Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.261
      1 /*	$NetBSD: kern_sig.c,v 1.261 2007/12/03 20:26:25 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  * (c) UNIX System Laboratories, Inc.
     43  * All or some portions of this file are derived from material licensed
     44  * to the University of California by American Telephone and Telegraph
     45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     46  * the permission of UNIX System Laboratories, Inc.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that the following conditions
     50  * are met:
     51  * 1. Redistributions of source code must retain the above copyright
     52  *    notice, this list of conditions and the following disclaimer.
     53  * 2. Redistributions in binary form must reproduce the above copyright
     54  *    notice, this list of conditions and the following disclaimer in the
     55  *    documentation and/or other materials provided with the distribution.
     56  * 3. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.261 2007/12/03 20:26:25 ad Exp $");
     77 
     78 #include "opt_ptrace.h"
     79 #include "opt_multiprocessor.h"
     80 #include "opt_compat_sunos.h"
     81 #include "opt_compat_netbsd.h"
     82 #include "opt_compat_netbsd32.h"
     83 #include "opt_pax.h"
     84 
     85 #define	SIGPROP		/* include signal properties table */
     86 #include <sys/param.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/proc.h>
     89 #include <sys/systm.h>
     90 #include <sys/wait.h>
     91 #include <sys/ktrace.h>
     92 #include <sys/syslog.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/file.h>
     95 #include <sys/malloc.h>
     96 #include <sys/pool.h>
     97 #include <sys/ucontext.h>
     98 #include <sys/exec.h>
     99 #include <sys/kauth.h>
    100 #include <sys/acct.h>
    101 #include <sys/callout.h>
    102 #include <sys/atomic.h>
    103 #include <sys/cpu.h>
    104 
    105 #ifdef PAX_SEGVGUARD
    106 #include <sys/pax.h>
    107 #endif /* PAX_SEGVGUARD */
    108 
    109 #include <uvm/uvm.h>
    110 #include <uvm/uvm_extern.h>
    111 
    112 static void	ksiginfo_exechook(struct proc *, void *);
    113 static void	proc_stop_callout(void *);
    114 
    115 int	sigunwait(struct proc *, const ksiginfo_t *);
    116 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    117 int	sigpost(struct lwp *, sig_t, int, int);
    118 int	sigchecktrace(sigpend_t **);
    119 void	sigswitch(bool, int, int);
    120 void	sigrealloc(ksiginfo_t *);
    121 
    122 sigset_t	contsigmask, stopsigmask, sigcantmask;
    123 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
    124 static void	sigacts_poolpage_free(struct pool *, void *);
    125 static void	*sigacts_poolpage_alloc(struct pool *, int);
    126 static callout_t proc_stop_ch;
    127 
    128 static struct pool_allocator sigactspool_allocator = {
    129         .pa_alloc = sigacts_poolpage_alloc,
    130 	.pa_free = sigacts_poolpage_free,
    131 };
    132 
    133 #ifdef DEBUG
    134 int	kern_logsigexit = 1;
    135 #else
    136 int	kern_logsigexit = 0;
    137 #endif
    138 
    139 static	const char logcoredump[] =
    140     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    141 static	const char lognocoredump[] =
    142     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    143 
    144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    145     &pool_allocator_nointr, IPL_NONE);
    146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    147     NULL, IPL_VM);
    148 
    149 /*
    150  * signal_init:
    151  *
    152  * 	Initialize global signal-related data structures.
    153  */
    154 void
    155 signal_init(void)
    156 {
    157 
    158 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    159 
    160 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    161 	    sizeof(struct sigacts) > PAGE_SIZE ?
    162 	    &sigactspool_allocator : &pool_allocator_nointr,
    163 	    IPL_NONE);
    164 
    165 	exechook_establish(ksiginfo_exechook, NULL);
    166 
    167 	callout_init(&proc_stop_ch, 0);
    168 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    169 }
    170 
    171 /*
    172  * sigacts_poolpage_alloc:
    173  *
    174  *	 Allocate a page for the sigacts memory pool.
    175  */
    176 static void *
    177 sigacts_poolpage_alloc(struct pool *pp, int flags)
    178 {
    179 
    180 	return (void *)uvm_km_alloc(kernel_map,
    181 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    182 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    183 	    | UVM_KMF_WIRED);
    184 }
    185 
    186 /*
    187  * sigacts_poolpage_free:
    188  *
    189  *	 Free a page on behalf of the sigacts memory pool.
    190  */
    191 static void
    192 sigacts_poolpage_free(struct pool *pp, void *v)
    193 {
    194         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    195 }
    196 
    197 /*
    198  * sigactsinit:
    199  *
    200  *	 Create an initial sigctx structure, using the same signal state as
    201  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    202  *	 copy it from parent.
    203  */
    204 struct sigacts *
    205 sigactsinit(struct proc *pp, int share)
    206 {
    207 	struct sigacts *ps, *ps2;
    208 
    209 	ps = pp->p_sigacts;
    210 
    211 	if (share) {
    212 		mutex_enter(&ps->sa_mutex);
    213 		ps->sa_refcnt++;
    214 		mutex_exit(&ps->sa_mutex);
    215 		ps2 = ps;
    216 	} else {
    217 		ps2 = pool_get(&sigacts_pool, PR_WAITOK);
    218 		mutex_init(&ps2->sa_mutex, MUTEX_SPIN, IPL_SCHED);
    219 		mutex_enter(&ps->sa_mutex);
    220 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    221 		    sizeof(ps2->sa_sigdesc));
    222 		mutex_exit(&ps->sa_mutex);
    223 		ps2->sa_refcnt = 1;
    224 	}
    225 
    226 	return ps2;
    227 }
    228 
    229 /*
    230  * sigactsunshare:
    231  *
    232  *	Make this process not share its sigctx, maintaining all
    233  *	signal state.
    234  */
    235 void
    236 sigactsunshare(struct proc *p)
    237 {
    238 	struct sigacts *ps, *oldps;
    239 
    240 	oldps = p->p_sigacts;
    241 	if (oldps->sa_refcnt == 1)
    242 		return;
    243 	ps = pool_get(&sigacts_pool, PR_WAITOK);
    244 	mutex_init(&ps->sa_mutex, MUTEX_SPIN, IPL_SCHED);
    245 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    246 	p->p_sigacts = ps;
    247 	sigactsfree(oldps);
    248 }
    249 
    250 /*
    251  * sigactsfree;
    252  *
    253  *	Release a sigctx structure.
    254  */
    255 void
    256 sigactsfree(struct sigacts *ps)
    257 {
    258 	int refcnt;
    259 
    260 	mutex_enter(&ps->sa_mutex);
    261 	refcnt = --ps->sa_refcnt;
    262 	mutex_exit(&ps->sa_mutex);
    263 
    264 	if (refcnt == 0) {
    265 		mutex_destroy(&ps->sa_mutex);
    266 		pool_put(&sigacts_pool, ps);
    267 	}
    268 }
    269 
    270 /*
    271  * siginit:
    272  *
    273  *	Initialize signal state for process 0; set to ignore signals that
    274  *	are ignored by default and disable the signal stack.  Locking not
    275  *	required as the system is still cold.
    276  */
    277 void
    278 siginit(struct proc *p)
    279 {
    280 	struct lwp *l;
    281 	struct sigacts *ps;
    282 	int signo, prop;
    283 
    284 	ps = p->p_sigacts;
    285 	sigemptyset(&contsigmask);
    286 	sigemptyset(&stopsigmask);
    287 	sigemptyset(&sigcantmask);
    288 	for (signo = 1; signo < NSIG; signo++) {
    289 		prop = sigprop[signo];
    290 		if (prop & SA_CONT)
    291 			sigaddset(&contsigmask, signo);
    292 		if (prop & SA_STOP)
    293 			sigaddset(&stopsigmask, signo);
    294 		if (prop & SA_CANTMASK)
    295 			sigaddset(&sigcantmask, signo);
    296 		if (prop & SA_IGNORE && signo != SIGCONT)
    297 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    298 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    299 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    300 	}
    301 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    302 	p->p_sflag &= ~PS_NOCLDSTOP;
    303 
    304 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    305 	sigemptyset(&p->p_sigpend.sp_set);
    306 
    307 	/*
    308 	 * Reset per LWP state.
    309 	 */
    310 	l = LIST_FIRST(&p->p_lwps);
    311 	l->l_sigwaited = NULL;
    312 	l->l_sigstk.ss_flags = SS_DISABLE;
    313 	l->l_sigstk.ss_size = 0;
    314 	l->l_sigstk.ss_sp = 0;
    315 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    316 	sigemptyset(&l->l_sigpend.sp_set);
    317 
    318 	/* One reference. */
    319 	ps->sa_refcnt = 1;
    320 }
    321 
    322 /*
    323  * execsigs:
    324  *
    325  *	Reset signals for an exec of the specified process.
    326  */
    327 void
    328 execsigs(struct proc *p)
    329 {
    330 	struct sigacts *ps;
    331 	struct lwp *l;
    332 	int signo, prop;
    333 	sigset_t tset;
    334 	ksiginfoq_t kq;
    335 
    336 	KASSERT(p->p_nlwps == 1);
    337 
    338 	sigactsunshare(p);
    339 	ps = p->p_sigacts;
    340 
    341 	/*
    342 	 * Reset caught signals.  Held signals remain held through
    343 	 * l->l_sigmask (unless they were caught, and are now ignored
    344 	 * by default).
    345 	 *
    346 	 * No need to lock yet, the process has only one LWP and
    347 	 * at this point the sigacts are private to the process.
    348 	 */
    349 	sigemptyset(&tset);
    350 	for (signo = 1; signo < NSIG; signo++) {
    351 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    352 			prop = sigprop[signo];
    353 			if (prop & SA_IGNORE) {
    354 				if ((prop & SA_CONT) == 0)
    355 					sigaddset(&p->p_sigctx.ps_sigignore,
    356 					    signo);
    357 				sigaddset(&tset, signo);
    358 			}
    359 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    360 		}
    361 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    362 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    363 	}
    364 	ksiginfo_queue_init(&kq);
    365 
    366 	mutex_enter(&p->p_smutex);
    367 	sigclearall(p, &tset, &kq);
    368 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    369 
    370 	/*
    371 	 * Reset no zombies if child dies flag as Solaris does.
    372 	 */
    373 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    374 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    375 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    376 
    377 	/*
    378 	 * Reset per-LWP state.
    379 	 */
    380 	l = LIST_FIRST(&p->p_lwps);
    381 	l->l_sigwaited = NULL;
    382 	l->l_sigstk.ss_flags = SS_DISABLE;
    383 	l->l_sigstk.ss_size = 0;
    384 	l->l_sigstk.ss_sp = 0;
    385 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    386 	sigemptyset(&l->l_sigpend.sp_set);
    387 	mutex_exit(&p->p_smutex);
    388 
    389 	ksiginfo_queue_drain(&kq);
    390 }
    391 
    392 /*
    393  * ksiginfo_exechook:
    394  *
    395  *	Free all pending ksiginfo entries from a process on exec.
    396  *	Additionally, drain any unused ksiginfo structures in the
    397  *	system back to the pool.
    398  *
    399  *	XXX This should not be a hook, every process has signals.
    400  */
    401 static void
    402 ksiginfo_exechook(struct proc *p, void *v)
    403 {
    404 	ksiginfoq_t kq;
    405 
    406 	ksiginfo_queue_init(&kq);
    407 
    408 	mutex_enter(&p->p_smutex);
    409 	sigclearall(p, NULL, &kq);
    410 	mutex_exit(&p->p_smutex);
    411 
    412 	ksiginfo_queue_drain(&kq);
    413 }
    414 
    415 /*
    416  * ksiginfo_alloc:
    417  *
    418  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    419  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    420  *	has not been queued somewhere, then just return it.  Additionally,
    421  *	if the existing ksiginfo_t does not contain any information beyond
    422  *	the signal number, then just return it.
    423  */
    424 ksiginfo_t *
    425 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    426 {
    427 	ksiginfo_t *kp;
    428 	int s;
    429 
    430 	if (ok != NULL) {
    431 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    432 		    KSI_FROMPOOL)
    433 		    	return ok;
    434 		if (KSI_EMPTY_P(ok))
    435 			return ok;
    436 	}
    437 
    438 	s = splvm();
    439 	kp = pool_get(&ksiginfo_pool, flags);
    440 	splx(s);
    441 	if (kp == NULL) {
    442 #ifdef DIAGNOSTIC
    443 		printf("Out of memory allocating ksiginfo for pid %d\n",
    444 		    p->p_pid);
    445 #endif
    446 		return NULL;
    447 	}
    448 
    449 	if (ok != NULL) {
    450 		memcpy(kp, ok, sizeof(*kp));
    451 		kp->ksi_flags &= ~KSI_QUEUED;
    452 	} else
    453 		KSI_INIT_EMPTY(kp);
    454 
    455 	kp->ksi_flags |= KSI_FROMPOOL;
    456 
    457 	return kp;
    458 }
    459 
    460 /*
    461  * ksiginfo_free:
    462  *
    463  *	If the given ksiginfo_t is from the pool and has not been queued,
    464  *	then free it.
    465  */
    466 void
    467 ksiginfo_free(ksiginfo_t *kp)
    468 {
    469 	int s;
    470 
    471 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    472 		return;
    473 	s = splvm();
    474 	pool_put(&ksiginfo_pool, kp);
    475 	splx(s);
    476 }
    477 
    478 /*
    479  * ksiginfo_queue_drain:
    480  *
    481  *	Drain a non-empty ksiginfo_t queue.
    482  */
    483 void
    484 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    485 {
    486 	ksiginfo_t *ksi;
    487 	int s;
    488 
    489 	KASSERT(!CIRCLEQ_EMPTY(kq));
    490 
    491 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    492 	while (!CIRCLEQ_EMPTY(kq)) {
    493 		ksi = CIRCLEQ_FIRST(kq);
    494 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    495 		s = splvm();
    496 		pool_put(&ksiginfo_pool, ksi);
    497 		splx(s);
    498 	}
    499 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    500 }
    501 
    502 /*
    503  * sigget:
    504  *
    505  *	Fetch the first pending signal from a set.  Optionally, also fetch
    506  *	or manufacture a ksiginfo element.  Returns the number of the first
    507  *	pending signal, or zero.
    508  */
    509 int
    510 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, sigset_t *mask)
    511 {
    512         ksiginfo_t *ksi;
    513 	sigset_t tset;
    514 
    515 	/* If there's no pending set, the signal is from the debugger. */
    516 	if (sp == NULL) {
    517 		if (out != NULL) {
    518 			KSI_INIT(out);
    519 			out->ksi_info._signo = signo;
    520 			out->ksi_info._code = SI_USER;
    521 		}
    522 		return signo;
    523 	}
    524 
    525 	/* Construct mask from signo, and 'mask'. */
    526 	if (signo == 0) {
    527 		if (mask != NULL) {
    528 			tset = *mask;
    529 			__sigandset(&sp->sp_set, &tset);
    530 		} else
    531 			tset = sp->sp_set;
    532 
    533 		/* If there are no signals pending, that's it. */
    534 		if ((signo = firstsig(&tset)) == 0)
    535 			return 0;
    536 	} else {
    537 		KASSERT(sigismember(&sp->sp_set, signo));
    538 	}
    539 
    540 	sigdelset(&sp->sp_set, signo);
    541 
    542 	/* Find siginfo and copy it out. */
    543 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    544 		if (ksi->ksi_signo == signo) {
    545 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    546 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    547 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    548 			ksi->ksi_flags &= ~KSI_QUEUED;
    549 			if (out != NULL) {
    550 				memcpy(out, ksi, sizeof(*out));
    551 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    552 			}
    553 			ksiginfo_free(ksi);
    554 			return signo;
    555 		}
    556 	}
    557 
    558 	/* If there's no siginfo, then manufacture it. */
    559 	if (out != NULL) {
    560 		KSI_INIT(out);
    561 		out->ksi_info._signo = signo;
    562 		out->ksi_info._code = SI_USER;
    563 	}
    564 
    565 	return signo;
    566 }
    567 
    568 /*
    569  * sigput:
    570  *
    571  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    572  *	we need to (e.g. SA_SIGINFO was requested).
    573  */
    574 void
    575 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    576 {
    577 	ksiginfo_t *kp;
    578 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    579 
    580 	KASSERT(mutex_owned(&p->p_smutex));
    581 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    582 
    583 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    584 
    585 	/*
    586 	 * If siginfo is not required, or there is none, then just mark the
    587 	 * signal as pending.
    588 	 */
    589 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
    590 		return;
    591 
    592 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    593 
    594 #ifdef notyet	/* XXX: QUEUING */
    595 	if (ksi->ksi_signo < SIGRTMIN)
    596 #endif
    597 	{
    598 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    599 			if (kp->ksi_signo == ksi->ksi_signo) {
    600 				KSI_COPY(ksi, kp);
    601 				kp->ksi_flags |= KSI_QUEUED;
    602 				return;
    603 			}
    604 		}
    605 	}
    606 
    607 	ksi->ksi_flags |= KSI_QUEUED;
    608 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    609 }
    610 
    611 /*
    612  * sigclear:
    613  *
    614  *	Clear all pending signals in the specified set.
    615  */
    616 void
    617 sigclear(sigpend_t *sp, sigset_t *mask, ksiginfoq_t *kq)
    618 {
    619 	ksiginfo_t *ksi, *next;
    620 
    621 	if (mask == NULL)
    622 		sigemptyset(&sp->sp_set);
    623 	else
    624 		sigminusset(mask, &sp->sp_set);
    625 
    626 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    627 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    628 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    629 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    630 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    631 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    632 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    633 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    634 		}
    635 	}
    636 }
    637 
    638 /*
    639  * sigclearall:
    640  *
    641  *	Clear all pending signals in the specified set from a process and
    642  *	its LWPs.
    643  */
    644 void
    645 sigclearall(struct proc *p, sigset_t *mask, ksiginfoq_t *kq)
    646 {
    647 	struct lwp *l;
    648 
    649 	KASSERT(mutex_owned(&p->p_smutex));
    650 
    651 	sigclear(&p->p_sigpend, mask, kq);
    652 
    653 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    654 		sigclear(&l->l_sigpend, mask, kq);
    655 	}
    656 }
    657 
    658 /*
    659  * sigispending:
    660  *
    661  *	Return true if there are pending signals for the current LWP.  May
    662  *	be called unlocked provided that L_PENDSIG is set, and that the
    663  *	signal has been posted to the appopriate queue before L_PENDSIG is
    664  *	set.
    665  */
    666 int
    667 sigispending(struct lwp *l, int signo)
    668 {
    669 	struct proc *p = l->l_proc;
    670 	sigset_t tset;
    671 
    672 	membar_consumer();
    673 
    674 	tset = l->l_sigpend.sp_set;
    675 	sigplusset(&p->p_sigpend.sp_set, &tset);
    676 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    677 	sigminusset(&l->l_sigmask, &tset);
    678 
    679 	if (signo == 0) {
    680 		if (firstsig(&tset) != 0)
    681 			return EINTR;
    682 	} else if (sigismember(&tset, signo))
    683 		return EINTR;
    684 
    685 	return 0;
    686 }
    687 
    688 /*
    689  * siginfo_alloc:
    690  *
    691  *	 Allocate a new siginfo_t structure from the pool.
    692  */
    693 siginfo_t *
    694 siginfo_alloc(int flags)
    695 {
    696 
    697 	return pool_get(&siginfo_pool, flags);
    698 }
    699 
    700 /*
    701  * siginfo_free:
    702  *
    703  *	 Return a siginfo_t structure to the pool.
    704  */
    705 void
    706 siginfo_free(void *arg)
    707 {
    708 
    709 	pool_put(&siginfo_pool, arg);
    710 }
    711 
    712 void
    713 getucontext(struct lwp *l, ucontext_t *ucp)
    714 {
    715 	struct proc *p = l->l_proc;
    716 
    717 	KASSERT(mutex_owned(&p->p_smutex));
    718 
    719 	ucp->uc_flags = 0;
    720 	ucp->uc_link = l->l_ctxlink;
    721 
    722 	ucp->uc_sigmask = l->l_sigmask;
    723 	ucp->uc_flags |= _UC_SIGMASK;
    724 
    725 	/*
    726 	 * The (unsupplied) definition of the `current execution stack'
    727 	 * in the System V Interface Definition appears to allow returning
    728 	 * the main context stack.
    729 	 */
    730 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    731 		ucp->uc_stack.ss_sp = (void *)USRSTACK;
    732 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    733 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    734 	} else {
    735 		/* Simply copy alternate signal execution stack. */
    736 		ucp->uc_stack = l->l_sigstk;
    737 	}
    738 	ucp->uc_flags |= _UC_STACK;
    739 	mutex_exit(&p->p_smutex);
    740 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    741 	mutex_enter(&p->p_smutex);
    742 }
    743 
    744 int
    745 setucontext(struct lwp *l, const ucontext_t *ucp)
    746 {
    747 	struct proc *p = l->l_proc;
    748 	int error;
    749 
    750 	KASSERT(mutex_owned(&p->p_smutex));
    751 
    752 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    753 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    754 		if (error != 0)
    755 			return error;
    756 	}
    757 
    758 	mutex_exit(&p->p_smutex);
    759 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    760 	mutex_enter(&p->p_smutex);
    761 	if (error != 0)
    762 		return (error);
    763 
    764 	l->l_ctxlink = ucp->uc_link;
    765 
    766 	/*
    767 	 * If there was stack information, update whether or not we are
    768 	 * still running on an alternate signal stack.
    769 	 */
    770 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    771 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    772 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    773 		else
    774 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    775 	}
    776 
    777 	return 0;
    778 }
    779 
    780 /*
    781  * Common code for kill process group/broadcast kill.  cp is calling
    782  * process.
    783  */
    784 int
    785 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    786 {
    787 	struct proc	*p, *cp;
    788 	kauth_cred_t	pc;
    789 	struct pgrp	*pgrp;
    790 	int		nfound;
    791 	int		signo = ksi->ksi_signo;
    792 
    793 	cp = l->l_proc;
    794 	pc = l->l_cred;
    795 	nfound = 0;
    796 
    797 	mutex_enter(&proclist_lock);
    798 	if (all) {
    799 		/*
    800 		 * broadcast
    801 		 */
    802 		PROCLIST_FOREACH(p, &allproc) {
    803 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
    804 				continue;
    805 			mutex_enter(&p->p_mutex);
    806 			if (kauth_authorize_process(pc,
    807 			    KAUTH_PROCESS_CANSIGNAL, p,
    808 			    (void *)(uintptr_t)signo, NULL, NULL) == 0) {
    809 				nfound++;
    810 				if (signo) {
    811 					mutex_enter(&proclist_mutex);
    812 					mutex_enter(&p->p_smutex);
    813 					kpsignal2(p, ksi);
    814 					mutex_exit(&p->p_smutex);
    815 					mutex_exit(&proclist_mutex);
    816 				}
    817 			}
    818 			mutex_exit(&p->p_mutex);
    819 		}
    820 	} else {
    821 		if (pgid == 0)
    822 			/*
    823 			 * zero pgid means send to my process group.
    824 			 */
    825 			pgrp = cp->p_pgrp;
    826 		else {
    827 			pgrp = pg_find(pgid, PFIND_LOCKED);
    828 			if (pgrp == NULL)
    829 				goto out;
    830 		}
    831 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    832 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    833 				continue;
    834 			mutex_enter(&p->p_mutex);
    835 			if (kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
    836 			    p, (void *)(uintptr_t)signo, NULL, NULL) == 0) {
    837 				nfound++;
    838 				if (signo) {
    839 					mutex_enter(&proclist_mutex);
    840 					mutex_enter(&p->p_smutex);
    841 					if (P_ZOMBIE(p) == 0)
    842 						kpsignal2(p, ksi);
    843 					mutex_exit(&p->p_smutex);
    844 					mutex_exit(&proclist_mutex);
    845 				}
    846 			}
    847 			mutex_exit(&p->p_mutex);
    848 		}
    849 	}
    850   out:
    851 	mutex_exit(&proclist_lock);
    852 	return (nfound ? 0 : ESRCH);
    853 }
    854 
    855 /*
    856  * Send a signal to a process group. If checktty is 1, limit to members
    857  * which have a controlling terminal.
    858  */
    859 void
    860 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    861 {
    862 	ksiginfo_t ksi;
    863 
    864 	KASSERT(mutex_owned(&proclist_mutex));
    865 
    866 	KSI_INIT_EMPTY(&ksi);
    867 	ksi.ksi_signo = sig;
    868 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    869 }
    870 
    871 void
    872 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    873 {
    874 	struct proc *p;
    875 
    876 	KASSERT(mutex_owned(&proclist_mutex));
    877 
    878 	if (pgrp)
    879 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    880 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    881 				kpsignal(p, ksi, data);
    882 }
    883 
    884 /*
    885  * Send a signal caused by a trap to the current LWP.  If it will be caught
    886  * immediately, deliver it with correct code.  Otherwise, post it normally.
    887  */
    888 void
    889 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    890 {
    891 	struct proc	*p;
    892 	struct sigacts	*ps;
    893 	int signo = ksi->ksi_signo;
    894 
    895 	KASSERT(KSI_TRAP_P(ksi));
    896 
    897 	ksi->ksi_lid = l->l_lid;
    898 	p = l->l_proc;
    899 
    900 	mutex_enter(&proclist_mutex);
    901 	mutex_enter(&p->p_smutex);
    902 	ps = p->p_sigacts;
    903 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    904 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    905 	    !sigismember(&l->l_sigmask, signo)) {
    906 		mutex_exit(&proclist_mutex);
    907 		p->p_stats->p_ru.ru_nsignals++;
    908 		kpsendsig(l, ksi, &l->l_sigmask);
    909 		mutex_exit(&p->p_smutex);
    910 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    911 		    &l->l_sigmask, ksi);
    912 	} else {
    913 		/* XXX for core dump/debugger */
    914 		p->p_sigctx.ps_lwp = l->l_lid;
    915 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    916 		p->p_sigctx.ps_code = ksi->ksi_trap;
    917 		kpsignal2(p, ksi);
    918 		mutex_exit(&proclist_mutex);
    919 		mutex_exit(&p->p_smutex);
    920 	}
    921 }
    922 
    923 /*
    924  * Fill in signal information and signal the parent for a child status change.
    925  */
    926 void
    927 child_psignal(struct proc *p, int mask)
    928 {
    929 	ksiginfo_t ksi;
    930 	struct proc *q;
    931 	int xstat;
    932 
    933 	KASSERT(mutex_owned(&proclist_mutex));
    934 	KASSERT(mutex_owned(&p->p_smutex));
    935 
    936 	xstat = p->p_xstat;
    937 
    938 	KSI_INIT(&ksi);
    939 	ksi.ksi_signo = SIGCHLD;
    940 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    941 	ksi.ksi_pid = p->p_pid;
    942 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    943 	ksi.ksi_status = xstat;
    944 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    945 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    946 
    947 	q = p->p_pptr;
    948 
    949 	mutex_exit(&p->p_smutex);
    950 	mutex_enter(&q->p_smutex);
    951 
    952 	if ((q->p_sflag & mask) == 0)
    953 		kpsignal2(q, &ksi);
    954 
    955 	mutex_exit(&q->p_smutex);
    956 	mutex_enter(&p->p_smutex);
    957 }
    958 
    959 void
    960 psignal(struct proc *p, int signo)
    961 {
    962 	ksiginfo_t ksi;
    963 
    964 	KASSERT(mutex_owned(&proclist_mutex));
    965 
    966 	KSI_INIT_EMPTY(&ksi);
    967 	ksi.ksi_signo = signo;
    968 	mutex_enter(&p->p_smutex);
    969 	kpsignal2(p, &ksi);
    970 	mutex_exit(&p->p_smutex);
    971 }
    972 
    973 void
    974 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    975 {
    976 
    977 	KASSERT(mutex_owned(&proclist_mutex));
    978 
    979 	/* XXXSMP Why is this here? */
    980 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    981 		size_t fd;
    982 		struct filedesc *fdp = p->p_fd;
    983 
    984 		ksi->ksi_fd = -1;
    985 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    986 			struct file *fp = fdp->fd_ofiles[fd];
    987 			/* XXX: lock? */
    988 			if (fp && fp->f_data == data) {
    989 				ksi->ksi_fd = fd;
    990 				break;
    991 			}
    992 		}
    993 	}
    994 	mutex_enter(&p->p_smutex);
    995 	kpsignal2(p, ksi);
    996 	mutex_exit(&p->p_smutex);
    997 }
    998 
    999 /*
   1000  * sigismasked:
   1001  *
   1002  *	 Returns true if signal is ignored or masked for the specified LWP.
   1003  */
   1004 int
   1005 sigismasked(struct lwp *l, int sig)
   1006 {
   1007 	struct proc *p = l->l_proc;
   1008 
   1009 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1010 	    sigismember(&l->l_sigmask, sig));
   1011 }
   1012 
   1013 /*
   1014  * sigpost:
   1015  *
   1016  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
   1017  *	 able to take the signal.
   1018  */
   1019 int
   1020 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1021 {
   1022 	int rv, masked;
   1023 
   1024 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1025 
   1026 	/*
   1027 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1028 	 * pending signals.  Don't give it more.
   1029 	 */
   1030 	if (l->l_refcnt == 0)
   1031 		return 0;
   1032 
   1033 	lwp_lock(l);
   1034 
   1035 	/*
   1036 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1037 	 * is found to take the signal immediately, it should be taken soon.
   1038 	 */
   1039 	l->l_flag |= LW_PENDSIG;
   1040 
   1041 	/*
   1042 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1043 	 */
   1044 	masked = sigismember(&l->l_sigmask, sig);
   1045 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1046 		lwp_unlock(l);
   1047 		return 0;
   1048 	}
   1049 
   1050 	/*
   1051 	 * If killing the process, make it run fast.
   1052 	 */
   1053 	if (__predict_false((prop & SA_KILL) != 0) &&
   1054 	    action == SIG_DFL && l->l_priority > PUSER)
   1055 		lwp_changepri(l, PUSER);
   1056 
   1057 	/*
   1058 	 * If the LWP is running or on a run queue, then we win.  If it's
   1059 	 * sleeping interruptably, wake it and make it take the signal.  If
   1060 	 * the sleep isn't interruptable, then the chances are it will get
   1061 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1062 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1063 	 * for later; otherwise punt.
   1064 	 */
   1065 	rv = 0;
   1066 
   1067 	switch (l->l_stat) {
   1068 	case LSRUN:
   1069 	case LSONPROC:
   1070 		lwp_need_userret(l);
   1071 		rv = 1;
   1072 		break;
   1073 
   1074 	case LSSLEEP:
   1075 		if ((l->l_flag & LW_SINTR) != 0) {
   1076 			/* setrunnable() will release the lock. */
   1077 			setrunnable(l);
   1078 			return 1;
   1079 		}
   1080 		break;
   1081 
   1082 	case LSSUSPENDED:
   1083 		if ((prop & SA_KILL) != 0) {
   1084 			/* lwp_continue() will release the lock. */
   1085 			lwp_continue(l);
   1086 			return 1;
   1087 		}
   1088 		break;
   1089 
   1090 	case LSSTOP:
   1091 		if ((prop & SA_STOP) != 0)
   1092 			break;
   1093 
   1094 		/*
   1095 		 * If the LWP is stopped and we are sending a continue
   1096 		 * signal, then start it again.
   1097 		 */
   1098 		if ((prop & SA_CONT) != 0) {
   1099 			if (l->l_wchan != NULL) {
   1100 				l->l_stat = LSSLEEP;
   1101 				l->l_proc->p_nrlwps++;
   1102 				rv = 1;
   1103 				break;
   1104 			}
   1105 			/* setrunnable() will release the lock. */
   1106 			setrunnable(l);
   1107 			return 1;
   1108 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1109 			/* setrunnable() will release the lock. */
   1110 			setrunnable(l);
   1111 			return 1;
   1112 		}
   1113 		break;
   1114 
   1115 	default:
   1116 		break;
   1117 	}
   1118 
   1119 	lwp_unlock(l);
   1120 	return rv;
   1121 }
   1122 
   1123 /*
   1124  * Notify an LWP that it has a pending signal.
   1125  */
   1126 void
   1127 signotify(struct lwp *l)
   1128 {
   1129 	KASSERT(lwp_locked(l, NULL));
   1130 
   1131 	l->l_flag |= LW_PENDSIG;
   1132 	lwp_need_userret(l);
   1133 }
   1134 
   1135 /*
   1136  * Find an LWP within process p that is waiting on signal ksi, and hand
   1137  * it on.
   1138  */
   1139 int
   1140 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1141 {
   1142 	struct lwp *l;
   1143 	int signo;
   1144 
   1145 	KASSERT(mutex_owned(&p->p_smutex));
   1146 
   1147 	signo = ksi->ksi_signo;
   1148 
   1149 	if (ksi->ksi_lid != 0) {
   1150 		/*
   1151 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1152 		 * it's interested.
   1153 		 */
   1154 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1155 			return 0;
   1156 		if (l->l_sigwaited == NULL ||
   1157 		    !sigismember(&l->l_sigwaitset, signo))
   1158 			return 0;
   1159 	} else {
   1160 		/*
   1161 		 * Look for any LWP that may be interested.
   1162 		 */
   1163 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1164 			KASSERT(l->l_sigwaited != NULL);
   1165 			if (sigismember(&l->l_sigwaitset, signo))
   1166 				break;
   1167 		}
   1168 	}
   1169 
   1170 	if (l != NULL) {
   1171 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1172 		l->l_sigwaited = NULL;
   1173 		LIST_REMOVE(l, l_sigwaiter);
   1174 		cv_signal(&l->l_sigcv);
   1175 		return 1;
   1176 	}
   1177 
   1178 	return 0;
   1179 }
   1180 
   1181 /*
   1182  * Send the signal to the process.  If the signal has an action, the action
   1183  * is usually performed by the target process rather than the caller; we add
   1184  * the signal to the set of pending signals for the process.
   1185  *
   1186  * Exceptions:
   1187  *   o When a stop signal is sent to a sleeping process that takes the
   1188  *     default action, the process is stopped without awakening it.
   1189  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1190  *     regardless of the signal action (eg, blocked or ignored).
   1191  *
   1192  * Other ignored signals are discarded immediately.
   1193  */
   1194 void
   1195 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1196 {
   1197 	int prop, lid, toall, signo = ksi->ksi_signo;
   1198 	struct sigacts *sa;
   1199 	struct lwp *l;
   1200 	ksiginfo_t *kp;
   1201 	ksiginfoq_t kq;
   1202 	sig_t action;
   1203 
   1204 	KASSERT(mutex_owned(&proclist_mutex));
   1205 	KASSERT(mutex_owned(&p->p_smutex));
   1206 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1207 	KASSERT(signo > 0 && signo < NSIG);
   1208 
   1209 	/*
   1210 	 * If the process is being created by fork, is a zombie or is
   1211 	 * exiting, then just drop the signal here and bail out.
   1212 	 */
   1213 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1214 		return;
   1215 
   1216 	/*
   1217 	 * Notify any interested parties of the signal.
   1218 	 */
   1219 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1220 
   1221 	/*
   1222 	 * Some signals including SIGKILL must act on the entire process.
   1223 	 */
   1224 	kp = NULL;
   1225 	prop = sigprop[signo];
   1226 	toall = ((prop & SA_TOALL) != 0);
   1227 
   1228 	if (toall)
   1229 		lid = 0;
   1230 	else
   1231 		lid = ksi->ksi_lid;
   1232 
   1233 	/*
   1234 	 * If proc is traced, always give parent a chance.
   1235 	 */
   1236 	if (p->p_slflag & PSL_TRACED) {
   1237 		action = SIG_DFL;
   1238 
   1239 		if (lid == 0) {
   1240 			/*
   1241 			 * If the process is being traced and the signal
   1242 			 * is being caught, make sure to save any ksiginfo.
   1243 			 */
   1244 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1245 				return;
   1246 			sigput(&p->p_sigpend, p, kp);
   1247 		}
   1248 	} else {
   1249 		/*
   1250 		 * If the signal was the result of a trap and is not being
   1251 		 * caught, then reset it to default action so that the
   1252 		 * process dumps core immediately.
   1253 		 */
   1254 		if (KSI_TRAP_P(ksi)) {
   1255 			sa = p->p_sigacts;
   1256 			mutex_enter(&sa->sa_mutex);
   1257 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1258 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1259 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1260 			}
   1261 			mutex_exit(&sa->sa_mutex);
   1262 		}
   1263 
   1264 		/*
   1265 		 * If the signal is being ignored, then drop it.  Note: we
   1266 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1267 		 * SIG_IGN, action will be SIG_DFL here.
   1268 		 */
   1269 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1270 			return;
   1271 
   1272 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1273 			action = SIG_CATCH;
   1274 		else {
   1275 			action = SIG_DFL;
   1276 
   1277 			/*
   1278 			 * If sending a tty stop signal to a member of an
   1279 			 * orphaned process group, discard the signal here if
   1280 			 * the action is default; don't stop the process below
   1281 			 * if sleeping, and don't clear any pending SIGCONT.
   1282 			 */
   1283 			if (prop & SA_TTYSTOP &&
   1284 			    (p->p_sflag & PS_ORPHANPG) != 0)
   1285 				return;
   1286 
   1287 			if (prop & SA_KILL && p->p_nice > NZERO)
   1288 				p->p_nice = NZERO;
   1289 		}
   1290 	}
   1291 
   1292 	/*
   1293 	 * If stopping or continuing a process, discard any pending
   1294 	 * signals that would do the inverse.
   1295 	 */
   1296 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1297 		ksiginfo_queue_init(&kq);
   1298 		if ((prop & SA_CONT) != 0)
   1299 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1300 		if ((prop & SA_STOP) != 0)
   1301 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1302 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1303 	}
   1304 
   1305 	/*
   1306 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1307 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1308 	 * the signal info.  The signal won't be processed further here.
   1309 	 */
   1310 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1311 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1312 	    sigunwait(p, ksi))
   1313 		return;
   1314 
   1315 	/*
   1316 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1317 	 * here.
   1318 	 */
   1319 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1320 		return;
   1321 
   1322 	/*
   1323 	 * LWP private signals are easy - just find the LWP and post
   1324 	 * the signal to it.
   1325 	 */
   1326 	if (lid != 0) {
   1327 		l = lwp_find(p, lid);
   1328 		if (l != NULL) {
   1329 			sigput(&l->l_sigpend, p, kp);
   1330 			membar_producer();
   1331 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1332 		}
   1333 		goto out;
   1334 	}
   1335 
   1336 	/*
   1337 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
   1338 	 */
   1339 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1340 		if ((p->p_slflag & PSL_TRACED) != 0)
   1341 			goto deliver;
   1342 
   1343 		/*
   1344 		 * If SIGCONT is default (or ignored) and process is
   1345 		 * asleep, we are finished; the process should not
   1346 		 * be awakened.
   1347 		 */
   1348 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1349 			goto out;
   1350 
   1351 		if ((prop & SA_STOP) != 0 && action == SIG_DFL) {
   1352 			/*
   1353 			 * If a child holding parent blocked, stopping could
   1354 			 * cause deadlock: discard the signal.
   1355 			 */
   1356 			if ((p->p_sflag & PS_PPWAIT) == 0) {
   1357 				p->p_xstat = signo;
   1358 				proc_stop(p, 1, signo);
   1359 			}
   1360 			goto out;
   1361 		} else {
   1362 			/*
   1363 			 * Stop signals with the default action are handled
   1364 			 * specially in issignal(), and so are not enqueued.
   1365 			 */
   1366 			sigput(&p->p_sigpend, p, kp);
   1367 		}
   1368 	} else {
   1369 		/*
   1370 		 * Process is stopped or stopping.  If traced, then no
   1371 		 * further action is necessary.
   1372 		 */
   1373 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1374 			goto out;
   1375 
   1376 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1377 			/*
   1378 			 * Re-adjust p_nstopchild if the process wasn't
   1379 			 * collected by its parent.
   1380 			 */
   1381 			p->p_stat = SACTIVE;
   1382 			p->p_sflag &= ~PS_STOPPING;
   1383 			if (!p->p_waited)
   1384 				p->p_pptr->p_nstopchild--;
   1385 
   1386 			/*
   1387 			 * If SIGCONT is default (or ignored), we continue
   1388 			 * the process but don't leave the signal in
   1389 			 * ps_siglist, as it has no further action.  If
   1390 			 * SIGCONT is held, we continue the process and
   1391 			 * leave the signal in ps_siglist.  If the process
   1392 			 * catches SIGCONT, let it handle the signal itself.
   1393 			 * If it isn't waiting on an event, then it goes
   1394 			 * back to run state.  Otherwise, process goes back
   1395 			 * to sleep state.
   1396 			 */
   1397 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1398 				sigput(&p->p_sigpend, p, kp);
   1399 		} else if ((prop & SA_STOP) != 0) {
   1400 			/*
   1401 			 * Already stopped, don't need to stop again.
   1402 			 * (If we did the shell could get confused.)
   1403 			 */
   1404 			goto out;
   1405 		} else
   1406 			sigput(&p->p_sigpend, p, kp);
   1407 	}
   1408 
   1409  deliver:
   1410 	/*
   1411 	 * Before we set L_PENDSIG on any LWP, ensure that the signal is
   1412 	 * visible on the per process list (for sigispending()).  This
   1413 	 * is unlikely to be needed in practice, but...
   1414 	 */
   1415 	membar_producer();
   1416 
   1417 	/*
   1418 	 * Try to find an LWP that can take the signal.
   1419 	 */
   1420 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1421 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1422 			break;
   1423 
   1424  out:
   1425  	/*
   1426  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1427  	 * with locks held.  The caller should take care of this.
   1428  	 */
   1429  	ksiginfo_free(kp);
   1430 }
   1431 
   1432 void
   1433 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1434 {
   1435 	struct proc *p = l->l_proc;
   1436 
   1437 	KASSERT(mutex_owned(&p->p_smutex));
   1438 
   1439 	(*p->p_emul->e_sendsig)(ksi, mask);
   1440 }
   1441 
   1442 /*
   1443  * Stop the current process and switch away when being stopped or traced.
   1444  */
   1445 void
   1446 sigswitch(bool ppsig, int ppmask, int signo)
   1447 {
   1448 	struct lwp *l = curlwp, *l2;
   1449 	struct proc *p = l->l_proc;
   1450 #ifdef MULTIPROCESSOR
   1451 	int biglocks;
   1452 #endif
   1453 
   1454 	KASSERT(mutex_owned(&p->p_smutex));
   1455 	KASSERT(l->l_stat == LSONPROC);
   1456 	KASSERT(p->p_nrlwps > 0);
   1457 
   1458 	/*
   1459 	 * On entry we know that the process needs to stop.  If it's
   1460 	 * the result of a 'sideways' stop signal that has been sourced
   1461 	 * through issignal(), then stop other LWPs in the process too.
   1462 	 */
   1463 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1464 		/*
   1465 		 * Set the stopping indicator and bring all sleeping LWPs
   1466 		 * to a halt so they are included in p->p_nrlwps
   1467 		 */
   1468 		p->p_sflag |= (PS_STOPPING | PS_NOTIFYSTOP);
   1469 		membar_producer();
   1470 
   1471 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1472 			lwp_lock(l2);
   1473 			if (l2->l_stat == LSSLEEP &&
   1474 			    (l2->l_flag & LW_SINTR) != 0) {
   1475 				l2->l_stat = LSSTOP;
   1476 				p->p_nrlwps--;
   1477 			}
   1478 			lwp_unlock(l2);
   1479 		}
   1480 
   1481 		/*
   1482 		 * Have the remaining LWPs come to a halt, and trigger
   1483 		 * proc_stop_callout() to ensure that they do.
   1484 		 */
   1485 		KASSERT(signo != 0);
   1486 		KASSERT(p->p_nrlwps > 0);
   1487 
   1488 		if (p->p_nrlwps > 1) {
   1489 			LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1490 				sigpost(l2, SIG_DFL, SA_STOP, signo);
   1491 			callout_schedule(&proc_stop_ch, 1);
   1492 		}
   1493 	}
   1494 
   1495 	/*
   1496 	 * If we are the last live LWP, and the stop was a result of
   1497 	 * a new signal, then signal the parent.
   1498 	 */
   1499 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1500 		if (!mutex_tryenter(&proclist_mutex)) {
   1501 			mutex_exit(&p->p_smutex);
   1502 			mutex_enter(&proclist_mutex);
   1503 			mutex_enter(&p->p_smutex);
   1504 		}
   1505 
   1506 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1507 			p->p_sflag &= ~PS_STOPPING;
   1508 			p->p_stat = SSTOP;
   1509 			p->p_waited = 0;
   1510 			p->p_pptr->p_nstopchild++;
   1511 			if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1512 				/*
   1513 				 * Note that child_psignal() will drop
   1514 				 * p->p_smutex briefly.
   1515 				 */
   1516 				if (ppsig)
   1517 					child_psignal(p, ppmask);
   1518 				cv_broadcast(&p->p_pptr->p_waitcv);
   1519 			}
   1520 		}
   1521 
   1522 		mutex_exit(&proclist_mutex);
   1523 	}
   1524 
   1525 	/*
   1526 	 * Unlock and switch away.
   1527 	 */
   1528 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1529 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1530 		p->p_nrlwps--;
   1531 		lwp_lock(l);
   1532 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1533 		l->l_stat = LSSTOP;
   1534 		lwp_unlock(l);
   1535 	}
   1536 
   1537 	mutex_exit(&p->p_smutex);
   1538 	lwp_lock(l);
   1539 	mi_switch(l);
   1540 	KERNEL_LOCK(biglocks, l);
   1541 	mutex_enter(&p->p_smutex);
   1542 }
   1543 
   1544 /*
   1545  * Check for a signal from the debugger.
   1546  */
   1547 int
   1548 sigchecktrace(sigpend_t **spp)
   1549 {
   1550 	struct lwp *l = curlwp;
   1551 	struct proc *p = l->l_proc;
   1552 	int signo;
   1553 
   1554 	KASSERT(mutex_owned(&p->p_smutex));
   1555 
   1556 	/*
   1557 	 * If we are no longer being traced, or the parent didn't
   1558 	 * give us a signal, look for more signals.
   1559 	 */
   1560 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1561 		return 0;
   1562 
   1563 	/* If there's a pending SIGKILL, process it immediately. */
   1564 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1565 		return 0;
   1566 
   1567 	/*
   1568 	 * If the new signal is being masked, look for other signals.
   1569 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1570 	 */
   1571 	signo = p->p_xstat;
   1572 	p->p_xstat = 0;
   1573 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1574 		*spp = &l->l_sigpend;
   1575 	else
   1576 		*spp = &p->p_sigpend;
   1577 	if (sigismember(&l->l_sigmask, signo))
   1578 		signo = 0;
   1579 
   1580 	return signo;
   1581 }
   1582 
   1583 /*
   1584  * If the current process has received a signal (should be caught or cause
   1585  * termination, should interrupt current syscall), return the signal number.
   1586  *
   1587  * Stop signals with default action are processed immediately, then cleared;
   1588  * they aren't returned.  This is checked after each entry to the system for
   1589  * a syscall or trap.
   1590  *
   1591  * We will also return -1 if the process is exiting and the current LWP must
   1592  * follow suit.
   1593  *
   1594  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1595  * can switch away, though.
   1596  */
   1597 int
   1598 issignal(struct lwp *l)
   1599 {
   1600 	struct proc *p = l->l_proc;
   1601 	int signo = 0, prop;
   1602 	sigpend_t *sp = NULL;
   1603 	sigset_t ss;
   1604 
   1605 	KASSERT(mutex_owned(&p->p_smutex));
   1606 
   1607 	for (;;) {
   1608 		/* Discard any signals that we have decided not to take. */
   1609 		if (signo != 0)
   1610 			(void)sigget(sp, NULL, signo, NULL);
   1611 
   1612 		/*
   1613 		 * If the process is stopped/stopping, then stop ourselves
   1614 		 * now that we're on the kernel/userspace boundary.  When
   1615 		 * we awaken, check for a signal from the debugger.
   1616 		 */
   1617 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1618 			sigswitch(true, PS_NOCLDSTOP, 0);
   1619 			signo = sigchecktrace(&sp);
   1620 		} else
   1621 			signo = 0;
   1622 
   1623 		/*
   1624 		 * If the debugger didn't provide a signal, find a pending
   1625 		 * signal from our set.  Check per-LWP signals first, and
   1626 		 * then per-process.
   1627 		 */
   1628 		if (signo == 0) {
   1629 			sp = &l->l_sigpend;
   1630 			ss = sp->sp_set;
   1631 			if ((p->p_sflag & PS_PPWAIT) != 0)
   1632 				sigminusset(&stopsigmask, &ss);
   1633 			sigminusset(&l->l_sigmask, &ss);
   1634 
   1635 			if ((signo = firstsig(&ss)) == 0) {
   1636 				sp = &p->p_sigpend;
   1637 				ss = sp->sp_set;
   1638 				if ((p->p_sflag & PS_PPWAIT) != 0)
   1639 					sigminusset(&stopsigmask, &ss);
   1640 				sigminusset(&l->l_sigmask, &ss);
   1641 
   1642 				if ((signo = firstsig(&ss)) == 0) {
   1643 					/*
   1644 					 * No signal pending - clear the
   1645 					 * indicator and bail out.
   1646 					 */
   1647 					lwp_lock(l);
   1648 					l->l_flag &= ~LW_PENDSIG;
   1649 					lwp_unlock(l);
   1650 					sp = NULL;
   1651 					break;
   1652 				}
   1653 			}
   1654 		}
   1655 
   1656 		/*
   1657 		 * We should see pending but ignored signals only if
   1658 		 * we are being traced.
   1659 		 */
   1660 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1661 		    (p->p_slflag & PSL_TRACED) == 0) {
   1662 			/* Discard the signal. */
   1663 			continue;
   1664 		}
   1665 
   1666 		/*
   1667 		 * If traced, always stop, and stay stopped until released
   1668 		 * by the debugger.  If the our parent process is waiting
   1669 		 * for us, don't hang as we could deadlock.
   1670 		 */
   1671 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1672 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
   1673 			/* Take the signal. */
   1674 			(void)sigget(sp, NULL, signo, NULL);
   1675 			p->p_xstat = signo;
   1676 
   1677 			/* Emulation-specific handling of signal trace */
   1678 			if (p->p_emul->e_tracesig == NULL ||
   1679 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1680 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1681 				    signo);
   1682 
   1683 			/* Check for a signal from the debugger. */
   1684 			if ((signo = sigchecktrace(&sp)) == 0)
   1685 				continue;
   1686 		}
   1687 
   1688 		prop = sigprop[signo];
   1689 
   1690 		/*
   1691 		 * Decide whether the signal should be returned.
   1692 		 */
   1693 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1694 		case (long)SIG_DFL:
   1695 			/*
   1696 			 * Don't take default actions on system processes.
   1697 			 */
   1698 			if (p->p_pid <= 1) {
   1699 #ifdef DIAGNOSTIC
   1700 				/*
   1701 				 * Are you sure you want to ignore SIGSEGV
   1702 				 * in init? XXX
   1703 				 */
   1704 				printf_nolog("Process (pid %d) got sig %d\n",
   1705 				    p->p_pid, signo);
   1706 #endif
   1707 				continue;
   1708 			}
   1709 
   1710 			/*
   1711 			 * If there is a pending stop signal to process with
   1712 			 * default action, stop here, then clear the signal.
   1713 			 * However, if process is member of an orphaned
   1714 			 * process group, ignore tty stop signals.
   1715 			 */
   1716 			if (prop & SA_STOP) {
   1717 				if (p->p_slflag & PSL_TRACED ||
   1718 		    		    ((p->p_sflag & PS_ORPHANPG) != 0 &&
   1719 				    prop & SA_TTYSTOP)) {
   1720 				    	/* Ignore the signal. */
   1721 					continue;
   1722 				}
   1723 				/* Take the signal. */
   1724 				(void)sigget(sp, NULL, signo, NULL);
   1725 				p->p_xstat = signo;
   1726 				signo = 0;
   1727 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1728 			} else if (prop & SA_IGNORE) {
   1729 				/*
   1730 				 * Except for SIGCONT, shouldn't get here.
   1731 				 * Default action is to ignore; drop it.
   1732 				 */
   1733 				continue;
   1734 			}
   1735 			break;
   1736 
   1737 		case (long)SIG_IGN:
   1738 #ifdef DEBUG_ISSIGNAL
   1739 			/*
   1740 			 * Masking above should prevent us ever trying
   1741 			 * to take action on an ignored signal other
   1742 			 * than SIGCONT, unless process is traced.
   1743 			 */
   1744 			if ((prop & SA_CONT) == 0 &&
   1745 			    (p->p_slflag & PSL_TRACED) == 0)
   1746 				printf_nolog("issignal\n");
   1747 #endif
   1748 			continue;
   1749 
   1750 		default:
   1751 			/*
   1752 			 * This signal has an action, let postsig() process
   1753 			 * it.
   1754 			 */
   1755 			break;
   1756 		}
   1757 
   1758 		break;
   1759 	}
   1760 
   1761 	l->l_sigpendset = sp;
   1762 	return signo;
   1763 }
   1764 
   1765 /*
   1766  * Take the action for the specified signal
   1767  * from the current set of pending signals.
   1768  */
   1769 void
   1770 postsig(int signo)
   1771 {
   1772 	struct lwp	*l;
   1773 	struct proc	*p;
   1774 	struct sigacts	*ps;
   1775 	sig_t		action;
   1776 	sigset_t	*returnmask;
   1777 	ksiginfo_t	ksi;
   1778 
   1779 	l = curlwp;
   1780 	p = l->l_proc;
   1781 	ps = p->p_sigacts;
   1782 
   1783 	KASSERT(mutex_owned(&p->p_smutex));
   1784 	KASSERT(signo > 0);
   1785 
   1786 	/*
   1787 	 * Set the new mask value and also defer further occurrences of this
   1788 	 * signal.
   1789 	 *
   1790 	 * Special case: user has done a sigpause.  Here the current mask is
   1791 	 * not of interest, but rather the mask from before the sigpause is
   1792 	 * what we want restored after the signal processing is completed.
   1793 	 */
   1794 	if (l->l_sigrestore) {
   1795 		returnmask = &l->l_sigoldmask;
   1796 		l->l_sigrestore = 0;
   1797 	} else
   1798 		returnmask = &l->l_sigmask;
   1799 
   1800 	/*
   1801 	 * Commit to taking the signal before releasing the mutex.
   1802 	 */
   1803 	action = SIGACTION_PS(ps, signo).sa_handler;
   1804 	p->p_stats->p_ru.ru_nsignals++;
   1805 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1806 
   1807 	if (ktrpoint(KTR_PSIG)) {
   1808 		mutex_exit(&p->p_smutex);
   1809 		ktrpsig(signo, action, returnmask, NULL);
   1810 		mutex_enter(&p->p_smutex);
   1811 	}
   1812 
   1813 	if (action == SIG_DFL) {
   1814 		/*
   1815 		 * Default action, where the default is to kill
   1816 		 * the process.  (Other cases were ignored above.)
   1817 		 */
   1818 		sigexit(l, signo);
   1819 		return;
   1820 	}
   1821 
   1822 	/*
   1823 	 * If we get here, the signal must be caught.
   1824 	 */
   1825 #ifdef DIAGNOSTIC
   1826 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1827 		panic("postsig action");
   1828 #endif
   1829 
   1830 	kpsendsig(l, &ksi, returnmask);
   1831 }
   1832 
   1833 /*
   1834  * sendsig_reset:
   1835  *
   1836  *	Reset the signal action.  Called from emulation specific sendsig()
   1837  *	before unlocking to deliver the signal.
   1838  */
   1839 void
   1840 sendsig_reset(struct lwp *l, int signo)
   1841 {
   1842 	struct proc *p = l->l_proc;
   1843 	struct sigacts *ps = p->p_sigacts;
   1844 
   1845 	KASSERT(mutex_owned(&p->p_smutex));
   1846 
   1847 	p->p_sigctx.ps_lwp = 0;
   1848 	p->p_sigctx.ps_code = 0;
   1849 	p->p_sigctx.ps_signo = 0;
   1850 
   1851 	mutex_enter(&ps->sa_mutex);
   1852 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1853 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1854 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1855 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1856 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1857 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1858 	}
   1859 	mutex_exit(&ps->sa_mutex);
   1860 }
   1861 
   1862 /*
   1863  * Kill the current process for stated reason.
   1864  */
   1865 void
   1866 killproc(struct proc *p, const char *why)
   1867 {
   1868 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1869 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1870 	mutex_enter(&proclist_mutex);	/* XXXSMP */
   1871 	psignal(p, SIGKILL);
   1872 	mutex_exit(&proclist_mutex);	/* XXXSMP */
   1873 }
   1874 
   1875 /*
   1876  * Force the current process to exit with the specified signal, dumping core
   1877  * if appropriate.  We bypass the normal tests for masked and caught
   1878  * signals, allowing unrecoverable failures to terminate the process without
   1879  * changing signal state.  Mark the accounting record with the signal
   1880  * termination.  If dumping core, save the signal number for the debugger.
   1881  * Calls exit and does not return.
   1882  */
   1883 void
   1884 sigexit(struct lwp *l, int signo)
   1885 {
   1886 	int exitsig, error, docore;
   1887 	struct proc *p;
   1888 	struct lwp *t;
   1889 
   1890 	p = l->l_proc;
   1891 
   1892 	KASSERT(mutex_owned(&p->p_smutex));
   1893 	KERNEL_UNLOCK_ALL(l, NULL);
   1894 
   1895 	/*
   1896 	 * Don't permit coredump() multiple times in the same process.
   1897 	 * Call back into sigexit, where we will be suspended until
   1898 	 * the deed is done.  Note that this is a recursive call, but
   1899 	 * LW_WCORE will prevent us from coming back this way.
   1900 	 */
   1901 	if ((p->p_sflag & PS_WCORE) != 0) {
   1902 		lwp_lock(l);
   1903 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1904 		lwp_unlock(l);
   1905 		mutex_exit(&p->p_smutex);
   1906 		lwp_userret(l);
   1907 #ifdef DIAGNOSTIC
   1908 		panic("sigexit");
   1909 #endif
   1910 		/* NOTREACHED */
   1911 	}
   1912 
   1913 	/*
   1914 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1915 	 * so that their registers are available long enough to be dumped.
   1916  	 */
   1917 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1918 		p->p_sflag |= PS_WCORE;
   1919 		for (;;) {
   1920 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1921 				lwp_lock(t);
   1922 				if (t == l) {
   1923 					t->l_flag &= ~LW_WSUSPEND;
   1924 					lwp_unlock(t);
   1925 					continue;
   1926 				}
   1927 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1928 				lwp_suspend(l, t);
   1929 			}
   1930 
   1931 			if (p->p_nrlwps == 1)
   1932 				break;
   1933 
   1934 			/*
   1935 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   1936 			 * for everyone else to stop before proceeding.
   1937 			 */
   1938 			p->p_nlwpwait++;
   1939 			cv_broadcast(&p->p_lwpcv);
   1940 			cv_wait(&p->p_lwpcv, &p->p_smutex);
   1941 			p->p_nlwpwait--;
   1942 		}
   1943 	}
   1944 
   1945 	exitsig = signo;
   1946 	p->p_acflag |= AXSIG;
   1947 	p->p_sigctx.ps_signo = signo;
   1948 	mutex_exit(&p->p_smutex);
   1949 
   1950 	KERNEL_LOCK(1, l);
   1951 
   1952 	if (docore) {
   1953 		if ((error = coredump(l, NULL)) == 0)
   1954 			exitsig |= WCOREFLAG;
   1955 
   1956 		if (kern_logsigexit) {
   1957 			int uid = l->l_cred ?
   1958 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   1959 
   1960 			if (error)
   1961 				log(LOG_INFO, lognocoredump, p->p_pid,
   1962 				    p->p_comm, uid, signo, error);
   1963 			else
   1964 				log(LOG_INFO, logcoredump, p->p_pid,
   1965 				    p->p_comm, uid, signo);
   1966 		}
   1967 
   1968 #ifdef PAX_SEGVGUARD
   1969 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   1970 #endif /* PAX_SEGVGUARD */
   1971 	}
   1972 
   1973 	/* Acquire the sched state mutex.  exit1() will release it. */
   1974 	mutex_enter(&p->p_smutex);
   1975 
   1976 	/* No longer dumping core. */
   1977 	p->p_sflag &= ~PS_WCORE;
   1978 
   1979 	exit1(l, W_EXITCODE(0, exitsig));
   1980 	/* NOTREACHED */
   1981 }
   1982 
   1983 /*
   1984  * Put process 'p' into the stopped state and optionally, notify the parent.
   1985  */
   1986 void
   1987 proc_stop(struct proc *p, int notify, int signo)
   1988 {
   1989 	struct lwp *l;
   1990 
   1991 	KASSERT(mutex_owned(&proclist_mutex));
   1992 	KASSERT(mutex_owned(&p->p_smutex));
   1993 
   1994 	/*
   1995 	 * First off, set the stopping indicator and bring all sleeping
   1996 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   1997 	 * unlock between here and the p->p_nrlwps check below.
   1998 	 */
   1999 	p->p_sflag |= PS_STOPPING;
   2000 	membar_producer();
   2001 
   2002 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2003 		lwp_lock(l);
   2004 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   2005 			l->l_stat = LSSTOP;
   2006 			p->p_nrlwps--;
   2007 		}
   2008 		lwp_unlock(l);
   2009 	}
   2010 
   2011 	/*
   2012 	 * If there are no LWPs available to take the signal, then we
   2013 	 * signal the parent process immediately.  Otherwise, the last
   2014 	 * LWP to stop will take care of it.
   2015 	 */
   2016 	if (notify)
   2017 		p->p_sflag |= PS_NOTIFYSTOP;
   2018 	else
   2019 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2020 
   2021 	if (p->p_nrlwps == 0) {
   2022 		p->p_sflag &= ~PS_STOPPING;
   2023 		p->p_stat = SSTOP;
   2024 		p->p_waited = 0;
   2025 		p->p_pptr->p_nstopchild++;
   2026 
   2027 		if (notify) {
   2028 			child_psignal(p, PS_NOCLDSTOP);
   2029 			cv_broadcast(&p->p_pptr->p_waitcv);
   2030 		}
   2031 	} else {
   2032 		/*
   2033 		 * Have the remaining LWPs come to a halt, and trigger
   2034 		 * proc_stop_callout() to ensure that they do.
   2035 		 */
   2036 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2037 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2038 		callout_schedule(&proc_stop_ch, 1);
   2039 	}
   2040 }
   2041 
   2042 /*
   2043  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2044  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2045  * to allow LWPs to release any locks that they may hold before stopping.
   2046  *
   2047  * Non-interruptable sleeps can be long, and there is the potential for an
   2048  * LWP to begin sleeping interruptably soon after the process has been set
   2049  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2050  * stopping, and so complete halt of the process and the return of status
   2051  * information to the parent could be delayed indefinitely.
   2052  *
   2053  * To handle this race, proc_stop_callout() runs once per tick while there
   2054  * are stopping processes in the system.  It sets LWPs that are sleeping
   2055  * interruptably into the LSSTOP state.
   2056  *
   2057  * Note that we are not concerned about keeping all LWPs stopped while the
   2058  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2059  * What we do need to ensure is that all LWPs in a stopping process have
   2060  * stopped at least once, so that notification can be sent to the parent
   2061  * process.
   2062  */
   2063 static void
   2064 proc_stop_callout(void *cookie)
   2065 {
   2066 	bool more, restart;
   2067 	struct proc *p;
   2068 	struct lwp *l;
   2069 
   2070 	(void)cookie;
   2071 
   2072 	do {
   2073 		restart = false;
   2074 		more = false;
   2075 
   2076 		mutex_enter(&proclist_lock);
   2077 		mutex_enter(&proclist_mutex);
   2078 		PROCLIST_FOREACH(p, &allproc) {
   2079 			mutex_enter(&p->p_smutex);
   2080 
   2081 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2082 				mutex_exit(&p->p_smutex);
   2083 				continue;
   2084 			}
   2085 
   2086 			/* Stop any LWPs sleeping interruptably. */
   2087 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2088 				lwp_lock(l);
   2089 				if (l->l_stat == LSSLEEP &&
   2090 				    (l->l_flag & LW_SINTR) != 0) {
   2091 				    	l->l_stat = LSSTOP;
   2092 				    	p->p_nrlwps--;
   2093 				}
   2094 				lwp_unlock(l);
   2095 			}
   2096 
   2097 			if (p->p_nrlwps == 0) {
   2098 				/*
   2099 				 * We brought the process to a halt.
   2100 				 * Mark it as stopped and notify the
   2101 				 * parent.
   2102 				 */
   2103 				p->p_sflag &= ~PS_STOPPING;
   2104 				p->p_stat = SSTOP;
   2105 				p->p_waited = 0;
   2106 				p->p_pptr->p_nstopchild++;
   2107 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2108 					/*
   2109 					 * Note that child_psignal() will
   2110 					 * drop p->p_smutex briefly.
   2111 					 * Arrange to restart and check
   2112 					 * all processes again.
   2113 					 */
   2114 					restart = true;
   2115 					child_psignal(p, PS_NOCLDSTOP);
   2116 					cv_broadcast(&p->p_pptr->p_waitcv);
   2117 				}
   2118 			} else
   2119 				more = true;
   2120 
   2121 			mutex_exit(&p->p_smutex);
   2122 			if (restart)
   2123 				break;
   2124 		}
   2125 		mutex_exit(&proclist_mutex);
   2126 		mutex_exit(&proclist_lock);
   2127 	} while (restart);
   2128 
   2129 	/*
   2130 	 * If we noted processes that are stopping but still have
   2131 	 * running LWPs, then arrange to check again in 1 tick.
   2132 	 */
   2133 	if (more)
   2134 		callout_schedule(&proc_stop_ch, 1);
   2135 }
   2136 
   2137 /*
   2138  * Given a process in state SSTOP, set the state back to SACTIVE and
   2139  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2140  */
   2141 void
   2142 proc_unstop(struct proc *p)
   2143 {
   2144 	struct lwp *l;
   2145 	int sig;
   2146 
   2147 	KASSERT(mutex_owned(&proclist_mutex));
   2148 	KASSERT(mutex_owned(&p->p_smutex));
   2149 
   2150 	p->p_stat = SACTIVE;
   2151 	p->p_sflag &= ~PS_STOPPING;
   2152 	sig = p->p_xstat;
   2153 
   2154 	if (!p->p_waited)
   2155 		p->p_pptr->p_nstopchild--;
   2156 
   2157 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2158 		lwp_lock(l);
   2159 		if (l->l_stat != LSSTOP) {
   2160 			lwp_unlock(l);
   2161 			continue;
   2162 		}
   2163 		if (l->l_wchan == NULL) {
   2164 			setrunnable(l);
   2165 			continue;
   2166 		}
   2167 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2168 		        setrunnable(l);
   2169 		        sig = 0;
   2170 		} else {
   2171 			l->l_stat = LSSLEEP;
   2172 			p->p_nrlwps++;
   2173 			lwp_unlock(l);
   2174 		}
   2175 	}
   2176 }
   2177 
   2178 static int
   2179 filt_sigattach(struct knote *kn)
   2180 {
   2181 	struct proc *p = curproc;
   2182 
   2183 	kn->kn_ptr.p_proc = p;
   2184 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2185 
   2186 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2187 
   2188 	return (0);
   2189 }
   2190 
   2191 static void
   2192 filt_sigdetach(struct knote *kn)
   2193 {
   2194 	struct proc *p = kn->kn_ptr.p_proc;
   2195 
   2196 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2197 }
   2198 
   2199 /*
   2200  * signal knotes are shared with proc knotes, so we apply a mask to
   2201  * the hint in order to differentiate them from process hints.  This
   2202  * could be avoided by using a signal-specific knote list, but probably
   2203  * isn't worth the trouble.
   2204  */
   2205 static int
   2206 filt_signal(struct knote *kn, long hint)
   2207 {
   2208 
   2209 	if (hint & NOTE_SIGNAL) {
   2210 		hint &= ~NOTE_SIGNAL;
   2211 
   2212 		if (kn->kn_id == hint)
   2213 			kn->kn_data++;
   2214 	}
   2215 	return (kn->kn_data != 0);
   2216 }
   2217 
   2218 const struct filterops sig_filtops = {
   2219 	0, filt_sigattach, filt_sigdetach, filt_signal
   2220 };
   2221