    687 
    688 	tset = l->l_sigpend.sp_set;
    689 	sigplusset(&p->p_sigpend.sp_set, &tset);
    690 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    691 	sigminusset(&l->l_sigmask, &tset);
    692 
    693 	if (signo == 0) {
    694 		if (firstsig(&tset) != 0)
    695 			return EINTR;
    696 	} else if (sigismember(&tset, signo))
    697 		return EINTR;
    698 
    699 	return 0;
    700 }
    701 
    702 /*
    703  * siginfo_alloc:
    704  *
    705  *	 Allocate a new siginfo_t structure from the pool.
    706  */
    707 siginfo_t *
    708 siginfo_alloc(int flags)
    709 {
    710 
    711 	return pool_get(&siginfo_pool, flags);
    712 }
    713 
    714 /*
    715  * siginfo_free:
    716  *
    717  *	 Return a siginfo_t structure to the pool.
    718  */
    719 void
    720 siginfo_free(void *arg)
    721 {
    722 
    723 	pool_put(&siginfo_pool, arg);
    724 }
    725 
    726 void
    727 getucontext(struct lwp *l, ucontext_t *ucp)
    728 {
    729 	struct proc *p = l->l_proc;
    730 
    731 	KASSERT(mutex_owned(&p->p_smutex));
    732 
    733 	ucp->uc_flags = 0;
    734 	ucp->uc_link = l->l_ctxlink;
    735 
    736 	ucp->uc_sigmask = l->l_sigmask;
    737 	ucp->uc_flags |= _UC_SIGMASK;
    738 
    739 	/*
    740 	 * The (unsupplied) definition of the `current execution stack'
    741 	 * in the System V Interface Definition appears to allow returning
    742 	 * the main context stack.
    743 	 *
    744 	 * XXXLWP this is borken for multiple LWPs.
    745 	 */
    746 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    747 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
    748 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    749 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    750 	} else {
    751 		/* Simply copy alternate signal execution stack. */
    752 		ucp->uc_stack = l->l_sigstk;
    753 	}
    754 	ucp->uc_flags |= _UC_STACK;
    755 	mutex_exit(&p->p_smutex);
    756 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    757 	mutex_enter(&p->p_smutex);
    758 }
    759 
    760 int
    761 setucontext(struct lwp *l, const ucontext_t *ucp)
    762 {
    763 	struct proc *p = l->l_proc;
    764 	int error;
    765 
    766 	KASSERT(mutex_owned(&p->p_smutex));
    767 
    768 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    769 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    770 		if (error != 0)
    771 			return error;
    772 	}
    773 
    774 	mutex_exit(&p->p_smutex);
    775 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    776 	mutex_enter(&p->p_smutex);
    777 	if (error != 0)
    778 		return (error);
    779 
    780 	l->l_ctxlink = ucp->uc_link;
    781 
    782 	/*
    783 	 * If there was stack information, update whether or not we are
    784 	 * still running on an alternate signal stack.
    785 	 */
    786 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    787 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    788 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    789 		else
    790 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    791 	}
    792 
    793 	return 0;
    794 }
    795 
    796 /*
    797  * Common code for kill process group/broadcast kill.  cp is calling
    798  * process.
    799  */
    800 int
    801 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    802 {
    803 	struct proc	*p, *cp;
    804 	kauth_cred_t	pc;
    805 	struct pgrp	*pgrp;
    806 	int		nfound;
    807 	int		signo = ksi->ksi_signo;
    808 
    809 	cp = l->l_proc;
    810 	pc = l->l_cred;
    811 	nfound = 0;
    812 
    813 	mutex_enter(&proclist_lock);
    814 	if (all) {
    815 		/*
    816 		 * broadcast
    817 		 */
    818 		PROCLIST_FOREACH(p, &allproc) {
    819 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
    820 				continue;
    821 			mutex_enter(&p->p_mutex);
    822 			if (kauth_authorize_process(pc,
    823 			    KAUTH_PROCESS_CANSIGNAL, p,
    824 			    (void *)(uintptr_t)signo, NULL, NULL) == 0) {
    825 				nfound++;
    826 				if (signo) {
    827 					mutex_enter(&proclist_mutex);
    828 					mutex_enter(&p->p_smutex);
    829 					kpsignal2(p, ksi);
    830 					mutex_exit(&p->p_smutex);
    831 					mutex_exit(&proclist_mutex);
    832 				}
    833 			}
    834 			mutex_exit(&p->p_mutex);
    835 		}
    836 	} else {
    837 		if (pgid == 0)
    838 			/*
    839 			 * zero pgid means send to my process group.
    840 			 */
    841 			pgrp = cp->p_pgrp;
    842 		else {
    843 			pgrp = pg_find(pgid, PFIND_LOCKED);
    844 			if (pgrp == NULL)
    845 				goto out;
    846 		}
    847 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    848 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    849 				continue;
    850 			mutex_enter(&p->p_mutex);
    851 			if (kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
    852 			    p, (void *)(uintptr_t)signo, NULL, NULL) == 0) {
    853 				nfound++;
    854 				if (signo) {
    855 					mutex_enter(&proclist_mutex);
    856 					mutex_enter(&p->p_smutex);
    857 					if (P_ZOMBIE(p) == 0)
    858 						kpsignal2(p, ksi);
    859 					mutex_exit(&p->p_smutex);
    860 					mutex_exit(&proclist_mutex);
    861 				}
    862 			}
    863 			mutex_exit(&p->p_mutex);
    864 		}
    865 	}
    866   out:
    867 	mutex_exit(&proclist_lock);
    868 	return (nfound ? 0 : ESRCH);
    869 }
    870 
    871 /*
    872  * Send a signal to a process group. If checktty is 1, limit to members
    873  * which have a controlling terminal.
    874  */
    875 void
    876 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    877 {
    878 	ksiginfo_t ksi;
    879 
    880 	KASSERT(mutex_owned(&proclist_mutex));
    881 
    882 	KSI_INIT_EMPTY(&ksi);
    883 	ksi.ksi_signo = sig;
    884 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    885 }
    886 
    887 void
    888 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    889 {
    890 	struct proc *p;
    891 
    892 	KASSERT(mutex_owned(&proclist_mutex));
    893 
    894 	if (pgrp)
    895 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    896 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    897 				kpsignal(p, ksi, data);
    898 }
    899 
    900 /*
    901  * Send a signal caused by a trap to the current LWP.  If it will be caught
    902  * immediately, deliver it with correct code.  Otherwise, post it normally.
    903  */
    904 void
    905 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    906 {
    907 	struct proc	*p;
    908 	struct sigacts	*ps;
    909 	int signo = ksi->ksi_signo;
    910 
    911 	KASSERT(KSI_TRAP_P(ksi));
    912 
    913 	ksi->ksi_lid = l->l_lid;
    914 	p = l->l_proc;
    915 
    916 	mutex_enter(&proclist_mutex);
    917 	mutex_enter(&p->p_smutex);
    918 	ps = p->p_sigacts;
    919 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    920 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    921 	    !sigismember(&l->l_sigmask, signo)) {
    922 		mutex_exit(&proclist_mutex);
    923 		p->p_stats->p_ru.ru_nsignals++;
    924 		kpsendsig(l, ksi, &l->l_sigmask);
    925 		mutex_exit(&p->p_smutex);
    926 #ifdef KTRACE
    927 		if (KTRPOINT(p, KTR_PSIG))
    928 			ktrpsig(l, signo, SIGACTION_PS(ps, signo).sa_handler,
    929 			    &l->l_sigmask, ksi);
    930 #endif
    931 	} else {
    932 		/* XXX for core dump/debugger */
    933 		p->p_sigctx.ps_lwp = l->l_lid;
    934 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    935 		p->p_sigctx.ps_code = ksi->ksi_trap;
    936 		kpsignal2(p, ksi);
    937 		mutex_exit(&proclist_mutex);
    938 		mutex_exit(&p->p_smutex);
    939 	}
    940 }
    941 
    942 /*
    943  * Fill in signal information and signal the parent for a child status change.
    944  */
    945 void
    946 child_psignal(struct proc *p, int mask)
    947 {
    948 	ksiginfo_t ksi;
    949 	struct proc *q;
    950 	int xstat;
    951 
    952 	KASSERT(mutex_owned(&proclist_mutex));
    953 	KASSERT(mutex_owned(&p->p_smutex));
    954 
    955 	xstat = p->p_xstat;
    956 
    957 	KSI_INIT(&ksi);
    958 	ksi.ksi_signo = SIGCHLD;
    959 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    960 	ksi.ksi_pid = p->p_pid;
    961 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    962 	ksi.ksi_status = xstat;
    963 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    964 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    965 
    966 	q = p->p_pptr;
    967 
    968 	mutex_exit(&p->p_smutex);
    969 	mutex_enter(&q->p_smutex);
    970 
    971 	if ((q->p_sflag & mask) == 0)
    972 		kpsignal2(q, &ksi);
    973 
    974 	mutex_exit(&q->p_smutex);
    975 	mutex_enter(&p->p_smutex);
    976 }
    977 
    978 void
    979 psignal(struct proc *p, int signo)
    980 {
    981 	ksiginfo_t ksi;
    982 
    983 	KASSERT(mutex_owned(&proclist_mutex));
    984 
    985 	KSI_INIT_EMPTY(&ksi);
    986 	ksi.ksi_signo = signo;
    987 	mutex_enter(&p->p_smutex);
    988 	kpsignal2(p, &ksi);
    989 	mutex_exit(&p->p_smutex);
    990 }
    991 
    992 void
    993 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    994 {
    995 
    996 	KASSERT(mutex_owned(&proclist_mutex));
    997 
    998 	/* XXXSMP Why is this here? */
    999 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1000 		size_t fd;
   1001 		struct filedesc *fdp = p->p_fd;
   1002 
   1003 		ksi->ksi_fd = -1;
   1004 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
   1005 			struct file *fp = fdp->fd_ofiles[fd];
   1006 			/* XXX: lock? */
   1007 			if (fp && fp->f_data == data) {
   1008 				ksi->ksi_fd = fd;
   1009 				break;
   1010 			}
   1011 		}
   1012 	}
   1013 	mutex_enter(&p->p_smutex);
   1014 	kpsignal2(p, ksi);
   1015 	mutex_exit(&p->p_smutex);
   1016 }
   1017 
   1018 /*
   1019  * sigismasked:
   1020  *
   1021  *	 Returns true if signal is ignored or masked for the specified LWP.
   1022  */
   1023 int
   1024 sigismasked(struct lwp *l, int sig)
   1025 {
   1026 	struct proc *p = l->l_proc;
   1027 
   1028 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1029 	    sigismember(&l->l_sigmask, sig));
   1030 }
   1031 
   1032 /*
   1033  * sigpost:
   1034  *
   1035  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
   1036  *	 able to take the signal.
   1037  */
   1038 int
   1039 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1040 {
   1041 	int rv, masked;
   1042 
   1043 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1044 
   1045 	/*
   1046 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1047 	 * pending signals.  Don't give it more.
   1048 	 */
   1049 	if (l->l_refcnt == 0)
   1050 		return 0;
   1051 
   1052 	lwp_lock(l);
   1053 
   1054 	/*
   1055 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1056 	 * is found to take the signal immediately, it should be taken soon.
   1057 	 */
   1058 	l->l_flag |= LW_PENDSIG;
   1059 
   1060 	/*
   1061 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1062 	 */
   1063 	masked = sigismember(&l->l_sigmask, sig);
   1064 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1065 		lwp_unlock(l);
   1066 		return 0;
   1067 	}
   1068 
   1069 	/*
   1070 	 * If killing the process, make it run fast.
   1071 	 */
   1072 	if (__predict_false((prop & SA_KILL) != 0) &&
   1073 	    action == SIG_DFL && l->l_priority > PUSER)
   1074 		lwp_changepri(l, PUSER);
   1075 
   1076 	/*
   1077 	 * If the LWP is running or on a run queue, then we win.  If it's
   1078 	 * sleeping interruptably, wake it and make it take the signal.  If
   1079 	 * the sleep isn't interruptable, then the chances are it will get
   1080 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1081 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1082 	 * for later; otherwise punt.
   1083 	 */
   1084 	rv = 0;
   1085 
   1086 	switch (l->l_stat) {
   1087 	case LSRUN:
   1088 	case LSONPROC:
   1089 		lwp_need_userret(l);
   1090 		rv = 1;
   1091 		break;
   1092 
   1093 	case LSSLEEP:
   1094 		if ((l->l_flag & LW_SINTR) != 0) {
   1095 			/* setrunnable() will release the lock. */
   1096 			setrunnable(l);
   1097 			return 1;
   1098 		}
   1099 		break;
   1100 
   1101 	case LSSUSPENDED:
   1102 		if ((prop & SA_KILL) != 0) {
   1103 			/* lwp_continue() will release the lock. */
   1104 			lwp_continue(l);
   1105 			return 1;
   1106 		}
   1107 		break;
   1108 
   1109 	case LSSTOP:
   1110 		if ((prop & SA_STOP) != 0)
   1111 			break;
   1112 
   1113 		/*
   1114 		 * If the LWP is stopped and we are sending a continue
   1115 		 * signal, then start it again.
   1116 		 */
   1117 		if ((prop & SA_CONT) != 0) {
   1118 			if (l->l_wchan != NULL) {
   1119 				l->l_stat = LSSLEEP;
   1120 				l->l_proc->p_nrlwps++;
   1121 				rv = 1;
   1122 				break;
   1123 			}
   1124 			/* setrunnable() will release the lock. */
   1125 			setrunnable(l);
   1126 			return 1;
   1127 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1128 			/* setrunnable() will release the lock. */
   1129 			setrunnable(l);
   1130 			return 1;
   1131 		}
   1132 		break;
   1133 
   1134 	default:
   1135 		break;
   1136 	}
   1137 
   1138 	lwp_unlock(l);
   1139 	return rv;
   1140 }
   1141 
   1142 /*
   1143  * Notify an LWP that it has a pending signal.
   1144  */
   1145 void
   1146 signotify(struct lwp *l)
   1147 {
   1148 	KASSERT(lwp_locked(l, NULL));
   1149 
   1150 	l->l_flag |= LW_PENDSIG;
   1151 	lwp_need_userret(l);
   1152 }
   1153 
   1154 /*
   1155  * Find an LWP within process p that is waiting on signal ksi, and hand
   1156  * it on.
   1157  */
   1158 int
   1159 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1160 {
   1161 	struct lwp *l;
   1162 	int signo;
   1163 
   1164 	KASSERT(mutex_owned(&p->p_smutex));
   1165 
   1166 	signo = ksi->ksi_signo;
   1167 
   1168 	if (ksi->ksi_lid != 0) {
   1169 		/*
   1170 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1171 		 * it's interested.
   1172 		 */
   1173 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1174 			return 0;
   1175 		if (l->l_sigwaited == NULL ||
   1176 		    !sigismember(&l->l_sigwaitset, signo))
   1177 			return 0;
   1178 	} else {
   1179 		/*
   1180 		 * Look for any LWP that may be interested.
   1181 		 */
   1182 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1183 			KASSERT(l->l_sigwaited != NULL);
   1184 			if (sigismember(&l->l_sigwaitset, signo))
   1185 				break;
   1186 		}
   1187 	}
   1188 
   1189 	if (l != NULL) {
   1190 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1191 		l->l_sigwaited = NULL;
   1192 		LIST_REMOVE(l, l_sigwaiter);
   1193 		cv_signal(&l->l_sigcv);
   1194 		return 1;
   1195 	}
   1196 
   1197 	return 0;
   1198 }
   1199 
   1200 /*
   1201  * Send the signal to the process.  If the signal has an action, the action
   1202  * is usually performed by the target process rather than the caller; we add
   1203  * the signal to the set of pending signals for the process.
   1204  *
   1205  * Exceptions:
   1206  *   o When a stop signal is sent to a sleeping process that takes the
   1207  *     default action, the process is stopped without awakening it.
   1208  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1209  *     regardless of the signal action (eg, blocked or ignored).
   1210  *
   1211  * Other ignored signals are discarded immediately.
   1212  */
   1213 void
   1214 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1215 {
   1216 	int prop, lid, toall, signo = ksi->ksi_signo;
   1217 	struct lwp *l;
   1218 	ksiginfo_t *kp;
   1219 	ksiginfoq_t kq;
   1220 	sig_t action;
   1221 
   1222 	KASSERT(mutex_owned(&proclist_mutex));
   1223 	KASSERT(mutex_owned(&p->p_smutex));
   1224 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1225 	KASSERT(signo > 0 && signo < NSIG);
   1226 
   1227 	/*
   1228 	 * If the process is being created by fork, is a zombie or is
   1229 	 * exiting, then just drop the signal here and bail out.
   1230 	 */
   1231 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1232 		return;
   1233 
   1234 	/*
   1235 	 * Notify any interested parties of the signal.
   1236 	 */
   1237 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1238 
   1239 	/*
   1240 	 * Some signals including SIGKILL must act on the entire process.
   1241 	 */
   1242 	kp = NULL;
   1243 	prop = sigprop[signo];
   1244 	toall = ((prop & SA_TOALL) != 0);
   1245 
   1246 	if (toall)
   1247 		lid = 0;
   1248 	else
   1249 		lid = ksi->ksi_lid;
   1250 
   1251 	/*
   1252 	 * If proc is traced, always give parent a chance.
   1253 	 */
   1254 	if (p->p_slflag & PSL_TRACED) {
   1255 		action = SIG_DFL;
   1256 
   1257 		if (lid == 0) {
   1258 			/*
   1259 			 * If the process is being traced and the signal
   1260 			 * is being caught, make sure to save any ksiginfo.
   1261 			 */
   1262 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1263 				return;
   1264 			sigput(&p->p_sigpend, p, kp);
   1265 		}
   1266 	} else {
   1267 		/*
   1268 		 * If the signal was the result of a trap and is not being
   1269 		 * caught, then reset it to default action so that the
   1270 		 * process dumps core immediately.
   1271 		 */
   1272 		if (KSI_TRAP_P(ksi)) {
   1273 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1274 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1275 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1276 			}
   1277 		}
   1278 
   1279 		/*
   1280 		 * If the signal is being ignored, then drop it.  Note: we
   1281 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1282 		 * SIG_IGN, action will be SIG_DFL here.
   1283 		 */
   1284 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1285 			return;
   1286 
   1287 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1288 			action = SIG_CATCH;
   1289 		else {
   1290 			action = SIG_DFL;
   1291 
   1292 			/*
   1293 			 * If sending a tty stop signal to a member of an
   1294 			 * orphaned process group, discard the signal here if
   1295 			 * the action is default; don't stop the process below
   1296 			 * if sleeping, and don't clear any pending SIGCONT.
   1297 			 */
   1298 			if (prop & SA_TTYSTOP &&
   1299 			    (p->p_sflag & PS_ORPHANPG) != 0)
   1300 				return;
   1301 
   1302 			if (prop & SA_KILL && p->p_nice > NZERO)
   1303 				p->p_nice = NZERO;
   1304 		}
   1305 	}
   1306 
   1307 	/*
   1308 	 * If stopping or continuing a process, discard any pending
   1309 	 * signals that would do the inverse.
   1310 	 */
   1311 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1312 		ksiginfo_queue_init(&kq);
   1313 		if ((prop & SA_CONT) != 0)
   1314 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1315 		if ((prop & SA_STOP) != 0)
   1316 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1317 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1318 	}
   1319 
   1320 	/*
   1321 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1322 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1323 	 * the signal info.  The signal won't be processed further here.
   1324 	 */
   1325 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1326 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1327 	    sigunwait(p, ksi))
   1328 		return;
   1329 
   1330 	/*
   1331 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1332 	 * here.
   1333 	 */
   1334 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1335 		return;
   1336 
   1337 	/*
   1338 	 * LWP private signals are easy - just find the LWP and post
   1339 	 * the signal to it.
   1340 	 */
   1341 	if (lid != 0) {
   1342 		l = lwp_find(p, lid);
   1343 		if (l != NULL) {
   1344 			sigput(&l->l_sigpend, p, kp);
   1345 			mb_write();
   1346 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1347 		}
   1348 		goto out;
   1349 	}
   1350 
   1351 	/*
   1352 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
   1353 	 */
   1354 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1355 		if ((p->p_slflag & PSL_TRACED) != 0)
   1356 			goto deliver;
   1357 
   1358 		/*
   1359 		 * If SIGCONT is default (or ignored) and process is
   1360 		 * asleep, we are finished; the process should not
   1361 		 * be awakened.
   1362 		 */
   1363 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1364 			goto out;
   1365 
   1366 		if ((prop & SA_STOP) != 0 && action == SIG_DFL) {
   1367 			/*
   1368 			 * If a child holding parent blocked, stopping could
   1369 			 * cause deadlock: discard the signal.
   1370 			 */
   1371 			if ((p->p_sflag & PS_PPWAIT) == 0) {
   1372 				p->p_xstat = signo;
   1373 				proc_stop(p, 1, signo);
   1374 			}
   1375 			goto out;
   1376 		} else {
   1377 			/*
   1378 			 * Stop signals with the default action are handled
   1379 			 * specially in issignal(), and so are not enqueued.
   1380 			 */
   1381 			sigput(&p->p_sigpend, p, kp);
   1382 		}
   1383 	} else {
   1384 		/*
   1385 		 * Process is stopped or stopping.  If traced, then no
   1386 		 * further action is necessary.
   1387 		 */
   1388 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1389 			goto out;
   1390 
   1391 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1392 			/*
   1393 			 * Re-adjust p_nstopchild if the process wasn't
   1394 			 * collected by its parent.
   1395 			 */
   1396 			p->p_stat = SACTIVE;
   1397 			p->p_sflag &= ~PS_STOPPING;
   1398 			if (!p->p_waited)
   1399 				p->p_pptr->p_nstopchild--;
   1400 
   1401 			/*
   1402 			 * If SIGCONT is default (or ignored), we continue
   1403 			 * the process but don't leave the signal in
   1404 			 * ps_siglist, as it has no further action.  If
   1405 			 * SIGCONT is held, we continue the process and
   1406 			 * leave the signal in ps_siglist.  If the process
   1407 			 * catches SIGCONT, let it handle the signal itself.
   1408 			 * If it isn't waiting on an event, then it goes
   1409 			 * back to run state.  Otherwise, process goes back
   1410 			 * to sleep state.
   1411 			 */
   1412 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1413 				sigput(&p->p_sigpend, p, kp);
   1414 		} else if ((prop & SA_STOP) != 0) {
   1415 			/*
   1416 			 * Already stopped, don't need to stop again.
   1417 			 * (If we did the shell could get confused.)
   1418 			 */
   1419 			goto out;
   1420 		} else
   1421 			sigput(&p->p_sigpend, p, kp);
   1422 	}
   1423 
   1424  deliver:
   1425 	/*
   1426 	 * Before we set L_PENDSIG on any LWP, ensure that the signal is
   1427 	 * visible on the per process list (for sigispending()).  This
   1428 	 * is unlikely to be needed in practice, but...
   1429 	 */
   1430 	mb_write();
   1431 
   1432 	/*
   1433 	 * Try to find an LWP that can take the signal.
   1434 	 */
   1435 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1436 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1437 			break;
   1438 
   1439  out:
   1440  	/*
   1441  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1442  	 * with locks held.  The caller should take care of this.
   1443  	 */
   1444  	ksiginfo_free(kp);
   1445 }
   1446 
   1447 void
   1448 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1449 {
   1450 	struct proc *p = l->l_proc;
   1451 
   1452 	KASSERT(mutex_owned(&p->p_smutex));
   1453 
   1454 	(*p->p_emul->e_sendsig)(ksi, mask);
   1455 }
   1456 
   1457 /*
   1458  * Stop the current process and switch away when being stopped or traced.
   1459  */
   1460 void
   1461 sigswitch(bool ppsig, int ppmask, int signo)
   1462 {
   1463 	struct lwp *l = curlwp, *l2;
   1464 	struct proc *p = l->l_proc;
   1465 #ifdef MULTIPROCESSOR
   1466 	int biglocks;
   1467 #endif
   1468 
   1469 	KASSERT(mutex_owned(&p->p_smutex));
   1470 	KASSERT(l->l_stat == LSONPROC);
   1471 	KASSERT(p->p_nrlwps > 0);
   1472 
   1473 	/*
   1474 	 * On entry we know that the process needs to stop.  If it's
   1475 	 * the result of a 'sideways' stop signal that has been sourced
   1476 	 * through issignal(), then stop other LWPs in the process too.
   1477 	 */
   1478 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1479 		/*
   1480 		 * Set the stopping indicator and bring all sleeping LWPs
   1481 		 * to a halt so they are included in p->p_nrlwps
   1482 		 */
   1483 		p->p_sflag |= (PS_STOPPING | PS_NOTIFYSTOP);
   1484 		mb_write();
   1485 
   1486 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1487 			lwp_lock(l2);
   1488 			if (l2->l_stat == LSSLEEP &&
   1489 			    (l2->l_flag & LW_SINTR) != 0) {
   1490 				l2->l_stat = LSSTOP;
   1491 				p->p_nrlwps--;
   1492 			}
   1493 			lwp_unlock(l2);
   1494 		}
   1495 
   1496 		/*
   1497 		 * Have the remaining LWPs come to a halt, and trigger
   1498 		 * proc_stop_callout() to ensure that they do.
   1499 		 */
   1500 		KASSERT(signo != 0);
   1501 		KASSERT(p->p_nrlwps > 0);
   1502 
   1503 		if (p->p_nrlwps > 1) {
   1504 			LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1505 				sigpost(l2, SIG_DFL, SA_STOP, signo);
   1506 			callout_schedule(&proc_stop_ch, 1);
   1507 		}
   1508 	}
   1509 
   1510 	/*
   1511 	 * If we are the last live LWP, and the stop was a result of
   1512 	 * a new signal, then signal the parent.
   1513 	 */
   1514 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1515 		if (!mutex_tryenter(&proclist_mutex)) {
   1516 			mutex_exit(&p->p_smutex);
   1517 			mutex_enter(&proclist_mutex);
   1518 			mutex_enter(&p->p_smutex);
   1519 		}
   1520 
   1521 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1522 			p->p_sflag &= ~PS_STOPPING;
   1523 			p->p_stat = SSTOP;
   1524 			p->p_waited = 0;
   1525 			p->p_pptr->p_nstopchild++;
   1526 			if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1527 				/*
   1528 				 * Note that child_psignal() will drop
   1529 				 * p->p_smutex briefly.
   1530 				 */
   1531 				if (ppsig)
   1532 					child_psignal(p, ppmask);
   1533 				cv_broadcast(&p->p_pptr->p_waitcv);
   1534 			}
   1535 		}
   1536 
   1537 		mutex_exit(&proclist_mutex);
   1538 	}
   1539 
   1540 	/*
   1541 	 * Unlock and switch away.
   1542 	 */
   1543 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1544 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1545 		p->p_nrlwps--;
   1546 		lwp_lock(l);
   1547 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1548 		l->l_stat = LSSTOP;
   1549 		lwp_unlock(l);
   1550 	}
   1551 
   1552 	mutex_exit(&p->p_smutex);
   1553 	lwp_lock(l);
   1554 	mi_switch(l, NULL);
   1555 	KERNEL_LOCK(biglocks, l);
   1556 	mutex_enter(&p->p_smutex);
   1557 }
   1558 
   1559 /*
   1560  * Check for a signal from the debugger.
   1561  */
   1562 int
   1563 sigchecktrace(sigpend_t **spp)
   1564 {
   1565 	struct lwp *l = curlwp;
   1566 	struct proc *p = l->l_proc;
   1567 	int signo;
   1568 
   1569 	KASSERT(mutex_owned(&p->p_smutex));
   1570 
   1571 	/*
   1572 	 * If we are no longer being traced, or the parent didn't
   1573 	 * give us a signal, look for more signals.
   1574 	 */
   1575 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1576 		return 0;
   1577 
   1578 	/* If there's a pending SIGKILL, process it immediately. */
   1579 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1580 		return 0;
   1581 
   1582 	/*
   1583 	 * If the new signal is being masked, look for other signals.
   1584 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1585 	 */
   1586 	signo = p->p_xstat;
   1587 	p->p_xstat = 0;
   1588 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1589 		*spp = &l->l_sigpend;
   1590 	else
   1591 		*spp = &p->p_sigpend;
   1592 	if (sigismember(&l->l_sigmask, signo))
   1593 		signo = 0;
   1594 
   1595 	return signo;
   1596 }
   1597 
   1598 /*
   1599  * If the current process has received a signal (should be caught or cause
   1600  * termination, should interrupt current syscall), return the signal number.
   1601  *
   1602  * Stop signals with default action are processed immediately, then cleared;
   1603  * they aren't returned.  This is checked after each entry to the system for
   1604  * a syscall or trap.
   1605  *
   1606  * We will also return -1 if the process is exiting and the current LWP must
   1607  * follow suit.
   1608  *
   1609  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1610  * can switch away, though.
   1611  */
   1612 int
   1613 issignal(struct lwp *l)
   1614 {
   1615 	struct proc *p = l->l_proc;
   1616 	int signo = 0, prop;
   1617 	sigpend_t *sp = NULL;
   1618 	sigset_t ss;
   1619 
   1620 	KASSERT(mutex_owned(&p->p_smutex));
   1621 
   1622 	for (;;) {
   1623 		/* Discard any signals that we have decided not to take. */
   1624 		if (signo != 0)
   1625 			(void)sigget(sp, NULL, signo, NULL);
   1626 
   1627 		/*
   1628 		 * If the process is stopped/stopping, then stop ourselves
   1629 		 * now that we're on the kernel/userspace boundary.  When
   1630 		 * we awaken, check for a signal from the debugger.
   1631 		 */
   1632 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1633 			sigswitch(true, PS_NOCLDSTOP, 0);
   1634 			signo = sigchecktrace(&sp);
   1635 		} else
   1636 			signo = 0;
   1637 
   1638 		/*
   1639 		 * If the debugger didn't provide a signal, find a pending
   1640 		 * signal from our set.  Check per-LWP signals first, and
   1641 		 * then per-process.
   1642 		 */
   1643 		if (signo == 0) {
   1644 			sp = &l->l_sigpend;
   1645 			ss = sp->sp_set;
   1646 			if ((p->p_sflag & PS_PPWAIT) != 0)
   1647 				sigminusset(&stopsigmask, &ss);
   1648 			sigminusset(&l->l_sigmask, &ss);
   1649 
   1650 			if ((signo = firstsig(&ss)) == 0) {
   1651 				sp = &p->p_sigpend;
   1652 				ss = sp->sp_set;
   1653 				if ((p->p_sflag & PS_PPWAIT) != 0)
   1654 					sigminusset(&stopsigmask, &ss);
   1655 				sigminusset(&l->l_sigmask, &ss);
   1656 
   1657 				if ((signo = firstsig(&ss)) == 0) {
   1658 					/*
   1659 					 * No signal pending - clear the
   1660 					 * indicator and bail out.
   1661 					 */
   1662 					lwp_lock(l);
   1663 					l->l_flag &= ~LW_PENDSIG;
   1664 					lwp_unlock(l);
   1665 					sp = NULL;
   1666 					break;
   1667 				}
   1668 			}
   1669 		}
   1670 
   1671 		/*
   1672 		 * We should see pending but ignored signals only if
   1673 		 * we are being traced.
   1674 		 */
   1675 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1676 		    (p->p_slflag & PSL_TRACED) == 0) {
   1677 			/* Discard the signal. */
   1678 			continue;
   1679 		}
   1680 
   1681 		/*
   1682 		 * If traced, always stop, and stay stopped until released
   1683 		 * by the debugger.  If the our parent process is waiting
   1684 		 * for us, don't hang as we could deadlock.
   1685 		 */
   1686 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1687 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
   1688 			/* Take the signal. */
   1689 			(void)sigget(sp, NULL, signo, NULL);
   1690 			p->p_xstat = signo;
   1691 
   1692 			/* Emulation-specific handling of signal trace */
   1693 			if (p->p_emul->e_tracesig == NULL ||
   1694 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1695 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1696 				    signo);
   1697 
   1698 			/* Check for a signal from the debugger. */
   1699 			if ((signo = sigchecktrace(&sp)) == 0)
   1700 				continue;
   1701 		}
   1702 
   1703 		prop = sigprop[signo];
   1704 
   1705 		/*
   1706 		 * Decide whether the signal should be returned.
   1707 		 */
   1708 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1709 		case (long)SIG_DFL:
   1710 			/*
   1711 			 * Don't take default actions on system processes.
   1712 			 */
   1713 			if (p->p_pid <= 1) {
   1714 #ifdef DIAGNOSTIC
   1715 				/*
   1716 				 * Are you sure you want to ignore SIGSEGV
   1717 				 * in init? XXX
   1718 				 */
   1719 				printf_nolog("Process (pid %d) got sig %d\n",
   1720 				    p->p_pid, signo);
   1721 #endif
   1722 				continue;
   1723 			}
   1724 
   1725 			/*
   1726 			 * If there is a pending stop signal to process with
   1727 			 * default action, stop here, then clear the signal.
   1728 			 * However, if process is member of an orphaned
   1729 			 * process group, ignore tty stop signals.
   1730 			 */
   1731 			if (prop & SA_STOP) {
   1732 				if (p->p_slflag & PSL_TRACED ||
   1733 		    		    ((p->p_sflag & PS_ORPHANPG) != 0 &&
   1734 				    prop & SA_TTYSTOP)) {
   1735 				    	/* Ignore the signal. */
   1736 					continue;
   1737 				}
   1738 				/* Take the signal. */
   1739 				(void)sigget(sp, NULL, signo, NULL);
   1740 				p->p_xstat = signo;
   1741 				signo = 0;
   1742 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1743 			} else if (prop & SA_IGNORE) {
   1744 				/*
   1745 				 * Except for SIGCONT, shouldn't get here.
   1746 				 * Default action is to ignore; drop it.
   1747 				 */
   1748 				continue;
   1749 			}
   1750 			break;
   1751 
   1752 		case (long)SIG_IGN:
   1753 #ifdef DEBUG_ISSIGNAL
   1754 			/*
   1755 			 * Masking above should prevent us ever trying
   1756 			 * to take action on an ignored signal other
   1757 			 * than SIGCONT, unless process is traced.
   1758 			 */
   1759 			if ((prop & SA_CONT) == 0 &&
   1760 			    (p->p_slflag & PSL_TRACED) == 0)
   1761 				printf_nolog("issignal\n");
   1762 #endif
   1763 			continue;
   1764 
   1765 		default:
   1766 			/*
   1767 			 * This signal has an action, let postsig() process
   1768 			 * it.
   1769 			 */
   1770 			break;
   1771 		}
   1772 
   1773 		break;
   1774 	}
   1775 
   1776 	l->l_sigpendset = sp;
   1777 	return signo;
   1778 }
   1779 
   1780 /*
   1781  * Take the action for the specified signal
   1782  * from the current set of pending signals.
   1783  */
   1784 void
   1785 postsig(int signo)
   1786 {
   1787 	struct lwp	*l;
   1788 	struct proc	*p;
   1789 	struct sigacts	*ps;
   1790 	sig_t		action;
   1791 	sigset_t	*returnmask;
   1792 	ksiginfo_t	ksi;
   1793 
   1794 	l = curlwp;
   1795 	p = l->l_proc;
   1796 	ps = p->p_sigacts;
   1797 
   1798 	KASSERT(mutex_owned(&p->p_smutex));
   1799 	KASSERT(signo > 0);
   1800 
   1801 	/*
   1802 	 * Set the new mask value and also defer further occurrences of this
   1803 	 * signal.
   1804 	 *
   1805 	 * Special case: user has done a sigpause.  Here the current mask is
   1806 	 * not of interest, but rather the mask from before the sigpause is
   1807 	 * what we want restored after the signal processing is completed.
   1808 	 */
   1809 	if (l->l_sigrestore) {
   1810 		returnmask = &l->l_sigoldmask;
   1811 		l->l_sigrestore = 0;
   1812 	} else
   1813 		returnmask = &l->l_sigmask;
   1814 
   1815 	/*
   1816 	 * Commit to taking the signal before releasing the mutex.
   1817 	 */
   1818 	action = SIGACTION_PS(ps, signo).sa_handler;
   1819 	p->p_stats->p_ru.ru_nsignals++;
   1820 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1821 
   1822 #ifdef KTRACE
   1823 	if (KTRPOINT(p, KTR_PSIG)) {
   1824 		mutex_exit(&p->p_smutex);
   1825 		ktrpsig(l, signo, action, returnmask, NULL);
   1826 		mutex_enter(&p->p_smutex);
   1827 	}
   1828 #endif
   1829 
   1830 	if (action == SIG_DFL) {
   1831 		/*
   1832 		 * Default action, where the default is to kill
   1833 		 * the process.  (Other cases were ignored above.)
   1834 		 */
   1835 		sigexit(l, signo);
   1836 		return;
   1837 	}
   1838 
   1839 	/*
   1840 	 * If we get here, the signal must be caught.
   1841 	 */
   1842 #ifdef DIAGNOSTIC
   1843 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1844 		panic("postsig action");
   1845 #endif
   1846 
   1847 	kpsendsig(l, &ksi, returnmask);
   1848 }
   1849 
   1850 /*
   1851  * sendsig_reset:
   1852  *
   1853  *	Reset the signal action.  Called from emulation specific sendsig()
   1854  *	before unlocking to deliver the signal.
   1855  */
   1856 void
   1857 sendsig_reset(struct lwp *l, int signo)
   1858 {
   1859 	struct proc *p = l->l_proc;
   1860 	struct sigacts *ps = p->p_sigacts;
   1861 
   1862 	KASSERT(mutex_owned(&p->p_smutex));
   1863 
   1864 	p->p_sigctx.ps_lwp = 0;
   1865 	p->p_sigctx.ps_code = 0;
   1866 	p->p_sigctx.ps_signo = 0;
   1867 
   1868 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1869 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1870 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1871 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1872 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1873 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1874 	}
   1875 }
   1876 
   1877 /*
   1878  * Kill the current process for stated reason.
   1879  */
   1880 void
   1881 killproc(struct proc *p, const char *why)
   1882 {
   1883 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1884 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1885 	mutex_enter(&proclist_mutex);	/* XXXSMP */
   1886 	psignal(p, SIGKILL);
   1887 	mutex_exit(&proclist_mutex);	/* XXXSMP */
   1888 }
   1889 
   1890 /*
   1891  * Force the current process to exit with the specified signal, dumping core
   1892  * if appropriate.  We bypass the normal tests for masked and caught
   1893  * signals, allowing unrecoverable failures to terminate the process without
   1894  * changing signal state.  Mark the accounting record with the signal
   1895  * termination.  If dumping core, save the signal number for the debugger.
   1896  * Calls exit and does not return.
   1897  */
   1898 void
   1899 sigexit(struct lwp *l, int signo)
   1900 {
   1901 	int exitsig, error, docore;
   1902 	struct proc *p;
   1903 	struct lwp *t;
   1904 
   1905 	p = l->l_proc;
   1906 
   1907 	KASSERT(mutex_owned(&p->p_smutex));
   1908 	KERNEL_UNLOCK_ALL(l, NULL);
   1909 
   1910 	/*
   1911 	 * Don't permit coredump() multiple times in the same process.
   1912 	 * Call back into sigexit, where we will be suspended until
   1913 	 * the deed is done.  Note that this is a recursive call, but
   1914 	 * LW_WCORE will prevent us from coming back this way.
   1915 	 */
   1916 	if ((p->p_sflag & PS_WCORE) != 0) {
   1917 		lwp_lock(l);
   1918 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1919 		lwp_unlock(l);
   1920 		mutex_exit(&p->p_smutex);
   1921 		lwp_userret(l);
   1922 #ifdef DIAGNOSTIC
   1923 		panic("sigexit");
   1924 #endif
   1925 		/* NOTREACHED */
   1926 	}
   1927 
   1928 	/*
   1929 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1930 	 * so that their registers are available long enough to be dumped.
   1931  	 */
   1932 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1933 		p->p_sflag |= PS_WCORE;
   1934 		for (;;) {
   1935 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1936 				lwp_lock(t);
   1937 				if (t == l) {
   1938 					t->l_flag &= ~LW_WSUSPEND;
   1939 					lwp_unlock(t);
   1940 					continue;
   1941 				}
   1942 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1943 				lwp_suspend(l, t);
   1944 			}
   1945 
   1946 			if (p->p_nrlwps == 1)
   1947 				break;
   1948 
   1949 			/*
   1950 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   1951 			 * for everyone else to stop before proceeding.
   1952 			 */
   1953 			p->p_nlwpwait++;
   1954 			cv_broadcast(&p->p_lwpcv);
   1955 			cv_wait(&p->p_lwpcv, &p->p_smutex);
   1956 			p->p_nlwpwait--;
   1957 		}
   1958 	}
   1959 
   1960 	exitsig = signo;
   1961 	p->p_acflag |= AXSIG;
   1962 	p->p_sigctx.ps_signo = signo;
   1963 	mutex_exit(&p->p_smutex);
   1964 
   1965 	KERNEL_LOCK(1, l);
   1966 
   1967 	if (docore) {
   1968 		if ((error = coredump(l, NULL)) == 0)
   1969 			exitsig |= WCOREFLAG;
   1970 
   1971 		if (kern_logsigexit) {
   1972 			int uid = l->l_cred ?
   1973 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   1974 
   1975 			if (error)
   1976 				log(LOG_INFO, lognocoredump, p->p_pid,
   1977 				    p->p_comm, uid, signo, error);
   1978 			else
   1979 				log(LOG_INFO, logcoredump, p->p_pid,
   1980 				    p->p_comm, uid, signo);
   1981 		}
   1982 
   1983 #ifdef PAX_SEGVGUARD
   1984 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   1985 #endif /* PAX_SEGVGUARD */
   1986 	}
   1987 
   1988 	/* Acquire the sched state mutex.  exit1() will release it. */
   1989 	mutex_enter(&p->p_smutex);
   1990 
   1991 	/* No longer dumping core. */
   1992 	p->p_sflag &= ~PS_WCORE;
   1993 
   1994 	exit1(l, W_EXITCODE(0, exitsig));
   1995 	/* NOTREACHED */
   1996 }
   1997 
   1998 /*
   1999  * Put process 'p' into the stopped state and optionally, notify the parent.
   2000  */
   2001 void
   2002 proc_stop(struct proc *p, int notify, int signo)
   2003 {
   2004 	struct lwp *l;
   2005 
   2006 	KASSERT(mutex_owned(&proclist_mutex));
   2007 	KASSERT(mutex_owned(&p->p_smutex));
   2008 
   2009 	/*
   2010 	 * First off, set the stopping indicator and bring all sleeping
   2011 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2012 	 * unlock between here and the p->p_nrlwps check below.
   2013 	 */
   2014 	p->p_sflag |= PS_STOPPING;
   2015 	mb_write();
   2016 
   2017 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2018 		lwp_lock(l);
   2019 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   2020 			l->l_stat = LSSTOP;
   2021 			p->p_nrlwps--;
   2022 		}
   2023 		lwp_unlock(l);
   2024 	}
   2025 
   2026 	/*
   2027 	 * If there are no LWPs available to take the signal, then we
   2028 	 * signal the parent process immediately.  Otherwise, the last
   2029 	 * LWP to stop will take care of it.
   2030 	 */
   2031 	if (notify)
   2032 		p->p_sflag |= PS_NOTIFYSTOP;
   2033 	else
   2034 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2035 
   2036 	if (p->p_nrlwps == 0) {
   2037 		p->p_sflag &= ~PS_STOPPING;
   2038 		p->p_stat = SSTOP;
   2039 		p->p_waited = 0;
   2040 		p->p_pptr->p_nstopchild++;
   2041 
   2042 		if (notify) {
   2043 			child_psignal(p, PS_NOCLDSTOP);
   2044 			cv_broadcast(&p->p_pptr->p_waitcv);
   2045 		}
   2046 	} else {
   2047 		/*
   2048 		 * Have the remaining LWPs come to a halt, and trigger
   2049 		 * proc_stop_callout() to ensure that they do.
   2050 		 */
   2051 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2052 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2053 		callout_schedule(&proc_stop_ch, 1);
   2054 	}
   2055 }
   2056 
   2057 /*
   2058  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2059  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2060  * to allow LWPs to release any locks that they may hold before stopping.
   2061  *
   2062  * Non-interruptable sleeps can be long, and there is the potential for an
   2063  * LWP to begin sleeping interruptably soon after the process has been set
   2064  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2065  * stopping, and so complete halt of the process and the return of status
   2066  * information to the parent could be delayed indefinitely.
   2067  *
   2068  * To handle this race, proc_stop_callout() runs once per tick while there
   2069  * are stopping processes it the system.  It sets LWPs that are sleeping
   2070  * interruptably into the LSSTOP state.
   2071  *
   2072  * Note that we are not concerned about keeping all LWPs stopped while the
   2073  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2074  * What we do need to ensure is that all LWPs in a stopping process have
   2075  * stopped at least once, so that notification can be sent to the parent
   2076  * process.
   2077  */
   2078 static void
   2079 proc_stop_callout(void *cookie)
   2080 {
   2081 	bool more, restart;
   2082 	struct proc *p;
   2083 	struct lwp *l;
   2084 
   2085 	(void)cookie;
   2086 
   2087 	do {
   2088 		restart = false;
   2089 		more = false;
   2090 
   2091 		mutex_enter(&proclist_mutex);
   2092 		PROCLIST_FOREACH(p, &allproc) {
   2093 			mutex_enter(&p->p_smutex);
   2094 
   2095 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2096 				mutex_exit(&p->p_smutex);
   2097 				continue;
   2098 			}
   2099 
   2100 			/* Stop any LWPs sleeping interruptably. */
   2101 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2102 				lwp_lock(l);
   2103 				if (l->l_stat == LSSLEEP &&
   2104 				    (l->l_flag & LW_SINTR) != 0) {
   2105 				    	l->l_stat = LSSTOP;
   2106 				    	p->p_nrlwps--;
   2107 				}
   2108 				lwp_unlock(l);
   2109 			}
   2110 
   2111 			if (p->p_nrlwps == 0) {
   2112 				/*
   2113 				 * We brought the process to a halt.
   2114 				 * Mark it as stopped and notify the
   2115 				 * parent.
   2116 				 */
   2117 				p->p_sflag &= ~PS_STOPPING;
   2118 				p->p_stat = SSTOP;
   2119 				p->p_waited = 0;
   2120 				p->p_pptr->p_nstopchild++;
   2121 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2122 					/*
   2123 					 * Note that child_psignal() will
   2124 					 * drop p->p_smutex briefly.
   2125 					 * Arrange to restart and check
   2126 					 * all processes again.
   2127 					 */
   2128 					restart = true;
   2129 					child_psignal(p, PS_NOCLDSTOP);
   2130 					cv_broadcast(&p->p_pptr->p_waitcv);
   2131 				}
   2132 			} else
   2133 				more = true;
   2134 
   2135 			mutex_exit(&p->p_smutex);
   2136 			if (restart)
   2137 				break;
   2138 		}
   2139 		mutex_exit(&proclist_mutex);
   2140 	} while (restart);
   2141 
   2142 	/*
   2143 	 * If we noted processes that are stopping but still have
   2144 	 * running LWPs, then arrange to check again in 1 tick.
   2145 	 */
   2146 	if (more)
   2147 		callout_schedule(&proc_stop_ch, 1);
   2148 }
   2149 
   2150 /*
   2151  * Given a process in state SSTOP, set the state back to SACTIVE and
   2152  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2153  */
   2154 void
   2155 proc_unstop(struct proc *p)
   2156 {
   2157 	struct lwp *l;
   2158 	int sig;
   2159 
   2160 	KASSERT(mutex_owned(&proclist_mutex));
   2161 	KASSERT(mutex_owned(&p->p_smutex));
   2162 
   2163 	p->p_stat = SACTIVE;
   2164 	p->p_sflag &= ~PS_STOPPING;
   2165 	sig = p->p_xstat;
   2166 
   2167 	if (!p->p_waited)
   2168 		p->p_pptr->p_nstopchild--;
   2169 
   2170 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2171 		lwp_lock(l);
   2172 		if (l->l_stat != LSSTOP) {
   2173 			lwp_unlock(l);
   2174 			continue;
   2175 		}
   2176 		if (l->l_wchan == NULL) {
   2177 			setrunnable(l);
   2178 			continue;
   2179 		}
   2180 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2181 		        setrunnable(l);
   2182 		        sig = 0;
   2183 		} else {
   2184 			l->l_stat = LSSLEEP;
   2185 			p->p_nrlwps++;
   2186 			lwp_unlock(l);
   2187 		}
   2188 	}
   2189 }
   2190 
   2191 static int
   2192 filt_sigattach(struct knote *kn)
   2193 {
   2194 	struct proc *p = curproc;
   2195 
   2196 	kn->kn_ptr.p_proc = p;
   2197 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2198 
   2199 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2200 
   2201 	return (0);
   2202 }
   2203 
   2204 static void
   2205 filt_sigdetach(struct knote *kn)
   2206 {
   2207 	struct proc *p = kn->kn_ptr.p_proc;
   2208 
   2209 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2210 }
   2211 
   2212 /*
   2213  * signal knotes are shared with proc knotes, so we apply a mask to
   2214  * the hint in order to differentiate them from process hints.  This
   2215  * could be avoided by using a signal-specific knote list, but probably
   2216  * isn't worth the trouble.
   2217  */
   2218 static int
   2219 filt_signal(struct knote *kn, long hint)
   2220 {
   2221 
   2222 	if (hint & NOTE_SIGNAL) {
   2223 		hint &= ~NOTE_SIGNAL;
   2224 
   2225 		if (kn->kn_id == hint)
   2226 			kn->kn_data++;
   2227 	}
   2228 	return (kn->kn_data != 0);
   2229 }
   2230 
   2231 const struct filterops sig_filtops = {
   2232 	0, filt_sigattach, filt_sigdetach, filt_signal
   2233 };
   2234