kern_sig.c revision 1.256 1 /* $NetBSD: kern_sig.c,v 1.256 2007/08/17 17:25:14 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1991, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.256 2007/08/17 17:25:14 ad Exp $");
77
78 #include "opt_ptrace.h"
79 #include "opt_multiprocessor.h"
80 #include "opt_compat_sunos.h"
81 #include "opt_compat_netbsd.h"
82 #include "opt_compat_netbsd32.h"
83 #include "opt_pax.h"
84
85 #define SIGPROP /* include signal properties table */
86 #include <sys/param.h>
87 #include <sys/signalvar.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/wait.h>
91 #include <sys/ktrace.h>
92 #include <sys/syslog.h>
93 #include <sys/filedesc.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/pool.h>
97 #include <sys/ucontext.h>
98 #include <sys/exec.h>
99 #include <sys/kauth.h>
100 #include <sys/acct.h>
101 #include <sys/callout.h>
102
103 #include <machine/cpu.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111
112 static void ksiginfo_exechook(struct proc *, void *);
113 static void proc_stop_callout(void *);
114
115 int sigunwait(struct proc *, const ksiginfo_t *);
116 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
117 int sigpost(struct lwp *, sig_t, int, int);
118 int sigchecktrace(sigpend_t **);
119 void sigswitch(bool, int, int);
120 void sigrealloc(ksiginfo_t *);
121
122 sigset_t contsigmask, stopsigmask, sigcantmask;
123 struct pool sigacts_pool; /* memory pool for sigacts structures */
124 static void sigacts_poolpage_free(struct pool *, void *);
125 static void *sigacts_poolpage_alloc(struct pool *, int);
126 static callout_t proc_stop_ch;
127
128 static struct pool_allocator sigactspool_allocator = {
129 .pa_alloc = sigacts_poolpage_alloc,
130 .pa_free = sigacts_poolpage_free,
131 };
132
133 #ifdef DEBUG
134 int kern_logsigexit = 1;
135 #else
136 int kern_logsigexit = 0;
137 #endif
138
139 static const char logcoredump[] =
140 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
141 static const char lognocoredump[] =
142 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
143
144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
145 &pool_allocator_nointr, IPL_NONE);
146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
147 NULL, IPL_SOFTCLOCK);
148
149 /*
150 * signal_init:
151 *
152 * Initialize global signal-related data structures.
153 */
154 void
155 signal_init(void)
156 {
157
158 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
159
160 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
161 sizeof(struct sigacts) > PAGE_SIZE ?
162 &sigactspool_allocator : &pool_allocator_nointr,
163 IPL_NONE);
164
165 exechook_establish(ksiginfo_exechook, NULL);
166
167 callout_init(&proc_stop_ch, 0);
168 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
169 }
170
171 /*
172 * sigacts_poolpage_alloc:
173 *
174 * Allocate a page for the sigacts memory pool.
175 */
176 static void *
177 sigacts_poolpage_alloc(struct pool *pp, int flags)
178 {
179
180 return (void *)uvm_km_alloc(kernel_map,
181 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
182 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
183 | UVM_KMF_WIRED);
184 }
185
186 /*
187 * sigacts_poolpage_free:
188 *
189 * Free a page on behalf of the sigacts memory pool.
190 */
191 static void
192 sigacts_poolpage_free(struct pool *pp, void *v)
193 {
194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196
197 /*
198 * sigactsinit:
199 *
200 * Create an initial sigctx structure, using the same signal state as
201 * p. If 'share' is set, share the sigctx_proc part, otherwise just
202 * copy it from parent.
203 */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 struct sigacts *ps;
208
209 if (pp != NULL) {
210 KASSERT(mutex_owned(&pp->p_smutex));
211 }
212
213 if (share) {
214 ps = pp->p_sigacts;
215 mutex_enter(&ps->sa_mutex);
216 ps->sa_refcnt++;
217 mutex_exit(&ps->sa_mutex);
218 } else {
219 if (pp)
220 mutex_exit(&pp->p_smutex);
221 ps = pool_get(&sigacts_pool, PR_WAITOK);
222 mutex_init(&ps->sa_mutex, MUTEX_SPIN, IPL_NONE);
223 if (pp) {
224 mutex_enter(&pp->p_smutex);
225 memcpy(&ps->sa_sigdesc, pp->p_sigacts->sa_sigdesc,
226 sizeof(ps->sa_sigdesc));
227 } else
228 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
229 ps->sa_refcnt = 1;
230 }
231
232 return ps;
233 }
234
235 /*
236 * sigactsunshare:
237 *
238 * Make this process not share its sigctx, maintaining all
239 * signal state.
240 */
241 void
242 sigactsunshare(struct proc *p)
243 {
244 struct sigacts *ps, *oldps;
245 int refcnt;
246
247 KASSERT(mutex_owned(&p->p_smutex));
248
249 oldps = p->p_sigacts;
250
251 mutex_enter(&oldps->sa_mutex);
252 refcnt = oldps->sa_refcnt;
253 mutex_exit(&oldps->sa_mutex);
254 if (refcnt == 1)
255 return;
256
257 mutex_exit(&p->p_smutex);
258 ps = sigactsinit(NULL, 0);
259 mutex_enter(&p->p_smutex);
260 p->p_sigacts = ps;
261
262 sigactsfree(oldps);
263 }
264
265 /*
266 * sigactsfree;
267 *
268 * Release a sigctx structure.
269 */
270 void
271 sigactsfree(struct sigacts *ps)
272 {
273 int refcnt;
274
275 mutex_enter(&ps->sa_mutex);
276 refcnt = --ps->sa_refcnt;
277 mutex_exit(&ps->sa_mutex);
278
279 if (refcnt == 0) {
280 mutex_destroy(&ps->sa_mutex);
281 pool_put(&sigacts_pool, ps);
282 }
283 }
284
285 /*
286 * siginit:
287 *
288 * Initialize signal state for process 0; set to ignore signals that
289 * are ignored by default and disable the signal stack. Locking not
290 * required as the system is still cold.
291 */
292 void
293 siginit(struct proc *p)
294 {
295 struct lwp *l;
296 struct sigacts *ps;
297 int signo, prop;
298
299 ps = p->p_sigacts;
300 sigemptyset(&contsigmask);
301 sigemptyset(&stopsigmask);
302 sigemptyset(&sigcantmask);
303 for (signo = 1; signo < NSIG; signo++) {
304 prop = sigprop[signo];
305 if (prop & SA_CONT)
306 sigaddset(&contsigmask, signo);
307 if (prop & SA_STOP)
308 sigaddset(&stopsigmask, signo);
309 if (prop & SA_CANTMASK)
310 sigaddset(&sigcantmask, signo);
311 if (prop & SA_IGNORE && signo != SIGCONT)
312 sigaddset(&p->p_sigctx.ps_sigignore, signo);
313 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
314 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
315 }
316 sigemptyset(&p->p_sigctx.ps_sigcatch);
317 p->p_sflag &= ~PS_NOCLDSTOP;
318
319 ksiginfo_queue_init(&p->p_sigpend.sp_info);
320 sigemptyset(&p->p_sigpend.sp_set);
321
322 /*
323 * Reset per LWP state.
324 */
325 l = LIST_FIRST(&p->p_lwps);
326 l->l_sigwaited = NULL;
327 l->l_sigstk.ss_flags = SS_DISABLE;
328 l->l_sigstk.ss_size = 0;
329 l->l_sigstk.ss_sp = 0;
330 ksiginfo_queue_init(&l->l_sigpend.sp_info);
331 sigemptyset(&l->l_sigpend.sp_set);
332
333 /* One reference. */
334 ps->sa_refcnt = 1;
335 }
336
337 /*
338 * execsigs:
339 *
340 * Reset signals for an exec of the specified process.
341 */
342 void
343 execsigs(struct proc *p)
344 {
345 struct sigacts *ps;
346 struct lwp *l;
347 int signo, prop;
348 sigset_t tset;
349 ksiginfoq_t kq;
350
351 KASSERT(p->p_nlwps == 1);
352
353 mutex_enter(&p->p_smutex);
354
355 sigactsunshare(p);
356
357 ps = p->p_sigacts;
358
359 /*
360 * Reset caught signals. Held signals remain held through
361 * l->l_sigmask (unless they were caught, and are now ignored
362 * by default).
363 */
364 sigemptyset(&tset);
365 for (signo = 1; signo < NSIG; signo++) {
366 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
367 prop = sigprop[signo];
368 if (prop & SA_IGNORE) {
369 if ((prop & SA_CONT) == 0)
370 sigaddset(&p->p_sigctx.ps_sigignore,
371 signo);
372 sigaddset(&tset, signo);
373 }
374 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
375 }
376 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
377 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
378 }
379 ksiginfo_queue_init(&kq);
380 sigclearall(p, &tset, &kq);
381 sigemptyset(&p->p_sigctx.ps_sigcatch);
382
383 /*
384 * Reset no zombies if child dies flag as Solaris does.
385 */
386 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
387 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
388 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
389
390 /*
391 * Reset per-LWP state.
392 */
393 l = LIST_FIRST(&p->p_lwps);
394 l->l_sigwaited = NULL;
395 l->l_sigstk.ss_flags = SS_DISABLE;
396 l->l_sigstk.ss_size = 0;
397 l->l_sigstk.ss_sp = 0;
398 ksiginfo_queue_init(&l->l_sigpend.sp_info);
399 sigemptyset(&l->l_sigpend.sp_set);
400
401 mutex_exit(&p->p_smutex);
402 ksiginfo_queue_drain(&kq);
403 }
404
405 /*
406 * ksiginfo_exechook:
407 *
408 * Free all pending ksiginfo entries from a process on exec.
409 * Additionally, drain any unused ksiginfo structures in the
410 * system back to the pool.
411 *
412 * XXX This should not be a hook, every process has signals.
413 */
414 static void
415 ksiginfo_exechook(struct proc *p, void *v)
416 {
417 ksiginfoq_t kq;
418
419 ksiginfo_queue_init(&kq);
420
421 mutex_enter(&p->p_smutex);
422 sigclearall(p, NULL, &kq);
423 mutex_exit(&p->p_smutex);
424
425 ksiginfo_queue_drain(&kq);
426 }
427
428 /*
429 * ksiginfo_alloc:
430 *
431 * Allocate a new ksiginfo structure from the pool, and optionally copy
432 * an existing one. If the existing ksiginfo_t is from the pool, and
433 * has not been queued somewhere, then just return it. Additionally,
434 * if the existing ksiginfo_t does not contain any information beyond
435 * the signal number, then just return it.
436 */
437 ksiginfo_t *
438 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
439 {
440 ksiginfo_t *kp;
441 int s;
442
443 if (ok != NULL) {
444 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
445 KSI_FROMPOOL)
446 return ok;
447 if (KSI_EMPTY_P(ok))
448 return ok;
449 }
450
451 s = splsoftclock();
452 kp = pool_get(&ksiginfo_pool, flags);
453 splx(s);
454 if (kp == NULL) {
455 #ifdef DIAGNOSTIC
456 printf("Out of memory allocating ksiginfo for pid %d\n",
457 p->p_pid);
458 #endif
459 return NULL;
460 }
461
462 if (ok != NULL) {
463 memcpy(kp, ok, sizeof(*kp));
464 kp->ksi_flags &= ~KSI_QUEUED;
465 } else
466 KSI_INIT_EMPTY(kp);
467
468 kp->ksi_flags |= KSI_FROMPOOL;
469
470 return kp;
471 }
472
473 /*
474 * ksiginfo_free:
475 *
476 * If the given ksiginfo_t is from the pool and has not been queued,
477 * then free it.
478 */
479 void
480 ksiginfo_free(ksiginfo_t *kp)
481 {
482 int s;
483
484 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
485 return;
486 s = splsoftclock();
487 pool_put(&ksiginfo_pool, kp);
488 splx(s);
489 }
490
491 /*
492 * ksiginfo_queue_drain:
493 *
494 * Drain a non-empty ksiginfo_t queue.
495 */
496 void
497 ksiginfo_queue_drain0(ksiginfoq_t *kq)
498 {
499 ksiginfo_t *ksi;
500 int s;
501
502 KASSERT(!CIRCLEQ_EMPTY(kq));
503
504 KERNEL_LOCK(1, curlwp); /* XXXSMP */
505 while (!CIRCLEQ_EMPTY(kq)) {
506 ksi = CIRCLEQ_FIRST(kq);
507 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
508 s = splsoftclock();
509 pool_put(&ksiginfo_pool, ksi);
510 splx(s);
511 }
512 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
513 }
514
515 /*
516 * sigget:
517 *
518 * Fetch the first pending signal from a set. Optionally, also fetch
519 * or manufacture a ksiginfo element. Returns the number of the first
520 * pending signal, or zero.
521 */
522 int
523 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, sigset_t *mask)
524 {
525 ksiginfo_t *ksi;
526 sigset_t tset;
527
528 /* If there's no pending set, the signal is from the debugger. */
529 if (sp == NULL) {
530 if (out != NULL) {
531 KSI_INIT(out);
532 out->ksi_info._signo = signo;
533 out->ksi_info._code = SI_USER;
534 }
535 return signo;
536 }
537
538 /* Construct mask from signo, and 'mask'. */
539 if (signo == 0) {
540 if (mask != NULL) {
541 tset = *mask;
542 __sigandset(&sp->sp_set, &tset);
543 } else
544 tset = sp->sp_set;
545
546 /* If there are no signals pending, that's it. */
547 if ((signo = firstsig(&tset)) == 0)
548 return 0;
549 } else {
550 KASSERT(sigismember(&sp->sp_set, signo));
551 }
552
553 sigdelset(&sp->sp_set, signo);
554
555 /* Find siginfo and copy it out. */
556 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
557 if (ksi->ksi_signo == signo) {
558 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
559 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
560 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
561 ksi->ksi_flags &= ~KSI_QUEUED;
562 if (out != NULL) {
563 memcpy(out, ksi, sizeof(*out));
564 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
565 }
566 ksiginfo_free(ksi);
567 return signo;
568 }
569 }
570
571 /* If there's no siginfo, then manufacture it. */
572 if (out != NULL) {
573 KSI_INIT(out);
574 out->ksi_info._signo = signo;
575 out->ksi_info._code = SI_USER;
576 }
577
578 return signo;
579 }
580
581 /*
582 * sigput:
583 *
584 * Append a new ksiginfo element to the list of pending ksiginfo's, if
585 * we need to (e.g. SA_SIGINFO was requested).
586 */
587 void
588 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
589 {
590 ksiginfo_t *kp;
591 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
592
593 KASSERT(mutex_owned(&p->p_smutex));
594 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
595
596 sigaddset(&sp->sp_set, ksi->ksi_signo);
597
598 /*
599 * If siginfo is not required, or there is none, then just mark the
600 * signal as pending.
601 */
602 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
603 return;
604
605 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
606
607 #ifdef notyet /* XXX: QUEUING */
608 if (ksi->ksi_signo < SIGRTMIN)
609 #endif
610 {
611 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
612 if (kp->ksi_signo == ksi->ksi_signo) {
613 KSI_COPY(ksi, kp);
614 kp->ksi_flags |= KSI_QUEUED;
615 return;
616 }
617 }
618 }
619
620 ksi->ksi_flags |= KSI_QUEUED;
621 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
622 }
623
624 /*
625 * sigclear:
626 *
627 * Clear all pending signals in the specified set.
628 */
629 void
630 sigclear(sigpend_t *sp, sigset_t *mask, ksiginfoq_t *kq)
631 {
632 ksiginfo_t *ksi, *next;
633
634 if (mask == NULL)
635 sigemptyset(&sp->sp_set);
636 else
637 sigminusset(mask, &sp->sp_set);
638
639 ksi = CIRCLEQ_FIRST(&sp->sp_info);
640 for (; ksi != (void *)&sp->sp_info; ksi = next) {
641 next = CIRCLEQ_NEXT(ksi, ksi_list);
642 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
643 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
644 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
645 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
646 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
647 }
648 }
649 }
650
651 /*
652 * sigclearall:
653 *
654 * Clear all pending signals in the specified set from a process and
655 * its LWPs.
656 */
657 void
658 sigclearall(struct proc *p, sigset_t *mask, ksiginfoq_t *kq)
659 {
660 struct lwp *l;
661
662 KASSERT(mutex_owned(&p->p_smutex));
663
664 sigclear(&p->p_sigpend, mask, kq);
665
666 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
667 sigclear(&l->l_sigpend, mask, kq);
668 }
669 }
670
671 /*
672 * sigispending:
673 *
674 * Return true if there are pending signals for the current LWP. May
675 * be called unlocked provided that L_PENDSIG is set, and that the
676 * signal has been posted to the appopriate queue before L_PENDSIG is
677 * set.
678 */
679 int
680 sigispending(struct lwp *l, int signo)
681 {
682 struct proc *p = l->l_proc;
683 sigset_t tset;
684
685 mb_read();
686
687 tset = l->l_sigpend.sp_set;
688 sigplusset(&p->p_sigpend.sp_set, &tset);
689 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
690 sigminusset(&l->l_sigmask, &tset);
691
692 if (signo == 0) {
693 if (firstsig(&tset) != 0)
694 return EINTR;
695 } else if (sigismember(&tset, signo))
696 return EINTR;
697
698 return 0;
699 }
700
701 /*
702 * siginfo_alloc:
703 *
704 * Allocate a new siginfo_t structure from the pool.
705 */
706 siginfo_t *
707 siginfo_alloc(int flags)
708 {
709
710 return pool_get(&siginfo_pool, flags);
711 }
712
713 /*
714 * siginfo_free:
715 *
716 * Return a siginfo_t structure to the pool.
717 */
718 void
719 siginfo_free(void *arg)
720 {
721
722 pool_put(&siginfo_pool, arg);
723 }
724
725 void
726 getucontext(struct lwp *l, ucontext_t *ucp)
727 {
728 struct proc *p = l->l_proc;
729
730 KASSERT(mutex_owned(&p->p_smutex));
731
732 ucp->uc_flags = 0;
733 ucp->uc_link = l->l_ctxlink;
734
735 ucp->uc_sigmask = l->l_sigmask;
736 ucp->uc_flags |= _UC_SIGMASK;
737
738 /*
739 * The (unsupplied) definition of the `current execution stack'
740 * in the System V Interface Definition appears to allow returning
741 * the main context stack.
742 */
743 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
744 ucp->uc_stack.ss_sp = (void *)USRSTACK;
745 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
746 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
747 } else {
748 /* Simply copy alternate signal execution stack. */
749 ucp->uc_stack = l->l_sigstk;
750 }
751 ucp->uc_flags |= _UC_STACK;
752 mutex_exit(&p->p_smutex);
753 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
754 mutex_enter(&p->p_smutex);
755 }
756
757 int
758 setucontext(struct lwp *l, const ucontext_t *ucp)
759 {
760 struct proc *p = l->l_proc;
761 int error;
762
763 KASSERT(mutex_owned(&p->p_smutex));
764
765 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
766 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
767 if (error != 0)
768 return error;
769 }
770
771 mutex_exit(&p->p_smutex);
772 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
773 mutex_enter(&p->p_smutex);
774 if (error != 0)
775 return (error);
776
777 l->l_ctxlink = ucp->uc_link;
778
779 /*
780 * If there was stack information, update whether or not we are
781 * still running on an alternate signal stack.
782 */
783 if ((ucp->uc_flags & _UC_STACK) != 0) {
784 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
785 l->l_sigstk.ss_flags |= SS_ONSTACK;
786 else
787 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
788 }
789
790 return 0;
791 }
792
793 /*
794 * Common code for kill process group/broadcast kill. cp is calling
795 * process.
796 */
797 int
798 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
799 {
800 struct proc *p, *cp;
801 kauth_cred_t pc;
802 struct pgrp *pgrp;
803 int nfound;
804 int signo = ksi->ksi_signo;
805
806 cp = l->l_proc;
807 pc = l->l_cred;
808 nfound = 0;
809
810 mutex_enter(&proclist_lock);
811 if (all) {
812 /*
813 * broadcast
814 */
815 PROCLIST_FOREACH(p, &allproc) {
816 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
817 continue;
818 mutex_enter(&p->p_mutex);
819 if (kauth_authorize_process(pc,
820 KAUTH_PROCESS_CANSIGNAL, p,
821 (void *)(uintptr_t)signo, NULL, NULL) == 0) {
822 nfound++;
823 if (signo) {
824 mutex_enter(&proclist_mutex);
825 mutex_enter(&p->p_smutex);
826 kpsignal2(p, ksi);
827 mutex_exit(&p->p_smutex);
828 mutex_exit(&proclist_mutex);
829 }
830 }
831 mutex_exit(&p->p_mutex);
832 }
833 } else {
834 if (pgid == 0)
835 /*
836 * zero pgid means send to my process group.
837 */
838 pgrp = cp->p_pgrp;
839 else {
840 pgrp = pg_find(pgid, PFIND_LOCKED);
841 if (pgrp == NULL)
842 goto out;
843 }
844 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
845 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
846 continue;
847 mutex_enter(&p->p_mutex);
848 if (kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
849 p, (void *)(uintptr_t)signo, NULL, NULL) == 0) {
850 nfound++;
851 if (signo) {
852 mutex_enter(&proclist_mutex);
853 mutex_enter(&p->p_smutex);
854 if (P_ZOMBIE(p) == 0)
855 kpsignal2(p, ksi);
856 mutex_exit(&p->p_smutex);
857 mutex_exit(&proclist_mutex);
858 }
859 }
860 mutex_exit(&p->p_mutex);
861 }
862 }
863 out:
864 mutex_exit(&proclist_lock);
865 return (nfound ? 0 : ESRCH);
866 }
867
868 /*
869 * Send a signal to a process group. If checktty is 1, limit to members
870 * which have a controlling terminal.
871 */
872 void
873 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
874 {
875 ksiginfo_t ksi;
876
877 KASSERT(mutex_owned(&proclist_mutex));
878
879 KSI_INIT_EMPTY(&ksi);
880 ksi.ksi_signo = sig;
881 kpgsignal(pgrp, &ksi, NULL, checkctty);
882 }
883
884 void
885 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
886 {
887 struct proc *p;
888
889 KASSERT(mutex_owned(&proclist_mutex));
890
891 if (pgrp)
892 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
893 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
894 kpsignal(p, ksi, data);
895 }
896
897 /*
898 * Send a signal caused by a trap to the current LWP. If it will be caught
899 * immediately, deliver it with correct code. Otherwise, post it normally.
900 */
901 void
902 trapsignal(struct lwp *l, ksiginfo_t *ksi)
903 {
904 struct proc *p;
905 struct sigacts *ps;
906 int signo = ksi->ksi_signo;
907
908 KASSERT(KSI_TRAP_P(ksi));
909
910 ksi->ksi_lid = l->l_lid;
911 p = l->l_proc;
912
913 mutex_enter(&proclist_mutex);
914 mutex_enter(&p->p_smutex);
915 ps = p->p_sigacts;
916 if ((p->p_slflag & PSL_TRACED) == 0 &&
917 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
918 !sigismember(&l->l_sigmask, signo)) {
919 mutex_exit(&proclist_mutex);
920 p->p_stats->p_ru.ru_nsignals++;
921 kpsendsig(l, ksi, &l->l_sigmask);
922 mutex_exit(&p->p_smutex);
923 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
924 &l->l_sigmask, ksi);
925 } else {
926 /* XXX for core dump/debugger */
927 p->p_sigctx.ps_lwp = l->l_lid;
928 p->p_sigctx.ps_signo = ksi->ksi_signo;
929 p->p_sigctx.ps_code = ksi->ksi_trap;
930 kpsignal2(p, ksi);
931 mutex_exit(&proclist_mutex);
932 mutex_exit(&p->p_smutex);
933 }
934 }
935
936 /*
937 * Fill in signal information and signal the parent for a child status change.
938 */
939 void
940 child_psignal(struct proc *p, int mask)
941 {
942 ksiginfo_t ksi;
943 struct proc *q;
944 int xstat;
945
946 KASSERT(mutex_owned(&proclist_mutex));
947 KASSERT(mutex_owned(&p->p_smutex));
948
949 xstat = p->p_xstat;
950
951 KSI_INIT(&ksi);
952 ksi.ksi_signo = SIGCHLD;
953 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
954 ksi.ksi_pid = p->p_pid;
955 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
956 ksi.ksi_status = xstat;
957 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
958 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
959
960 q = p->p_pptr;
961
962 mutex_exit(&p->p_smutex);
963 mutex_enter(&q->p_smutex);
964
965 if ((q->p_sflag & mask) == 0)
966 kpsignal2(q, &ksi);
967
968 mutex_exit(&q->p_smutex);
969 mutex_enter(&p->p_smutex);
970 }
971
972 void
973 psignal(struct proc *p, int signo)
974 {
975 ksiginfo_t ksi;
976
977 KASSERT(mutex_owned(&proclist_mutex));
978
979 KSI_INIT_EMPTY(&ksi);
980 ksi.ksi_signo = signo;
981 mutex_enter(&p->p_smutex);
982 kpsignal2(p, &ksi);
983 mutex_exit(&p->p_smutex);
984 }
985
986 void
987 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
988 {
989
990 KASSERT(mutex_owned(&proclist_mutex));
991
992 /* XXXSMP Why is this here? */
993 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
994 size_t fd;
995 struct filedesc *fdp = p->p_fd;
996
997 ksi->ksi_fd = -1;
998 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
999 struct file *fp = fdp->fd_ofiles[fd];
1000 /* XXX: lock? */
1001 if (fp && fp->f_data == data) {
1002 ksi->ksi_fd = fd;
1003 break;
1004 }
1005 }
1006 }
1007 mutex_enter(&p->p_smutex);
1008 kpsignal2(p, ksi);
1009 mutex_exit(&p->p_smutex);
1010 }
1011
1012 /*
1013 * sigismasked:
1014 *
1015 * Returns true if signal is ignored or masked for the specified LWP.
1016 */
1017 int
1018 sigismasked(struct lwp *l, int sig)
1019 {
1020 struct proc *p = l->l_proc;
1021
1022 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1023 sigismember(&l->l_sigmask, sig));
1024 }
1025
1026 /*
1027 * sigpost:
1028 *
1029 * Post a pending signal to an LWP. Returns non-zero if the LWP was
1030 * able to take the signal.
1031 */
1032 int
1033 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1034 {
1035 int rv, masked;
1036
1037 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1038
1039 /*
1040 * If the LWP is on the way out, sigclear() will be busy draining all
1041 * pending signals. Don't give it more.
1042 */
1043 if (l->l_refcnt == 0)
1044 return 0;
1045
1046 lwp_lock(l);
1047
1048 /*
1049 * Have the LWP check for signals. This ensures that even if no LWP
1050 * is found to take the signal immediately, it should be taken soon.
1051 */
1052 l->l_flag |= LW_PENDSIG;
1053
1054 /*
1055 * SIGCONT can be masked, but must always restart stopped LWPs.
1056 */
1057 masked = sigismember(&l->l_sigmask, sig);
1058 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1059 lwp_unlock(l);
1060 return 0;
1061 }
1062
1063 /*
1064 * If killing the process, make it run fast.
1065 */
1066 if (__predict_false((prop & SA_KILL) != 0) &&
1067 action == SIG_DFL && l->l_priority > PUSER)
1068 lwp_changepri(l, PUSER);
1069
1070 /*
1071 * If the LWP is running or on a run queue, then we win. If it's
1072 * sleeping interruptably, wake it and make it take the signal. If
1073 * the sleep isn't interruptable, then the chances are it will get
1074 * to see the signal soon anyhow. If suspended, it can't take the
1075 * signal right now. If it's LWP private or for all LWPs, save it
1076 * for later; otherwise punt.
1077 */
1078 rv = 0;
1079
1080 switch (l->l_stat) {
1081 case LSRUN:
1082 case LSONPROC:
1083 lwp_need_userret(l);
1084 rv = 1;
1085 break;
1086
1087 case LSSLEEP:
1088 if ((l->l_flag & LW_SINTR) != 0) {
1089 /* setrunnable() will release the lock. */
1090 setrunnable(l);
1091 return 1;
1092 }
1093 break;
1094
1095 case LSSUSPENDED:
1096 if ((prop & SA_KILL) != 0) {
1097 /* lwp_continue() will release the lock. */
1098 lwp_continue(l);
1099 return 1;
1100 }
1101 break;
1102
1103 case LSSTOP:
1104 if ((prop & SA_STOP) != 0)
1105 break;
1106
1107 /*
1108 * If the LWP is stopped and we are sending a continue
1109 * signal, then start it again.
1110 */
1111 if ((prop & SA_CONT) != 0) {
1112 if (l->l_wchan != NULL) {
1113 l->l_stat = LSSLEEP;
1114 l->l_proc->p_nrlwps++;
1115 rv = 1;
1116 break;
1117 }
1118 /* setrunnable() will release the lock. */
1119 setrunnable(l);
1120 return 1;
1121 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1122 /* setrunnable() will release the lock. */
1123 setrunnable(l);
1124 return 1;
1125 }
1126 break;
1127
1128 default:
1129 break;
1130 }
1131
1132 lwp_unlock(l);
1133 return rv;
1134 }
1135
1136 /*
1137 * Notify an LWP that it has a pending signal.
1138 */
1139 void
1140 signotify(struct lwp *l)
1141 {
1142 KASSERT(lwp_locked(l, NULL));
1143
1144 l->l_flag |= LW_PENDSIG;
1145 lwp_need_userret(l);
1146 }
1147
1148 /*
1149 * Find an LWP within process p that is waiting on signal ksi, and hand
1150 * it on.
1151 */
1152 int
1153 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1154 {
1155 struct lwp *l;
1156 int signo;
1157
1158 KASSERT(mutex_owned(&p->p_smutex));
1159
1160 signo = ksi->ksi_signo;
1161
1162 if (ksi->ksi_lid != 0) {
1163 /*
1164 * Signal came via _lwp_kill(). Find the LWP and see if
1165 * it's interested.
1166 */
1167 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1168 return 0;
1169 if (l->l_sigwaited == NULL ||
1170 !sigismember(&l->l_sigwaitset, signo))
1171 return 0;
1172 } else {
1173 /*
1174 * Look for any LWP that may be interested.
1175 */
1176 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1177 KASSERT(l->l_sigwaited != NULL);
1178 if (sigismember(&l->l_sigwaitset, signo))
1179 break;
1180 }
1181 }
1182
1183 if (l != NULL) {
1184 l->l_sigwaited->ksi_info = ksi->ksi_info;
1185 l->l_sigwaited = NULL;
1186 LIST_REMOVE(l, l_sigwaiter);
1187 cv_signal(&l->l_sigcv);
1188 return 1;
1189 }
1190
1191 return 0;
1192 }
1193
1194 /*
1195 * Send the signal to the process. If the signal has an action, the action
1196 * is usually performed by the target process rather than the caller; we add
1197 * the signal to the set of pending signals for the process.
1198 *
1199 * Exceptions:
1200 * o When a stop signal is sent to a sleeping process that takes the
1201 * default action, the process is stopped without awakening it.
1202 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1203 * regardless of the signal action (eg, blocked or ignored).
1204 *
1205 * Other ignored signals are discarded immediately.
1206 */
1207 void
1208 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1209 {
1210 int prop, lid, toall, signo = ksi->ksi_signo;
1211 struct lwp *l;
1212 ksiginfo_t *kp;
1213 ksiginfoq_t kq;
1214 sig_t action;
1215
1216 KASSERT(mutex_owned(&proclist_mutex));
1217 KASSERT(mutex_owned(&p->p_smutex));
1218 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1219 KASSERT(signo > 0 && signo < NSIG);
1220
1221 /*
1222 * If the process is being created by fork, is a zombie or is
1223 * exiting, then just drop the signal here and bail out.
1224 */
1225 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1226 return;
1227
1228 /*
1229 * Notify any interested parties of the signal.
1230 */
1231 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1232
1233 /*
1234 * Some signals including SIGKILL must act on the entire process.
1235 */
1236 kp = NULL;
1237 prop = sigprop[signo];
1238 toall = ((prop & SA_TOALL) != 0);
1239
1240 if (toall)
1241 lid = 0;
1242 else
1243 lid = ksi->ksi_lid;
1244
1245 /*
1246 * If proc is traced, always give parent a chance.
1247 */
1248 if (p->p_slflag & PSL_TRACED) {
1249 action = SIG_DFL;
1250
1251 if (lid == 0) {
1252 /*
1253 * If the process is being traced and the signal
1254 * is being caught, make sure to save any ksiginfo.
1255 */
1256 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1257 return;
1258 sigput(&p->p_sigpend, p, kp);
1259 }
1260 } else {
1261 /*
1262 * If the signal was the result of a trap and is not being
1263 * caught, then reset it to default action so that the
1264 * process dumps core immediately.
1265 */
1266 if (KSI_TRAP_P(ksi)) {
1267 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1268 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1269 SIGACTION(p, signo).sa_handler = SIG_DFL;
1270 }
1271 }
1272
1273 /*
1274 * If the signal is being ignored, then drop it. Note: we
1275 * don't set SIGCONT in ps_sigignore, and if it is set to
1276 * SIG_IGN, action will be SIG_DFL here.
1277 */
1278 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1279 return;
1280
1281 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1282 action = SIG_CATCH;
1283 else {
1284 action = SIG_DFL;
1285
1286 /*
1287 * If sending a tty stop signal to a member of an
1288 * orphaned process group, discard the signal here if
1289 * the action is default; don't stop the process below
1290 * if sleeping, and don't clear any pending SIGCONT.
1291 */
1292 if (prop & SA_TTYSTOP &&
1293 (p->p_sflag & PS_ORPHANPG) != 0)
1294 return;
1295
1296 if (prop & SA_KILL && p->p_nice > NZERO)
1297 p->p_nice = NZERO;
1298 }
1299 }
1300
1301 /*
1302 * If stopping or continuing a process, discard any pending
1303 * signals that would do the inverse.
1304 */
1305 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1306 ksiginfo_queue_init(&kq);
1307 if ((prop & SA_CONT) != 0)
1308 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1309 if ((prop & SA_STOP) != 0)
1310 sigclear(&p->p_sigpend, &contsigmask, &kq);
1311 ksiginfo_queue_drain(&kq); /* XXXSMP */
1312 }
1313
1314 /*
1315 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1316 * please!), check if any LWPs are waiting on it. If yes, pass on
1317 * the signal info. The signal won't be processed further here.
1318 */
1319 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1320 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1321 sigunwait(p, ksi))
1322 return;
1323
1324 /*
1325 * XXXSMP Should be allocated by the caller, we're holding locks
1326 * here.
1327 */
1328 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1329 return;
1330
1331 /*
1332 * LWP private signals are easy - just find the LWP and post
1333 * the signal to it.
1334 */
1335 if (lid != 0) {
1336 l = lwp_find(p, lid);
1337 if (l != NULL) {
1338 sigput(&l->l_sigpend, p, kp);
1339 mb_write();
1340 (void)sigpost(l, action, prop, kp->ksi_signo);
1341 }
1342 goto out;
1343 }
1344
1345 /*
1346 * Some signals go to all LWPs, even if posted with _lwp_kill().
1347 */
1348 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1349 if ((p->p_slflag & PSL_TRACED) != 0)
1350 goto deliver;
1351
1352 /*
1353 * If SIGCONT is default (or ignored) and process is
1354 * asleep, we are finished; the process should not
1355 * be awakened.
1356 */
1357 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1358 goto out;
1359
1360 if ((prop & SA_STOP) != 0 && action == SIG_DFL) {
1361 /*
1362 * If a child holding parent blocked, stopping could
1363 * cause deadlock: discard the signal.
1364 */
1365 if ((p->p_sflag & PS_PPWAIT) == 0) {
1366 p->p_xstat = signo;
1367 proc_stop(p, 1, signo);
1368 }
1369 goto out;
1370 } else {
1371 /*
1372 * Stop signals with the default action are handled
1373 * specially in issignal(), and so are not enqueued.
1374 */
1375 sigput(&p->p_sigpend, p, kp);
1376 }
1377 } else {
1378 /*
1379 * Process is stopped or stopping. If traced, then no
1380 * further action is necessary.
1381 */
1382 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1383 goto out;
1384
1385 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1386 /*
1387 * Re-adjust p_nstopchild if the process wasn't
1388 * collected by its parent.
1389 */
1390 p->p_stat = SACTIVE;
1391 p->p_sflag &= ~PS_STOPPING;
1392 if (!p->p_waited)
1393 p->p_pptr->p_nstopchild--;
1394
1395 /*
1396 * If SIGCONT is default (or ignored), we continue
1397 * the process but don't leave the signal in
1398 * ps_siglist, as it has no further action. If
1399 * SIGCONT is held, we continue the process and
1400 * leave the signal in ps_siglist. If the process
1401 * catches SIGCONT, let it handle the signal itself.
1402 * If it isn't waiting on an event, then it goes
1403 * back to run state. Otherwise, process goes back
1404 * to sleep state.
1405 */
1406 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1407 sigput(&p->p_sigpend, p, kp);
1408 } else if ((prop & SA_STOP) != 0) {
1409 /*
1410 * Already stopped, don't need to stop again.
1411 * (If we did the shell could get confused.)
1412 */
1413 goto out;
1414 } else
1415 sigput(&p->p_sigpend, p, kp);
1416 }
1417
1418 deliver:
1419 /*
1420 * Before we set L_PENDSIG on any LWP, ensure that the signal is
1421 * visible on the per process list (for sigispending()). This
1422 * is unlikely to be needed in practice, but...
1423 */
1424 mb_write();
1425
1426 /*
1427 * Try to find an LWP that can take the signal.
1428 */
1429 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1430 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1431 break;
1432
1433 out:
1434 /*
1435 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1436 * with locks held. The caller should take care of this.
1437 */
1438 ksiginfo_free(kp);
1439 }
1440
1441 void
1442 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1443 {
1444 struct proc *p = l->l_proc;
1445
1446 KASSERT(mutex_owned(&p->p_smutex));
1447
1448 (*p->p_emul->e_sendsig)(ksi, mask);
1449 }
1450
1451 /*
1452 * Stop the current process and switch away when being stopped or traced.
1453 */
1454 void
1455 sigswitch(bool ppsig, int ppmask, int signo)
1456 {
1457 struct lwp *l = curlwp, *l2;
1458 struct proc *p = l->l_proc;
1459 #ifdef MULTIPROCESSOR
1460 int biglocks;
1461 #endif
1462
1463 KASSERT(mutex_owned(&p->p_smutex));
1464 KASSERT(l->l_stat == LSONPROC);
1465 KASSERT(p->p_nrlwps > 0);
1466
1467 /*
1468 * On entry we know that the process needs to stop. If it's
1469 * the result of a 'sideways' stop signal that has been sourced
1470 * through issignal(), then stop other LWPs in the process too.
1471 */
1472 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1473 /*
1474 * Set the stopping indicator and bring all sleeping LWPs
1475 * to a halt so they are included in p->p_nrlwps
1476 */
1477 p->p_sflag |= (PS_STOPPING | PS_NOTIFYSTOP);
1478 mb_write();
1479
1480 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1481 lwp_lock(l2);
1482 if (l2->l_stat == LSSLEEP &&
1483 (l2->l_flag & LW_SINTR) != 0) {
1484 l2->l_stat = LSSTOP;
1485 p->p_nrlwps--;
1486 }
1487 lwp_unlock(l2);
1488 }
1489
1490 /*
1491 * Have the remaining LWPs come to a halt, and trigger
1492 * proc_stop_callout() to ensure that they do.
1493 */
1494 KASSERT(signo != 0);
1495 KASSERT(p->p_nrlwps > 0);
1496
1497 if (p->p_nrlwps > 1) {
1498 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1499 sigpost(l2, SIG_DFL, SA_STOP, signo);
1500 callout_schedule(&proc_stop_ch, 1);
1501 }
1502 }
1503
1504 /*
1505 * If we are the last live LWP, and the stop was a result of
1506 * a new signal, then signal the parent.
1507 */
1508 if ((p->p_sflag & PS_STOPPING) != 0) {
1509 if (!mutex_tryenter(&proclist_mutex)) {
1510 mutex_exit(&p->p_smutex);
1511 mutex_enter(&proclist_mutex);
1512 mutex_enter(&p->p_smutex);
1513 }
1514
1515 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1516 p->p_sflag &= ~PS_STOPPING;
1517 p->p_stat = SSTOP;
1518 p->p_waited = 0;
1519 p->p_pptr->p_nstopchild++;
1520 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1521 /*
1522 * Note that child_psignal() will drop
1523 * p->p_smutex briefly.
1524 */
1525 if (ppsig)
1526 child_psignal(p, ppmask);
1527 cv_broadcast(&p->p_pptr->p_waitcv);
1528 }
1529 }
1530
1531 mutex_exit(&proclist_mutex);
1532 }
1533
1534 /*
1535 * Unlock and switch away.
1536 */
1537 KERNEL_UNLOCK_ALL(l, &biglocks);
1538 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1539 p->p_nrlwps--;
1540 lwp_lock(l);
1541 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1542 l->l_stat = LSSTOP;
1543 lwp_unlock(l);
1544 }
1545
1546 mutex_exit(&p->p_smutex);
1547 lwp_lock(l);
1548 mi_switch(l);
1549 KERNEL_LOCK(biglocks, l);
1550 mutex_enter(&p->p_smutex);
1551 }
1552
1553 /*
1554 * Check for a signal from the debugger.
1555 */
1556 int
1557 sigchecktrace(sigpend_t **spp)
1558 {
1559 struct lwp *l = curlwp;
1560 struct proc *p = l->l_proc;
1561 int signo;
1562
1563 KASSERT(mutex_owned(&p->p_smutex));
1564
1565 /*
1566 * If we are no longer being traced, or the parent didn't
1567 * give us a signal, look for more signals.
1568 */
1569 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1570 return 0;
1571
1572 /* If there's a pending SIGKILL, process it immediately. */
1573 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1574 return 0;
1575
1576 /*
1577 * If the new signal is being masked, look for other signals.
1578 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1579 */
1580 signo = p->p_xstat;
1581 p->p_xstat = 0;
1582 if ((sigprop[signo] & SA_TOLWP) != 0)
1583 *spp = &l->l_sigpend;
1584 else
1585 *spp = &p->p_sigpend;
1586 if (sigismember(&l->l_sigmask, signo))
1587 signo = 0;
1588
1589 return signo;
1590 }
1591
1592 /*
1593 * If the current process has received a signal (should be caught or cause
1594 * termination, should interrupt current syscall), return the signal number.
1595 *
1596 * Stop signals with default action are processed immediately, then cleared;
1597 * they aren't returned. This is checked after each entry to the system for
1598 * a syscall or trap.
1599 *
1600 * We will also return -1 if the process is exiting and the current LWP must
1601 * follow suit.
1602 *
1603 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1604 * can switch away, though.
1605 */
1606 int
1607 issignal(struct lwp *l)
1608 {
1609 struct proc *p = l->l_proc;
1610 int signo = 0, prop;
1611 sigpend_t *sp = NULL;
1612 sigset_t ss;
1613
1614 KASSERT(mutex_owned(&p->p_smutex));
1615
1616 for (;;) {
1617 /* Discard any signals that we have decided not to take. */
1618 if (signo != 0)
1619 (void)sigget(sp, NULL, signo, NULL);
1620
1621 /*
1622 * If the process is stopped/stopping, then stop ourselves
1623 * now that we're on the kernel/userspace boundary. When
1624 * we awaken, check for a signal from the debugger.
1625 */
1626 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1627 sigswitch(true, PS_NOCLDSTOP, 0);
1628 signo = sigchecktrace(&sp);
1629 } else
1630 signo = 0;
1631
1632 /*
1633 * If the debugger didn't provide a signal, find a pending
1634 * signal from our set. Check per-LWP signals first, and
1635 * then per-process.
1636 */
1637 if (signo == 0) {
1638 sp = &l->l_sigpend;
1639 ss = sp->sp_set;
1640 if ((p->p_sflag & PS_PPWAIT) != 0)
1641 sigminusset(&stopsigmask, &ss);
1642 sigminusset(&l->l_sigmask, &ss);
1643
1644 if ((signo = firstsig(&ss)) == 0) {
1645 sp = &p->p_sigpend;
1646 ss = sp->sp_set;
1647 if ((p->p_sflag & PS_PPWAIT) != 0)
1648 sigminusset(&stopsigmask, &ss);
1649 sigminusset(&l->l_sigmask, &ss);
1650
1651 if ((signo = firstsig(&ss)) == 0) {
1652 /*
1653 * No signal pending - clear the
1654 * indicator and bail out.
1655 */
1656 lwp_lock(l);
1657 l->l_flag &= ~LW_PENDSIG;
1658 lwp_unlock(l);
1659 sp = NULL;
1660 break;
1661 }
1662 }
1663 }
1664
1665 /*
1666 * We should see pending but ignored signals only if
1667 * we are being traced.
1668 */
1669 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1670 (p->p_slflag & PSL_TRACED) == 0) {
1671 /* Discard the signal. */
1672 continue;
1673 }
1674
1675 /*
1676 * If traced, always stop, and stay stopped until released
1677 * by the debugger. If the our parent process is waiting
1678 * for us, don't hang as we could deadlock.
1679 */
1680 if ((p->p_slflag & PSL_TRACED) != 0 &&
1681 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1682 /* Take the signal. */
1683 (void)sigget(sp, NULL, signo, NULL);
1684 p->p_xstat = signo;
1685
1686 /* Emulation-specific handling of signal trace */
1687 if (p->p_emul->e_tracesig == NULL ||
1688 (*p->p_emul->e_tracesig)(p, signo) == 0)
1689 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1690 signo);
1691
1692 /* Check for a signal from the debugger. */
1693 if ((signo = sigchecktrace(&sp)) == 0)
1694 continue;
1695 }
1696
1697 prop = sigprop[signo];
1698
1699 /*
1700 * Decide whether the signal should be returned.
1701 */
1702 switch ((long)SIGACTION(p, signo).sa_handler) {
1703 case (long)SIG_DFL:
1704 /*
1705 * Don't take default actions on system processes.
1706 */
1707 if (p->p_pid <= 1) {
1708 #ifdef DIAGNOSTIC
1709 /*
1710 * Are you sure you want to ignore SIGSEGV
1711 * in init? XXX
1712 */
1713 printf_nolog("Process (pid %d) got sig %d\n",
1714 p->p_pid, signo);
1715 #endif
1716 continue;
1717 }
1718
1719 /*
1720 * If there is a pending stop signal to process with
1721 * default action, stop here, then clear the signal.
1722 * However, if process is member of an orphaned
1723 * process group, ignore tty stop signals.
1724 */
1725 if (prop & SA_STOP) {
1726 if (p->p_slflag & PSL_TRACED ||
1727 ((p->p_sflag & PS_ORPHANPG) != 0 &&
1728 prop & SA_TTYSTOP)) {
1729 /* Ignore the signal. */
1730 continue;
1731 }
1732 /* Take the signal. */
1733 (void)sigget(sp, NULL, signo, NULL);
1734 p->p_xstat = signo;
1735 signo = 0;
1736 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1737 } else if (prop & SA_IGNORE) {
1738 /*
1739 * Except for SIGCONT, shouldn't get here.
1740 * Default action is to ignore; drop it.
1741 */
1742 continue;
1743 }
1744 break;
1745
1746 case (long)SIG_IGN:
1747 #ifdef DEBUG_ISSIGNAL
1748 /*
1749 * Masking above should prevent us ever trying
1750 * to take action on an ignored signal other
1751 * than SIGCONT, unless process is traced.
1752 */
1753 if ((prop & SA_CONT) == 0 &&
1754 (p->p_slflag & PSL_TRACED) == 0)
1755 printf_nolog("issignal\n");
1756 #endif
1757 continue;
1758
1759 default:
1760 /*
1761 * This signal has an action, let postsig() process
1762 * it.
1763 */
1764 break;
1765 }
1766
1767 break;
1768 }
1769
1770 l->l_sigpendset = sp;
1771 return signo;
1772 }
1773
1774 /*
1775 * Take the action for the specified signal
1776 * from the current set of pending signals.
1777 */
1778 void
1779 postsig(int signo)
1780 {
1781 struct lwp *l;
1782 struct proc *p;
1783 struct sigacts *ps;
1784 sig_t action;
1785 sigset_t *returnmask;
1786 ksiginfo_t ksi;
1787
1788 l = curlwp;
1789 p = l->l_proc;
1790 ps = p->p_sigacts;
1791
1792 KASSERT(mutex_owned(&p->p_smutex));
1793 KASSERT(signo > 0);
1794
1795 /*
1796 * Set the new mask value and also defer further occurrences of this
1797 * signal.
1798 *
1799 * Special case: user has done a sigpause. Here the current mask is
1800 * not of interest, but rather the mask from before the sigpause is
1801 * what we want restored after the signal processing is completed.
1802 */
1803 if (l->l_sigrestore) {
1804 returnmask = &l->l_sigoldmask;
1805 l->l_sigrestore = 0;
1806 } else
1807 returnmask = &l->l_sigmask;
1808
1809 /*
1810 * Commit to taking the signal before releasing the mutex.
1811 */
1812 action = SIGACTION_PS(ps, signo).sa_handler;
1813 p->p_stats->p_ru.ru_nsignals++;
1814 sigget(l->l_sigpendset, &ksi, signo, NULL);
1815
1816 if (ktrpoint(KTR_PSIG)) {
1817 mutex_exit(&p->p_smutex);
1818 ktrpsig(signo, action, returnmask, NULL);
1819 mutex_enter(&p->p_smutex);
1820 }
1821
1822 if (action == SIG_DFL) {
1823 /*
1824 * Default action, where the default is to kill
1825 * the process. (Other cases were ignored above.)
1826 */
1827 sigexit(l, signo);
1828 return;
1829 }
1830
1831 /*
1832 * If we get here, the signal must be caught.
1833 */
1834 #ifdef DIAGNOSTIC
1835 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1836 panic("postsig action");
1837 #endif
1838
1839 kpsendsig(l, &ksi, returnmask);
1840 }
1841
1842 /*
1843 * sendsig_reset:
1844 *
1845 * Reset the signal action. Called from emulation specific sendsig()
1846 * before unlocking to deliver the signal.
1847 */
1848 void
1849 sendsig_reset(struct lwp *l, int signo)
1850 {
1851 struct proc *p = l->l_proc;
1852 struct sigacts *ps = p->p_sigacts;
1853
1854 KASSERT(mutex_owned(&p->p_smutex));
1855
1856 p->p_sigctx.ps_lwp = 0;
1857 p->p_sigctx.ps_code = 0;
1858 p->p_sigctx.ps_signo = 0;
1859
1860 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1861 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1862 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1863 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1864 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1865 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1866 }
1867 }
1868
1869 /*
1870 * Kill the current process for stated reason.
1871 */
1872 void
1873 killproc(struct proc *p, const char *why)
1874 {
1875 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1876 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1877 mutex_enter(&proclist_mutex); /* XXXSMP */
1878 psignal(p, SIGKILL);
1879 mutex_exit(&proclist_mutex); /* XXXSMP */
1880 }
1881
1882 /*
1883 * Force the current process to exit with the specified signal, dumping core
1884 * if appropriate. We bypass the normal tests for masked and caught
1885 * signals, allowing unrecoverable failures to terminate the process without
1886 * changing signal state. Mark the accounting record with the signal
1887 * termination. If dumping core, save the signal number for the debugger.
1888 * Calls exit and does not return.
1889 */
1890 void
1891 sigexit(struct lwp *l, int signo)
1892 {
1893 int exitsig, error, docore;
1894 struct proc *p;
1895 struct lwp *t;
1896
1897 p = l->l_proc;
1898
1899 KASSERT(mutex_owned(&p->p_smutex));
1900 KERNEL_UNLOCK_ALL(l, NULL);
1901
1902 /*
1903 * Don't permit coredump() multiple times in the same process.
1904 * Call back into sigexit, where we will be suspended until
1905 * the deed is done. Note that this is a recursive call, but
1906 * LW_WCORE will prevent us from coming back this way.
1907 */
1908 if ((p->p_sflag & PS_WCORE) != 0) {
1909 lwp_lock(l);
1910 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1911 lwp_unlock(l);
1912 mutex_exit(&p->p_smutex);
1913 lwp_userret(l);
1914 #ifdef DIAGNOSTIC
1915 panic("sigexit");
1916 #endif
1917 /* NOTREACHED */
1918 }
1919
1920 /*
1921 * Prepare all other LWPs for exit. If dumping core, suspend them
1922 * so that their registers are available long enough to be dumped.
1923 */
1924 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1925 p->p_sflag |= PS_WCORE;
1926 for (;;) {
1927 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1928 lwp_lock(t);
1929 if (t == l) {
1930 t->l_flag &= ~LW_WSUSPEND;
1931 lwp_unlock(t);
1932 continue;
1933 }
1934 t->l_flag |= (LW_WCORE | LW_WEXIT);
1935 lwp_suspend(l, t);
1936 }
1937
1938 if (p->p_nrlwps == 1)
1939 break;
1940
1941 /*
1942 * Kick any LWPs sitting in lwp_wait1(), and wait
1943 * for everyone else to stop before proceeding.
1944 */
1945 p->p_nlwpwait++;
1946 cv_broadcast(&p->p_lwpcv);
1947 cv_wait(&p->p_lwpcv, &p->p_smutex);
1948 p->p_nlwpwait--;
1949 }
1950 }
1951
1952 exitsig = signo;
1953 p->p_acflag |= AXSIG;
1954 p->p_sigctx.ps_signo = signo;
1955 mutex_exit(&p->p_smutex);
1956
1957 KERNEL_LOCK(1, l);
1958
1959 if (docore) {
1960 if ((error = coredump(l, NULL)) == 0)
1961 exitsig |= WCOREFLAG;
1962
1963 if (kern_logsigexit) {
1964 int uid = l->l_cred ?
1965 (int)kauth_cred_geteuid(l->l_cred) : -1;
1966
1967 if (error)
1968 log(LOG_INFO, lognocoredump, p->p_pid,
1969 p->p_comm, uid, signo, error);
1970 else
1971 log(LOG_INFO, logcoredump, p->p_pid,
1972 p->p_comm, uid, signo);
1973 }
1974
1975 #ifdef PAX_SEGVGUARD
1976 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1977 #endif /* PAX_SEGVGUARD */
1978 }
1979
1980 /* Acquire the sched state mutex. exit1() will release it. */
1981 mutex_enter(&p->p_smutex);
1982
1983 /* No longer dumping core. */
1984 p->p_sflag &= ~PS_WCORE;
1985
1986 exit1(l, W_EXITCODE(0, exitsig));
1987 /* NOTREACHED */
1988 }
1989
1990 /*
1991 * Put process 'p' into the stopped state and optionally, notify the parent.
1992 */
1993 void
1994 proc_stop(struct proc *p, int notify, int signo)
1995 {
1996 struct lwp *l;
1997
1998 KASSERT(mutex_owned(&proclist_mutex));
1999 KASSERT(mutex_owned(&p->p_smutex));
2000
2001 /*
2002 * First off, set the stopping indicator and bring all sleeping
2003 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2004 * unlock between here and the p->p_nrlwps check below.
2005 */
2006 p->p_sflag |= PS_STOPPING;
2007 mb_write();
2008
2009 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2010 lwp_lock(l);
2011 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
2012 l->l_stat = LSSTOP;
2013 p->p_nrlwps--;
2014 }
2015 lwp_unlock(l);
2016 }
2017
2018 /*
2019 * If there are no LWPs available to take the signal, then we
2020 * signal the parent process immediately. Otherwise, the last
2021 * LWP to stop will take care of it.
2022 */
2023 if (notify)
2024 p->p_sflag |= PS_NOTIFYSTOP;
2025 else
2026 p->p_sflag &= ~PS_NOTIFYSTOP;
2027
2028 if (p->p_nrlwps == 0) {
2029 p->p_sflag &= ~PS_STOPPING;
2030 p->p_stat = SSTOP;
2031 p->p_waited = 0;
2032 p->p_pptr->p_nstopchild++;
2033
2034 if (notify) {
2035 child_psignal(p, PS_NOCLDSTOP);
2036 cv_broadcast(&p->p_pptr->p_waitcv);
2037 }
2038 } else {
2039 /*
2040 * Have the remaining LWPs come to a halt, and trigger
2041 * proc_stop_callout() to ensure that they do.
2042 */
2043 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2044 sigpost(l, SIG_DFL, SA_STOP, signo);
2045 callout_schedule(&proc_stop_ch, 1);
2046 }
2047 }
2048
2049 /*
2050 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2051 * but wait for them to come to a halt at the kernel-user boundary. This is
2052 * to allow LWPs to release any locks that they may hold before stopping.
2053 *
2054 * Non-interruptable sleeps can be long, and there is the potential for an
2055 * LWP to begin sleeping interruptably soon after the process has been set
2056 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2057 * stopping, and so complete halt of the process and the return of status
2058 * information to the parent could be delayed indefinitely.
2059 *
2060 * To handle this race, proc_stop_callout() runs once per tick while there
2061 * are stopping processes in the system. It sets LWPs that are sleeping
2062 * interruptably into the LSSTOP state.
2063 *
2064 * Note that we are not concerned about keeping all LWPs stopped while the
2065 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2066 * What we do need to ensure is that all LWPs in a stopping process have
2067 * stopped at least once, so that notification can be sent to the parent
2068 * process.
2069 */
2070 static void
2071 proc_stop_callout(void *cookie)
2072 {
2073 bool more, restart;
2074 struct proc *p;
2075 struct lwp *l;
2076
2077 (void)cookie;
2078
2079 do {
2080 restart = false;
2081 more = false;
2082
2083 mutex_enter(&proclist_mutex);
2084 PROCLIST_FOREACH(p, &allproc) {
2085 mutex_enter(&p->p_smutex);
2086
2087 if ((p->p_sflag & PS_STOPPING) == 0) {
2088 mutex_exit(&p->p_smutex);
2089 continue;
2090 }
2091
2092 /* Stop any LWPs sleeping interruptably. */
2093 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2094 lwp_lock(l);
2095 if (l->l_stat == LSSLEEP &&
2096 (l->l_flag & LW_SINTR) != 0) {
2097 l->l_stat = LSSTOP;
2098 p->p_nrlwps--;
2099 }
2100 lwp_unlock(l);
2101 }
2102
2103 if (p->p_nrlwps == 0) {
2104 /*
2105 * We brought the process to a halt.
2106 * Mark it as stopped and notify the
2107 * parent.
2108 */
2109 p->p_sflag &= ~PS_STOPPING;
2110 p->p_stat = SSTOP;
2111 p->p_waited = 0;
2112 p->p_pptr->p_nstopchild++;
2113 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2114 /*
2115 * Note that child_psignal() will
2116 * drop p->p_smutex briefly.
2117 * Arrange to restart and check
2118 * all processes again.
2119 */
2120 restart = true;
2121 child_psignal(p, PS_NOCLDSTOP);
2122 cv_broadcast(&p->p_pptr->p_waitcv);
2123 }
2124 } else
2125 more = true;
2126
2127 mutex_exit(&p->p_smutex);
2128 if (restart)
2129 break;
2130 }
2131 mutex_exit(&proclist_mutex);
2132 } while (restart);
2133
2134 /*
2135 * If we noted processes that are stopping but still have
2136 * running LWPs, then arrange to check again in 1 tick.
2137 */
2138 if (more)
2139 callout_schedule(&proc_stop_ch, 1);
2140 }
2141
2142 /*
2143 * Given a process in state SSTOP, set the state back to SACTIVE and
2144 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2145 */
2146 void
2147 proc_unstop(struct proc *p)
2148 {
2149 struct lwp *l;
2150 int sig;
2151
2152 KASSERT(mutex_owned(&proclist_mutex));
2153 KASSERT(mutex_owned(&p->p_smutex));
2154
2155 p->p_stat = SACTIVE;
2156 p->p_sflag &= ~PS_STOPPING;
2157 sig = p->p_xstat;
2158
2159 if (!p->p_waited)
2160 p->p_pptr->p_nstopchild--;
2161
2162 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2163 lwp_lock(l);
2164 if (l->l_stat != LSSTOP) {
2165 lwp_unlock(l);
2166 continue;
2167 }
2168 if (l->l_wchan == NULL) {
2169 setrunnable(l);
2170 continue;
2171 }
2172 if (sig && (l->l_flag & LW_SINTR) != 0) {
2173 setrunnable(l);
2174 sig = 0;
2175 } else {
2176 l->l_stat = LSSLEEP;
2177 p->p_nrlwps++;
2178 lwp_unlock(l);
2179 }
2180 }
2181 }
2182
2183 static int
2184 filt_sigattach(struct knote *kn)
2185 {
2186 struct proc *p = curproc;
2187
2188 kn->kn_ptr.p_proc = p;
2189 kn->kn_flags |= EV_CLEAR; /* automatically set */
2190
2191 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2192
2193 return (0);
2194 }
2195
2196 static void
2197 filt_sigdetach(struct knote *kn)
2198 {
2199 struct proc *p = kn->kn_ptr.p_proc;
2200
2201 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2202 }
2203
2204 /*
2205 * signal knotes are shared with proc knotes, so we apply a mask to
2206 * the hint in order to differentiate them from process hints. This
2207 * could be avoided by using a signal-specific knote list, but probably
2208 * isn't worth the trouble.
2209 */
2210 static int
2211 filt_signal(struct knote *kn, long hint)
2212 {
2213
2214 if (hint & NOTE_SIGNAL) {
2215 hint &= ~NOTE_SIGNAL;
2216
2217 if (kn->kn_id == hint)
2218 kn->kn_data++;
2219 }
2220 return (kn->kn_data != 0);
2221 }
2222
2223 const struct filterops sig_filtops = {
2224 0, filt_sigattach, filt_sigdetach, filt_signal
2225 };
2226