Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.265
      1 /*	$NetBSD: kern_sig.c,v 1.265 2008/01/24 13:57:52 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  * (c) UNIX System Laboratories, Inc.
     43  * All or some portions of this file are derived from material licensed
     44  * to the University of California by American Telephone and Telegraph
     45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     46  * the permission of UNIX System Laboratories, Inc.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that the following conditions
     50  * are met:
     51  * 1. Redistributions of source code must retain the above copyright
     52  *    notice, this list of conditions and the following disclaimer.
     53  * 2. Redistributions in binary form must reproduce the above copyright
     54  *    notice, this list of conditions and the following disclaimer in the
     55  *    documentation and/or other materials provided with the distribution.
     56  * 3. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.265 2008/01/24 13:57:52 ad Exp $");
     77 
     78 #include "opt_ptrace.h"
     79 #include "opt_multiprocessor.h"
     80 #include "opt_compat_sunos.h"
     81 #include "opt_compat_netbsd.h"
     82 #include "opt_compat_netbsd32.h"
     83 #include "opt_pax.h"
     84 
     85 #define	SIGPROP		/* include signal properties table */
     86 #include <sys/param.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/proc.h>
     89 #include <sys/systm.h>
     90 #include <sys/wait.h>
     91 #include <sys/ktrace.h>
     92 #include <sys/syslog.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/file.h>
     95 #include <sys/malloc.h>
     96 #include <sys/pool.h>
     97 #include <sys/ucontext.h>
     98 #include <sys/exec.h>
     99 #include <sys/kauth.h>
    100 #include <sys/acct.h>
    101 #include <sys/callout.h>
    102 #include <sys/atomic.h>
    103 #include <sys/cpu.h>
    104 
    105 #ifdef PAX_SEGVGUARD
    106 #include <sys/pax.h>
    107 #endif /* PAX_SEGVGUARD */
    108 
    109 #include <uvm/uvm.h>
    110 #include <uvm/uvm_extern.h>
    111 
    112 static void	ksiginfo_exechook(struct proc *, void *);
    113 static void	proc_stop_callout(void *);
    114 
    115 int	sigunwait(struct proc *, const ksiginfo_t *);
    116 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    117 int	sigpost(struct lwp *, sig_t, int, int);
    118 int	sigchecktrace(sigpend_t **);
    119 void	sigswitch(bool, int, int);
    120 void	sigrealloc(ksiginfo_t *);
    121 
    122 sigset_t	contsigmask, stopsigmask, sigcantmask;
    123 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
    124 static void	sigacts_poolpage_free(struct pool *, void *);
    125 static void	*sigacts_poolpage_alloc(struct pool *, int);
    126 static callout_t proc_stop_ch;
    127 
    128 static struct pool_allocator sigactspool_allocator = {
    129         .pa_alloc = sigacts_poolpage_alloc,
    130 	.pa_free = sigacts_poolpage_free,
    131 };
    132 
    133 #ifdef DEBUG
    134 int	kern_logsigexit = 1;
    135 #else
    136 int	kern_logsigexit = 0;
    137 #endif
    138 
    139 static	const char logcoredump[] =
    140     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    141 static	const char lognocoredump[] =
    142     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    143 
    144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    145     &pool_allocator_nointr, IPL_NONE);
    146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    147     NULL, IPL_VM);
    148 
    149 /*
    150  * signal_init:
    151  *
    152  * 	Initialize global signal-related data structures.
    153  */
    154 void
    155 signal_init(void)
    156 {
    157 
    158 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    159 
    160 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    161 	    sizeof(struct sigacts) > PAGE_SIZE ?
    162 	    &sigactspool_allocator : &pool_allocator_nointr,
    163 	    IPL_NONE);
    164 
    165 	exechook_establish(ksiginfo_exechook, NULL);
    166 
    167 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    168 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    169 }
    170 
    171 /*
    172  * sigacts_poolpage_alloc:
    173  *
    174  *	 Allocate a page for the sigacts memory pool.
    175  */
    176 static void *
    177 sigacts_poolpage_alloc(struct pool *pp, int flags)
    178 {
    179 
    180 	return (void *)uvm_km_alloc(kernel_map,
    181 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    182 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    183 	    | UVM_KMF_WIRED);
    184 }
    185 
    186 /*
    187  * sigacts_poolpage_free:
    188  *
    189  *	 Free a page on behalf of the sigacts memory pool.
    190  */
    191 static void
    192 sigacts_poolpage_free(struct pool *pp, void *v)
    193 {
    194         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    195 }
    196 
    197 /*
    198  * sigactsinit:
    199  *
    200  *	 Create an initial sigctx structure, using the same signal state as
    201  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    202  *	 copy it from parent.
    203  */
    204 struct sigacts *
    205 sigactsinit(struct proc *pp, int share)
    206 {
    207 	struct sigacts *ps, *ps2;
    208 
    209 	ps = pp->p_sigacts;
    210 
    211 	if (share) {
    212 		mutex_enter(&ps->sa_mutex);
    213 		ps->sa_refcnt++;
    214 		mutex_exit(&ps->sa_mutex);
    215 		ps2 = ps;
    216 	} else {
    217 		ps2 = pool_get(&sigacts_pool, PR_WAITOK);
    218 		/* XXX IPL_SCHED to match p_smutex */
    219 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    220 		mutex_enter(&ps->sa_mutex);
    221 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    222 		    sizeof(ps2->sa_sigdesc));
    223 		mutex_exit(&ps->sa_mutex);
    224 		ps2->sa_refcnt = 1;
    225 	}
    226 
    227 	return ps2;
    228 }
    229 
    230 /*
    231  * sigactsunshare:
    232  *
    233  *	Make this process not share its sigctx, maintaining all
    234  *	signal state.
    235  */
    236 void
    237 sigactsunshare(struct proc *p)
    238 {
    239 	struct sigacts *ps, *oldps;
    240 
    241 	oldps = p->p_sigacts;
    242 	if (oldps->sa_refcnt == 1)
    243 		return;
    244 	ps = pool_get(&sigacts_pool, PR_WAITOK);
    245 	/* XXX IPL_SCHED to match p_smutex */
    246 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    247 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    248 	p->p_sigacts = ps;
    249 	sigactsfree(oldps);
    250 }
    251 
    252 /*
    253  * sigactsfree;
    254  *
    255  *	Release a sigctx structure.
    256  */
    257 void
    258 sigactsfree(struct sigacts *ps)
    259 {
    260 	int refcnt;
    261 
    262 	mutex_enter(&ps->sa_mutex);
    263 	refcnt = --ps->sa_refcnt;
    264 	mutex_exit(&ps->sa_mutex);
    265 
    266 	if (refcnt == 0) {
    267 		mutex_destroy(&ps->sa_mutex);
    268 		pool_put(&sigacts_pool, ps);
    269 	}
    270 }
    271 
    272 /*
    273  * siginit:
    274  *
    275  *	Initialize signal state for process 0; set to ignore signals that
    276  *	are ignored by default and disable the signal stack.  Locking not
    277  *	required as the system is still cold.
    278  */
    279 void
    280 siginit(struct proc *p)
    281 {
    282 	struct lwp *l;
    283 	struct sigacts *ps;
    284 	int signo, prop;
    285 
    286 	ps = p->p_sigacts;
    287 	sigemptyset(&contsigmask);
    288 	sigemptyset(&stopsigmask);
    289 	sigemptyset(&sigcantmask);
    290 	for (signo = 1; signo < NSIG; signo++) {
    291 		prop = sigprop[signo];
    292 		if (prop & SA_CONT)
    293 			sigaddset(&contsigmask, signo);
    294 		if (prop & SA_STOP)
    295 			sigaddset(&stopsigmask, signo);
    296 		if (prop & SA_CANTMASK)
    297 			sigaddset(&sigcantmask, signo);
    298 		if (prop & SA_IGNORE && signo != SIGCONT)
    299 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    300 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    301 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    302 	}
    303 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    304 	p->p_sflag &= ~PS_NOCLDSTOP;
    305 
    306 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    307 	sigemptyset(&p->p_sigpend.sp_set);
    308 
    309 	/*
    310 	 * Reset per LWP state.
    311 	 */
    312 	l = LIST_FIRST(&p->p_lwps);
    313 	l->l_sigwaited = NULL;
    314 	l->l_sigstk.ss_flags = SS_DISABLE;
    315 	l->l_sigstk.ss_size = 0;
    316 	l->l_sigstk.ss_sp = 0;
    317 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    318 	sigemptyset(&l->l_sigpend.sp_set);
    319 
    320 	/* One reference. */
    321 	ps->sa_refcnt = 1;
    322 }
    323 
    324 /*
    325  * execsigs:
    326  *
    327  *	Reset signals for an exec of the specified process.
    328  */
    329 void
    330 execsigs(struct proc *p)
    331 {
    332 	struct sigacts *ps;
    333 	struct lwp *l;
    334 	int signo, prop;
    335 	sigset_t tset;
    336 	ksiginfoq_t kq;
    337 
    338 	KASSERT(p->p_nlwps == 1);
    339 
    340 	sigactsunshare(p);
    341 	ps = p->p_sigacts;
    342 
    343 	/*
    344 	 * Reset caught signals.  Held signals remain held through
    345 	 * l->l_sigmask (unless they were caught, and are now ignored
    346 	 * by default).
    347 	 *
    348 	 * No need to lock yet, the process has only one LWP and
    349 	 * at this point the sigacts are private to the process.
    350 	 */
    351 	sigemptyset(&tset);
    352 	for (signo = 1; signo < NSIG; signo++) {
    353 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    354 			prop = sigprop[signo];
    355 			if (prop & SA_IGNORE) {
    356 				if ((prop & SA_CONT) == 0)
    357 					sigaddset(&p->p_sigctx.ps_sigignore,
    358 					    signo);
    359 				sigaddset(&tset, signo);
    360 			}
    361 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    362 		}
    363 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    364 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    365 	}
    366 	ksiginfo_queue_init(&kq);
    367 
    368 	mutex_enter(&p->p_smutex);
    369 	sigclearall(p, &tset, &kq);
    370 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    371 
    372 	/*
    373 	 * Reset no zombies if child dies flag as Solaris does.
    374 	 */
    375 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    376 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    377 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    378 
    379 	/*
    380 	 * Reset per-LWP state.
    381 	 */
    382 	l = LIST_FIRST(&p->p_lwps);
    383 	l->l_sigwaited = NULL;
    384 	l->l_sigstk.ss_flags = SS_DISABLE;
    385 	l->l_sigstk.ss_size = 0;
    386 	l->l_sigstk.ss_sp = 0;
    387 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    388 	sigemptyset(&l->l_sigpend.sp_set);
    389 	mutex_exit(&p->p_smutex);
    390 
    391 	ksiginfo_queue_drain(&kq);
    392 }
    393 
    394 /*
    395  * ksiginfo_exechook:
    396  *
    397  *	Free all pending ksiginfo entries from a process on exec.
    398  *	Additionally, drain any unused ksiginfo structures in the
    399  *	system back to the pool.
    400  *
    401  *	XXX This should not be a hook, every process has signals.
    402  */
    403 static void
    404 ksiginfo_exechook(struct proc *p, void *v)
    405 {
    406 	ksiginfoq_t kq;
    407 
    408 	ksiginfo_queue_init(&kq);
    409 
    410 	mutex_enter(&p->p_smutex);
    411 	sigclearall(p, NULL, &kq);
    412 	mutex_exit(&p->p_smutex);
    413 
    414 	ksiginfo_queue_drain(&kq);
    415 }
    416 
    417 /*
    418  * ksiginfo_alloc:
    419  *
    420  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    421  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    422  *	has not been queued somewhere, then just return it.  Additionally,
    423  *	if the existing ksiginfo_t does not contain any information beyond
    424  *	the signal number, then just return it.
    425  */
    426 ksiginfo_t *
    427 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    428 {
    429 	ksiginfo_t *kp;
    430 	int s;
    431 
    432 	if (ok != NULL) {
    433 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    434 		    KSI_FROMPOOL)
    435 		    	return ok;
    436 		if (KSI_EMPTY_P(ok))
    437 			return ok;
    438 	}
    439 
    440 	s = splvm();
    441 	kp = pool_get(&ksiginfo_pool, flags);
    442 	splx(s);
    443 	if (kp == NULL) {
    444 #ifdef DIAGNOSTIC
    445 		printf("Out of memory allocating ksiginfo for pid %d\n",
    446 		    p->p_pid);
    447 #endif
    448 		return NULL;
    449 	}
    450 
    451 	if (ok != NULL) {
    452 		memcpy(kp, ok, sizeof(*kp));
    453 		kp->ksi_flags &= ~KSI_QUEUED;
    454 	} else
    455 		KSI_INIT_EMPTY(kp);
    456 
    457 	kp->ksi_flags |= KSI_FROMPOOL;
    458 
    459 	return kp;
    460 }
    461 
    462 /*
    463  * ksiginfo_free:
    464  *
    465  *	If the given ksiginfo_t is from the pool and has not been queued,
    466  *	then free it.
    467  */
    468 void
    469 ksiginfo_free(ksiginfo_t *kp)
    470 {
    471 	int s;
    472 
    473 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    474 		return;
    475 	s = splvm();
    476 	pool_put(&ksiginfo_pool, kp);
    477 	splx(s);
    478 }
    479 
    480 /*
    481  * ksiginfo_queue_drain:
    482  *
    483  *	Drain a non-empty ksiginfo_t queue.
    484  */
    485 void
    486 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    487 {
    488 	ksiginfo_t *ksi;
    489 	int s;
    490 
    491 	KASSERT(!CIRCLEQ_EMPTY(kq));
    492 
    493 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    494 	while (!CIRCLEQ_EMPTY(kq)) {
    495 		ksi = CIRCLEQ_FIRST(kq);
    496 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    497 		s = splvm();
    498 		pool_put(&ksiginfo_pool, ksi);
    499 		splx(s);
    500 	}
    501 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    502 }
    503 
    504 /*
    505  * sigget:
    506  *
    507  *	Fetch the first pending signal from a set.  Optionally, also fetch
    508  *	or manufacture a ksiginfo element.  Returns the number of the first
    509  *	pending signal, or zero.
    510  */
    511 int
    512 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, sigset_t *mask)
    513 {
    514         ksiginfo_t *ksi;
    515 	sigset_t tset;
    516 
    517 	/* If there's no pending set, the signal is from the debugger. */
    518 	if (sp == NULL) {
    519 		if (out != NULL) {
    520 			KSI_INIT(out);
    521 			out->ksi_info._signo = signo;
    522 			out->ksi_info._code = SI_USER;
    523 		}
    524 		return signo;
    525 	}
    526 
    527 	/* Construct mask from signo, and 'mask'. */
    528 	if (signo == 0) {
    529 		if (mask != NULL) {
    530 			tset = *mask;
    531 			__sigandset(&sp->sp_set, &tset);
    532 		} else
    533 			tset = sp->sp_set;
    534 
    535 		/* If there are no signals pending, that's it. */
    536 		if ((signo = firstsig(&tset)) == 0)
    537 			return 0;
    538 	} else {
    539 		KASSERT(sigismember(&sp->sp_set, signo));
    540 	}
    541 
    542 	sigdelset(&sp->sp_set, signo);
    543 
    544 	/* Find siginfo and copy it out. */
    545 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    546 		if (ksi->ksi_signo == signo) {
    547 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    548 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    549 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    550 			ksi->ksi_flags &= ~KSI_QUEUED;
    551 			if (out != NULL) {
    552 				memcpy(out, ksi, sizeof(*out));
    553 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    554 			}
    555 			ksiginfo_free(ksi);
    556 			return signo;
    557 		}
    558 	}
    559 
    560 	/* If there's no siginfo, then manufacture it. */
    561 	if (out != NULL) {
    562 		KSI_INIT(out);
    563 		out->ksi_info._signo = signo;
    564 		out->ksi_info._code = SI_USER;
    565 	}
    566 
    567 	return signo;
    568 }
    569 
    570 /*
    571  * sigput:
    572  *
    573  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    574  *	we need to (e.g. SA_SIGINFO was requested).
    575  */
    576 void
    577 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    578 {
    579 	ksiginfo_t *kp;
    580 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    581 
    582 	KASSERT(mutex_owned(&p->p_smutex));
    583 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    584 
    585 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    586 
    587 	/*
    588 	 * If siginfo is not required, or there is none, then just mark the
    589 	 * signal as pending.
    590 	 */
    591 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
    592 		return;
    593 
    594 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    595 
    596 #ifdef notyet	/* XXX: QUEUING */
    597 	if (ksi->ksi_signo < SIGRTMIN)
    598 #endif
    599 	{
    600 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    601 			if (kp->ksi_signo == ksi->ksi_signo) {
    602 				KSI_COPY(ksi, kp);
    603 				kp->ksi_flags |= KSI_QUEUED;
    604 				return;
    605 			}
    606 		}
    607 	}
    608 
    609 	ksi->ksi_flags |= KSI_QUEUED;
    610 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    611 }
    612 
    613 /*
    614  * sigclear:
    615  *
    616  *	Clear all pending signals in the specified set.
    617  */
    618 void
    619 sigclear(sigpend_t *sp, sigset_t *mask, ksiginfoq_t *kq)
    620 {
    621 	ksiginfo_t *ksi, *next;
    622 
    623 	if (mask == NULL)
    624 		sigemptyset(&sp->sp_set);
    625 	else
    626 		sigminusset(mask, &sp->sp_set);
    627 
    628 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    629 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    630 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    631 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    632 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    633 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    634 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    635 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    636 		}
    637 	}
    638 }
    639 
    640 /*
    641  * sigclearall:
    642  *
    643  *	Clear all pending signals in the specified set from a process and
    644  *	its LWPs.
    645  */
    646 void
    647 sigclearall(struct proc *p, sigset_t *mask, ksiginfoq_t *kq)
    648 {
    649 	struct lwp *l;
    650 
    651 	KASSERT(mutex_owned(&p->p_smutex));
    652 
    653 	sigclear(&p->p_sigpend, mask, kq);
    654 
    655 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    656 		sigclear(&l->l_sigpend, mask, kq);
    657 	}
    658 }
    659 
    660 /*
    661  * sigispending:
    662  *
    663  *	Return true if there are pending signals for the current LWP.  May
    664  *	be called unlocked provided that L_PENDSIG is set, and that the
    665  *	signal has been posted to the appopriate queue before L_PENDSIG is
    666  *	set.
    667  */
    668 int
    669 sigispending(struct lwp *l, int signo)
    670 {
    671 	struct proc *p = l->l_proc;
    672 	sigset_t tset;
    673 
    674 	membar_consumer();
    675 
    676 	tset = l->l_sigpend.sp_set;
    677 	sigplusset(&p->p_sigpend.sp_set, &tset);
    678 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    679 	sigminusset(&l->l_sigmask, &tset);
    680 
    681 	if (signo == 0) {
    682 		if (firstsig(&tset) != 0)
    683 			return EINTR;
    684 	} else if (sigismember(&tset, signo))
    685 		return EINTR;
    686 
    687 	return 0;
    688 }
    689 
    690 /*
    691  * siginfo_alloc:
    692  *
    693  *	 Allocate a new siginfo_t structure from the pool.
    694  */
    695 siginfo_t *
    696 siginfo_alloc(int flags)
    697 {
    698 
    699 	return pool_get(&siginfo_pool, flags);
    700 }
    701 
    702 /*
    703  * siginfo_free:
    704  *
    705  *	 Return a siginfo_t structure to the pool.
    706  */
    707 void
    708 siginfo_free(void *arg)
    709 {
    710 
    711 	pool_put(&siginfo_pool, arg);
    712 }
    713 
    714 void
    715 getucontext(struct lwp *l, ucontext_t *ucp)
    716 {
    717 	struct proc *p = l->l_proc;
    718 
    719 	KASSERT(mutex_owned(&p->p_smutex));
    720 
    721 	ucp->uc_flags = 0;
    722 	ucp->uc_link = l->l_ctxlink;
    723 
    724 	ucp->uc_sigmask = l->l_sigmask;
    725 	ucp->uc_flags |= _UC_SIGMASK;
    726 
    727 	/*
    728 	 * The (unsupplied) definition of the `current execution stack'
    729 	 * in the System V Interface Definition appears to allow returning
    730 	 * the main context stack.
    731 	 */
    732 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    733 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    734 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    735 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    736 	} else {
    737 		/* Simply copy alternate signal execution stack. */
    738 		ucp->uc_stack = l->l_sigstk;
    739 	}
    740 	ucp->uc_flags |= _UC_STACK;
    741 	mutex_exit(&p->p_smutex);
    742 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    743 	mutex_enter(&p->p_smutex);
    744 }
    745 
    746 int
    747 setucontext(struct lwp *l, const ucontext_t *ucp)
    748 {
    749 	struct proc *p = l->l_proc;
    750 	int error;
    751 
    752 	KASSERT(mutex_owned(&p->p_smutex));
    753 
    754 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    755 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    756 		if (error != 0)
    757 			return error;
    758 	}
    759 
    760 	mutex_exit(&p->p_smutex);
    761 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    762 	mutex_enter(&p->p_smutex);
    763 	if (error != 0)
    764 		return (error);
    765 
    766 	l->l_ctxlink = ucp->uc_link;
    767 
    768 	/*
    769 	 * If there was stack information, update whether or not we are
    770 	 * still running on an alternate signal stack.
    771 	 */
    772 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    773 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    774 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    775 		else
    776 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    777 	}
    778 
    779 	return 0;
    780 }
    781 
    782 /*
    783  * Common code for kill process group/broadcast kill.  cp is calling
    784  * process.
    785  */
    786 int
    787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    788 {
    789 	struct proc	*p, *cp;
    790 	kauth_cred_t	pc;
    791 	struct pgrp	*pgrp;
    792 	int		nfound;
    793 	int		signo = ksi->ksi_signo;
    794 
    795 	cp = l->l_proc;
    796 	pc = l->l_cred;
    797 	nfound = 0;
    798 
    799 	mutex_enter(&proclist_lock);
    800 	if (all) {
    801 		/*
    802 		 * broadcast
    803 		 */
    804 		PROCLIST_FOREACH(p, &allproc) {
    805 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
    806 				continue;
    807 			mutex_enter(&p->p_mutex);
    808 			if (kauth_authorize_process(pc,
    809 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    810 			    NULL) == 0) {
    811 				nfound++;
    812 				if (signo) {
    813 					mutex_enter(&proclist_mutex);
    814 					mutex_enter(&p->p_smutex);
    815 					kpsignal2(p, ksi);
    816 					mutex_exit(&p->p_smutex);
    817 					mutex_exit(&proclist_mutex);
    818 				}
    819 			}
    820 			mutex_exit(&p->p_mutex);
    821 		}
    822 	} else {
    823 		if (pgid == 0)
    824 			/*
    825 			 * zero pgid means send to my process group.
    826 			 */
    827 			pgrp = cp->p_pgrp;
    828 		else {
    829 			pgrp = pg_find(pgid, PFIND_LOCKED);
    830 			if (pgrp == NULL)
    831 				goto out;
    832 		}
    833 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    834 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    835 				continue;
    836 			mutex_enter(&p->p_mutex);
    837 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    838 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    839 				nfound++;
    840 				if (signo) {
    841 					mutex_enter(&proclist_mutex);
    842 					mutex_enter(&p->p_smutex);
    843 					if (P_ZOMBIE(p) == 0)
    844 						kpsignal2(p, ksi);
    845 					mutex_exit(&p->p_smutex);
    846 					mutex_exit(&proclist_mutex);
    847 				}
    848 			}
    849 			mutex_exit(&p->p_mutex);
    850 		}
    851 	}
    852   out:
    853 	mutex_exit(&proclist_lock);
    854 	return (nfound ? 0 : ESRCH);
    855 }
    856 
    857 /*
    858  * Send a signal to a process group. If checktty is 1, limit to members
    859  * which have a controlling terminal.
    860  */
    861 void
    862 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    863 {
    864 	ksiginfo_t ksi;
    865 
    866 	KASSERT(mutex_owned(&proclist_mutex));
    867 
    868 	KSI_INIT_EMPTY(&ksi);
    869 	ksi.ksi_signo = sig;
    870 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    871 }
    872 
    873 void
    874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    875 {
    876 	struct proc *p;
    877 
    878 	KASSERT(mutex_owned(&proclist_mutex));
    879 
    880 	if (pgrp)
    881 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    882 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    883 				kpsignal(p, ksi, data);
    884 }
    885 
    886 /*
    887  * Send a signal caused by a trap to the current LWP.  If it will be caught
    888  * immediately, deliver it with correct code.  Otherwise, post it normally.
    889  */
    890 void
    891 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    892 {
    893 	struct proc	*p;
    894 	struct sigacts	*ps;
    895 	int signo = ksi->ksi_signo;
    896 
    897 	KASSERT(KSI_TRAP_P(ksi));
    898 
    899 	ksi->ksi_lid = l->l_lid;
    900 	p = l->l_proc;
    901 
    902 	mutex_enter(&proclist_mutex);
    903 	mutex_enter(&p->p_smutex);
    904 	ps = p->p_sigacts;
    905 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    906 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    907 	    !sigismember(&l->l_sigmask, signo)) {
    908 		mutex_exit(&proclist_mutex);
    909 		p->p_stats->p_ru.ru_nsignals++;
    910 		kpsendsig(l, ksi, &l->l_sigmask);
    911 		mutex_exit(&p->p_smutex);
    912 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    913 		    &l->l_sigmask, ksi);
    914 	} else {
    915 		/* XXX for core dump/debugger */
    916 		p->p_sigctx.ps_lwp = l->l_lid;
    917 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    918 		p->p_sigctx.ps_code = ksi->ksi_trap;
    919 		kpsignal2(p, ksi);
    920 		mutex_exit(&proclist_mutex);
    921 		mutex_exit(&p->p_smutex);
    922 	}
    923 }
    924 
    925 /*
    926  * Fill in signal information and signal the parent for a child status change.
    927  */
    928 void
    929 child_psignal(struct proc *p, int mask)
    930 {
    931 	ksiginfo_t ksi;
    932 	struct proc *q;
    933 	int xstat;
    934 
    935 	KASSERT(mutex_owned(&proclist_mutex));
    936 	KASSERT(mutex_owned(&p->p_smutex));
    937 
    938 	xstat = p->p_xstat;
    939 
    940 	KSI_INIT(&ksi);
    941 	ksi.ksi_signo = SIGCHLD;
    942 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    943 	ksi.ksi_pid = p->p_pid;
    944 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    945 	ksi.ksi_status = xstat;
    946 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    947 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    948 
    949 	q = p->p_pptr;
    950 
    951 	mutex_exit(&p->p_smutex);
    952 	mutex_enter(&q->p_smutex);
    953 
    954 	if ((q->p_sflag & mask) == 0)
    955 		kpsignal2(q, &ksi);
    956 
    957 	mutex_exit(&q->p_smutex);
    958 	mutex_enter(&p->p_smutex);
    959 }
    960 
    961 void
    962 psignal(struct proc *p, int signo)
    963 {
    964 	ksiginfo_t ksi;
    965 
    966 	KASSERT(mutex_owned(&proclist_mutex));
    967 
    968 	KSI_INIT_EMPTY(&ksi);
    969 	ksi.ksi_signo = signo;
    970 	mutex_enter(&p->p_smutex);
    971 	kpsignal2(p, &ksi);
    972 	mutex_exit(&p->p_smutex);
    973 }
    974 
    975 void
    976 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    977 {
    978 
    979 	KASSERT(mutex_owned(&proclist_mutex));
    980 
    981 	/* XXXSMP Why is this here? */
    982 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    983 		size_t fd;
    984 		struct filedesc *fdp = p->p_fd;
    985 
    986 		ksi->ksi_fd = -1;
    987 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    988 			struct file *fp = fdp->fd_ofiles[fd];
    989 			/* XXX: lock? */
    990 			if (fp && fp->f_data == data) {
    991 				ksi->ksi_fd = fd;
    992 				break;
    993 			}
    994 		}
    995 	}
    996 	mutex_enter(&p->p_smutex);
    997 	kpsignal2(p, ksi);
    998 	mutex_exit(&p->p_smutex);
    999 }
   1000 
   1001 /*
   1002  * sigismasked:
   1003  *
   1004  *	 Returns true if signal is ignored or masked for the specified LWP.
   1005  */
   1006 int
   1007 sigismasked(struct lwp *l, int sig)
   1008 {
   1009 	struct proc *p = l->l_proc;
   1010 
   1011 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1012 	    sigismember(&l->l_sigmask, sig));
   1013 }
   1014 
   1015 /*
   1016  * sigpost:
   1017  *
   1018  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
   1019  *	 able to take the signal.
   1020  */
   1021 int
   1022 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1023 {
   1024 	int rv, masked;
   1025 
   1026 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1027 
   1028 	/*
   1029 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1030 	 * pending signals.  Don't give it more.
   1031 	 */
   1032 	if (l->l_refcnt == 0)
   1033 		return 0;
   1034 
   1035 	lwp_lock(l);
   1036 
   1037 	/*
   1038 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1039 	 * is found to take the signal immediately, it should be taken soon.
   1040 	 */
   1041 	l->l_flag |= LW_PENDSIG;
   1042 
   1043 	/*
   1044 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1045 	 */
   1046 	masked = sigismember(&l->l_sigmask, sig);
   1047 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1048 		lwp_unlock(l);
   1049 		return 0;
   1050 	}
   1051 
   1052 	/*
   1053 	 * If killing the process, make it run fast.
   1054 	 */
   1055 	if (__predict_false((prop & SA_KILL) != 0) &&
   1056 	    action == SIG_DFL && l->l_priority > PUSER)
   1057 		lwp_changepri(l, PUSER);
   1058 
   1059 	/*
   1060 	 * If the LWP is running or on a run queue, then we win.  If it's
   1061 	 * sleeping interruptably, wake it and make it take the signal.  If
   1062 	 * the sleep isn't interruptable, then the chances are it will get
   1063 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1064 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1065 	 * for later; otherwise punt.
   1066 	 */
   1067 	rv = 0;
   1068 
   1069 	switch (l->l_stat) {
   1070 	case LSRUN:
   1071 	case LSONPROC:
   1072 		lwp_need_userret(l);
   1073 		rv = 1;
   1074 		break;
   1075 
   1076 	case LSSLEEP:
   1077 		if ((l->l_flag & LW_SINTR) != 0) {
   1078 			/* setrunnable() will release the lock. */
   1079 			setrunnable(l);
   1080 			return 1;
   1081 		}
   1082 		break;
   1083 
   1084 	case LSSUSPENDED:
   1085 		if ((prop & SA_KILL) != 0) {
   1086 			/* lwp_continue() will release the lock. */
   1087 			lwp_continue(l);
   1088 			return 1;
   1089 		}
   1090 		break;
   1091 
   1092 	case LSSTOP:
   1093 		if ((prop & SA_STOP) != 0)
   1094 			break;
   1095 
   1096 		/*
   1097 		 * If the LWP is stopped and we are sending a continue
   1098 		 * signal, then start it again.
   1099 		 */
   1100 		if ((prop & SA_CONT) != 0) {
   1101 			if (l->l_wchan != NULL) {
   1102 				l->l_stat = LSSLEEP;
   1103 				l->l_proc->p_nrlwps++;
   1104 				rv = 1;
   1105 				break;
   1106 			}
   1107 			/* setrunnable() will release the lock. */
   1108 			setrunnable(l);
   1109 			return 1;
   1110 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1111 			/* setrunnable() will release the lock. */
   1112 			setrunnable(l);
   1113 			return 1;
   1114 		}
   1115 		break;
   1116 
   1117 	default:
   1118 		break;
   1119 	}
   1120 
   1121 	lwp_unlock(l);
   1122 	return rv;
   1123 }
   1124 
   1125 /*
   1126  * Notify an LWP that it has a pending signal.
   1127  */
   1128 void
   1129 signotify(struct lwp *l)
   1130 {
   1131 	KASSERT(lwp_locked(l, NULL));
   1132 
   1133 	l->l_flag |= LW_PENDSIG;
   1134 	lwp_need_userret(l);
   1135 }
   1136 
   1137 /*
   1138  * Find an LWP within process p that is waiting on signal ksi, and hand
   1139  * it on.
   1140  */
   1141 int
   1142 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1143 {
   1144 	struct lwp *l;
   1145 	int signo;
   1146 
   1147 	KASSERT(mutex_owned(&p->p_smutex));
   1148 
   1149 	signo = ksi->ksi_signo;
   1150 
   1151 	if (ksi->ksi_lid != 0) {
   1152 		/*
   1153 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1154 		 * it's interested.
   1155 		 */
   1156 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1157 			return 0;
   1158 		if (l->l_sigwaited == NULL ||
   1159 		    !sigismember(&l->l_sigwaitset, signo))
   1160 			return 0;
   1161 	} else {
   1162 		/*
   1163 		 * Look for any LWP that may be interested.
   1164 		 */
   1165 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1166 			KASSERT(l->l_sigwaited != NULL);
   1167 			if (sigismember(&l->l_sigwaitset, signo))
   1168 				break;
   1169 		}
   1170 	}
   1171 
   1172 	if (l != NULL) {
   1173 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1174 		l->l_sigwaited = NULL;
   1175 		LIST_REMOVE(l, l_sigwaiter);
   1176 		cv_signal(&l->l_sigcv);
   1177 		return 1;
   1178 	}
   1179 
   1180 	return 0;
   1181 }
   1182 
   1183 /*
   1184  * Send the signal to the process.  If the signal has an action, the action
   1185  * is usually performed by the target process rather than the caller; we add
   1186  * the signal to the set of pending signals for the process.
   1187  *
   1188  * Exceptions:
   1189  *   o When a stop signal is sent to a sleeping process that takes the
   1190  *     default action, the process is stopped without awakening it.
   1191  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1192  *     regardless of the signal action (eg, blocked or ignored).
   1193  *
   1194  * Other ignored signals are discarded immediately.
   1195  */
   1196 void
   1197 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1198 {
   1199 	int prop, lid, toall, signo = ksi->ksi_signo;
   1200 	struct sigacts *sa;
   1201 	struct lwp *l;
   1202 	ksiginfo_t *kp;
   1203 	ksiginfoq_t kq;
   1204 	sig_t action;
   1205 
   1206 	KASSERT(mutex_owned(&proclist_mutex));
   1207 	KASSERT(mutex_owned(&p->p_smutex));
   1208 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1209 	KASSERT(signo > 0 && signo < NSIG);
   1210 
   1211 	/*
   1212 	 * If the process is being created by fork, is a zombie or is
   1213 	 * exiting, then just drop the signal here and bail out.
   1214 	 */
   1215 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1216 		return;
   1217 
   1218 	/*
   1219 	 * Notify any interested parties of the signal.
   1220 	 */
   1221 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1222 
   1223 	/*
   1224 	 * Some signals including SIGKILL must act on the entire process.
   1225 	 */
   1226 	kp = NULL;
   1227 	prop = sigprop[signo];
   1228 	toall = ((prop & SA_TOALL) != 0);
   1229 
   1230 	if (toall)
   1231 		lid = 0;
   1232 	else
   1233 		lid = ksi->ksi_lid;
   1234 
   1235 	/*
   1236 	 * If proc is traced, always give parent a chance.
   1237 	 */
   1238 	if (p->p_slflag & PSL_TRACED) {
   1239 		action = SIG_DFL;
   1240 
   1241 		if (lid == 0) {
   1242 			/*
   1243 			 * If the process is being traced and the signal
   1244 			 * is being caught, make sure to save any ksiginfo.
   1245 			 */
   1246 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1247 				return;
   1248 			sigput(&p->p_sigpend, p, kp);
   1249 		}
   1250 	} else {
   1251 		/*
   1252 		 * If the signal was the result of a trap and is not being
   1253 		 * caught, then reset it to default action so that the
   1254 		 * process dumps core immediately.
   1255 		 */
   1256 		if (KSI_TRAP_P(ksi)) {
   1257 			sa = p->p_sigacts;
   1258 			mutex_enter(&sa->sa_mutex);
   1259 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1260 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1261 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1262 			}
   1263 			mutex_exit(&sa->sa_mutex);
   1264 		}
   1265 
   1266 		/*
   1267 		 * If the signal is being ignored, then drop it.  Note: we
   1268 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1269 		 * SIG_IGN, action will be SIG_DFL here.
   1270 		 */
   1271 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1272 			return;
   1273 
   1274 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1275 			action = SIG_CATCH;
   1276 		else {
   1277 			action = SIG_DFL;
   1278 
   1279 			/*
   1280 			 * If sending a tty stop signal to a member of an
   1281 			 * orphaned process group, discard the signal here if
   1282 			 * the action is default; don't stop the process below
   1283 			 * if sleeping, and don't clear any pending SIGCONT.
   1284 			 */
   1285 			if (prop & SA_TTYSTOP &&
   1286 			    (p->p_sflag & PS_ORPHANPG) != 0)
   1287 				return;
   1288 
   1289 			if (prop & SA_KILL && p->p_nice > NZERO)
   1290 				p->p_nice = NZERO;
   1291 		}
   1292 	}
   1293 
   1294 	/*
   1295 	 * If stopping or continuing a process, discard any pending
   1296 	 * signals that would do the inverse.
   1297 	 */
   1298 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1299 		ksiginfo_queue_init(&kq);
   1300 		if ((prop & SA_CONT) != 0)
   1301 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1302 		if ((prop & SA_STOP) != 0)
   1303 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1304 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1305 	}
   1306 
   1307 	/*
   1308 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1309 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1310 	 * the signal info.  The signal won't be processed further here.
   1311 	 */
   1312 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1313 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1314 	    sigunwait(p, ksi))
   1315 		return;
   1316 
   1317 	/*
   1318 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1319 	 * here.
   1320 	 */
   1321 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1322 		return;
   1323 
   1324 	/*
   1325 	 * LWP private signals are easy - just find the LWP and post
   1326 	 * the signal to it.
   1327 	 */
   1328 	if (lid != 0) {
   1329 		l = lwp_find(p, lid);
   1330 		if (l != NULL) {
   1331 			sigput(&l->l_sigpend, p, kp);
   1332 			membar_producer();
   1333 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1334 		}
   1335 		goto out;
   1336 	}
   1337 
   1338 	/*
   1339 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
   1340 	 */
   1341 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1342 		if ((p->p_slflag & PSL_TRACED) != 0)
   1343 			goto deliver;
   1344 
   1345 		/*
   1346 		 * If SIGCONT is default (or ignored) and process is
   1347 		 * asleep, we are finished; the process should not
   1348 		 * be awakened.
   1349 		 */
   1350 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1351 			goto out;
   1352 
   1353 		if ((prop & SA_STOP) != 0 && action == SIG_DFL) {
   1354 			/*
   1355 			 * If a child holding parent blocked, stopping could
   1356 			 * cause deadlock: discard the signal.
   1357 			 */
   1358 			if ((p->p_sflag & PS_PPWAIT) == 0) {
   1359 				p->p_xstat = signo;
   1360 				proc_stop(p, 1, signo);
   1361 			}
   1362 			goto out;
   1363 		} else {
   1364 			/*
   1365 			 * Stop signals with the default action are handled
   1366 			 * specially in issignal(), and so are not enqueued.
   1367 			 */
   1368 			sigput(&p->p_sigpend, p, kp);
   1369 		}
   1370 	} else {
   1371 		/*
   1372 		 * Process is stopped or stopping.  If traced, then no
   1373 		 * further action is necessary.
   1374 		 */
   1375 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1376 			goto out;
   1377 
   1378 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1379 			/*
   1380 			 * Re-adjust p_nstopchild if the process wasn't
   1381 			 * collected by its parent.
   1382 			 */
   1383 			p->p_stat = SACTIVE;
   1384 			p->p_sflag &= ~PS_STOPPING;
   1385 			if (!p->p_waited)
   1386 				p->p_pptr->p_nstopchild--;
   1387 
   1388 			/*
   1389 			 * If SIGCONT is default (or ignored), we continue
   1390 			 * the process but don't leave the signal in
   1391 			 * ps_siglist, as it has no further action.  If
   1392 			 * SIGCONT is held, we continue the process and
   1393 			 * leave the signal in ps_siglist.  If the process
   1394 			 * catches SIGCONT, let it handle the signal itself.
   1395 			 * If it isn't waiting on an event, then it goes
   1396 			 * back to run state.  Otherwise, process goes back
   1397 			 * to sleep state.
   1398 			 */
   1399 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1400 				sigput(&p->p_sigpend, p, kp);
   1401 		} else if ((prop & SA_STOP) != 0) {
   1402 			/*
   1403 			 * Already stopped, don't need to stop again.
   1404 			 * (If we did the shell could get confused.)
   1405 			 */
   1406 			goto out;
   1407 		} else
   1408 			sigput(&p->p_sigpend, p, kp);
   1409 	}
   1410 
   1411  deliver:
   1412 	/*
   1413 	 * Before we set L_PENDSIG on any LWP, ensure that the signal is
   1414 	 * visible on the per process list (for sigispending()).  This
   1415 	 * is unlikely to be needed in practice, but...
   1416 	 */
   1417 	membar_producer();
   1418 
   1419 	/*
   1420 	 * Try to find an LWP that can take the signal.
   1421 	 */
   1422 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1423 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1424 			break;
   1425 
   1426  out:
   1427  	/*
   1428  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1429  	 * with locks held.  The caller should take care of this.
   1430  	 */
   1431  	ksiginfo_free(kp);
   1432 }
   1433 
   1434 void
   1435 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1436 {
   1437 	struct proc *p = l->l_proc;
   1438 
   1439 	KASSERT(mutex_owned(&p->p_smutex));
   1440 
   1441 	(*p->p_emul->e_sendsig)(ksi, mask);
   1442 }
   1443 
   1444 /*
   1445  * Stop the current process and switch away when being stopped or traced.
   1446  */
   1447 void
   1448 sigswitch(bool ppsig, int ppmask, int signo)
   1449 {
   1450 	struct lwp *l = curlwp, *l2;
   1451 	struct proc *p = l->l_proc;
   1452 #ifdef MULTIPROCESSOR
   1453 	int biglocks;
   1454 #endif
   1455 
   1456 	KASSERT(mutex_owned(&p->p_smutex));
   1457 	KASSERT(l->l_stat == LSONPROC);
   1458 	KASSERT(p->p_nrlwps > 0);
   1459 
   1460 	/*
   1461 	 * On entry we know that the process needs to stop.  If it's
   1462 	 * the result of a 'sideways' stop signal that has been sourced
   1463 	 * through issignal(), then stop other LWPs in the process too.
   1464 	 */
   1465 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1466 		/*
   1467 		 * Set the stopping indicator and bring all sleeping LWPs
   1468 		 * to a halt so they are included in p->p_nrlwps
   1469 		 */
   1470 		p->p_sflag |= (PS_STOPPING | PS_NOTIFYSTOP);
   1471 		membar_producer();
   1472 
   1473 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1474 			lwp_lock(l2);
   1475 			if (l2->l_stat == LSSLEEP &&
   1476 			    (l2->l_flag & LW_SINTR) != 0) {
   1477 				l2->l_stat = LSSTOP;
   1478 				p->p_nrlwps--;
   1479 			}
   1480 			lwp_unlock(l2);
   1481 		}
   1482 
   1483 		/*
   1484 		 * Have the remaining LWPs come to a halt, and trigger
   1485 		 * proc_stop_callout() to ensure that they do.
   1486 		 */
   1487 		KASSERT(signo != 0);
   1488 		KASSERT(p->p_nrlwps > 0);
   1489 
   1490 		if (p->p_nrlwps > 1) {
   1491 			LIST_FOREACH(l2, &p->p_lwps, l_sibling)
   1492 				sigpost(l2, SIG_DFL, SA_STOP, signo);
   1493 			callout_schedule(&proc_stop_ch, 1);
   1494 		}
   1495 	}
   1496 
   1497 	/*
   1498 	 * If we are the last live LWP, and the stop was a result of
   1499 	 * a new signal, then signal the parent.
   1500 	 */
   1501 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1502 		if (!mutex_tryenter(&proclist_mutex)) {
   1503 			mutex_exit(&p->p_smutex);
   1504 			mutex_enter(&proclist_mutex);
   1505 			mutex_enter(&p->p_smutex);
   1506 		}
   1507 
   1508 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1509 			p->p_sflag &= ~PS_STOPPING;
   1510 			p->p_stat = SSTOP;
   1511 			p->p_waited = 0;
   1512 			p->p_pptr->p_nstopchild++;
   1513 			if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1514 				/*
   1515 				 * Note that child_psignal() will drop
   1516 				 * p->p_smutex briefly.
   1517 				 */
   1518 				if (ppsig)
   1519 					child_psignal(p, ppmask);
   1520 				cv_broadcast(&p->p_pptr->p_waitcv);
   1521 			}
   1522 		}
   1523 
   1524 		mutex_exit(&proclist_mutex);
   1525 	}
   1526 
   1527 	/*
   1528 	 * Unlock and switch away.
   1529 	 */
   1530 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1531 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1532 		p->p_nrlwps--;
   1533 		lwp_lock(l);
   1534 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1535 		l->l_stat = LSSTOP;
   1536 		lwp_unlock(l);
   1537 	}
   1538 
   1539 	mutex_exit(&p->p_smutex);
   1540 	lwp_lock(l);
   1541 	mi_switch(l);
   1542 	KERNEL_LOCK(biglocks, l);
   1543 	mutex_enter(&p->p_smutex);
   1544 }
   1545 
   1546 /*
   1547  * Check for a signal from the debugger.
   1548  */
   1549 int
   1550 sigchecktrace(sigpend_t **spp)
   1551 {
   1552 	struct lwp *l = curlwp;
   1553 	struct proc *p = l->l_proc;
   1554 	int signo;
   1555 
   1556 	KASSERT(mutex_owned(&p->p_smutex));
   1557 
   1558 	/*
   1559 	 * If we are no longer being traced, or the parent didn't
   1560 	 * give us a signal, look for more signals.
   1561 	 */
   1562 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1563 		return 0;
   1564 
   1565 	/* If there's a pending SIGKILL, process it immediately. */
   1566 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1567 		return 0;
   1568 
   1569 	/*
   1570 	 * If the new signal is being masked, look for other signals.
   1571 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1572 	 */
   1573 	signo = p->p_xstat;
   1574 	p->p_xstat = 0;
   1575 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1576 		*spp = &l->l_sigpend;
   1577 	else
   1578 		*spp = &p->p_sigpend;
   1579 	if (sigismember(&l->l_sigmask, signo))
   1580 		signo = 0;
   1581 
   1582 	return signo;
   1583 }
   1584 
   1585 /*
   1586  * If the current process has received a signal (should be caught or cause
   1587  * termination, should interrupt current syscall), return the signal number.
   1588  *
   1589  * Stop signals with default action are processed immediately, then cleared;
   1590  * they aren't returned.  This is checked after each entry to the system for
   1591  * a syscall or trap.
   1592  *
   1593  * We will also return -1 if the process is exiting and the current LWP must
   1594  * follow suit.
   1595  *
   1596  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1597  * can switch away, though.
   1598  */
   1599 int
   1600 issignal(struct lwp *l)
   1601 {
   1602 	struct proc *p = l->l_proc;
   1603 	int signo = 0, prop;
   1604 	sigpend_t *sp = NULL;
   1605 	sigset_t ss;
   1606 
   1607 	KASSERT(mutex_owned(&p->p_smutex));
   1608 
   1609 	for (;;) {
   1610 		/* Discard any signals that we have decided not to take. */
   1611 		if (signo != 0)
   1612 			(void)sigget(sp, NULL, signo, NULL);
   1613 
   1614 		/*
   1615 		 * If the process is stopped/stopping, then stop ourselves
   1616 		 * now that we're on the kernel/userspace boundary.  When
   1617 		 * we awaken, check for a signal from the debugger.
   1618 		 */
   1619 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1620 			sigswitch(true, PS_NOCLDSTOP, 0);
   1621 			signo = sigchecktrace(&sp);
   1622 		} else
   1623 			signo = 0;
   1624 
   1625 		/*
   1626 		 * If the debugger didn't provide a signal, find a pending
   1627 		 * signal from our set.  Check per-LWP signals first, and
   1628 		 * then per-process.
   1629 		 */
   1630 		if (signo == 0) {
   1631 			sp = &l->l_sigpend;
   1632 			ss = sp->sp_set;
   1633 			if ((p->p_sflag & PS_PPWAIT) != 0)
   1634 				sigminusset(&stopsigmask, &ss);
   1635 			sigminusset(&l->l_sigmask, &ss);
   1636 
   1637 			if ((signo = firstsig(&ss)) == 0) {
   1638 				sp = &p->p_sigpend;
   1639 				ss = sp->sp_set;
   1640 				if ((p->p_sflag & PS_PPWAIT) != 0)
   1641 					sigminusset(&stopsigmask, &ss);
   1642 				sigminusset(&l->l_sigmask, &ss);
   1643 
   1644 				if ((signo = firstsig(&ss)) == 0) {
   1645 					/*
   1646 					 * No signal pending - clear the
   1647 					 * indicator and bail out.
   1648 					 */
   1649 					lwp_lock(l);
   1650 					l->l_flag &= ~LW_PENDSIG;
   1651 					lwp_unlock(l);
   1652 					sp = NULL;
   1653 					break;
   1654 				}
   1655 			}
   1656 		}
   1657 
   1658 		/*
   1659 		 * We should see pending but ignored signals only if
   1660 		 * we are being traced.
   1661 		 */
   1662 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1663 		    (p->p_slflag & PSL_TRACED) == 0) {
   1664 			/* Discard the signal. */
   1665 			continue;
   1666 		}
   1667 
   1668 		/*
   1669 		 * If traced, always stop, and stay stopped until released
   1670 		 * by the debugger.  If the our parent process is waiting
   1671 		 * for us, don't hang as we could deadlock.
   1672 		 */
   1673 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1674 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
   1675 			/* Take the signal. */
   1676 			(void)sigget(sp, NULL, signo, NULL);
   1677 			p->p_xstat = signo;
   1678 
   1679 			/* Emulation-specific handling of signal trace */
   1680 			if (p->p_emul->e_tracesig == NULL ||
   1681 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1682 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1683 				    signo);
   1684 
   1685 			/* Check for a signal from the debugger. */
   1686 			if ((signo = sigchecktrace(&sp)) == 0)
   1687 				continue;
   1688 		}
   1689 
   1690 		prop = sigprop[signo];
   1691 
   1692 		/*
   1693 		 * Decide whether the signal should be returned.
   1694 		 */
   1695 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1696 		case (long)SIG_DFL:
   1697 			/*
   1698 			 * Don't take default actions on system processes.
   1699 			 */
   1700 			if (p->p_pid <= 1) {
   1701 #ifdef DIAGNOSTIC
   1702 				/*
   1703 				 * Are you sure you want to ignore SIGSEGV
   1704 				 * in init? XXX
   1705 				 */
   1706 				printf_nolog("Process (pid %d) got sig %d\n",
   1707 				    p->p_pid, signo);
   1708 #endif
   1709 				continue;
   1710 			}
   1711 
   1712 			/*
   1713 			 * If there is a pending stop signal to process with
   1714 			 * default action, stop here, then clear the signal.
   1715 			 * However, if process is member of an orphaned
   1716 			 * process group, ignore tty stop signals.
   1717 			 */
   1718 			if (prop & SA_STOP) {
   1719 				if (p->p_slflag & PSL_TRACED ||
   1720 		    		    ((p->p_sflag & PS_ORPHANPG) != 0 &&
   1721 				    prop & SA_TTYSTOP)) {
   1722 				    	/* Ignore the signal. */
   1723 					continue;
   1724 				}
   1725 				/* Take the signal. */
   1726 				(void)sigget(sp, NULL, signo, NULL);
   1727 				p->p_xstat = signo;
   1728 				signo = 0;
   1729 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1730 			} else if (prop & SA_IGNORE) {
   1731 				/*
   1732 				 * Except for SIGCONT, shouldn't get here.
   1733 				 * Default action is to ignore; drop it.
   1734 				 */
   1735 				continue;
   1736 			}
   1737 			break;
   1738 
   1739 		case (long)SIG_IGN:
   1740 #ifdef DEBUG_ISSIGNAL
   1741 			/*
   1742 			 * Masking above should prevent us ever trying
   1743 			 * to take action on an ignored signal other
   1744 			 * than SIGCONT, unless process is traced.
   1745 			 */
   1746 			if ((prop & SA_CONT) == 0 &&
   1747 			    (p->p_slflag & PSL_TRACED) == 0)
   1748 				printf_nolog("issignal\n");
   1749 #endif
   1750 			continue;
   1751 
   1752 		default:
   1753 			/*
   1754 			 * This signal has an action, let postsig() process
   1755 			 * it.
   1756 			 */
   1757 			break;
   1758 		}
   1759 
   1760 		break;
   1761 	}
   1762 
   1763 	l->l_sigpendset = sp;
   1764 	return signo;
   1765 }
   1766 
   1767 /*
   1768  * Take the action for the specified signal
   1769  * from the current set of pending signals.
   1770  */
   1771 void
   1772 postsig(int signo)
   1773 {
   1774 	struct lwp	*l;
   1775 	struct proc	*p;
   1776 	struct sigacts	*ps;
   1777 	sig_t		action;
   1778 	sigset_t	*returnmask;
   1779 	ksiginfo_t	ksi;
   1780 
   1781 	l = curlwp;
   1782 	p = l->l_proc;
   1783 	ps = p->p_sigacts;
   1784 
   1785 	KASSERT(mutex_owned(&p->p_smutex));
   1786 	KASSERT(signo > 0);
   1787 
   1788 	/*
   1789 	 * Set the new mask value and also defer further occurrences of this
   1790 	 * signal.
   1791 	 *
   1792 	 * Special case: user has done a sigpause.  Here the current mask is
   1793 	 * not of interest, but rather the mask from before the sigpause is
   1794 	 * what we want restored after the signal processing is completed.
   1795 	 */
   1796 	if (l->l_sigrestore) {
   1797 		returnmask = &l->l_sigoldmask;
   1798 		l->l_sigrestore = 0;
   1799 	} else
   1800 		returnmask = &l->l_sigmask;
   1801 
   1802 	/*
   1803 	 * Commit to taking the signal before releasing the mutex.
   1804 	 */
   1805 	action = SIGACTION_PS(ps, signo).sa_handler;
   1806 	p->p_stats->p_ru.ru_nsignals++;
   1807 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1808 
   1809 	if (ktrpoint(KTR_PSIG)) {
   1810 		mutex_exit(&p->p_smutex);
   1811 		ktrpsig(signo, action, returnmask, NULL);
   1812 		mutex_enter(&p->p_smutex);
   1813 	}
   1814 
   1815 	if (action == SIG_DFL) {
   1816 		/*
   1817 		 * Default action, where the default is to kill
   1818 		 * the process.  (Other cases were ignored above.)
   1819 		 */
   1820 		sigexit(l, signo);
   1821 		return;
   1822 	}
   1823 
   1824 	/*
   1825 	 * If we get here, the signal must be caught.
   1826 	 */
   1827 #ifdef DIAGNOSTIC
   1828 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1829 		panic("postsig action");
   1830 #endif
   1831 
   1832 	kpsendsig(l, &ksi, returnmask);
   1833 }
   1834 
   1835 /*
   1836  * sendsig_reset:
   1837  *
   1838  *	Reset the signal action.  Called from emulation specific sendsig()
   1839  *	before unlocking to deliver the signal.
   1840  */
   1841 void
   1842 sendsig_reset(struct lwp *l, int signo)
   1843 {
   1844 	struct proc *p = l->l_proc;
   1845 	struct sigacts *ps = p->p_sigacts;
   1846 
   1847 	KASSERT(mutex_owned(&p->p_smutex));
   1848 
   1849 	p->p_sigctx.ps_lwp = 0;
   1850 	p->p_sigctx.ps_code = 0;
   1851 	p->p_sigctx.ps_signo = 0;
   1852 
   1853 	mutex_enter(&ps->sa_mutex);
   1854 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1855 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1856 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1857 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1858 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1859 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1860 	}
   1861 	mutex_exit(&ps->sa_mutex);
   1862 }
   1863 
   1864 /*
   1865  * Kill the current process for stated reason.
   1866  */
   1867 void
   1868 killproc(struct proc *p, const char *why)
   1869 {
   1870 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1871 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1872 	mutex_enter(&proclist_mutex);	/* XXXSMP */
   1873 	psignal(p, SIGKILL);
   1874 	mutex_exit(&proclist_mutex);	/* XXXSMP */
   1875 }
   1876 
   1877 /*
   1878  * Force the current process to exit with the specified signal, dumping core
   1879  * if appropriate.  We bypass the normal tests for masked and caught
   1880  * signals, allowing unrecoverable failures to terminate the process without
   1881  * changing signal state.  Mark the accounting record with the signal
   1882  * termination.  If dumping core, save the signal number for the debugger.
   1883  * Calls exit and does not return.
   1884  */
   1885 void
   1886 sigexit(struct lwp *l, int signo)
   1887 {
   1888 	int exitsig, error, docore;
   1889 	struct proc *p;
   1890 	struct lwp *t;
   1891 
   1892 	p = l->l_proc;
   1893 
   1894 	KASSERT(mutex_owned(&p->p_smutex));
   1895 	KERNEL_UNLOCK_ALL(l, NULL);
   1896 
   1897 	/*
   1898 	 * Don't permit coredump() multiple times in the same process.
   1899 	 * Call back into sigexit, where we will be suspended until
   1900 	 * the deed is done.  Note that this is a recursive call, but
   1901 	 * LW_WCORE will prevent us from coming back this way.
   1902 	 */
   1903 	if ((p->p_sflag & PS_WCORE) != 0) {
   1904 		lwp_lock(l);
   1905 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1906 		lwp_unlock(l);
   1907 		mutex_exit(&p->p_smutex);
   1908 		lwp_userret(l);
   1909 #ifdef DIAGNOSTIC
   1910 		panic("sigexit");
   1911 #endif
   1912 		/* NOTREACHED */
   1913 	}
   1914 
   1915 	/*
   1916 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1917 	 * so that their registers are available long enough to be dumped.
   1918  	 */
   1919 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1920 		p->p_sflag |= PS_WCORE;
   1921 		for (;;) {
   1922 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1923 				lwp_lock(t);
   1924 				if (t == l) {
   1925 					t->l_flag &= ~LW_WSUSPEND;
   1926 					lwp_unlock(t);
   1927 					continue;
   1928 				}
   1929 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1930 				lwp_suspend(l, t);
   1931 			}
   1932 
   1933 			if (p->p_nrlwps == 1)
   1934 				break;
   1935 
   1936 			/*
   1937 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   1938 			 * for everyone else to stop before proceeding.
   1939 			 */
   1940 			p->p_nlwpwait++;
   1941 			cv_broadcast(&p->p_lwpcv);
   1942 			cv_wait(&p->p_lwpcv, &p->p_smutex);
   1943 			p->p_nlwpwait--;
   1944 		}
   1945 	}
   1946 
   1947 	exitsig = signo;
   1948 	p->p_acflag |= AXSIG;
   1949 	p->p_sigctx.ps_signo = signo;
   1950 	mutex_exit(&p->p_smutex);
   1951 
   1952 	KERNEL_LOCK(1, l);
   1953 
   1954 	if (docore) {
   1955 		if ((error = coredump(l, NULL)) == 0)
   1956 			exitsig |= WCOREFLAG;
   1957 
   1958 		if (kern_logsigexit) {
   1959 			int uid = l->l_cred ?
   1960 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   1961 
   1962 			if (error)
   1963 				log(LOG_INFO, lognocoredump, p->p_pid,
   1964 				    p->p_comm, uid, signo, error);
   1965 			else
   1966 				log(LOG_INFO, logcoredump, p->p_pid,
   1967 				    p->p_comm, uid, signo);
   1968 		}
   1969 
   1970 #ifdef PAX_SEGVGUARD
   1971 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   1972 #endif /* PAX_SEGVGUARD */
   1973 	}
   1974 
   1975 	/* Acquire the sched state mutex.  exit1() will release it. */
   1976 	mutex_enter(&p->p_smutex);
   1977 
   1978 	/* No longer dumping core. */
   1979 	p->p_sflag &= ~PS_WCORE;
   1980 
   1981 	exit1(l, W_EXITCODE(0, exitsig));
   1982 	/* NOTREACHED */
   1983 }
   1984 
   1985 /*
   1986  * Put process 'p' into the stopped state and optionally, notify the parent.
   1987  */
   1988 void
   1989 proc_stop(struct proc *p, int notify, int signo)
   1990 {
   1991 	struct lwp *l;
   1992 
   1993 	KASSERT(mutex_owned(&proclist_mutex));
   1994 	KASSERT(mutex_owned(&p->p_smutex));
   1995 
   1996 	/*
   1997 	 * First off, set the stopping indicator and bring all sleeping
   1998 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   1999 	 * unlock between here and the p->p_nrlwps check below.
   2000 	 */
   2001 	p->p_sflag |= PS_STOPPING;
   2002 	membar_producer();
   2003 
   2004 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2005 		lwp_lock(l);
   2006 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   2007 			l->l_stat = LSSTOP;
   2008 			p->p_nrlwps--;
   2009 		}
   2010 		lwp_unlock(l);
   2011 	}
   2012 
   2013 	/*
   2014 	 * If there are no LWPs available to take the signal, then we
   2015 	 * signal the parent process immediately.  Otherwise, the last
   2016 	 * LWP to stop will take care of it.
   2017 	 */
   2018 	if (notify)
   2019 		p->p_sflag |= PS_NOTIFYSTOP;
   2020 	else
   2021 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2022 
   2023 	if (p->p_nrlwps == 0) {
   2024 		p->p_sflag &= ~PS_STOPPING;
   2025 		p->p_stat = SSTOP;
   2026 		p->p_waited = 0;
   2027 		p->p_pptr->p_nstopchild++;
   2028 
   2029 		if (notify) {
   2030 			child_psignal(p, PS_NOCLDSTOP);
   2031 			cv_broadcast(&p->p_pptr->p_waitcv);
   2032 		}
   2033 	} else {
   2034 		/*
   2035 		 * Have the remaining LWPs come to a halt, and trigger
   2036 		 * proc_stop_callout() to ensure that they do.
   2037 		 */
   2038 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2039 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2040 		callout_schedule(&proc_stop_ch, 1);
   2041 	}
   2042 }
   2043 
   2044 /*
   2045  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2046  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2047  * to allow LWPs to release any locks that they may hold before stopping.
   2048  *
   2049  * Non-interruptable sleeps can be long, and there is the potential for an
   2050  * LWP to begin sleeping interruptably soon after the process has been set
   2051  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2052  * stopping, and so complete halt of the process and the return of status
   2053  * information to the parent could be delayed indefinitely.
   2054  *
   2055  * To handle this race, proc_stop_callout() runs once per tick while there
   2056  * are stopping processes in the system.  It sets LWPs that are sleeping
   2057  * interruptably into the LSSTOP state.
   2058  *
   2059  * Note that we are not concerned about keeping all LWPs stopped while the
   2060  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2061  * What we do need to ensure is that all LWPs in a stopping process have
   2062  * stopped at least once, so that notification can be sent to the parent
   2063  * process.
   2064  */
   2065 static void
   2066 proc_stop_callout(void *cookie)
   2067 {
   2068 	bool more, restart;
   2069 	struct proc *p;
   2070 	struct lwp *l;
   2071 
   2072 	(void)cookie;
   2073 
   2074 	do {
   2075 		restart = false;
   2076 		more = false;
   2077 
   2078 		mutex_enter(&proclist_lock);
   2079 		mutex_enter(&proclist_mutex);
   2080 		PROCLIST_FOREACH(p, &allproc) {
   2081 			mutex_enter(&p->p_smutex);
   2082 
   2083 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2084 				mutex_exit(&p->p_smutex);
   2085 				continue;
   2086 			}
   2087 
   2088 			/* Stop any LWPs sleeping interruptably. */
   2089 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2090 				lwp_lock(l);
   2091 				if (l->l_stat == LSSLEEP &&
   2092 				    (l->l_flag & LW_SINTR) != 0) {
   2093 				    	l->l_stat = LSSTOP;
   2094 				    	p->p_nrlwps--;
   2095 				}
   2096 				lwp_unlock(l);
   2097 			}
   2098 
   2099 			if (p->p_nrlwps == 0) {
   2100 				/*
   2101 				 * We brought the process to a halt.
   2102 				 * Mark it as stopped and notify the
   2103 				 * parent.
   2104 				 */
   2105 				p->p_sflag &= ~PS_STOPPING;
   2106 				p->p_stat = SSTOP;
   2107 				p->p_waited = 0;
   2108 				p->p_pptr->p_nstopchild++;
   2109 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2110 					/*
   2111 					 * Note that child_psignal() will
   2112 					 * drop p->p_smutex briefly.
   2113 					 * Arrange to restart and check
   2114 					 * all processes again.
   2115 					 */
   2116 					restart = true;
   2117 					child_psignal(p, PS_NOCLDSTOP);
   2118 					cv_broadcast(&p->p_pptr->p_waitcv);
   2119 				}
   2120 			} else
   2121 				more = true;
   2122 
   2123 			mutex_exit(&p->p_smutex);
   2124 			if (restart)
   2125 				break;
   2126 		}
   2127 		mutex_exit(&proclist_mutex);
   2128 		mutex_exit(&proclist_lock);
   2129 	} while (restart);
   2130 
   2131 	/*
   2132 	 * If we noted processes that are stopping but still have
   2133 	 * running LWPs, then arrange to check again in 1 tick.
   2134 	 */
   2135 	if (more)
   2136 		callout_schedule(&proc_stop_ch, 1);
   2137 }
   2138 
   2139 /*
   2140  * Given a process in state SSTOP, set the state back to SACTIVE and
   2141  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2142  */
   2143 void
   2144 proc_unstop(struct proc *p)
   2145 {
   2146 	struct lwp *l;
   2147 	int sig;
   2148 
   2149 	KASSERT(mutex_owned(&proclist_mutex));
   2150 	KASSERT(mutex_owned(&p->p_smutex));
   2151 
   2152 	p->p_stat = SACTIVE;
   2153 	p->p_sflag &= ~PS_STOPPING;
   2154 	sig = p->p_xstat;
   2155 
   2156 	if (!p->p_waited)
   2157 		p->p_pptr->p_nstopchild--;
   2158 
   2159 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2160 		lwp_lock(l);
   2161 		if (l->l_stat != LSSTOP) {
   2162 			lwp_unlock(l);
   2163 			continue;
   2164 		}
   2165 		if (l->l_wchan == NULL) {
   2166 			setrunnable(l);
   2167 			continue;
   2168 		}
   2169 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2170 		        setrunnable(l);
   2171 		        sig = 0;
   2172 		} else {
   2173 			l->l_stat = LSSLEEP;
   2174 			p->p_nrlwps++;
   2175 			lwp_unlock(l);
   2176 		}
   2177 	}
   2178 }
   2179 
   2180 static int
   2181 filt_sigattach(struct knote *kn)
   2182 {
   2183 	struct proc *p = curproc;
   2184 
   2185 	kn->kn_ptr.p_proc = p;
   2186 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2187 
   2188 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2189 
   2190 	return (0);
   2191 }
   2192 
   2193 static void
   2194 filt_sigdetach(struct knote *kn)
   2195 {
   2196 	struct proc *p = kn->kn_ptr.p_proc;
   2197 
   2198 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2199 }
   2200 
   2201 /*
   2202  * signal knotes are shared with proc knotes, so we apply a mask to
   2203  * the hint in order to differentiate them from process hints.  This
   2204  * could be avoided by using a signal-specific knote list, but probably
   2205  * isn't worth the trouble.
   2206  */
   2207 static int
   2208 filt_signal(struct knote *kn, long hint)
   2209 {
   2210 
   2211 	if (hint & NOTE_SIGNAL) {
   2212 		hint &= ~NOTE_SIGNAL;
   2213 
   2214 		if (kn->kn_id == hint)
   2215 			kn->kn_data++;
   2216 	}
   2217 	return (kn->kn_data != 0);
   2218 }
   2219 
   2220 const struct filterops sig_filtops = {
   2221 	0, filt_sigattach, filt_sigdetach, filt_signal
   2222 };
   2223