kern_sig.c revision 1.275 1 /* $NetBSD: kern_sig.c,v 1.275 2008/03/27 19:06:52 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1991, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.275 2008/03/27 19:06:52 ad Exp $");
77
78 #include "opt_ptrace.h"
79 #include "opt_multiprocessor.h"
80 #include "opt_compat_sunos.h"
81 #include "opt_compat_netbsd.h"
82 #include "opt_compat_netbsd32.h"
83 #include "opt_pax.h"
84
85 #define SIGPROP /* include signal properties table */
86 #include <sys/param.h>
87 #include <sys/signalvar.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/wait.h>
91 #include <sys/ktrace.h>
92 #include <sys/syslog.h>
93 #include <sys/filedesc.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/pool.h>
97 #include <sys/ucontext.h>
98 #include <sys/exec.h>
99 #include <sys/kauth.h>
100 #include <sys/acct.h>
101 #include <sys/callout.h>
102 #include <sys/atomic.h>
103 #include <sys/cpu.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111
112 static void ksiginfo_exechook(struct proc *, void *);
113 static void proc_stop_callout(void *);
114
115 int sigunwait(struct proc *, const ksiginfo_t *);
116 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
117 int sigpost(struct lwp *, sig_t, int, int);
118 int sigchecktrace(sigpend_t **);
119 void sigswitch(bool, int, int);
120 void sigrealloc(ksiginfo_t *);
121
122 sigset_t contsigmask, stopsigmask, sigcantmask;
123 struct pool sigacts_pool; /* memory pool for sigacts structures */
124 static void sigacts_poolpage_free(struct pool *, void *);
125 static void *sigacts_poolpage_alloc(struct pool *, int);
126 static callout_t proc_stop_ch;
127
128 static struct pool_allocator sigactspool_allocator = {
129 .pa_alloc = sigacts_poolpage_alloc,
130 .pa_free = sigacts_poolpage_free,
131 };
132
133 #ifdef DEBUG
134 int kern_logsigexit = 1;
135 #else
136 int kern_logsigexit = 0;
137 #endif
138
139 static const char logcoredump[] =
140 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
141 static const char lognocoredump[] =
142 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
143
144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
145 &pool_allocator_nointr, IPL_NONE);
146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
147 NULL, IPL_VM);
148
149 /*
150 * signal_init:
151 *
152 * Initialize global signal-related data structures.
153 */
154 void
155 signal_init(void)
156 {
157
158 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
159
160 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
161 sizeof(struct sigacts) > PAGE_SIZE ?
162 &sigactspool_allocator : &pool_allocator_nointr,
163 IPL_NONE);
164
165 exechook_establish(ksiginfo_exechook, NULL);
166
167 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
168 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
169 }
170
171 /*
172 * sigacts_poolpage_alloc:
173 *
174 * Allocate a page for the sigacts memory pool.
175 */
176 static void *
177 sigacts_poolpage_alloc(struct pool *pp, int flags)
178 {
179
180 return (void *)uvm_km_alloc(kernel_map,
181 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
182 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
183 | UVM_KMF_WIRED);
184 }
185
186 /*
187 * sigacts_poolpage_free:
188 *
189 * Free a page on behalf of the sigacts memory pool.
190 */
191 static void
192 sigacts_poolpage_free(struct pool *pp, void *v)
193 {
194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196
197 /*
198 * sigactsinit:
199 *
200 * Create an initial sigctx structure, using the same signal state as
201 * p. If 'share' is set, share the sigctx_proc part, otherwise just
202 * copy it from parent.
203 */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 struct sigacts *ps, *ps2;
208
209 ps = pp->p_sigacts;
210
211 if (share) {
212 mutex_enter(&ps->sa_mutex);
213 ps->sa_refcnt++;
214 mutex_exit(&ps->sa_mutex);
215 ps2 = ps;
216 } else {
217 ps2 = pool_get(&sigacts_pool, PR_WAITOK);
218 /* XXX IPL_SCHED to match p_smutex */
219 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
220 mutex_enter(&ps->sa_mutex);
221 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
222 sizeof(ps2->sa_sigdesc));
223 mutex_exit(&ps->sa_mutex);
224 ps2->sa_refcnt = 1;
225 }
226
227 return ps2;
228 }
229
230 /*
231 * sigactsunshare:
232 *
233 * Make this process not share its sigctx, maintaining all
234 * signal state.
235 */
236 void
237 sigactsunshare(struct proc *p)
238 {
239 struct sigacts *ps, *oldps;
240
241 oldps = p->p_sigacts;
242 if (oldps->sa_refcnt == 1)
243 return;
244 ps = pool_get(&sigacts_pool, PR_WAITOK);
245 /* XXX IPL_SCHED to match p_smutex */
246 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
247 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
248 p->p_sigacts = ps;
249 sigactsfree(oldps);
250 }
251
252 /*
253 * sigactsfree;
254 *
255 * Release a sigctx structure.
256 */
257 void
258 sigactsfree(struct sigacts *ps)
259 {
260 int refcnt;
261
262 mutex_enter(&ps->sa_mutex);
263 refcnt = --ps->sa_refcnt;
264 mutex_exit(&ps->sa_mutex);
265
266 if (refcnt == 0) {
267 mutex_destroy(&ps->sa_mutex);
268 pool_put(&sigacts_pool, ps);
269 }
270 }
271
272 /*
273 * siginit:
274 *
275 * Initialize signal state for process 0; set to ignore signals that
276 * are ignored by default and disable the signal stack. Locking not
277 * required as the system is still cold.
278 */
279 void
280 siginit(struct proc *p)
281 {
282 struct lwp *l;
283 struct sigacts *ps;
284 int signo, prop;
285
286 ps = p->p_sigacts;
287 sigemptyset(&contsigmask);
288 sigemptyset(&stopsigmask);
289 sigemptyset(&sigcantmask);
290 for (signo = 1; signo < NSIG; signo++) {
291 prop = sigprop[signo];
292 if (prop & SA_CONT)
293 sigaddset(&contsigmask, signo);
294 if (prop & SA_STOP)
295 sigaddset(&stopsigmask, signo);
296 if (prop & SA_CANTMASK)
297 sigaddset(&sigcantmask, signo);
298 if (prop & SA_IGNORE && signo != SIGCONT)
299 sigaddset(&p->p_sigctx.ps_sigignore, signo);
300 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
301 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
302 }
303 sigemptyset(&p->p_sigctx.ps_sigcatch);
304 p->p_sflag &= ~PS_NOCLDSTOP;
305
306 ksiginfo_queue_init(&p->p_sigpend.sp_info);
307 sigemptyset(&p->p_sigpend.sp_set);
308
309 /*
310 * Reset per LWP state.
311 */
312 l = LIST_FIRST(&p->p_lwps);
313 l->l_sigwaited = NULL;
314 l->l_sigstk.ss_flags = SS_DISABLE;
315 l->l_sigstk.ss_size = 0;
316 l->l_sigstk.ss_sp = 0;
317 ksiginfo_queue_init(&l->l_sigpend.sp_info);
318 sigemptyset(&l->l_sigpend.sp_set);
319
320 /* One reference. */
321 ps->sa_refcnt = 1;
322 }
323
324 /*
325 * execsigs:
326 *
327 * Reset signals for an exec of the specified process.
328 */
329 void
330 execsigs(struct proc *p)
331 {
332 struct sigacts *ps;
333 struct lwp *l;
334 int signo, prop;
335 sigset_t tset;
336 ksiginfoq_t kq;
337
338 KASSERT(p->p_nlwps == 1);
339
340 sigactsunshare(p);
341 ps = p->p_sigacts;
342
343 /*
344 * Reset caught signals. Held signals remain held through
345 * l->l_sigmask (unless they were caught, and are now ignored
346 * by default).
347 *
348 * No need to lock yet, the process has only one LWP and
349 * at this point the sigacts are private to the process.
350 */
351 sigemptyset(&tset);
352 for (signo = 1; signo < NSIG; signo++) {
353 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
354 prop = sigprop[signo];
355 if (prop & SA_IGNORE) {
356 if ((prop & SA_CONT) == 0)
357 sigaddset(&p->p_sigctx.ps_sigignore,
358 signo);
359 sigaddset(&tset, signo);
360 }
361 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
362 }
363 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
364 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
365 }
366 ksiginfo_queue_init(&kq);
367
368 mutex_enter(&p->p_smutex);
369 sigclearall(p, &tset, &kq);
370 sigemptyset(&p->p_sigctx.ps_sigcatch);
371
372 /*
373 * Reset no zombies if child dies flag as Solaris does.
374 */
375 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
376 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
377 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
378
379 /*
380 * Reset per-LWP state.
381 */
382 l = LIST_FIRST(&p->p_lwps);
383 l->l_sigwaited = NULL;
384 l->l_sigstk.ss_flags = SS_DISABLE;
385 l->l_sigstk.ss_size = 0;
386 l->l_sigstk.ss_sp = 0;
387 ksiginfo_queue_init(&l->l_sigpend.sp_info);
388 sigemptyset(&l->l_sigpend.sp_set);
389 mutex_exit(&p->p_smutex);
390
391 ksiginfo_queue_drain(&kq);
392 }
393
394 /*
395 * ksiginfo_exechook:
396 *
397 * Free all pending ksiginfo entries from a process on exec.
398 * Additionally, drain any unused ksiginfo structures in the
399 * system back to the pool.
400 *
401 * XXX This should not be a hook, every process has signals.
402 */
403 static void
404 ksiginfo_exechook(struct proc *p, void *v)
405 {
406 ksiginfoq_t kq;
407
408 ksiginfo_queue_init(&kq);
409
410 mutex_enter(&p->p_smutex);
411 sigclearall(p, NULL, &kq);
412 mutex_exit(&p->p_smutex);
413
414 ksiginfo_queue_drain(&kq);
415 }
416
417 /*
418 * ksiginfo_alloc:
419 *
420 * Allocate a new ksiginfo structure from the pool, and optionally copy
421 * an existing one. If the existing ksiginfo_t is from the pool, and
422 * has not been queued somewhere, then just return it. Additionally,
423 * if the existing ksiginfo_t does not contain any information beyond
424 * the signal number, then just return it.
425 */
426 ksiginfo_t *
427 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
428 {
429 ksiginfo_t *kp;
430 int s;
431
432 if (ok != NULL) {
433 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
434 KSI_FROMPOOL)
435 return ok;
436 if (KSI_EMPTY_P(ok))
437 return ok;
438 }
439
440 s = splvm();
441 kp = pool_get(&ksiginfo_pool, flags);
442 splx(s);
443 if (kp == NULL) {
444 #ifdef DIAGNOSTIC
445 printf("Out of memory allocating ksiginfo for pid %d\n",
446 p->p_pid);
447 #endif
448 return NULL;
449 }
450
451 if (ok != NULL) {
452 memcpy(kp, ok, sizeof(*kp));
453 kp->ksi_flags &= ~KSI_QUEUED;
454 } else
455 KSI_INIT_EMPTY(kp);
456
457 kp->ksi_flags |= KSI_FROMPOOL;
458
459 return kp;
460 }
461
462 /*
463 * ksiginfo_free:
464 *
465 * If the given ksiginfo_t is from the pool and has not been queued,
466 * then free it.
467 */
468 void
469 ksiginfo_free(ksiginfo_t *kp)
470 {
471 int s;
472
473 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
474 return;
475 s = splvm();
476 pool_put(&ksiginfo_pool, kp);
477 splx(s);
478 }
479
480 /*
481 * ksiginfo_queue_drain:
482 *
483 * Drain a non-empty ksiginfo_t queue.
484 */
485 void
486 ksiginfo_queue_drain0(ksiginfoq_t *kq)
487 {
488 ksiginfo_t *ksi;
489 int s;
490
491 KASSERT(!CIRCLEQ_EMPTY(kq));
492
493 KERNEL_LOCK(1, curlwp); /* XXXSMP */
494 while (!CIRCLEQ_EMPTY(kq)) {
495 ksi = CIRCLEQ_FIRST(kq);
496 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
497 s = splvm();
498 pool_put(&ksiginfo_pool, ksi);
499 splx(s);
500 }
501 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
502 }
503
504 /*
505 * sigget:
506 *
507 * Fetch the first pending signal from a set. Optionally, also fetch
508 * or manufacture a ksiginfo element. Returns the number of the first
509 * pending signal, or zero.
510 */
511 int
512 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
513 {
514 ksiginfo_t *ksi;
515 sigset_t tset;
516
517 /* If there's no pending set, the signal is from the debugger. */
518 if (sp == NULL) {
519 if (out != NULL) {
520 KSI_INIT(out);
521 out->ksi_info._signo = signo;
522 out->ksi_info._code = SI_USER;
523 }
524 return signo;
525 }
526
527 /* Construct mask from signo, and 'mask'. */
528 if (signo == 0) {
529 if (mask != NULL) {
530 tset = *mask;
531 __sigandset(&sp->sp_set, &tset);
532 } else
533 tset = sp->sp_set;
534
535 /* If there are no signals pending, that's it. */
536 if ((signo = firstsig(&tset)) == 0)
537 return 0;
538 } else {
539 KASSERT(sigismember(&sp->sp_set, signo));
540 }
541
542 sigdelset(&sp->sp_set, signo);
543
544 /* Find siginfo and copy it out. */
545 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
546 if (ksi->ksi_signo == signo) {
547 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
548 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
549 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
550 ksi->ksi_flags &= ~KSI_QUEUED;
551 if (out != NULL) {
552 memcpy(out, ksi, sizeof(*out));
553 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
554 }
555 ksiginfo_free(ksi);
556 return signo;
557 }
558 }
559
560 /* If there's no siginfo, then manufacture it. */
561 if (out != NULL) {
562 KSI_INIT(out);
563 out->ksi_info._signo = signo;
564 out->ksi_info._code = SI_USER;
565 }
566
567 return signo;
568 }
569
570 /*
571 * sigput:
572 *
573 * Append a new ksiginfo element to the list of pending ksiginfo's, if
574 * we need to (e.g. SA_SIGINFO was requested).
575 */
576 void
577 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
578 {
579 ksiginfo_t *kp;
580 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
581
582 KASSERT(mutex_owned(&p->p_smutex));
583 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
584
585 sigaddset(&sp->sp_set, ksi->ksi_signo);
586
587 /*
588 * If siginfo is not required, or there is none, then just mark the
589 * signal as pending.
590 */
591 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
592 return;
593
594 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
595
596 #ifdef notyet /* XXX: QUEUING */
597 if (ksi->ksi_signo < SIGRTMIN)
598 #endif
599 {
600 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
601 if (kp->ksi_signo == ksi->ksi_signo) {
602 KSI_COPY(ksi, kp);
603 kp->ksi_flags |= KSI_QUEUED;
604 return;
605 }
606 }
607 }
608
609 ksi->ksi_flags |= KSI_QUEUED;
610 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
611 }
612
613 /*
614 * sigclear:
615 *
616 * Clear all pending signals in the specified set.
617 */
618 void
619 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
620 {
621 ksiginfo_t *ksi, *next;
622
623 if (mask == NULL)
624 sigemptyset(&sp->sp_set);
625 else
626 sigminusset(mask, &sp->sp_set);
627
628 ksi = CIRCLEQ_FIRST(&sp->sp_info);
629 for (; ksi != (void *)&sp->sp_info; ksi = next) {
630 next = CIRCLEQ_NEXT(ksi, ksi_list);
631 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
632 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
633 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
634 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
635 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
636 }
637 }
638 }
639
640 /*
641 * sigclearall:
642 *
643 * Clear all pending signals in the specified set from a process and
644 * its LWPs.
645 */
646 void
647 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
648 {
649 struct lwp *l;
650
651 KASSERT(mutex_owned(&p->p_smutex));
652
653 sigclear(&p->p_sigpend, mask, kq);
654
655 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
656 sigclear(&l->l_sigpend, mask, kq);
657 }
658 }
659
660 /*
661 * sigispending:
662 *
663 * Return true if there are pending signals for the current LWP. May
664 * be called unlocked provided that LW_PENDSIG is set, and that the
665 * signal has been posted to the appopriate queue before LW_PENDSIG is
666 * set.
667 */
668 int
669 sigispending(struct lwp *l, int signo)
670 {
671 struct proc *p = l->l_proc;
672 sigset_t tset;
673
674 membar_consumer();
675
676 tset = l->l_sigpend.sp_set;
677 sigplusset(&p->p_sigpend.sp_set, &tset);
678 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
679 sigminusset(&l->l_sigmask, &tset);
680
681 if (signo == 0) {
682 if (firstsig(&tset) != 0)
683 return EINTR;
684 } else if (sigismember(&tset, signo))
685 return EINTR;
686
687 return 0;
688 }
689
690 /*
691 * siginfo_alloc:
692 *
693 * Allocate a new siginfo_t structure from the pool.
694 */
695 siginfo_t *
696 siginfo_alloc(int flags)
697 {
698
699 return pool_get(&siginfo_pool, flags);
700 }
701
702 /*
703 * siginfo_free:
704 *
705 * Return a siginfo_t structure to the pool.
706 */
707 void
708 siginfo_free(void *arg)
709 {
710
711 pool_put(&siginfo_pool, arg);
712 }
713
714 void
715 getucontext(struct lwp *l, ucontext_t *ucp)
716 {
717 struct proc *p = l->l_proc;
718
719 KASSERT(mutex_owned(&p->p_smutex));
720
721 ucp->uc_flags = 0;
722 ucp->uc_link = l->l_ctxlink;
723
724 ucp->uc_sigmask = l->l_sigmask;
725 ucp->uc_flags |= _UC_SIGMASK;
726
727 /*
728 * The (unsupplied) definition of the `current execution stack'
729 * in the System V Interface Definition appears to allow returning
730 * the main context stack.
731 */
732 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
733 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
734 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
735 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
736 } else {
737 /* Simply copy alternate signal execution stack. */
738 ucp->uc_stack = l->l_sigstk;
739 }
740 ucp->uc_flags |= _UC_STACK;
741 mutex_exit(&p->p_smutex);
742 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
743 mutex_enter(&p->p_smutex);
744 }
745
746 int
747 setucontext(struct lwp *l, const ucontext_t *ucp)
748 {
749 struct proc *p = l->l_proc;
750 int error;
751
752 KASSERT(mutex_owned(&p->p_smutex));
753
754 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
755 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
756 if (error != 0)
757 return error;
758 }
759
760 mutex_exit(&p->p_smutex);
761 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
762 mutex_enter(&p->p_smutex);
763 if (error != 0)
764 return (error);
765
766 l->l_ctxlink = ucp->uc_link;
767
768 /*
769 * If there was stack information, update whether or not we are
770 * still running on an alternate signal stack.
771 */
772 if ((ucp->uc_flags & _UC_STACK) != 0) {
773 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
774 l->l_sigstk.ss_flags |= SS_ONSTACK;
775 else
776 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
777 }
778
779 return 0;
780 }
781
782 /*
783 * Common code for kill process group/broadcast kill. cp is calling
784 * process.
785 */
786 int
787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
788 {
789 struct proc *p, *cp;
790 kauth_cred_t pc;
791 struct pgrp *pgrp;
792 int nfound;
793 int signo = ksi->ksi_signo;
794
795 cp = l->l_proc;
796 pc = l->l_cred;
797 nfound = 0;
798
799 mutex_enter(&proclist_lock);
800 if (all) {
801 /*
802 * broadcast
803 */
804 PROCLIST_FOREACH(p, &allproc) {
805 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
806 continue;
807 mutex_enter(&p->p_mutex);
808 if (kauth_authorize_process(pc,
809 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
810 NULL) == 0) {
811 nfound++;
812 if (signo) {
813 mutex_enter(&proclist_mutex);
814 mutex_enter(&p->p_smutex);
815 kpsignal2(p, ksi);
816 mutex_exit(&p->p_smutex);
817 mutex_exit(&proclist_mutex);
818 }
819 }
820 mutex_exit(&p->p_mutex);
821 }
822 } else {
823 if (pgid == 0)
824 /*
825 * zero pgid means send to my process group.
826 */
827 pgrp = cp->p_pgrp;
828 else {
829 pgrp = pg_find(pgid, PFIND_LOCKED);
830 if (pgrp == NULL)
831 goto out;
832 }
833 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
834 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
835 continue;
836 mutex_enter(&p->p_mutex);
837 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
838 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
839 nfound++;
840 if (signo) {
841 mutex_enter(&proclist_mutex);
842 mutex_enter(&p->p_smutex);
843 if (P_ZOMBIE(p) == 0)
844 kpsignal2(p, ksi);
845 mutex_exit(&p->p_smutex);
846 mutex_exit(&proclist_mutex);
847 }
848 }
849 mutex_exit(&p->p_mutex);
850 }
851 }
852 out:
853 mutex_exit(&proclist_lock);
854 return (nfound ? 0 : ESRCH);
855 }
856
857 /*
858 * Send a signal to a process group. If checktty is 1, limit to members
859 * which have a controlling terminal.
860 */
861 void
862 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
863 {
864 ksiginfo_t ksi;
865
866 KASSERT(mutex_owned(&proclist_mutex));
867
868 KSI_INIT_EMPTY(&ksi);
869 ksi.ksi_signo = sig;
870 kpgsignal(pgrp, &ksi, NULL, checkctty);
871 }
872
873 void
874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
875 {
876 struct proc *p;
877
878 KASSERT(mutex_owned(&proclist_mutex));
879
880 if (pgrp)
881 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
882 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
883 kpsignal(p, ksi, data);
884 }
885
886 /*
887 * Send a signal caused by a trap to the current LWP. If it will be caught
888 * immediately, deliver it with correct code. Otherwise, post it normally.
889 */
890 void
891 trapsignal(struct lwp *l, ksiginfo_t *ksi)
892 {
893 struct proc *p;
894 struct sigacts *ps;
895 int signo = ksi->ksi_signo;
896
897 KASSERT(KSI_TRAP_P(ksi));
898
899 ksi->ksi_lid = l->l_lid;
900 p = l->l_proc;
901
902 mutex_enter(&proclist_mutex);
903 mutex_enter(&p->p_smutex);
904 ps = p->p_sigacts;
905 if ((p->p_slflag & PSL_TRACED) == 0 &&
906 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
907 !sigismember(&l->l_sigmask, signo)) {
908 mutex_exit(&proclist_mutex);
909 l->l_ru.ru_nsignals++;
910 kpsendsig(l, ksi, &l->l_sigmask);
911 mutex_exit(&p->p_smutex);
912 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
913 &l->l_sigmask, ksi);
914 } else {
915 /* XXX for core dump/debugger */
916 p->p_sigctx.ps_lwp = l->l_lid;
917 p->p_sigctx.ps_signo = ksi->ksi_signo;
918 p->p_sigctx.ps_code = ksi->ksi_trap;
919 kpsignal2(p, ksi);
920 mutex_exit(&proclist_mutex);
921 mutex_exit(&p->p_smutex);
922 }
923 }
924
925 /*
926 * Fill in signal information and signal the parent for a child status change.
927 */
928 void
929 child_psignal(struct proc *p, int mask)
930 {
931 ksiginfo_t ksi;
932 struct proc *q;
933 int xstat;
934
935 KASSERT(mutex_owned(&proclist_mutex));
936 KASSERT(mutex_owned(&p->p_smutex));
937
938 xstat = p->p_xstat;
939
940 KSI_INIT(&ksi);
941 ksi.ksi_signo = SIGCHLD;
942 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
943 ksi.ksi_pid = p->p_pid;
944 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
945 ksi.ksi_status = xstat;
946 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
947 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
948
949 q = p->p_pptr;
950
951 mutex_exit(&p->p_smutex);
952 mutex_enter(&q->p_smutex);
953
954 if ((q->p_sflag & mask) == 0)
955 kpsignal2(q, &ksi);
956
957 mutex_exit(&q->p_smutex);
958 mutex_enter(&p->p_smutex);
959 }
960
961 void
962 psignal(struct proc *p, int signo)
963 {
964 ksiginfo_t ksi;
965
966 KASSERT(mutex_owned(&proclist_mutex));
967
968 KSI_INIT_EMPTY(&ksi);
969 ksi.ksi_signo = signo;
970 mutex_enter(&p->p_smutex);
971 kpsignal2(p, &ksi);
972 mutex_exit(&p->p_smutex);
973 }
974
975 void
976 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
977 {
978 fdfile_t *ff;
979 file_t *fp;
980
981 KASSERT(mutex_owned(&proclist_mutex));
982
983 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
984 size_t fd;
985 filedesc_t *fdp = p->p_fd;
986
987 /* XXXSMP locking */
988 ksi->ksi_fd = -1;
989 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
990 if ((ff = fdp->fd_ofiles[fd]) == NULL)
991 continue;
992 if ((fp = ff->ff_file) == NULL)
993 continue;
994 if (fp->f_data == data) {
995 ksi->ksi_fd = fd;
996 break;
997 }
998 }
999 }
1000 mutex_enter(&p->p_smutex);
1001 kpsignal2(p, ksi);
1002 mutex_exit(&p->p_smutex);
1003 }
1004
1005 /*
1006 * sigismasked:
1007 *
1008 * Returns true if signal is ignored or masked for the specified LWP.
1009 */
1010 int
1011 sigismasked(struct lwp *l, int sig)
1012 {
1013 struct proc *p = l->l_proc;
1014
1015 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1016 sigismember(&l->l_sigmask, sig));
1017 }
1018
1019 /*
1020 * sigpost:
1021 *
1022 * Post a pending signal to an LWP. Returns non-zero if the LWP was
1023 * able to take the signal.
1024 */
1025 int
1026 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1027 {
1028 int rv, masked;
1029
1030 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1031
1032 /*
1033 * If the LWP is on the way out, sigclear() will be busy draining all
1034 * pending signals. Don't give it more.
1035 */
1036 if (l->l_refcnt == 0)
1037 return 0;
1038
1039 lwp_lock(l);
1040
1041 /*
1042 * Have the LWP check for signals. This ensures that even if no LWP
1043 * is found to take the signal immediately, it should be taken soon.
1044 */
1045 l->l_flag |= LW_PENDSIG;
1046
1047 /*
1048 * SIGCONT can be masked, but must always restart stopped LWPs.
1049 */
1050 masked = sigismember(&l->l_sigmask, sig);
1051 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1052 lwp_unlock(l);
1053 return 0;
1054 }
1055
1056 /*
1057 * If killing the process, make it run fast.
1058 */
1059 if (__predict_false((prop & SA_KILL) != 0) &&
1060 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1061 KASSERT(l->l_class == SCHED_OTHER);
1062 lwp_changepri(l, MAXPRI_USER);
1063 }
1064
1065 /*
1066 * If the LWP is running or on a run queue, then we win. If it's
1067 * sleeping interruptably, wake it and make it take the signal. If
1068 * the sleep isn't interruptable, then the chances are it will get
1069 * to see the signal soon anyhow. If suspended, it can't take the
1070 * signal right now. If it's LWP private or for all LWPs, save it
1071 * for later; otherwise punt.
1072 */
1073 rv = 0;
1074
1075 switch (l->l_stat) {
1076 case LSRUN:
1077 case LSONPROC:
1078 lwp_need_userret(l);
1079 rv = 1;
1080 break;
1081
1082 case LSSLEEP:
1083 if ((l->l_flag & LW_SINTR) != 0) {
1084 /* setrunnable() will release the lock. */
1085 setrunnable(l);
1086 return 1;
1087 }
1088 break;
1089
1090 case LSSUSPENDED:
1091 if ((prop & SA_KILL) != 0) {
1092 /* lwp_continue() will release the lock. */
1093 lwp_continue(l);
1094 return 1;
1095 }
1096 break;
1097
1098 case LSSTOP:
1099 if ((prop & SA_STOP) != 0)
1100 break;
1101
1102 /*
1103 * If the LWP is stopped and we are sending a continue
1104 * signal, then start it again.
1105 */
1106 if ((prop & SA_CONT) != 0) {
1107 if (l->l_wchan != NULL) {
1108 l->l_stat = LSSLEEP;
1109 l->l_proc->p_nrlwps++;
1110 rv = 1;
1111 break;
1112 }
1113 /* setrunnable() will release the lock. */
1114 setrunnable(l);
1115 return 1;
1116 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1117 /* setrunnable() will release the lock. */
1118 setrunnable(l);
1119 return 1;
1120 }
1121 break;
1122
1123 default:
1124 break;
1125 }
1126
1127 lwp_unlock(l);
1128 return rv;
1129 }
1130
1131 /*
1132 * Notify an LWP that it has a pending signal.
1133 */
1134 void
1135 signotify(struct lwp *l)
1136 {
1137 KASSERT(lwp_locked(l, NULL));
1138
1139 l->l_flag |= LW_PENDSIG;
1140 lwp_need_userret(l);
1141 }
1142
1143 /*
1144 * Find an LWP within process p that is waiting on signal ksi, and hand
1145 * it on.
1146 */
1147 int
1148 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1149 {
1150 struct lwp *l;
1151 int signo;
1152
1153 KASSERT(mutex_owned(&p->p_smutex));
1154
1155 signo = ksi->ksi_signo;
1156
1157 if (ksi->ksi_lid != 0) {
1158 /*
1159 * Signal came via _lwp_kill(). Find the LWP and see if
1160 * it's interested.
1161 */
1162 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1163 return 0;
1164 if (l->l_sigwaited == NULL ||
1165 !sigismember(&l->l_sigwaitset, signo))
1166 return 0;
1167 } else {
1168 /*
1169 * Look for any LWP that may be interested.
1170 */
1171 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1172 KASSERT(l->l_sigwaited != NULL);
1173 if (sigismember(&l->l_sigwaitset, signo))
1174 break;
1175 }
1176 }
1177
1178 if (l != NULL) {
1179 l->l_sigwaited->ksi_info = ksi->ksi_info;
1180 l->l_sigwaited = NULL;
1181 LIST_REMOVE(l, l_sigwaiter);
1182 cv_signal(&l->l_sigcv);
1183 return 1;
1184 }
1185
1186 return 0;
1187 }
1188
1189 /*
1190 * Send the signal to the process. If the signal has an action, the action
1191 * is usually performed by the target process rather than the caller; we add
1192 * the signal to the set of pending signals for the process.
1193 *
1194 * Exceptions:
1195 * o When a stop signal is sent to a sleeping process that takes the
1196 * default action, the process is stopped without awakening it.
1197 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1198 * regardless of the signal action (eg, blocked or ignored).
1199 *
1200 * Other ignored signals are discarded immediately.
1201 */
1202 void
1203 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1204 {
1205 int prop, lid, toall, signo = ksi->ksi_signo;
1206 struct sigacts *sa;
1207 struct lwp *l;
1208 ksiginfo_t *kp;
1209 ksiginfoq_t kq;
1210 sig_t action;
1211
1212 KASSERT(mutex_owned(&proclist_mutex));
1213 KASSERT(mutex_owned(&p->p_smutex));
1214 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1215 KASSERT(signo > 0 && signo < NSIG);
1216
1217 /*
1218 * If the process is being created by fork, is a zombie or is
1219 * exiting, then just drop the signal here and bail out.
1220 */
1221 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1222 return;
1223
1224 /*
1225 * Notify any interested parties of the signal.
1226 */
1227 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1228
1229 /*
1230 * Some signals including SIGKILL must act on the entire process.
1231 */
1232 kp = NULL;
1233 prop = sigprop[signo];
1234 toall = ((prop & SA_TOALL) != 0);
1235
1236 if (toall)
1237 lid = 0;
1238 else
1239 lid = ksi->ksi_lid;
1240
1241 /*
1242 * If proc is traced, always give parent a chance.
1243 */
1244 if (p->p_slflag & PSL_TRACED) {
1245 action = SIG_DFL;
1246
1247 if (lid == 0) {
1248 /*
1249 * If the process is being traced and the signal
1250 * is being caught, make sure to save any ksiginfo.
1251 */
1252 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1253 return;
1254 sigput(&p->p_sigpend, p, kp);
1255 }
1256 } else {
1257 /*
1258 * If the signal was the result of a trap and is not being
1259 * caught, then reset it to default action so that the
1260 * process dumps core immediately.
1261 */
1262 if (KSI_TRAP_P(ksi)) {
1263 sa = p->p_sigacts;
1264 mutex_enter(&sa->sa_mutex);
1265 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1266 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1267 SIGACTION(p, signo).sa_handler = SIG_DFL;
1268 }
1269 mutex_exit(&sa->sa_mutex);
1270 }
1271
1272 /*
1273 * If the signal is being ignored, then drop it. Note: we
1274 * don't set SIGCONT in ps_sigignore, and if it is set to
1275 * SIG_IGN, action will be SIG_DFL here.
1276 */
1277 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1278 return;
1279
1280 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1281 action = SIG_CATCH;
1282 else {
1283 action = SIG_DFL;
1284
1285 /*
1286 * If sending a tty stop signal to a member of an
1287 * orphaned process group, discard the signal here if
1288 * the action is default; don't stop the process below
1289 * if sleeping, and don't clear any pending SIGCONT.
1290 */
1291 if (prop & SA_TTYSTOP &&
1292 (p->p_sflag & PS_ORPHANPG) != 0)
1293 return;
1294
1295 if (prop & SA_KILL && p->p_nice > NZERO)
1296 p->p_nice = NZERO;
1297 }
1298 }
1299
1300 /*
1301 * If stopping or continuing a process, discard any pending
1302 * signals that would do the inverse.
1303 */
1304 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1305 ksiginfo_queue_init(&kq);
1306 if ((prop & SA_CONT) != 0)
1307 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1308 if ((prop & SA_STOP) != 0)
1309 sigclear(&p->p_sigpend, &contsigmask, &kq);
1310 ksiginfo_queue_drain(&kq); /* XXXSMP */
1311 }
1312
1313 /*
1314 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1315 * please!), check if any LWPs are waiting on it. If yes, pass on
1316 * the signal info. The signal won't be processed further here.
1317 */
1318 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1319 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1320 sigunwait(p, ksi))
1321 return;
1322
1323 /*
1324 * XXXSMP Should be allocated by the caller, we're holding locks
1325 * here.
1326 */
1327 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1328 return;
1329
1330 /*
1331 * LWP private signals are easy - just find the LWP and post
1332 * the signal to it.
1333 */
1334 if (lid != 0) {
1335 l = lwp_find(p, lid);
1336 if (l != NULL) {
1337 sigput(&l->l_sigpend, p, kp);
1338 membar_producer();
1339 (void)sigpost(l, action, prop, kp->ksi_signo);
1340 }
1341 goto out;
1342 }
1343
1344 /*
1345 * Some signals go to all LWPs, even if posted with _lwp_kill().
1346 */
1347 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1348 if ((p->p_slflag & PSL_TRACED) != 0)
1349 goto deliver;
1350
1351 /*
1352 * If SIGCONT is default (or ignored) and process is
1353 * asleep, we are finished; the process should not
1354 * be awakened.
1355 */
1356 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1357 goto out;
1358
1359 sigput(&p->p_sigpend, p, kp);
1360 } else {
1361 /*
1362 * Process is stopped or stopping. If traced, then no
1363 * further action is necessary.
1364 */
1365 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1366 goto out;
1367
1368 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1369 /*
1370 * Re-adjust p_nstopchild if the process wasn't
1371 * collected by its parent.
1372 */
1373 p->p_stat = SACTIVE;
1374 p->p_sflag &= ~PS_STOPPING;
1375 if (!p->p_waited)
1376 p->p_pptr->p_nstopchild--;
1377
1378 /*
1379 * If SIGCONT is default (or ignored), we continue
1380 * the process but don't leave the signal in
1381 * ps_siglist, as it has no further action. If
1382 * SIGCONT is held, we continue the process and
1383 * leave the signal in ps_siglist. If the process
1384 * catches SIGCONT, let it handle the signal itself.
1385 * If it isn't waiting on an event, then it goes
1386 * back to run state. Otherwise, process goes back
1387 * to sleep state.
1388 */
1389 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1390 sigput(&p->p_sigpend, p, kp);
1391 } else if ((prop & SA_STOP) != 0) {
1392 /*
1393 * Already stopped, don't need to stop again.
1394 * (If we did the shell could get confused.)
1395 */
1396 goto out;
1397 } else
1398 sigput(&p->p_sigpend, p, kp);
1399 }
1400
1401 deliver:
1402 /*
1403 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1404 * visible on the per process list (for sigispending()). This
1405 * is unlikely to be needed in practice, but...
1406 */
1407 membar_producer();
1408
1409 /*
1410 * Try to find an LWP that can take the signal.
1411 */
1412 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1413 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1414 break;
1415
1416 out:
1417 /*
1418 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1419 * with locks held. The caller should take care of this.
1420 */
1421 ksiginfo_free(kp);
1422 }
1423
1424 void
1425 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1426 {
1427 struct proc *p = l->l_proc;
1428
1429 KASSERT(mutex_owned(&p->p_smutex));
1430
1431 (*p->p_emul->e_sendsig)(ksi, mask);
1432 }
1433
1434 /*
1435 * Stop any LWPs sleeping interruptably.
1436 */
1437 static void
1438 proc_stop_lwps(struct proc *p)
1439 {
1440 struct lwp *l;
1441
1442 KASSERT(mutex_owned(&p->p_smutex));
1443 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1444
1445 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1446 lwp_lock(l);
1447 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1448 l->l_stat = LSSTOP;
1449 p->p_nrlwps--;
1450 }
1451 lwp_unlock(l);
1452 }
1453 }
1454
1455 /*
1456 * Finish stopping of a process. Mark it stopped and notify the parent.
1457 *
1458 * Drop p_smutex briefly if PS_NOTIFYSTOP is set and ppsig is true.
1459 */
1460 static void
1461 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1462 {
1463
1464 KASSERT(mutex_owned(&proclist_mutex));
1465 KASSERT(mutex_owned(&p->p_smutex));
1466 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1467 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1468
1469 p->p_sflag &= ~PS_STOPPING;
1470 p->p_stat = SSTOP;
1471 p->p_waited = 0;
1472 p->p_pptr->p_nstopchild++;
1473 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1474 if (ppsig) {
1475 /* child_psignal drops p_smutex briefly. */
1476 child_psignal(p, ppmask);
1477 }
1478 cv_broadcast(&p->p_pptr->p_waitcv);
1479 }
1480 }
1481
1482 /*
1483 * Stop the current process and switch away when being stopped or traced.
1484 */
1485 void
1486 sigswitch(bool ppsig, int ppmask, int signo)
1487 {
1488 struct lwp *l = curlwp;
1489 struct proc *p = l->l_proc;
1490 #ifdef MULTIPROCESSOR
1491 int biglocks;
1492 #endif
1493
1494 KASSERT(mutex_owned(&p->p_smutex));
1495 KASSERT(l->l_stat == LSONPROC);
1496 KASSERT(p->p_nrlwps > 0);
1497
1498 /*
1499 * On entry we know that the process needs to stop. If it's
1500 * the result of a 'sideways' stop signal that has been sourced
1501 * through issignal(), then stop other LWPs in the process too.
1502 */
1503 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1504 KASSERT(signo != 0);
1505 proc_stop(p, 1, signo);
1506 KASSERT(p->p_nrlwps > 0);
1507 }
1508
1509 /*
1510 * If we are the last live LWP, and the stop was a result of
1511 * a new signal, then signal the parent.
1512 */
1513 if ((p->p_sflag & PS_STOPPING) != 0) {
1514 if (!mutex_tryenter(&proclist_mutex)) {
1515 mutex_exit(&p->p_smutex);
1516 mutex_enter(&proclist_mutex);
1517 mutex_enter(&p->p_smutex);
1518 }
1519
1520 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1521 /*
1522 * Note that proc_stop_done() can drop
1523 * p->p_smutex briefly.
1524 */
1525 proc_stop_done(p, ppsig, ppmask);
1526 }
1527
1528 mutex_exit(&proclist_mutex);
1529 }
1530
1531 /*
1532 * Unlock and switch away.
1533 */
1534 KERNEL_UNLOCK_ALL(l, &biglocks);
1535 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1536 p->p_nrlwps--;
1537 lwp_lock(l);
1538 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1539 l->l_stat = LSSTOP;
1540 lwp_unlock(l);
1541 }
1542
1543 mutex_exit(&p->p_smutex);
1544 lwp_lock(l);
1545 mi_switch(l);
1546 KERNEL_LOCK(biglocks, l);
1547 mutex_enter(&p->p_smutex);
1548 }
1549
1550 /*
1551 * Check for a signal from the debugger.
1552 */
1553 int
1554 sigchecktrace(sigpend_t **spp)
1555 {
1556 struct lwp *l = curlwp;
1557 struct proc *p = l->l_proc;
1558 int signo;
1559
1560 KASSERT(mutex_owned(&p->p_smutex));
1561
1562 /*
1563 * If we are no longer being traced, or the parent didn't
1564 * give us a signal, look for more signals.
1565 */
1566 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1567 return 0;
1568
1569 /* If there's a pending SIGKILL, process it immediately. */
1570 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1571 return 0;
1572
1573 /*
1574 * If the new signal is being masked, look for other signals.
1575 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1576 */
1577 signo = p->p_xstat;
1578 p->p_xstat = 0;
1579 if ((sigprop[signo] & SA_TOLWP) != 0)
1580 *spp = &l->l_sigpend;
1581 else
1582 *spp = &p->p_sigpend;
1583 if (sigismember(&l->l_sigmask, signo))
1584 signo = 0;
1585
1586 return signo;
1587 }
1588
1589 /*
1590 * If the current process has received a signal (should be caught or cause
1591 * termination, should interrupt current syscall), return the signal number.
1592 *
1593 * Stop signals with default action are processed immediately, then cleared;
1594 * they aren't returned. This is checked after each entry to the system for
1595 * a syscall or trap.
1596 *
1597 * We will also return -1 if the process is exiting and the current LWP must
1598 * follow suit.
1599 *
1600 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1601 * can switch away, though.
1602 */
1603 int
1604 issignal(struct lwp *l)
1605 {
1606 struct proc *p = l->l_proc;
1607 int signo = 0, prop;
1608 sigpend_t *sp = NULL;
1609 sigset_t ss;
1610
1611 KASSERT(mutex_owned(&p->p_smutex));
1612
1613 for (;;) {
1614 /* Discard any signals that we have decided not to take. */
1615 if (signo != 0)
1616 (void)sigget(sp, NULL, signo, NULL);
1617
1618 /*
1619 * If the process is stopped/stopping, then stop ourselves
1620 * now that we're on the kernel/userspace boundary. When
1621 * we awaken, check for a signal from the debugger.
1622 */
1623 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1624 sigswitch(true, PS_NOCLDSTOP, 0);
1625 signo = sigchecktrace(&sp);
1626 } else
1627 signo = 0;
1628
1629 /*
1630 * If the debugger didn't provide a signal, find a pending
1631 * signal from our set. Check per-LWP signals first, and
1632 * then per-process.
1633 */
1634 if (signo == 0) {
1635 sp = &l->l_sigpend;
1636 ss = sp->sp_set;
1637 if ((p->p_sflag & PS_PPWAIT) != 0)
1638 sigminusset(&stopsigmask, &ss);
1639 sigminusset(&l->l_sigmask, &ss);
1640
1641 if ((signo = firstsig(&ss)) == 0) {
1642 sp = &p->p_sigpend;
1643 ss = sp->sp_set;
1644 if ((p->p_sflag & PS_PPWAIT) != 0)
1645 sigminusset(&stopsigmask, &ss);
1646 sigminusset(&l->l_sigmask, &ss);
1647
1648 if ((signo = firstsig(&ss)) == 0) {
1649 /*
1650 * No signal pending - clear the
1651 * indicator and bail out.
1652 */
1653 lwp_lock(l);
1654 l->l_flag &= ~LW_PENDSIG;
1655 lwp_unlock(l);
1656 sp = NULL;
1657 break;
1658 }
1659 }
1660 }
1661
1662 /*
1663 * We should see pending but ignored signals only if
1664 * we are being traced.
1665 */
1666 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1667 (p->p_slflag & PSL_TRACED) == 0) {
1668 /* Discard the signal. */
1669 continue;
1670 }
1671
1672 /*
1673 * If traced, always stop, and stay stopped until released
1674 * by the debugger. If the our parent process is waiting
1675 * for us, don't hang as we could deadlock.
1676 */
1677 if ((p->p_slflag & PSL_TRACED) != 0 &&
1678 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1679 /* Take the signal. */
1680 (void)sigget(sp, NULL, signo, NULL);
1681 p->p_xstat = signo;
1682
1683 /* Emulation-specific handling of signal trace */
1684 if (p->p_emul->e_tracesig == NULL ||
1685 (*p->p_emul->e_tracesig)(p, signo) == 0)
1686 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1687 signo);
1688
1689 /* Check for a signal from the debugger. */
1690 if ((signo = sigchecktrace(&sp)) == 0)
1691 continue;
1692 }
1693
1694 prop = sigprop[signo];
1695
1696 /*
1697 * Decide whether the signal should be returned.
1698 */
1699 switch ((long)SIGACTION(p, signo).sa_handler) {
1700 case (long)SIG_DFL:
1701 /*
1702 * Don't take default actions on system processes.
1703 */
1704 if (p->p_pid <= 1) {
1705 #ifdef DIAGNOSTIC
1706 /*
1707 * Are you sure you want to ignore SIGSEGV
1708 * in init? XXX
1709 */
1710 printf_nolog("Process (pid %d) got sig %d\n",
1711 p->p_pid, signo);
1712 #endif
1713 continue;
1714 }
1715
1716 /*
1717 * If there is a pending stop signal to process with
1718 * default action, stop here, then clear the signal.
1719 * However, if process is member of an orphaned
1720 * process group, ignore tty stop signals.
1721 */
1722 if (prop & SA_STOP) {
1723 if (p->p_slflag & PSL_TRACED ||
1724 ((p->p_sflag & PS_ORPHANPG) != 0 &&
1725 prop & SA_TTYSTOP)) {
1726 /* Ignore the signal. */
1727 continue;
1728 }
1729 /* Take the signal. */
1730 (void)sigget(sp, NULL, signo, NULL);
1731 p->p_xstat = signo;
1732 signo = 0;
1733 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1734 } else if (prop & SA_IGNORE) {
1735 /*
1736 * Except for SIGCONT, shouldn't get here.
1737 * Default action is to ignore; drop it.
1738 */
1739 continue;
1740 }
1741 break;
1742
1743 case (long)SIG_IGN:
1744 #ifdef DEBUG_ISSIGNAL
1745 /*
1746 * Masking above should prevent us ever trying
1747 * to take action on an ignored signal other
1748 * than SIGCONT, unless process is traced.
1749 */
1750 if ((prop & SA_CONT) == 0 &&
1751 (p->p_slflag & PSL_TRACED) == 0)
1752 printf_nolog("issignal\n");
1753 #endif
1754 continue;
1755
1756 default:
1757 /*
1758 * This signal has an action, let postsig() process
1759 * it.
1760 */
1761 break;
1762 }
1763
1764 break;
1765 }
1766
1767 l->l_sigpendset = sp;
1768 return signo;
1769 }
1770
1771 /*
1772 * Take the action for the specified signal
1773 * from the current set of pending signals.
1774 */
1775 void
1776 postsig(int signo)
1777 {
1778 struct lwp *l;
1779 struct proc *p;
1780 struct sigacts *ps;
1781 sig_t action;
1782 sigset_t *returnmask;
1783 ksiginfo_t ksi;
1784
1785 l = curlwp;
1786 p = l->l_proc;
1787 ps = p->p_sigacts;
1788
1789 KASSERT(mutex_owned(&p->p_smutex));
1790 KASSERT(signo > 0);
1791
1792 /*
1793 * Set the new mask value and also defer further occurrences of this
1794 * signal.
1795 *
1796 * Special case: user has done a sigsuspend. Here the current mask is
1797 * not of interest, but rather the mask from before the sigsuspen is
1798 * what we want restored after the signal processing is completed.
1799 */
1800 if (l->l_sigrestore) {
1801 returnmask = &l->l_sigoldmask;
1802 l->l_sigrestore = 0;
1803 } else
1804 returnmask = &l->l_sigmask;
1805
1806 /*
1807 * Commit to taking the signal before releasing the mutex.
1808 */
1809 action = SIGACTION_PS(ps, signo).sa_handler;
1810 l->l_ru.ru_nsignals++;
1811 sigget(l->l_sigpendset, &ksi, signo, NULL);
1812
1813 if (ktrpoint(KTR_PSIG)) {
1814 mutex_exit(&p->p_smutex);
1815 ktrpsig(signo, action, returnmask, NULL);
1816 mutex_enter(&p->p_smutex);
1817 }
1818
1819 if (action == SIG_DFL) {
1820 /*
1821 * Default action, where the default is to kill
1822 * the process. (Other cases were ignored above.)
1823 */
1824 sigexit(l, signo);
1825 return;
1826 }
1827
1828 /*
1829 * If we get here, the signal must be caught.
1830 */
1831 #ifdef DIAGNOSTIC
1832 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1833 panic("postsig action");
1834 #endif
1835
1836 kpsendsig(l, &ksi, returnmask);
1837 }
1838
1839 /*
1840 * sendsig_reset:
1841 *
1842 * Reset the signal action. Called from emulation specific sendsig()
1843 * before unlocking to deliver the signal.
1844 */
1845 void
1846 sendsig_reset(struct lwp *l, int signo)
1847 {
1848 struct proc *p = l->l_proc;
1849 struct sigacts *ps = p->p_sigacts;
1850
1851 KASSERT(mutex_owned(&p->p_smutex));
1852
1853 p->p_sigctx.ps_lwp = 0;
1854 p->p_sigctx.ps_code = 0;
1855 p->p_sigctx.ps_signo = 0;
1856
1857 mutex_enter(&ps->sa_mutex);
1858 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1859 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1860 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1861 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1862 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1863 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1864 }
1865 mutex_exit(&ps->sa_mutex);
1866 }
1867
1868 /*
1869 * Kill the current process for stated reason.
1870 */
1871 void
1872 killproc(struct proc *p, const char *why)
1873 {
1874 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1875 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1876 mutex_enter(&proclist_mutex); /* XXXSMP */
1877 psignal(p, SIGKILL);
1878 mutex_exit(&proclist_mutex); /* XXXSMP */
1879 }
1880
1881 /*
1882 * Force the current process to exit with the specified signal, dumping core
1883 * if appropriate. We bypass the normal tests for masked and caught
1884 * signals, allowing unrecoverable failures to terminate the process without
1885 * changing signal state. Mark the accounting record with the signal
1886 * termination. If dumping core, save the signal number for the debugger.
1887 * Calls exit and does not return.
1888 */
1889 void
1890 sigexit(struct lwp *l, int signo)
1891 {
1892 int exitsig, error, docore;
1893 struct proc *p;
1894 struct lwp *t;
1895
1896 p = l->l_proc;
1897
1898 KASSERT(mutex_owned(&p->p_smutex));
1899 KERNEL_UNLOCK_ALL(l, NULL);
1900
1901 /*
1902 * Don't permit coredump() multiple times in the same process.
1903 * Call back into sigexit, where we will be suspended until
1904 * the deed is done. Note that this is a recursive call, but
1905 * LW_WCORE will prevent us from coming back this way.
1906 */
1907 if ((p->p_sflag & PS_WCORE) != 0) {
1908 lwp_lock(l);
1909 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1910 lwp_unlock(l);
1911 mutex_exit(&p->p_smutex);
1912 lwp_userret(l);
1913 #ifdef DIAGNOSTIC
1914 panic("sigexit");
1915 #endif
1916 /* NOTREACHED */
1917 }
1918
1919 /*
1920 * Prepare all other LWPs for exit. If dumping core, suspend them
1921 * so that their registers are available long enough to be dumped.
1922 */
1923 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1924 p->p_sflag |= PS_WCORE;
1925 for (;;) {
1926 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1927 lwp_lock(t);
1928 if (t == l) {
1929 t->l_flag &= ~LW_WSUSPEND;
1930 lwp_unlock(t);
1931 continue;
1932 }
1933 t->l_flag |= (LW_WCORE | LW_WEXIT);
1934 lwp_suspend(l, t);
1935 }
1936
1937 if (p->p_nrlwps == 1)
1938 break;
1939
1940 /*
1941 * Kick any LWPs sitting in lwp_wait1(), and wait
1942 * for everyone else to stop before proceeding.
1943 */
1944 p->p_nlwpwait++;
1945 cv_broadcast(&p->p_lwpcv);
1946 cv_wait(&p->p_lwpcv, &p->p_smutex);
1947 p->p_nlwpwait--;
1948 }
1949 }
1950
1951 exitsig = signo;
1952 p->p_acflag |= AXSIG;
1953 p->p_sigctx.ps_signo = signo;
1954 mutex_exit(&p->p_smutex);
1955
1956 KERNEL_LOCK(1, l);
1957
1958 if (docore) {
1959 if ((error = coredump(l, NULL)) == 0)
1960 exitsig |= WCOREFLAG;
1961
1962 if (kern_logsigexit) {
1963 int uid = l->l_cred ?
1964 (int)kauth_cred_geteuid(l->l_cred) : -1;
1965
1966 if (error)
1967 log(LOG_INFO, lognocoredump, p->p_pid,
1968 p->p_comm, uid, signo, error);
1969 else
1970 log(LOG_INFO, logcoredump, p->p_pid,
1971 p->p_comm, uid, signo);
1972 }
1973
1974 #ifdef PAX_SEGVGUARD
1975 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1976 #endif /* PAX_SEGVGUARD */
1977 }
1978
1979 /* Acquire the sched state mutex. exit1() will release it. */
1980 mutex_enter(&p->p_smutex);
1981
1982 /* No longer dumping core. */
1983 p->p_sflag &= ~PS_WCORE;
1984
1985 exit1(l, W_EXITCODE(0, exitsig));
1986 /* NOTREACHED */
1987 }
1988
1989 /*
1990 * Put process 'p' into the stopped state and optionally, notify the parent.
1991 */
1992 void
1993 proc_stop(struct proc *p, int notify, int signo)
1994 {
1995 struct lwp *l;
1996
1997 KASSERT(mutex_owned(&p->p_smutex));
1998
1999 /*
2000 * First off, set the stopping indicator and bring all sleeping
2001 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2002 * unlock between here and the p->p_nrlwps check below.
2003 */
2004 p->p_sflag |= PS_STOPPING;
2005 if (notify)
2006 p->p_sflag |= PS_NOTIFYSTOP;
2007 else
2008 p->p_sflag &= ~PS_NOTIFYSTOP;
2009 membar_producer();
2010
2011 proc_stop_lwps(p);
2012
2013 /*
2014 * If there are no LWPs available to take the signal, then we
2015 * signal the parent process immediately. Otherwise, the last
2016 * LWP to stop will take care of it.
2017 */
2018
2019 if (p->p_nrlwps == 0) {
2020 proc_stop_done(p, true, PS_NOCLDSTOP);
2021 } else {
2022 /*
2023 * Have the remaining LWPs come to a halt, and trigger
2024 * proc_stop_callout() to ensure that they do.
2025 */
2026 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2027 sigpost(l, SIG_DFL, SA_STOP, signo);
2028 callout_schedule(&proc_stop_ch, 1);
2029 }
2030 }
2031
2032 /*
2033 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2034 * but wait for them to come to a halt at the kernel-user boundary. This is
2035 * to allow LWPs to release any locks that they may hold before stopping.
2036 *
2037 * Non-interruptable sleeps can be long, and there is the potential for an
2038 * LWP to begin sleeping interruptably soon after the process has been set
2039 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2040 * stopping, and so complete halt of the process and the return of status
2041 * information to the parent could be delayed indefinitely.
2042 *
2043 * To handle this race, proc_stop_callout() runs once per tick while there
2044 * are stopping processes in the system. It sets LWPs that are sleeping
2045 * interruptably into the LSSTOP state.
2046 *
2047 * Note that we are not concerned about keeping all LWPs stopped while the
2048 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2049 * What we do need to ensure is that all LWPs in a stopping process have
2050 * stopped at least once, so that notification can be sent to the parent
2051 * process.
2052 */
2053 static void
2054 proc_stop_callout(void *cookie)
2055 {
2056 bool more, restart;
2057 struct proc *p;
2058
2059 (void)cookie;
2060
2061 do {
2062 restart = false;
2063 more = false;
2064
2065 mutex_enter(&proclist_lock);
2066 mutex_enter(&proclist_mutex);
2067 PROCLIST_FOREACH(p, &allproc) {
2068 mutex_enter(&p->p_smutex);
2069
2070 if ((p->p_sflag & PS_STOPPING) == 0) {
2071 mutex_exit(&p->p_smutex);
2072 continue;
2073 }
2074
2075 /* Stop any LWPs sleeping interruptably. */
2076 proc_stop_lwps(p);
2077 if (p->p_nrlwps == 0) {
2078 /*
2079 * We brought the process to a halt.
2080 * Mark it as stopped and notify the
2081 * parent.
2082 */
2083 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2084 /*
2085 * Note that proc_stop_done() will
2086 * drop p->p_smutex briefly.
2087 * Arrange to restart and check
2088 * all processes again.
2089 */
2090 restart = true;
2091 }
2092 proc_stop_done(p, true, PS_NOCLDSTOP);
2093 } else
2094 more = true;
2095
2096 mutex_exit(&p->p_smutex);
2097 if (restart)
2098 break;
2099 }
2100 mutex_exit(&proclist_mutex);
2101 mutex_exit(&proclist_lock);
2102 } while (restart);
2103
2104 /*
2105 * If we noted processes that are stopping but still have
2106 * running LWPs, then arrange to check again in 1 tick.
2107 */
2108 if (more)
2109 callout_schedule(&proc_stop_ch, 1);
2110 }
2111
2112 /*
2113 * Given a process in state SSTOP, set the state back to SACTIVE and
2114 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2115 */
2116 void
2117 proc_unstop(struct proc *p)
2118 {
2119 struct lwp *l;
2120 int sig;
2121
2122 KASSERT(mutex_owned(&proclist_mutex));
2123 KASSERT(mutex_owned(&p->p_smutex));
2124
2125 p->p_stat = SACTIVE;
2126 p->p_sflag &= ~PS_STOPPING;
2127 sig = p->p_xstat;
2128
2129 if (!p->p_waited)
2130 p->p_pptr->p_nstopchild--;
2131
2132 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2133 lwp_lock(l);
2134 if (l->l_stat != LSSTOP) {
2135 lwp_unlock(l);
2136 continue;
2137 }
2138 if (l->l_wchan == NULL) {
2139 setrunnable(l);
2140 continue;
2141 }
2142 if (sig && (l->l_flag & LW_SINTR) != 0) {
2143 setrunnable(l);
2144 sig = 0;
2145 } else {
2146 l->l_stat = LSSLEEP;
2147 p->p_nrlwps++;
2148 lwp_unlock(l);
2149 }
2150 }
2151 }
2152
2153 static int
2154 filt_sigattach(struct knote *kn)
2155 {
2156 struct proc *p = curproc;
2157
2158 kn->kn_obj = p;
2159 kn->kn_flags |= EV_CLEAR; /* automatically set */
2160
2161 mutex_enter(&p->p_smutex);
2162 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2163 mutex_exit(&p->p_smutex);
2164
2165 return (0);
2166 }
2167
2168 static void
2169 filt_sigdetach(struct knote *kn)
2170 {
2171 struct proc *p = kn->kn_obj;
2172
2173 mutex_enter(&p->p_smutex);
2174 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2175 mutex_exit(&p->p_smutex);
2176 }
2177
2178 /*
2179 * signal knotes are shared with proc knotes, so we apply a mask to
2180 * the hint in order to differentiate them from process hints. This
2181 * could be avoided by using a signal-specific knote list, but probably
2182 * isn't worth the trouble.
2183 */
2184 static int
2185 filt_signal(struct knote *kn, long hint)
2186 {
2187
2188 if (hint & NOTE_SIGNAL) {
2189 hint &= ~NOTE_SIGNAL;
2190
2191 if (kn->kn_id == hint)
2192 kn->kn_data++;
2193 }
2194 return (kn->kn_data != 0);
2195 }
2196
2197 const struct filterops sig_filtops = {
2198 0, filt_sigattach, filt_sigdetach, filt_signal
2199 };
2200