kern_sig.c revision 1.271 1 /* $NetBSD: kern_sig.c,v 1.271 2008/02/19 16:16:06 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1991, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.271 2008/02/19 16:16:06 yamt Exp $");
77
78 #include "opt_ptrace.h"
79 #include "opt_multiprocessor.h"
80 #include "opt_compat_sunos.h"
81 #include "opt_compat_netbsd.h"
82 #include "opt_compat_netbsd32.h"
83 #include "opt_pax.h"
84
85 #define SIGPROP /* include signal properties table */
86 #include <sys/param.h>
87 #include <sys/signalvar.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/wait.h>
91 #include <sys/ktrace.h>
92 #include <sys/syslog.h>
93 #include <sys/filedesc.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/pool.h>
97 #include <sys/ucontext.h>
98 #include <sys/exec.h>
99 #include <sys/kauth.h>
100 #include <sys/acct.h>
101 #include <sys/callout.h>
102 #include <sys/atomic.h>
103 #include <sys/cpu.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111
112 static void ksiginfo_exechook(struct proc *, void *);
113 static void proc_stop_callout(void *);
114
115 int sigunwait(struct proc *, const ksiginfo_t *);
116 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
117 int sigpost(struct lwp *, sig_t, int, int);
118 int sigchecktrace(sigpend_t **);
119 void sigswitch(bool, int, int);
120 void sigrealloc(ksiginfo_t *);
121
122 sigset_t contsigmask, stopsigmask, sigcantmask;
123 struct pool sigacts_pool; /* memory pool for sigacts structures */
124 static void sigacts_poolpage_free(struct pool *, void *);
125 static void *sigacts_poolpage_alloc(struct pool *, int);
126 static callout_t proc_stop_ch;
127
128 static struct pool_allocator sigactspool_allocator = {
129 .pa_alloc = sigacts_poolpage_alloc,
130 .pa_free = sigacts_poolpage_free,
131 };
132
133 #ifdef DEBUG
134 int kern_logsigexit = 1;
135 #else
136 int kern_logsigexit = 0;
137 #endif
138
139 static const char logcoredump[] =
140 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
141 static const char lognocoredump[] =
142 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
143
144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
145 &pool_allocator_nointr, IPL_NONE);
146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
147 NULL, IPL_VM);
148
149 /*
150 * signal_init:
151 *
152 * Initialize global signal-related data structures.
153 */
154 void
155 signal_init(void)
156 {
157
158 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
159
160 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
161 sizeof(struct sigacts) > PAGE_SIZE ?
162 &sigactspool_allocator : &pool_allocator_nointr,
163 IPL_NONE);
164
165 exechook_establish(ksiginfo_exechook, NULL);
166
167 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
168 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
169 }
170
171 /*
172 * sigacts_poolpage_alloc:
173 *
174 * Allocate a page for the sigacts memory pool.
175 */
176 static void *
177 sigacts_poolpage_alloc(struct pool *pp, int flags)
178 {
179
180 return (void *)uvm_km_alloc(kernel_map,
181 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
182 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
183 | UVM_KMF_WIRED);
184 }
185
186 /*
187 * sigacts_poolpage_free:
188 *
189 * Free a page on behalf of the sigacts memory pool.
190 */
191 static void
192 sigacts_poolpage_free(struct pool *pp, void *v)
193 {
194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196
197 /*
198 * sigactsinit:
199 *
200 * Create an initial sigctx structure, using the same signal state as
201 * p. If 'share' is set, share the sigctx_proc part, otherwise just
202 * copy it from parent.
203 */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 struct sigacts *ps, *ps2;
208
209 ps = pp->p_sigacts;
210
211 if (share) {
212 mutex_enter(&ps->sa_mutex);
213 ps->sa_refcnt++;
214 mutex_exit(&ps->sa_mutex);
215 ps2 = ps;
216 } else {
217 ps2 = pool_get(&sigacts_pool, PR_WAITOK);
218 /* XXX IPL_SCHED to match p_smutex */
219 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
220 mutex_enter(&ps->sa_mutex);
221 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
222 sizeof(ps2->sa_sigdesc));
223 mutex_exit(&ps->sa_mutex);
224 ps2->sa_refcnt = 1;
225 }
226
227 return ps2;
228 }
229
230 /*
231 * sigactsunshare:
232 *
233 * Make this process not share its sigctx, maintaining all
234 * signal state.
235 */
236 void
237 sigactsunshare(struct proc *p)
238 {
239 struct sigacts *ps, *oldps;
240
241 oldps = p->p_sigacts;
242 if (oldps->sa_refcnt == 1)
243 return;
244 ps = pool_get(&sigacts_pool, PR_WAITOK);
245 /* XXX IPL_SCHED to match p_smutex */
246 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
247 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
248 p->p_sigacts = ps;
249 sigactsfree(oldps);
250 }
251
252 /*
253 * sigactsfree;
254 *
255 * Release a sigctx structure.
256 */
257 void
258 sigactsfree(struct sigacts *ps)
259 {
260 int refcnt;
261
262 mutex_enter(&ps->sa_mutex);
263 refcnt = --ps->sa_refcnt;
264 mutex_exit(&ps->sa_mutex);
265
266 if (refcnt == 0) {
267 mutex_destroy(&ps->sa_mutex);
268 pool_put(&sigacts_pool, ps);
269 }
270 }
271
272 /*
273 * siginit:
274 *
275 * Initialize signal state for process 0; set to ignore signals that
276 * are ignored by default and disable the signal stack. Locking not
277 * required as the system is still cold.
278 */
279 void
280 siginit(struct proc *p)
281 {
282 struct lwp *l;
283 struct sigacts *ps;
284 int signo, prop;
285
286 ps = p->p_sigacts;
287 sigemptyset(&contsigmask);
288 sigemptyset(&stopsigmask);
289 sigemptyset(&sigcantmask);
290 for (signo = 1; signo < NSIG; signo++) {
291 prop = sigprop[signo];
292 if (prop & SA_CONT)
293 sigaddset(&contsigmask, signo);
294 if (prop & SA_STOP)
295 sigaddset(&stopsigmask, signo);
296 if (prop & SA_CANTMASK)
297 sigaddset(&sigcantmask, signo);
298 if (prop & SA_IGNORE && signo != SIGCONT)
299 sigaddset(&p->p_sigctx.ps_sigignore, signo);
300 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
301 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
302 }
303 sigemptyset(&p->p_sigctx.ps_sigcatch);
304 p->p_sflag &= ~PS_NOCLDSTOP;
305
306 ksiginfo_queue_init(&p->p_sigpend.sp_info);
307 sigemptyset(&p->p_sigpend.sp_set);
308
309 /*
310 * Reset per LWP state.
311 */
312 l = LIST_FIRST(&p->p_lwps);
313 l->l_sigwaited = NULL;
314 l->l_sigstk.ss_flags = SS_DISABLE;
315 l->l_sigstk.ss_size = 0;
316 l->l_sigstk.ss_sp = 0;
317 ksiginfo_queue_init(&l->l_sigpend.sp_info);
318 sigemptyset(&l->l_sigpend.sp_set);
319
320 /* One reference. */
321 ps->sa_refcnt = 1;
322 }
323
324 /*
325 * execsigs:
326 *
327 * Reset signals for an exec of the specified process.
328 */
329 void
330 execsigs(struct proc *p)
331 {
332 struct sigacts *ps;
333 struct lwp *l;
334 int signo, prop;
335 sigset_t tset;
336 ksiginfoq_t kq;
337
338 KASSERT(p->p_nlwps == 1);
339
340 sigactsunshare(p);
341 ps = p->p_sigacts;
342
343 /*
344 * Reset caught signals. Held signals remain held through
345 * l->l_sigmask (unless they were caught, and are now ignored
346 * by default).
347 *
348 * No need to lock yet, the process has only one LWP and
349 * at this point the sigacts are private to the process.
350 */
351 sigemptyset(&tset);
352 for (signo = 1; signo < NSIG; signo++) {
353 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
354 prop = sigprop[signo];
355 if (prop & SA_IGNORE) {
356 if ((prop & SA_CONT) == 0)
357 sigaddset(&p->p_sigctx.ps_sigignore,
358 signo);
359 sigaddset(&tset, signo);
360 }
361 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
362 }
363 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
364 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
365 }
366 ksiginfo_queue_init(&kq);
367
368 mutex_enter(&p->p_smutex);
369 sigclearall(p, &tset, &kq);
370 sigemptyset(&p->p_sigctx.ps_sigcatch);
371
372 /*
373 * Reset no zombies if child dies flag as Solaris does.
374 */
375 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
376 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
377 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
378
379 /*
380 * Reset per-LWP state.
381 */
382 l = LIST_FIRST(&p->p_lwps);
383 l->l_sigwaited = NULL;
384 l->l_sigstk.ss_flags = SS_DISABLE;
385 l->l_sigstk.ss_size = 0;
386 l->l_sigstk.ss_sp = 0;
387 ksiginfo_queue_init(&l->l_sigpend.sp_info);
388 sigemptyset(&l->l_sigpend.sp_set);
389 mutex_exit(&p->p_smutex);
390
391 ksiginfo_queue_drain(&kq);
392 }
393
394 /*
395 * ksiginfo_exechook:
396 *
397 * Free all pending ksiginfo entries from a process on exec.
398 * Additionally, drain any unused ksiginfo structures in the
399 * system back to the pool.
400 *
401 * XXX This should not be a hook, every process has signals.
402 */
403 static void
404 ksiginfo_exechook(struct proc *p, void *v)
405 {
406 ksiginfoq_t kq;
407
408 ksiginfo_queue_init(&kq);
409
410 mutex_enter(&p->p_smutex);
411 sigclearall(p, NULL, &kq);
412 mutex_exit(&p->p_smutex);
413
414 ksiginfo_queue_drain(&kq);
415 }
416
417 /*
418 * ksiginfo_alloc:
419 *
420 * Allocate a new ksiginfo structure from the pool, and optionally copy
421 * an existing one. If the existing ksiginfo_t is from the pool, and
422 * has not been queued somewhere, then just return it. Additionally,
423 * if the existing ksiginfo_t does not contain any information beyond
424 * the signal number, then just return it.
425 */
426 ksiginfo_t *
427 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
428 {
429 ksiginfo_t *kp;
430 int s;
431
432 if (ok != NULL) {
433 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
434 KSI_FROMPOOL)
435 return ok;
436 if (KSI_EMPTY_P(ok))
437 return ok;
438 }
439
440 s = splvm();
441 kp = pool_get(&ksiginfo_pool, flags);
442 splx(s);
443 if (kp == NULL) {
444 #ifdef DIAGNOSTIC
445 printf("Out of memory allocating ksiginfo for pid %d\n",
446 p->p_pid);
447 #endif
448 return NULL;
449 }
450
451 if (ok != NULL) {
452 memcpy(kp, ok, sizeof(*kp));
453 kp->ksi_flags &= ~KSI_QUEUED;
454 } else
455 KSI_INIT_EMPTY(kp);
456
457 kp->ksi_flags |= KSI_FROMPOOL;
458
459 return kp;
460 }
461
462 /*
463 * ksiginfo_free:
464 *
465 * If the given ksiginfo_t is from the pool and has not been queued,
466 * then free it.
467 */
468 void
469 ksiginfo_free(ksiginfo_t *kp)
470 {
471 int s;
472
473 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
474 return;
475 s = splvm();
476 pool_put(&ksiginfo_pool, kp);
477 splx(s);
478 }
479
480 /*
481 * ksiginfo_queue_drain:
482 *
483 * Drain a non-empty ksiginfo_t queue.
484 */
485 void
486 ksiginfo_queue_drain0(ksiginfoq_t *kq)
487 {
488 ksiginfo_t *ksi;
489 int s;
490
491 KASSERT(!CIRCLEQ_EMPTY(kq));
492
493 KERNEL_LOCK(1, curlwp); /* XXXSMP */
494 while (!CIRCLEQ_EMPTY(kq)) {
495 ksi = CIRCLEQ_FIRST(kq);
496 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
497 s = splvm();
498 pool_put(&ksiginfo_pool, ksi);
499 splx(s);
500 }
501 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
502 }
503
504 /*
505 * sigget:
506 *
507 * Fetch the first pending signal from a set. Optionally, also fetch
508 * or manufacture a ksiginfo element. Returns the number of the first
509 * pending signal, or zero.
510 */
511 int
512 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
513 {
514 ksiginfo_t *ksi;
515 sigset_t tset;
516
517 /* If there's no pending set, the signal is from the debugger. */
518 if (sp == NULL) {
519 if (out != NULL) {
520 KSI_INIT(out);
521 out->ksi_info._signo = signo;
522 out->ksi_info._code = SI_USER;
523 }
524 return signo;
525 }
526
527 /* Construct mask from signo, and 'mask'. */
528 if (signo == 0) {
529 if (mask != NULL) {
530 tset = *mask;
531 __sigandset(&sp->sp_set, &tset);
532 } else
533 tset = sp->sp_set;
534
535 /* If there are no signals pending, that's it. */
536 if ((signo = firstsig(&tset)) == 0)
537 return 0;
538 } else {
539 KASSERT(sigismember(&sp->sp_set, signo));
540 }
541
542 sigdelset(&sp->sp_set, signo);
543
544 /* Find siginfo and copy it out. */
545 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
546 if (ksi->ksi_signo == signo) {
547 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
548 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
549 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
550 ksi->ksi_flags &= ~KSI_QUEUED;
551 if (out != NULL) {
552 memcpy(out, ksi, sizeof(*out));
553 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
554 }
555 ksiginfo_free(ksi);
556 return signo;
557 }
558 }
559
560 /* If there's no siginfo, then manufacture it. */
561 if (out != NULL) {
562 KSI_INIT(out);
563 out->ksi_info._signo = signo;
564 out->ksi_info._code = SI_USER;
565 }
566
567 return signo;
568 }
569
570 /*
571 * sigput:
572 *
573 * Append a new ksiginfo element to the list of pending ksiginfo's, if
574 * we need to (e.g. SA_SIGINFO was requested).
575 */
576 void
577 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
578 {
579 ksiginfo_t *kp;
580 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
581
582 KASSERT(mutex_owned(&p->p_smutex));
583 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
584
585 sigaddset(&sp->sp_set, ksi->ksi_signo);
586
587 /*
588 * If siginfo is not required, or there is none, then just mark the
589 * signal as pending.
590 */
591 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
592 return;
593
594 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
595
596 #ifdef notyet /* XXX: QUEUING */
597 if (ksi->ksi_signo < SIGRTMIN)
598 #endif
599 {
600 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
601 if (kp->ksi_signo == ksi->ksi_signo) {
602 KSI_COPY(ksi, kp);
603 kp->ksi_flags |= KSI_QUEUED;
604 return;
605 }
606 }
607 }
608
609 ksi->ksi_flags |= KSI_QUEUED;
610 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
611 }
612
613 /*
614 * sigclear:
615 *
616 * Clear all pending signals in the specified set.
617 */
618 void
619 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
620 {
621 ksiginfo_t *ksi, *next;
622
623 if (mask == NULL)
624 sigemptyset(&sp->sp_set);
625 else
626 sigminusset(mask, &sp->sp_set);
627
628 ksi = CIRCLEQ_FIRST(&sp->sp_info);
629 for (; ksi != (void *)&sp->sp_info; ksi = next) {
630 next = CIRCLEQ_NEXT(ksi, ksi_list);
631 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
632 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
633 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
634 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
635 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
636 }
637 }
638 }
639
640 /*
641 * sigclearall:
642 *
643 * Clear all pending signals in the specified set from a process and
644 * its LWPs.
645 */
646 void
647 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
648 {
649 struct lwp *l;
650
651 KASSERT(mutex_owned(&p->p_smutex));
652
653 sigclear(&p->p_sigpend, mask, kq);
654
655 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
656 sigclear(&l->l_sigpend, mask, kq);
657 }
658 }
659
660 /*
661 * sigispending:
662 *
663 * Return true if there are pending signals for the current LWP. May
664 * be called unlocked provided that LW_PENDSIG is set, and that the
665 * signal has been posted to the appopriate queue before LW_PENDSIG is
666 * set.
667 */
668 int
669 sigispending(struct lwp *l, int signo)
670 {
671 struct proc *p = l->l_proc;
672 sigset_t tset;
673
674 membar_consumer();
675
676 tset = l->l_sigpend.sp_set;
677 sigplusset(&p->p_sigpend.sp_set, &tset);
678 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
679 sigminusset(&l->l_sigmask, &tset);
680
681 if (signo == 0) {
682 if (firstsig(&tset) != 0)
683 return EINTR;
684 } else if (sigismember(&tset, signo))
685 return EINTR;
686
687 return 0;
688 }
689
690 /*
691 * siginfo_alloc:
692 *
693 * Allocate a new siginfo_t structure from the pool.
694 */
695 siginfo_t *
696 siginfo_alloc(int flags)
697 {
698
699 return pool_get(&siginfo_pool, flags);
700 }
701
702 /*
703 * siginfo_free:
704 *
705 * Return a siginfo_t structure to the pool.
706 */
707 void
708 siginfo_free(void *arg)
709 {
710
711 pool_put(&siginfo_pool, arg);
712 }
713
714 void
715 getucontext(struct lwp *l, ucontext_t *ucp)
716 {
717 struct proc *p = l->l_proc;
718
719 KASSERT(mutex_owned(&p->p_smutex));
720
721 ucp->uc_flags = 0;
722 ucp->uc_link = l->l_ctxlink;
723
724 ucp->uc_sigmask = l->l_sigmask;
725 ucp->uc_flags |= _UC_SIGMASK;
726
727 /*
728 * The (unsupplied) definition of the `current execution stack'
729 * in the System V Interface Definition appears to allow returning
730 * the main context stack.
731 */
732 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
733 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
734 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
735 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
736 } else {
737 /* Simply copy alternate signal execution stack. */
738 ucp->uc_stack = l->l_sigstk;
739 }
740 ucp->uc_flags |= _UC_STACK;
741 mutex_exit(&p->p_smutex);
742 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
743 mutex_enter(&p->p_smutex);
744 }
745
746 int
747 setucontext(struct lwp *l, const ucontext_t *ucp)
748 {
749 struct proc *p = l->l_proc;
750 int error;
751
752 KASSERT(mutex_owned(&p->p_smutex));
753
754 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
755 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
756 if (error != 0)
757 return error;
758 }
759
760 mutex_exit(&p->p_smutex);
761 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
762 mutex_enter(&p->p_smutex);
763 if (error != 0)
764 return (error);
765
766 l->l_ctxlink = ucp->uc_link;
767
768 /*
769 * If there was stack information, update whether or not we are
770 * still running on an alternate signal stack.
771 */
772 if ((ucp->uc_flags & _UC_STACK) != 0) {
773 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
774 l->l_sigstk.ss_flags |= SS_ONSTACK;
775 else
776 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
777 }
778
779 return 0;
780 }
781
782 /*
783 * Common code for kill process group/broadcast kill. cp is calling
784 * process.
785 */
786 int
787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
788 {
789 struct proc *p, *cp;
790 kauth_cred_t pc;
791 struct pgrp *pgrp;
792 int nfound;
793 int signo = ksi->ksi_signo;
794
795 cp = l->l_proc;
796 pc = l->l_cred;
797 nfound = 0;
798
799 mutex_enter(&proclist_lock);
800 if (all) {
801 /*
802 * broadcast
803 */
804 PROCLIST_FOREACH(p, &allproc) {
805 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
806 continue;
807 mutex_enter(&p->p_mutex);
808 if (kauth_authorize_process(pc,
809 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
810 NULL) == 0) {
811 nfound++;
812 if (signo) {
813 mutex_enter(&proclist_mutex);
814 mutex_enter(&p->p_smutex);
815 kpsignal2(p, ksi);
816 mutex_exit(&p->p_smutex);
817 mutex_exit(&proclist_mutex);
818 }
819 }
820 mutex_exit(&p->p_mutex);
821 }
822 } else {
823 if (pgid == 0)
824 /*
825 * zero pgid means send to my process group.
826 */
827 pgrp = cp->p_pgrp;
828 else {
829 pgrp = pg_find(pgid, PFIND_LOCKED);
830 if (pgrp == NULL)
831 goto out;
832 }
833 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
834 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
835 continue;
836 mutex_enter(&p->p_mutex);
837 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
838 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
839 nfound++;
840 if (signo) {
841 mutex_enter(&proclist_mutex);
842 mutex_enter(&p->p_smutex);
843 if (P_ZOMBIE(p) == 0)
844 kpsignal2(p, ksi);
845 mutex_exit(&p->p_smutex);
846 mutex_exit(&proclist_mutex);
847 }
848 }
849 mutex_exit(&p->p_mutex);
850 }
851 }
852 out:
853 mutex_exit(&proclist_lock);
854 return (nfound ? 0 : ESRCH);
855 }
856
857 /*
858 * Send a signal to a process group. If checktty is 1, limit to members
859 * which have a controlling terminal.
860 */
861 void
862 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
863 {
864 ksiginfo_t ksi;
865
866 KASSERT(mutex_owned(&proclist_mutex));
867
868 KSI_INIT_EMPTY(&ksi);
869 ksi.ksi_signo = sig;
870 kpgsignal(pgrp, &ksi, NULL, checkctty);
871 }
872
873 void
874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
875 {
876 struct proc *p;
877
878 KASSERT(mutex_owned(&proclist_mutex));
879
880 if (pgrp)
881 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
882 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
883 kpsignal(p, ksi, data);
884 }
885
886 /*
887 * Send a signal caused by a trap to the current LWP. If it will be caught
888 * immediately, deliver it with correct code. Otherwise, post it normally.
889 */
890 void
891 trapsignal(struct lwp *l, ksiginfo_t *ksi)
892 {
893 struct proc *p;
894 struct sigacts *ps;
895 int signo = ksi->ksi_signo;
896
897 KASSERT(KSI_TRAP_P(ksi));
898
899 ksi->ksi_lid = l->l_lid;
900 p = l->l_proc;
901
902 mutex_enter(&proclist_mutex);
903 mutex_enter(&p->p_smutex);
904 ps = p->p_sigacts;
905 if ((p->p_slflag & PSL_TRACED) == 0 &&
906 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
907 !sigismember(&l->l_sigmask, signo)) {
908 mutex_exit(&proclist_mutex);
909 p->p_stats->p_ru.ru_nsignals++;
910 kpsendsig(l, ksi, &l->l_sigmask);
911 mutex_exit(&p->p_smutex);
912 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
913 &l->l_sigmask, ksi);
914 } else {
915 /* XXX for core dump/debugger */
916 p->p_sigctx.ps_lwp = l->l_lid;
917 p->p_sigctx.ps_signo = ksi->ksi_signo;
918 p->p_sigctx.ps_code = ksi->ksi_trap;
919 kpsignal2(p, ksi);
920 mutex_exit(&proclist_mutex);
921 mutex_exit(&p->p_smutex);
922 }
923 }
924
925 /*
926 * Fill in signal information and signal the parent for a child status change.
927 */
928 void
929 child_psignal(struct proc *p, int mask)
930 {
931 ksiginfo_t ksi;
932 struct proc *q;
933 int xstat;
934
935 KASSERT(mutex_owned(&proclist_mutex));
936 KASSERT(mutex_owned(&p->p_smutex));
937
938 xstat = p->p_xstat;
939
940 KSI_INIT(&ksi);
941 ksi.ksi_signo = SIGCHLD;
942 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
943 ksi.ksi_pid = p->p_pid;
944 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
945 ksi.ksi_status = xstat;
946 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
947 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
948
949 q = p->p_pptr;
950
951 mutex_exit(&p->p_smutex);
952 mutex_enter(&q->p_smutex);
953
954 if ((q->p_sflag & mask) == 0)
955 kpsignal2(q, &ksi);
956
957 mutex_exit(&q->p_smutex);
958 mutex_enter(&p->p_smutex);
959 }
960
961 void
962 psignal(struct proc *p, int signo)
963 {
964 ksiginfo_t ksi;
965
966 KASSERT(mutex_owned(&proclist_mutex));
967
968 KSI_INIT_EMPTY(&ksi);
969 ksi.ksi_signo = signo;
970 mutex_enter(&p->p_smutex);
971 kpsignal2(p, &ksi);
972 mutex_exit(&p->p_smutex);
973 }
974
975 void
976 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
977 {
978
979 KASSERT(mutex_owned(&proclist_mutex));
980
981 /* XXXSMP Why is this here? */
982 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
983 size_t fd;
984 struct filedesc *fdp = p->p_fd;
985
986 ksi->ksi_fd = -1;
987 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
988 struct file *fp = fdp->fd_ofiles[fd];
989 /* XXX: lock? */
990 if (fp && fp->f_data == data) {
991 ksi->ksi_fd = fd;
992 break;
993 }
994 }
995 }
996 mutex_enter(&p->p_smutex);
997 kpsignal2(p, ksi);
998 mutex_exit(&p->p_smutex);
999 }
1000
1001 /*
1002 * sigismasked:
1003 *
1004 * Returns true if signal is ignored or masked for the specified LWP.
1005 */
1006 int
1007 sigismasked(struct lwp *l, int sig)
1008 {
1009 struct proc *p = l->l_proc;
1010
1011 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1012 sigismember(&l->l_sigmask, sig));
1013 }
1014
1015 /*
1016 * sigpost:
1017 *
1018 * Post a pending signal to an LWP. Returns non-zero if the LWP was
1019 * able to take the signal.
1020 */
1021 int
1022 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1023 {
1024 int rv, masked;
1025
1026 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1027
1028 /*
1029 * If the LWP is on the way out, sigclear() will be busy draining all
1030 * pending signals. Don't give it more.
1031 */
1032 if (l->l_refcnt == 0)
1033 return 0;
1034
1035 lwp_lock(l);
1036
1037 /*
1038 * Have the LWP check for signals. This ensures that even if no LWP
1039 * is found to take the signal immediately, it should be taken soon.
1040 */
1041 l->l_flag |= LW_PENDSIG;
1042
1043 /*
1044 * SIGCONT can be masked, but must always restart stopped LWPs.
1045 */
1046 masked = sigismember(&l->l_sigmask, sig);
1047 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1048 lwp_unlock(l);
1049 return 0;
1050 }
1051
1052 /*
1053 * If killing the process, make it run fast.
1054 */
1055 if (__predict_false((prop & SA_KILL) != 0) &&
1056 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1057 KASSERT(l->l_class == SCHED_OTHER);
1058 lwp_changepri(l, MAXPRI_USER);
1059 }
1060
1061 /*
1062 * If the LWP is running or on a run queue, then we win. If it's
1063 * sleeping interruptably, wake it and make it take the signal. If
1064 * the sleep isn't interruptable, then the chances are it will get
1065 * to see the signal soon anyhow. If suspended, it can't take the
1066 * signal right now. If it's LWP private or for all LWPs, save it
1067 * for later; otherwise punt.
1068 */
1069 rv = 0;
1070
1071 switch (l->l_stat) {
1072 case LSRUN:
1073 case LSONPROC:
1074 lwp_need_userret(l);
1075 rv = 1;
1076 break;
1077
1078 case LSSLEEP:
1079 if ((l->l_flag & LW_SINTR) != 0) {
1080 /* setrunnable() will release the lock. */
1081 setrunnable(l);
1082 return 1;
1083 }
1084 break;
1085
1086 case LSSUSPENDED:
1087 if ((prop & SA_KILL) != 0) {
1088 /* lwp_continue() will release the lock. */
1089 lwp_continue(l);
1090 return 1;
1091 }
1092 break;
1093
1094 case LSSTOP:
1095 if ((prop & SA_STOP) != 0)
1096 break;
1097
1098 /*
1099 * If the LWP is stopped and we are sending a continue
1100 * signal, then start it again.
1101 */
1102 if ((prop & SA_CONT) != 0) {
1103 if (l->l_wchan != NULL) {
1104 l->l_stat = LSSLEEP;
1105 l->l_proc->p_nrlwps++;
1106 rv = 1;
1107 break;
1108 }
1109 /* setrunnable() will release the lock. */
1110 setrunnable(l);
1111 return 1;
1112 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1113 /* setrunnable() will release the lock. */
1114 setrunnable(l);
1115 return 1;
1116 }
1117 break;
1118
1119 default:
1120 break;
1121 }
1122
1123 lwp_unlock(l);
1124 return rv;
1125 }
1126
1127 /*
1128 * Notify an LWP that it has a pending signal.
1129 */
1130 void
1131 signotify(struct lwp *l)
1132 {
1133 KASSERT(lwp_locked(l, NULL));
1134
1135 l->l_flag |= LW_PENDSIG;
1136 lwp_need_userret(l);
1137 }
1138
1139 /*
1140 * Find an LWP within process p that is waiting on signal ksi, and hand
1141 * it on.
1142 */
1143 int
1144 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1145 {
1146 struct lwp *l;
1147 int signo;
1148
1149 KASSERT(mutex_owned(&p->p_smutex));
1150
1151 signo = ksi->ksi_signo;
1152
1153 if (ksi->ksi_lid != 0) {
1154 /*
1155 * Signal came via _lwp_kill(). Find the LWP and see if
1156 * it's interested.
1157 */
1158 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1159 return 0;
1160 if (l->l_sigwaited == NULL ||
1161 !sigismember(&l->l_sigwaitset, signo))
1162 return 0;
1163 } else {
1164 /*
1165 * Look for any LWP that may be interested.
1166 */
1167 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1168 KASSERT(l->l_sigwaited != NULL);
1169 if (sigismember(&l->l_sigwaitset, signo))
1170 break;
1171 }
1172 }
1173
1174 if (l != NULL) {
1175 l->l_sigwaited->ksi_info = ksi->ksi_info;
1176 l->l_sigwaited = NULL;
1177 LIST_REMOVE(l, l_sigwaiter);
1178 cv_signal(&l->l_sigcv);
1179 return 1;
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Send the signal to the process. If the signal has an action, the action
1187 * is usually performed by the target process rather than the caller; we add
1188 * the signal to the set of pending signals for the process.
1189 *
1190 * Exceptions:
1191 * o When a stop signal is sent to a sleeping process that takes the
1192 * default action, the process is stopped without awakening it.
1193 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1194 * regardless of the signal action (eg, blocked or ignored).
1195 *
1196 * Other ignored signals are discarded immediately.
1197 */
1198 void
1199 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1200 {
1201 int prop, lid, toall, signo = ksi->ksi_signo;
1202 struct sigacts *sa;
1203 struct lwp *l;
1204 ksiginfo_t *kp;
1205 ksiginfoq_t kq;
1206 sig_t action;
1207
1208 KASSERT(mutex_owned(&proclist_mutex));
1209 KASSERT(mutex_owned(&p->p_smutex));
1210 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1211 KASSERT(signo > 0 && signo < NSIG);
1212
1213 /*
1214 * If the process is being created by fork, is a zombie or is
1215 * exiting, then just drop the signal here and bail out.
1216 */
1217 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1218 return;
1219
1220 /*
1221 * Notify any interested parties of the signal.
1222 */
1223 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1224
1225 /*
1226 * Some signals including SIGKILL must act on the entire process.
1227 */
1228 kp = NULL;
1229 prop = sigprop[signo];
1230 toall = ((prop & SA_TOALL) != 0);
1231
1232 if (toall)
1233 lid = 0;
1234 else
1235 lid = ksi->ksi_lid;
1236
1237 /*
1238 * If proc is traced, always give parent a chance.
1239 */
1240 if (p->p_slflag & PSL_TRACED) {
1241 action = SIG_DFL;
1242
1243 if (lid == 0) {
1244 /*
1245 * If the process is being traced and the signal
1246 * is being caught, make sure to save any ksiginfo.
1247 */
1248 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1249 return;
1250 sigput(&p->p_sigpend, p, kp);
1251 }
1252 } else {
1253 /*
1254 * If the signal was the result of a trap and is not being
1255 * caught, then reset it to default action so that the
1256 * process dumps core immediately.
1257 */
1258 if (KSI_TRAP_P(ksi)) {
1259 sa = p->p_sigacts;
1260 mutex_enter(&sa->sa_mutex);
1261 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1262 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1263 SIGACTION(p, signo).sa_handler = SIG_DFL;
1264 }
1265 mutex_exit(&sa->sa_mutex);
1266 }
1267
1268 /*
1269 * If the signal is being ignored, then drop it. Note: we
1270 * don't set SIGCONT in ps_sigignore, and if it is set to
1271 * SIG_IGN, action will be SIG_DFL here.
1272 */
1273 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1274 return;
1275
1276 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1277 action = SIG_CATCH;
1278 else {
1279 action = SIG_DFL;
1280
1281 /*
1282 * If sending a tty stop signal to a member of an
1283 * orphaned process group, discard the signal here if
1284 * the action is default; don't stop the process below
1285 * if sleeping, and don't clear any pending SIGCONT.
1286 */
1287 if (prop & SA_TTYSTOP &&
1288 (p->p_sflag & PS_ORPHANPG) != 0)
1289 return;
1290
1291 if (prop & SA_KILL && p->p_nice > NZERO)
1292 p->p_nice = NZERO;
1293 }
1294 }
1295
1296 /*
1297 * If stopping or continuing a process, discard any pending
1298 * signals that would do the inverse.
1299 */
1300 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1301 ksiginfo_queue_init(&kq);
1302 if ((prop & SA_CONT) != 0)
1303 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1304 if ((prop & SA_STOP) != 0)
1305 sigclear(&p->p_sigpend, &contsigmask, &kq);
1306 ksiginfo_queue_drain(&kq); /* XXXSMP */
1307 }
1308
1309 /*
1310 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1311 * please!), check if any LWPs are waiting on it. If yes, pass on
1312 * the signal info. The signal won't be processed further here.
1313 */
1314 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1315 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1316 sigunwait(p, ksi))
1317 return;
1318
1319 /*
1320 * XXXSMP Should be allocated by the caller, we're holding locks
1321 * here.
1322 */
1323 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1324 return;
1325
1326 /*
1327 * LWP private signals are easy - just find the LWP and post
1328 * the signal to it.
1329 */
1330 if (lid != 0) {
1331 l = lwp_find(p, lid);
1332 if (l != NULL) {
1333 sigput(&l->l_sigpend, p, kp);
1334 membar_producer();
1335 (void)sigpost(l, action, prop, kp->ksi_signo);
1336 }
1337 goto out;
1338 }
1339
1340 /*
1341 * Some signals go to all LWPs, even if posted with _lwp_kill().
1342 */
1343 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1344 if ((p->p_slflag & PSL_TRACED) != 0)
1345 goto deliver;
1346
1347 /*
1348 * If SIGCONT is default (or ignored) and process is
1349 * asleep, we are finished; the process should not
1350 * be awakened.
1351 */
1352 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1353 goto out;
1354
1355 if ((prop & SA_STOP) != 0 && action == SIG_DFL) {
1356 /*
1357 * If a child holding parent blocked, stopping could
1358 * cause deadlock: discard the signal.
1359 */
1360 if ((p->p_sflag & PS_PPWAIT) == 0) {
1361 p->p_xstat = signo;
1362 proc_stop(p, 1, signo);
1363 }
1364 goto out;
1365 } else {
1366 /*
1367 * Stop signals with the default action are handled
1368 * specially in issignal(), and so are not enqueued.
1369 */
1370 sigput(&p->p_sigpend, p, kp);
1371 }
1372 } else {
1373 /*
1374 * Process is stopped or stopping. If traced, then no
1375 * further action is necessary.
1376 */
1377 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1378 goto out;
1379
1380 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1381 /*
1382 * Re-adjust p_nstopchild if the process wasn't
1383 * collected by its parent.
1384 */
1385 p->p_stat = SACTIVE;
1386 p->p_sflag &= ~PS_STOPPING;
1387 if (!p->p_waited)
1388 p->p_pptr->p_nstopchild--;
1389
1390 /*
1391 * If SIGCONT is default (or ignored), we continue
1392 * the process but don't leave the signal in
1393 * ps_siglist, as it has no further action. If
1394 * SIGCONT is held, we continue the process and
1395 * leave the signal in ps_siglist. If the process
1396 * catches SIGCONT, let it handle the signal itself.
1397 * If it isn't waiting on an event, then it goes
1398 * back to run state. Otherwise, process goes back
1399 * to sleep state.
1400 */
1401 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1402 sigput(&p->p_sigpend, p, kp);
1403 } else if ((prop & SA_STOP) != 0) {
1404 /*
1405 * Already stopped, don't need to stop again.
1406 * (If we did the shell could get confused.)
1407 */
1408 goto out;
1409 } else
1410 sigput(&p->p_sigpend, p, kp);
1411 }
1412
1413 deliver:
1414 /*
1415 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1416 * visible on the per process list (for sigispending()). This
1417 * is unlikely to be needed in practice, but...
1418 */
1419 membar_producer();
1420
1421 /*
1422 * Try to find an LWP that can take the signal.
1423 */
1424 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1425 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1426 break;
1427
1428 out:
1429 /*
1430 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1431 * with locks held. The caller should take care of this.
1432 */
1433 ksiginfo_free(kp);
1434 }
1435
1436 void
1437 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1438 {
1439 struct proc *p = l->l_proc;
1440
1441 KASSERT(mutex_owned(&p->p_smutex));
1442
1443 (*p->p_emul->e_sendsig)(ksi, mask);
1444 }
1445
1446 /*
1447 * Stop the current process and switch away when being stopped or traced.
1448 */
1449 void
1450 sigswitch(bool ppsig, int ppmask, int signo)
1451 {
1452 struct lwp *l = curlwp, *l2;
1453 struct proc *p = l->l_proc;
1454 #ifdef MULTIPROCESSOR
1455 int biglocks;
1456 #endif
1457
1458 KASSERT(mutex_owned(&p->p_smutex));
1459 KASSERT(l->l_stat == LSONPROC);
1460 KASSERT(p->p_nrlwps > 0);
1461
1462 /*
1463 * On entry we know that the process needs to stop. If it's
1464 * the result of a 'sideways' stop signal that has been sourced
1465 * through issignal(), then stop other LWPs in the process too.
1466 */
1467 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1468 /*
1469 * Set the stopping indicator and bring all sleeping LWPs
1470 * to a halt so they are included in p->p_nrlwps
1471 */
1472 p->p_sflag |= (PS_STOPPING | PS_NOTIFYSTOP);
1473 membar_producer();
1474
1475 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1476 lwp_lock(l2);
1477 if (l2->l_stat == LSSLEEP &&
1478 (l2->l_flag & LW_SINTR) != 0) {
1479 l2->l_stat = LSSTOP;
1480 p->p_nrlwps--;
1481 }
1482 lwp_unlock(l2);
1483 }
1484
1485 /*
1486 * Have the remaining LWPs come to a halt, and trigger
1487 * proc_stop_callout() to ensure that they do.
1488 */
1489 KASSERT(signo != 0);
1490 KASSERT(p->p_nrlwps > 0);
1491
1492 if (p->p_nrlwps > 1) {
1493 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
1494 sigpost(l2, SIG_DFL, SA_STOP, signo);
1495 callout_schedule(&proc_stop_ch, 1);
1496 }
1497 }
1498
1499 /*
1500 * If we are the last live LWP, and the stop was a result of
1501 * a new signal, then signal the parent.
1502 */
1503 if ((p->p_sflag & PS_STOPPING) != 0) {
1504 if (!mutex_tryenter(&proclist_mutex)) {
1505 mutex_exit(&p->p_smutex);
1506 mutex_enter(&proclist_mutex);
1507 mutex_enter(&p->p_smutex);
1508 }
1509
1510 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1511 p->p_sflag &= ~PS_STOPPING;
1512 p->p_stat = SSTOP;
1513 p->p_waited = 0;
1514 p->p_pptr->p_nstopchild++;
1515 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1516 /*
1517 * Note that child_psignal() will drop
1518 * p->p_smutex briefly.
1519 */
1520 if (ppsig)
1521 child_psignal(p, ppmask);
1522 cv_broadcast(&p->p_pptr->p_waitcv);
1523 }
1524 }
1525
1526 mutex_exit(&proclist_mutex);
1527 }
1528
1529 /*
1530 * Unlock and switch away.
1531 */
1532 KERNEL_UNLOCK_ALL(l, &biglocks);
1533 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1534 p->p_nrlwps--;
1535 lwp_lock(l);
1536 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1537 l->l_stat = LSSTOP;
1538 lwp_unlock(l);
1539 }
1540
1541 mutex_exit(&p->p_smutex);
1542 lwp_lock(l);
1543 mi_switch(l);
1544 KERNEL_LOCK(biglocks, l);
1545 mutex_enter(&p->p_smutex);
1546 }
1547
1548 /*
1549 * Check for a signal from the debugger.
1550 */
1551 int
1552 sigchecktrace(sigpend_t **spp)
1553 {
1554 struct lwp *l = curlwp;
1555 struct proc *p = l->l_proc;
1556 int signo;
1557
1558 KASSERT(mutex_owned(&p->p_smutex));
1559
1560 /*
1561 * If we are no longer being traced, or the parent didn't
1562 * give us a signal, look for more signals.
1563 */
1564 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1565 return 0;
1566
1567 /* If there's a pending SIGKILL, process it immediately. */
1568 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1569 return 0;
1570
1571 /*
1572 * If the new signal is being masked, look for other signals.
1573 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1574 */
1575 signo = p->p_xstat;
1576 p->p_xstat = 0;
1577 if ((sigprop[signo] & SA_TOLWP) != 0)
1578 *spp = &l->l_sigpend;
1579 else
1580 *spp = &p->p_sigpend;
1581 if (sigismember(&l->l_sigmask, signo))
1582 signo = 0;
1583
1584 return signo;
1585 }
1586
1587 /*
1588 * If the current process has received a signal (should be caught or cause
1589 * termination, should interrupt current syscall), return the signal number.
1590 *
1591 * Stop signals with default action are processed immediately, then cleared;
1592 * they aren't returned. This is checked after each entry to the system for
1593 * a syscall or trap.
1594 *
1595 * We will also return -1 if the process is exiting and the current LWP must
1596 * follow suit.
1597 *
1598 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1599 * can switch away, though.
1600 */
1601 int
1602 issignal(struct lwp *l)
1603 {
1604 struct proc *p = l->l_proc;
1605 int signo = 0, prop;
1606 sigpend_t *sp = NULL;
1607 sigset_t ss;
1608
1609 KASSERT(mutex_owned(&p->p_smutex));
1610
1611 for (;;) {
1612 /* Discard any signals that we have decided not to take. */
1613 if (signo != 0)
1614 (void)sigget(sp, NULL, signo, NULL);
1615
1616 /*
1617 * If the process is stopped/stopping, then stop ourselves
1618 * now that we're on the kernel/userspace boundary. When
1619 * we awaken, check for a signal from the debugger.
1620 */
1621 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1622 sigswitch(true, PS_NOCLDSTOP, 0);
1623 signo = sigchecktrace(&sp);
1624 } else
1625 signo = 0;
1626
1627 /*
1628 * If the debugger didn't provide a signal, find a pending
1629 * signal from our set. Check per-LWP signals first, and
1630 * then per-process.
1631 */
1632 if (signo == 0) {
1633 sp = &l->l_sigpend;
1634 ss = sp->sp_set;
1635 if ((p->p_sflag & PS_PPWAIT) != 0)
1636 sigminusset(&stopsigmask, &ss);
1637 sigminusset(&l->l_sigmask, &ss);
1638
1639 if ((signo = firstsig(&ss)) == 0) {
1640 sp = &p->p_sigpend;
1641 ss = sp->sp_set;
1642 if ((p->p_sflag & PS_PPWAIT) != 0)
1643 sigminusset(&stopsigmask, &ss);
1644 sigminusset(&l->l_sigmask, &ss);
1645
1646 if ((signo = firstsig(&ss)) == 0) {
1647 /*
1648 * No signal pending - clear the
1649 * indicator and bail out.
1650 */
1651 lwp_lock(l);
1652 l->l_flag &= ~LW_PENDSIG;
1653 lwp_unlock(l);
1654 sp = NULL;
1655 break;
1656 }
1657 }
1658 }
1659
1660 /*
1661 * We should see pending but ignored signals only if
1662 * we are being traced.
1663 */
1664 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1665 (p->p_slflag & PSL_TRACED) == 0) {
1666 /* Discard the signal. */
1667 continue;
1668 }
1669
1670 /*
1671 * If traced, always stop, and stay stopped until released
1672 * by the debugger. If the our parent process is waiting
1673 * for us, don't hang as we could deadlock.
1674 */
1675 if ((p->p_slflag & PSL_TRACED) != 0 &&
1676 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1677 /* Take the signal. */
1678 (void)sigget(sp, NULL, signo, NULL);
1679 p->p_xstat = signo;
1680
1681 /* Emulation-specific handling of signal trace */
1682 if (p->p_emul->e_tracesig == NULL ||
1683 (*p->p_emul->e_tracesig)(p, signo) == 0)
1684 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1685 signo);
1686
1687 /* Check for a signal from the debugger. */
1688 if ((signo = sigchecktrace(&sp)) == 0)
1689 continue;
1690 }
1691
1692 prop = sigprop[signo];
1693
1694 /*
1695 * Decide whether the signal should be returned.
1696 */
1697 switch ((long)SIGACTION(p, signo).sa_handler) {
1698 case (long)SIG_DFL:
1699 /*
1700 * Don't take default actions on system processes.
1701 */
1702 if (p->p_pid <= 1) {
1703 #ifdef DIAGNOSTIC
1704 /*
1705 * Are you sure you want to ignore SIGSEGV
1706 * in init? XXX
1707 */
1708 printf_nolog("Process (pid %d) got sig %d\n",
1709 p->p_pid, signo);
1710 #endif
1711 continue;
1712 }
1713
1714 /*
1715 * If there is a pending stop signal to process with
1716 * default action, stop here, then clear the signal.
1717 * However, if process is member of an orphaned
1718 * process group, ignore tty stop signals.
1719 */
1720 if (prop & SA_STOP) {
1721 if (p->p_slflag & PSL_TRACED ||
1722 ((p->p_sflag & PS_ORPHANPG) != 0 &&
1723 prop & SA_TTYSTOP)) {
1724 /* Ignore the signal. */
1725 continue;
1726 }
1727 /* Take the signal. */
1728 (void)sigget(sp, NULL, signo, NULL);
1729 p->p_xstat = signo;
1730 signo = 0;
1731 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1732 } else if (prop & SA_IGNORE) {
1733 /*
1734 * Except for SIGCONT, shouldn't get here.
1735 * Default action is to ignore; drop it.
1736 */
1737 continue;
1738 }
1739 break;
1740
1741 case (long)SIG_IGN:
1742 #ifdef DEBUG_ISSIGNAL
1743 /*
1744 * Masking above should prevent us ever trying
1745 * to take action on an ignored signal other
1746 * than SIGCONT, unless process is traced.
1747 */
1748 if ((prop & SA_CONT) == 0 &&
1749 (p->p_slflag & PSL_TRACED) == 0)
1750 printf_nolog("issignal\n");
1751 #endif
1752 continue;
1753
1754 default:
1755 /*
1756 * This signal has an action, let postsig() process
1757 * it.
1758 */
1759 break;
1760 }
1761
1762 break;
1763 }
1764
1765 l->l_sigpendset = sp;
1766 return signo;
1767 }
1768
1769 /*
1770 * Take the action for the specified signal
1771 * from the current set of pending signals.
1772 */
1773 void
1774 postsig(int signo)
1775 {
1776 struct lwp *l;
1777 struct proc *p;
1778 struct sigacts *ps;
1779 sig_t action;
1780 sigset_t *returnmask;
1781 ksiginfo_t ksi;
1782
1783 l = curlwp;
1784 p = l->l_proc;
1785 ps = p->p_sigacts;
1786
1787 KASSERT(mutex_owned(&p->p_smutex));
1788 KASSERT(signo > 0);
1789
1790 /*
1791 * Set the new mask value and also defer further occurrences of this
1792 * signal.
1793 *
1794 * Special case: user has done a sigsuspend. Here the current mask is
1795 * not of interest, but rather the mask from before the sigsuspen is
1796 * what we want restored after the signal processing is completed.
1797 */
1798 if (l->l_sigrestore) {
1799 returnmask = &l->l_sigoldmask;
1800 l->l_sigrestore = 0;
1801 } else
1802 returnmask = &l->l_sigmask;
1803
1804 /*
1805 * Commit to taking the signal before releasing the mutex.
1806 */
1807 action = SIGACTION_PS(ps, signo).sa_handler;
1808 p->p_stats->p_ru.ru_nsignals++;
1809 sigget(l->l_sigpendset, &ksi, signo, NULL);
1810
1811 if (ktrpoint(KTR_PSIG)) {
1812 mutex_exit(&p->p_smutex);
1813 ktrpsig(signo, action, returnmask, NULL);
1814 mutex_enter(&p->p_smutex);
1815 }
1816
1817 if (action == SIG_DFL) {
1818 /*
1819 * Default action, where the default is to kill
1820 * the process. (Other cases were ignored above.)
1821 */
1822 sigexit(l, signo);
1823 return;
1824 }
1825
1826 /*
1827 * If we get here, the signal must be caught.
1828 */
1829 #ifdef DIAGNOSTIC
1830 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1831 panic("postsig action");
1832 #endif
1833
1834 kpsendsig(l, &ksi, returnmask);
1835 }
1836
1837 /*
1838 * sendsig_reset:
1839 *
1840 * Reset the signal action. Called from emulation specific sendsig()
1841 * before unlocking to deliver the signal.
1842 */
1843 void
1844 sendsig_reset(struct lwp *l, int signo)
1845 {
1846 struct proc *p = l->l_proc;
1847 struct sigacts *ps = p->p_sigacts;
1848
1849 KASSERT(mutex_owned(&p->p_smutex));
1850
1851 p->p_sigctx.ps_lwp = 0;
1852 p->p_sigctx.ps_code = 0;
1853 p->p_sigctx.ps_signo = 0;
1854
1855 mutex_enter(&ps->sa_mutex);
1856 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1857 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1858 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1859 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1860 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1861 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1862 }
1863 mutex_exit(&ps->sa_mutex);
1864 }
1865
1866 /*
1867 * Kill the current process for stated reason.
1868 */
1869 void
1870 killproc(struct proc *p, const char *why)
1871 {
1872 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1873 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1874 mutex_enter(&proclist_mutex); /* XXXSMP */
1875 psignal(p, SIGKILL);
1876 mutex_exit(&proclist_mutex); /* XXXSMP */
1877 }
1878
1879 /*
1880 * Force the current process to exit with the specified signal, dumping core
1881 * if appropriate. We bypass the normal tests for masked and caught
1882 * signals, allowing unrecoverable failures to terminate the process without
1883 * changing signal state. Mark the accounting record with the signal
1884 * termination. If dumping core, save the signal number for the debugger.
1885 * Calls exit and does not return.
1886 */
1887 void
1888 sigexit(struct lwp *l, int signo)
1889 {
1890 int exitsig, error, docore;
1891 struct proc *p;
1892 struct lwp *t;
1893
1894 p = l->l_proc;
1895
1896 KASSERT(mutex_owned(&p->p_smutex));
1897 KERNEL_UNLOCK_ALL(l, NULL);
1898
1899 /*
1900 * Don't permit coredump() multiple times in the same process.
1901 * Call back into sigexit, where we will be suspended until
1902 * the deed is done. Note that this is a recursive call, but
1903 * LW_WCORE will prevent us from coming back this way.
1904 */
1905 if ((p->p_sflag & PS_WCORE) != 0) {
1906 lwp_lock(l);
1907 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1908 lwp_unlock(l);
1909 mutex_exit(&p->p_smutex);
1910 lwp_userret(l);
1911 #ifdef DIAGNOSTIC
1912 panic("sigexit");
1913 #endif
1914 /* NOTREACHED */
1915 }
1916
1917 /*
1918 * Prepare all other LWPs for exit. If dumping core, suspend them
1919 * so that their registers are available long enough to be dumped.
1920 */
1921 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1922 p->p_sflag |= PS_WCORE;
1923 for (;;) {
1924 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1925 lwp_lock(t);
1926 if (t == l) {
1927 t->l_flag &= ~LW_WSUSPEND;
1928 lwp_unlock(t);
1929 continue;
1930 }
1931 t->l_flag |= (LW_WCORE | LW_WEXIT);
1932 lwp_suspend(l, t);
1933 }
1934
1935 if (p->p_nrlwps == 1)
1936 break;
1937
1938 /*
1939 * Kick any LWPs sitting in lwp_wait1(), and wait
1940 * for everyone else to stop before proceeding.
1941 */
1942 p->p_nlwpwait++;
1943 cv_broadcast(&p->p_lwpcv);
1944 cv_wait(&p->p_lwpcv, &p->p_smutex);
1945 p->p_nlwpwait--;
1946 }
1947 }
1948
1949 exitsig = signo;
1950 p->p_acflag |= AXSIG;
1951 p->p_sigctx.ps_signo = signo;
1952 mutex_exit(&p->p_smutex);
1953
1954 KERNEL_LOCK(1, l);
1955
1956 if (docore) {
1957 if ((error = coredump(l, NULL)) == 0)
1958 exitsig |= WCOREFLAG;
1959
1960 if (kern_logsigexit) {
1961 int uid = l->l_cred ?
1962 (int)kauth_cred_geteuid(l->l_cred) : -1;
1963
1964 if (error)
1965 log(LOG_INFO, lognocoredump, p->p_pid,
1966 p->p_comm, uid, signo, error);
1967 else
1968 log(LOG_INFO, logcoredump, p->p_pid,
1969 p->p_comm, uid, signo);
1970 }
1971
1972 #ifdef PAX_SEGVGUARD
1973 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1974 #endif /* PAX_SEGVGUARD */
1975 }
1976
1977 /* Acquire the sched state mutex. exit1() will release it. */
1978 mutex_enter(&p->p_smutex);
1979
1980 /* No longer dumping core. */
1981 p->p_sflag &= ~PS_WCORE;
1982
1983 exit1(l, W_EXITCODE(0, exitsig));
1984 /* NOTREACHED */
1985 }
1986
1987 /*
1988 * Put process 'p' into the stopped state and optionally, notify the parent.
1989 */
1990 void
1991 proc_stop(struct proc *p, int notify, int signo)
1992 {
1993 struct lwp *l;
1994
1995 KASSERT(mutex_owned(&proclist_mutex));
1996 KASSERT(mutex_owned(&p->p_smutex));
1997
1998 /*
1999 * First off, set the stopping indicator and bring all sleeping
2000 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2001 * unlock between here and the p->p_nrlwps check below.
2002 */
2003 p->p_sflag |= PS_STOPPING;
2004 membar_producer();
2005
2006 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2007 lwp_lock(l);
2008 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
2009 l->l_stat = LSSTOP;
2010 p->p_nrlwps--;
2011 }
2012 lwp_unlock(l);
2013 }
2014
2015 /*
2016 * If there are no LWPs available to take the signal, then we
2017 * signal the parent process immediately. Otherwise, the last
2018 * LWP to stop will take care of it.
2019 */
2020 if (notify)
2021 p->p_sflag |= PS_NOTIFYSTOP;
2022 else
2023 p->p_sflag &= ~PS_NOTIFYSTOP;
2024
2025 if (p->p_nrlwps == 0) {
2026 p->p_sflag &= ~PS_STOPPING;
2027 p->p_stat = SSTOP;
2028 p->p_waited = 0;
2029 p->p_pptr->p_nstopchild++;
2030
2031 if (notify) {
2032 child_psignal(p, PS_NOCLDSTOP);
2033 cv_broadcast(&p->p_pptr->p_waitcv);
2034 }
2035 } else {
2036 /*
2037 * Have the remaining LWPs come to a halt, and trigger
2038 * proc_stop_callout() to ensure that they do.
2039 */
2040 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2041 sigpost(l, SIG_DFL, SA_STOP, signo);
2042 callout_schedule(&proc_stop_ch, 1);
2043 }
2044 }
2045
2046 /*
2047 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2048 * but wait for them to come to a halt at the kernel-user boundary. This is
2049 * to allow LWPs to release any locks that they may hold before stopping.
2050 *
2051 * Non-interruptable sleeps can be long, and there is the potential for an
2052 * LWP to begin sleeping interruptably soon after the process has been set
2053 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2054 * stopping, and so complete halt of the process and the return of status
2055 * information to the parent could be delayed indefinitely.
2056 *
2057 * To handle this race, proc_stop_callout() runs once per tick while there
2058 * are stopping processes in the system. It sets LWPs that are sleeping
2059 * interruptably into the LSSTOP state.
2060 *
2061 * Note that we are not concerned about keeping all LWPs stopped while the
2062 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2063 * What we do need to ensure is that all LWPs in a stopping process have
2064 * stopped at least once, so that notification can be sent to the parent
2065 * process.
2066 */
2067 static void
2068 proc_stop_callout(void *cookie)
2069 {
2070 bool more, restart;
2071 struct proc *p;
2072 struct lwp *l;
2073
2074 (void)cookie;
2075
2076 do {
2077 restart = false;
2078 more = false;
2079
2080 mutex_enter(&proclist_lock);
2081 mutex_enter(&proclist_mutex);
2082 PROCLIST_FOREACH(p, &allproc) {
2083 mutex_enter(&p->p_smutex);
2084
2085 if ((p->p_sflag & PS_STOPPING) == 0) {
2086 mutex_exit(&p->p_smutex);
2087 continue;
2088 }
2089
2090 /* Stop any LWPs sleeping interruptably. */
2091 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2092 lwp_lock(l);
2093 if (l->l_stat == LSSLEEP &&
2094 (l->l_flag & LW_SINTR) != 0) {
2095 l->l_stat = LSSTOP;
2096 p->p_nrlwps--;
2097 }
2098 lwp_unlock(l);
2099 }
2100
2101 if (p->p_nrlwps == 0) {
2102 /*
2103 * We brought the process to a halt.
2104 * Mark it as stopped and notify the
2105 * parent.
2106 */
2107 p->p_sflag &= ~PS_STOPPING;
2108 p->p_stat = SSTOP;
2109 p->p_waited = 0;
2110 p->p_pptr->p_nstopchild++;
2111 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2112 /*
2113 * Note that child_psignal() will
2114 * drop p->p_smutex briefly.
2115 * Arrange to restart and check
2116 * all processes again.
2117 */
2118 restart = true;
2119 child_psignal(p, PS_NOCLDSTOP);
2120 cv_broadcast(&p->p_pptr->p_waitcv);
2121 }
2122 } else
2123 more = true;
2124
2125 mutex_exit(&p->p_smutex);
2126 if (restart)
2127 break;
2128 }
2129 mutex_exit(&proclist_mutex);
2130 mutex_exit(&proclist_lock);
2131 } while (restart);
2132
2133 /*
2134 * If we noted processes that are stopping but still have
2135 * running LWPs, then arrange to check again in 1 tick.
2136 */
2137 if (more)
2138 callout_schedule(&proc_stop_ch, 1);
2139 }
2140
2141 /*
2142 * Given a process in state SSTOP, set the state back to SACTIVE and
2143 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2144 */
2145 void
2146 proc_unstop(struct proc *p)
2147 {
2148 struct lwp *l;
2149 int sig;
2150
2151 KASSERT(mutex_owned(&proclist_mutex));
2152 KASSERT(mutex_owned(&p->p_smutex));
2153
2154 p->p_stat = SACTIVE;
2155 p->p_sflag &= ~PS_STOPPING;
2156 sig = p->p_xstat;
2157
2158 if (!p->p_waited)
2159 p->p_pptr->p_nstopchild--;
2160
2161 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2162 lwp_lock(l);
2163 if (l->l_stat != LSSTOP) {
2164 lwp_unlock(l);
2165 continue;
2166 }
2167 if (l->l_wchan == NULL) {
2168 setrunnable(l);
2169 continue;
2170 }
2171 if (sig && (l->l_flag & LW_SINTR) != 0) {
2172 setrunnable(l);
2173 sig = 0;
2174 } else {
2175 l->l_stat = LSSLEEP;
2176 p->p_nrlwps++;
2177 lwp_unlock(l);
2178 }
2179 }
2180 }
2181
2182 static int
2183 filt_sigattach(struct knote *kn)
2184 {
2185 struct proc *p = curproc;
2186
2187 kn->kn_ptr.p_proc = p;
2188 kn->kn_flags |= EV_CLEAR; /* automatically set */
2189
2190 mutex_enter(&p->p_smutex);
2191 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2192 mutex_exit(&p->p_smutex);
2193
2194 return (0);
2195 }
2196
2197 static void
2198 filt_sigdetach(struct knote *kn)
2199 {
2200 struct proc *p = kn->kn_ptr.p_proc;
2201
2202 mutex_enter(&p->p_smutex);
2203 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2204 mutex_exit(&p->p_smutex);
2205 }
2206
2207 /*
2208 * signal knotes are shared with proc knotes, so we apply a mask to
2209 * the hint in order to differentiate them from process hints. This
2210 * could be avoided by using a signal-specific knote list, but probably
2211 * isn't worth the trouble.
2212 */
2213 static int
2214 filt_signal(struct knote *kn, long hint)
2215 {
2216
2217 if (hint & NOTE_SIGNAL) {
2218 hint &= ~NOTE_SIGNAL;
2219
2220 if (kn->kn_id == hint)
2221 kn->kn_data++;
2222 }
2223 return (kn->kn_data != 0);
2224 }
2225
2226 const struct filterops sig_filtops = {
2227 0, filt_sigattach, filt_sigdetach, filt_signal
2228 };
2229