Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.275
      1 /*	$NetBSD: kern_sig.c,v 1.275 2008/03/27 19:06:52 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  * (c) UNIX System Laboratories, Inc.
     43  * All or some portions of this file are derived from material licensed
     44  * to the University of California by American Telephone and Telegraph
     45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     46  * the permission of UNIX System Laboratories, Inc.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that the following conditions
     50  * are met:
     51  * 1. Redistributions of source code must retain the above copyright
     52  *    notice, this list of conditions and the following disclaimer.
     53  * 2. Redistributions in binary form must reproduce the above copyright
     54  *    notice, this list of conditions and the following disclaimer in the
     55  *    documentation and/or other materials provided with the distribution.
     56  * 3. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.275 2008/03/27 19:06:52 ad Exp $");
     77 
     78 #include "opt_ptrace.h"
     79 #include "opt_multiprocessor.h"
     80 #include "opt_compat_sunos.h"
     81 #include "opt_compat_netbsd.h"
     82 #include "opt_compat_netbsd32.h"
     83 #include "opt_pax.h"
     84 
     85 #define	SIGPROP		/* include signal properties table */
     86 #include <sys/param.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/proc.h>
     89 #include <sys/systm.h>
     90 #include <sys/wait.h>
     91 #include <sys/ktrace.h>
     92 #include <sys/syslog.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/file.h>
     95 #include <sys/malloc.h>
     96 #include <sys/pool.h>
     97 #include <sys/ucontext.h>
     98 #include <sys/exec.h>
     99 #include <sys/kauth.h>
    100 #include <sys/acct.h>
    101 #include <sys/callout.h>
    102 #include <sys/atomic.h>
    103 #include <sys/cpu.h>
    104 
    105 #ifdef PAX_SEGVGUARD
    106 #include <sys/pax.h>
    107 #endif /* PAX_SEGVGUARD */
    108 
    109 #include <uvm/uvm.h>
    110 #include <uvm/uvm_extern.h>
    111 
    112 static void	ksiginfo_exechook(struct proc *, void *);
    113 static void	proc_stop_callout(void *);
    114 
    115 int	sigunwait(struct proc *, const ksiginfo_t *);
    116 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    117 int	sigpost(struct lwp *, sig_t, int, int);
    118 int	sigchecktrace(sigpend_t **);
    119 void	sigswitch(bool, int, int);
    120 void	sigrealloc(ksiginfo_t *);
    121 
    122 sigset_t	contsigmask, stopsigmask, sigcantmask;
    123 struct pool	sigacts_pool;	/* memory pool for sigacts structures */
    124 static void	sigacts_poolpage_free(struct pool *, void *);
    125 static void	*sigacts_poolpage_alloc(struct pool *, int);
    126 static callout_t proc_stop_ch;
    127 
    128 static struct pool_allocator sigactspool_allocator = {
    129         .pa_alloc = sigacts_poolpage_alloc,
    130 	.pa_free = sigacts_poolpage_free,
    131 };
    132 
    133 #ifdef DEBUG
    134 int	kern_logsigexit = 1;
    135 #else
    136 int	kern_logsigexit = 0;
    137 #endif
    138 
    139 static	const char logcoredump[] =
    140     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    141 static	const char lognocoredump[] =
    142     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    143 
    144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    145     &pool_allocator_nointr, IPL_NONE);
    146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    147     NULL, IPL_VM);
    148 
    149 /*
    150  * signal_init:
    151  *
    152  * 	Initialize global signal-related data structures.
    153  */
    154 void
    155 signal_init(void)
    156 {
    157 
    158 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    159 
    160 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
    161 	    sizeof(struct sigacts) > PAGE_SIZE ?
    162 	    &sigactspool_allocator : &pool_allocator_nointr,
    163 	    IPL_NONE);
    164 
    165 	exechook_establish(ksiginfo_exechook, NULL);
    166 
    167 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    168 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    169 }
    170 
    171 /*
    172  * sigacts_poolpage_alloc:
    173  *
    174  *	 Allocate a page for the sigacts memory pool.
    175  */
    176 static void *
    177 sigacts_poolpage_alloc(struct pool *pp, int flags)
    178 {
    179 
    180 	return (void *)uvm_km_alloc(kernel_map,
    181 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    182 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    183 	    | UVM_KMF_WIRED);
    184 }
    185 
    186 /*
    187  * sigacts_poolpage_free:
    188  *
    189  *	 Free a page on behalf of the sigacts memory pool.
    190  */
    191 static void
    192 sigacts_poolpage_free(struct pool *pp, void *v)
    193 {
    194         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    195 }
    196 
    197 /*
    198  * sigactsinit:
    199  *
    200  *	 Create an initial sigctx structure, using the same signal state as
    201  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    202  *	 copy it from parent.
    203  */
    204 struct sigacts *
    205 sigactsinit(struct proc *pp, int share)
    206 {
    207 	struct sigacts *ps, *ps2;
    208 
    209 	ps = pp->p_sigacts;
    210 
    211 	if (share) {
    212 		mutex_enter(&ps->sa_mutex);
    213 		ps->sa_refcnt++;
    214 		mutex_exit(&ps->sa_mutex);
    215 		ps2 = ps;
    216 	} else {
    217 		ps2 = pool_get(&sigacts_pool, PR_WAITOK);
    218 		/* XXX IPL_SCHED to match p_smutex */
    219 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    220 		mutex_enter(&ps->sa_mutex);
    221 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    222 		    sizeof(ps2->sa_sigdesc));
    223 		mutex_exit(&ps->sa_mutex);
    224 		ps2->sa_refcnt = 1;
    225 	}
    226 
    227 	return ps2;
    228 }
    229 
    230 /*
    231  * sigactsunshare:
    232  *
    233  *	Make this process not share its sigctx, maintaining all
    234  *	signal state.
    235  */
    236 void
    237 sigactsunshare(struct proc *p)
    238 {
    239 	struct sigacts *ps, *oldps;
    240 
    241 	oldps = p->p_sigacts;
    242 	if (oldps->sa_refcnt == 1)
    243 		return;
    244 	ps = pool_get(&sigacts_pool, PR_WAITOK);
    245 	/* XXX IPL_SCHED to match p_smutex */
    246 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    247 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    248 	p->p_sigacts = ps;
    249 	sigactsfree(oldps);
    250 }
    251 
    252 /*
    253  * sigactsfree;
    254  *
    255  *	Release a sigctx structure.
    256  */
    257 void
    258 sigactsfree(struct sigacts *ps)
    259 {
    260 	int refcnt;
    261 
    262 	mutex_enter(&ps->sa_mutex);
    263 	refcnt = --ps->sa_refcnt;
    264 	mutex_exit(&ps->sa_mutex);
    265 
    266 	if (refcnt == 0) {
    267 		mutex_destroy(&ps->sa_mutex);
    268 		pool_put(&sigacts_pool, ps);
    269 	}
    270 }
    271 
    272 /*
    273  * siginit:
    274  *
    275  *	Initialize signal state for process 0; set to ignore signals that
    276  *	are ignored by default and disable the signal stack.  Locking not
    277  *	required as the system is still cold.
    278  */
    279 void
    280 siginit(struct proc *p)
    281 {
    282 	struct lwp *l;
    283 	struct sigacts *ps;
    284 	int signo, prop;
    285 
    286 	ps = p->p_sigacts;
    287 	sigemptyset(&contsigmask);
    288 	sigemptyset(&stopsigmask);
    289 	sigemptyset(&sigcantmask);
    290 	for (signo = 1; signo < NSIG; signo++) {
    291 		prop = sigprop[signo];
    292 		if (prop & SA_CONT)
    293 			sigaddset(&contsigmask, signo);
    294 		if (prop & SA_STOP)
    295 			sigaddset(&stopsigmask, signo);
    296 		if (prop & SA_CANTMASK)
    297 			sigaddset(&sigcantmask, signo);
    298 		if (prop & SA_IGNORE && signo != SIGCONT)
    299 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    300 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    301 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    302 	}
    303 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    304 	p->p_sflag &= ~PS_NOCLDSTOP;
    305 
    306 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    307 	sigemptyset(&p->p_sigpend.sp_set);
    308 
    309 	/*
    310 	 * Reset per LWP state.
    311 	 */
    312 	l = LIST_FIRST(&p->p_lwps);
    313 	l->l_sigwaited = NULL;
    314 	l->l_sigstk.ss_flags = SS_DISABLE;
    315 	l->l_sigstk.ss_size = 0;
    316 	l->l_sigstk.ss_sp = 0;
    317 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    318 	sigemptyset(&l->l_sigpend.sp_set);
    319 
    320 	/* One reference. */
    321 	ps->sa_refcnt = 1;
    322 }
    323 
    324 /*
    325  * execsigs:
    326  *
    327  *	Reset signals for an exec of the specified process.
    328  */
    329 void
    330 execsigs(struct proc *p)
    331 {
    332 	struct sigacts *ps;
    333 	struct lwp *l;
    334 	int signo, prop;
    335 	sigset_t tset;
    336 	ksiginfoq_t kq;
    337 
    338 	KASSERT(p->p_nlwps == 1);
    339 
    340 	sigactsunshare(p);
    341 	ps = p->p_sigacts;
    342 
    343 	/*
    344 	 * Reset caught signals.  Held signals remain held through
    345 	 * l->l_sigmask (unless they were caught, and are now ignored
    346 	 * by default).
    347 	 *
    348 	 * No need to lock yet, the process has only one LWP and
    349 	 * at this point the sigacts are private to the process.
    350 	 */
    351 	sigemptyset(&tset);
    352 	for (signo = 1; signo < NSIG; signo++) {
    353 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    354 			prop = sigprop[signo];
    355 			if (prop & SA_IGNORE) {
    356 				if ((prop & SA_CONT) == 0)
    357 					sigaddset(&p->p_sigctx.ps_sigignore,
    358 					    signo);
    359 				sigaddset(&tset, signo);
    360 			}
    361 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    362 		}
    363 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    364 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    365 	}
    366 	ksiginfo_queue_init(&kq);
    367 
    368 	mutex_enter(&p->p_smutex);
    369 	sigclearall(p, &tset, &kq);
    370 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    371 
    372 	/*
    373 	 * Reset no zombies if child dies flag as Solaris does.
    374 	 */
    375 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    376 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    377 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    378 
    379 	/*
    380 	 * Reset per-LWP state.
    381 	 */
    382 	l = LIST_FIRST(&p->p_lwps);
    383 	l->l_sigwaited = NULL;
    384 	l->l_sigstk.ss_flags = SS_DISABLE;
    385 	l->l_sigstk.ss_size = 0;
    386 	l->l_sigstk.ss_sp = 0;
    387 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    388 	sigemptyset(&l->l_sigpend.sp_set);
    389 	mutex_exit(&p->p_smutex);
    390 
    391 	ksiginfo_queue_drain(&kq);
    392 }
    393 
    394 /*
    395  * ksiginfo_exechook:
    396  *
    397  *	Free all pending ksiginfo entries from a process on exec.
    398  *	Additionally, drain any unused ksiginfo structures in the
    399  *	system back to the pool.
    400  *
    401  *	XXX This should not be a hook, every process has signals.
    402  */
    403 static void
    404 ksiginfo_exechook(struct proc *p, void *v)
    405 {
    406 	ksiginfoq_t kq;
    407 
    408 	ksiginfo_queue_init(&kq);
    409 
    410 	mutex_enter(&p->p_smutex);
    411 	sigclearall(p, NULL, &kq);
    412 	mutex_exit(&p->p_smutex);
    413 
    414 	ksiginfo_queue_drain(&kq);
    415 }
    416 
    417 /*
    418  * ksiginfo_alloc:
    419  *
    420  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    421  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    422  *	has not been queued somewhere, then just return it.  Additionally,
    423  *	if the existing ksiginfo_t does not contain any information beyond
    424  *	the signal number, then just return it.
    425  */
    426 ksiginfo_t *
    427 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    428 {
    429 	ksiginfo_t *kp;
    430 	int s;
    431 
    432 	if (ok != NULL) {
    433 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    434 		    KSI_FROMPOOL)
    435 		    	return ok;
    436 		if (KSI_EMPTY_P(ok))
    437 			return ok;
    438 	}
    439 
    440 	s = splvm();
    441 	kp = pool_get(&ksiginfo_pool, flags);
    442 	splx(s);
    443 	if (kp == NULL) {
    444 #ifdef DIAGNOSTIC
    445 		printf("Out of memory allocating ksiginfo for pid %d\n",
    446 		    p->p_pid);
    447 #endif
    448 		return NULL;
    449 	}
    450 
    451 	if (ok != NULL) {
    452 		memcpy(kp, ok, sizeof(*kp));
    453 		kp->ksi_flags &= ~KSI_QUEUED;
    454 	} else
    455 		KSI_INIT_EMPTY(kp);
    456 
    457 	kp->ksi_flags |= KSI_FROMPOOL;
    458 
    459 	return kp;
    460 }
    461 
    462 /*
    463  * ksiginfo_free:
    464  *
    465  *	If the given ksiginfo_t is from the pool and has not been queued,
    466  *	then free it.
    467  */
    468 void
    469 ksiginfo_free(ksiginfo_t *kp)
    470 {
    471 	int s;
    472 
    473 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    474 		return;
    475 	s = splvm();
    476 	pool_put(&ksiginfo_pool, kp);
    477 	splx(s);
    478 }
    479 
    480 /*
    481  * ksiginfo_queue_drain:
    482  *
    483  *	Drain a non-empty ksiginfo_t queue.
    484  */
    485 void
    486 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    487 {
    488 	ksiginfo_t *ksi;
    489 	int s;
    490 
    491 	KASSERT(!CIRCLEQ_EMPTY(kq));
    492 
    493 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    494 	while (!CIRCLEQ_EMPTY(kq)) {
    495 		ksi = CIRCLEQ_FIRST(kq);
    496 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    497 		s = splvm();
    498 		pool_put(&ksiginfo_pool, ksi);
    499 		splx(s);
    500 	}
    501 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    502 }
    503 
    504 /*
    505  * sigget:
    506  *
    507  *	Fetch the first pending signal from a set.  Optionally, also fetch
    508  *	or manufacture a ksiginfo element.  Returns the number of the first
    509  *	pending signal, or zero.
    510  */
    511 int
    512 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    513 {
    514         ksiginfo_t *ksi;
    515 	sigset_t tset;
    516 
    517 	/* If there's no pending set, the signal is from the debugger. */
    518 	if (sp == NULL) {
    519 		if (out != NULL) {
    520 			KSI_INIT(out);
    521 			out->ksi_info._signo = signo;
    522 			out->ksi_info._code = SI_USER;
    523 		}
    524 		return signo;
    525 	}
    526 
    527 	/* Construct mask from signo, and 'mask'. */
    528 	if (signo == 0) {
    529 		if (mask != NULL) {
    530 			tset = *mask;
    531 			__sigandset(&sp->sp_set, &tset);
    532 		} else
    533 			tset = sp->sp_set;
    534 
    535 		/* If there are no signals pending, that's it. */
    536 		if ((signo = firstsig(&tset)) == 0)
    537 			return 0;
    538 	} else {
    539 		KASSERT(sigismember(&sp->sp_set, signo));
    540 	}
    541 
    542 	sigdelset(&sp->sp_set, signo);
    543 
    544 	/* Find siginfo and copy it out. */
    545 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    546 		if (ksi->ksi_signo == signo) {
    547 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    548 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    549 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    550 			ksi->ksi_flags &= ~KSI_QUEUED;
    551 			if (out != NULL) {
    552 				memcpy(out, ksi, sizeof(*out));
    553 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    554 			}
    555 			ksiginfo_free(ksi);
    556 			return signo;
    557 		}
    558 	}
    559 
    560 	/* If there's no siginfo, then manufacture it. */
    561 	if (out != NULL) {
    562 		KSI_INIT(out);
    563 		out->ksi_info._signo = signo;
    564 		out->ksi_info._code = SI_USER;
    565 	}
    566 
    567 	return signo;
    568 }
    569 
    570 /*
    571  * sigput:
    572  *
    573  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    574  *	we need to (e.g. SA_SIGINFO was requested).
    575  */
    576 void
    577 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    578 {
    579 	ksiginfo_t *kp;
    580 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    581 
    582 	KASSERT(mutex_owned(&p->p_smutex));
    583 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    584 
    585 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    586 
    587 	/*
    588 	 * If siginfo is not required, or there is none, then just mark the
    589 	 * signal as pending.
    590 	 */
    591 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
    592 		return;
    593 
    594 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    595 
    596 #ifdef notyet	/* XXX: QUEUING */
    597 	if (ksi->ksi_signo < SIGRTMIN)
    598 #endif
    599 	{
    600 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    601 			if (kp->ksi_signo == ksi->ksi_signo) {
    602 				KSI_COPY(ksi, kp);
    603 				kp->ksi_flags |= KSI_QUEUED;
    604 				return;
    605 			}
    606 		}
    607 	}
    608 
    609 	ksi->ksi_flags |= KSI_QUEUED;
    610 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    611 }
    612 
    613 /*
    614  * sigclear:
    615  *
    616  *	Clear all pending signals in the specified set.
    617  */
    618 void
    619 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    620 {
    621 	ksiginfo_t *ksi, *next;
    622 
    623 	if (mask == NULL)
    624 		sigemptyset(&sp->sp_set);
    625 	else
    626 		sigminusset(mask, &sp->sp_set);
    627 
    628 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    629 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    630 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    631 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    632 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    633 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    634 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    635 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    636 		}
    637 	}
    638 }
    639 
    640 /*
    641  * sigclearall:
    642  *
    643  *	Clear all pending signals in the specified set from a process and
    644  *	its LWPs.
    645  */
    646 void
    647 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    648 {
    649 	struct lwp *l;
    650 
    651 	KASSERT(mutex_owned(&p->p_smutex));
    652 
    653 	sigclear(&p->p_sigpend, mask, kq);
    654 
    655 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    656 		sigclear(&l->l_sigpend, mask, kq);
    657 	}
    658 }
    659 
    660 /*
    661  * sigispending:
    662  *
    663  *	Return true if there are pending signals for the current LWP.  May
    664  *	be called unlocked provided that LW_PENDSIG is set, and that the
    665  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    666  *	set.
    667  */
    668 int
    669 sigispending(struct lwp *l, int signo)
    670 {
    671 	struct proc *p = l->l_proc;
    672 	sigset_t tset;
    673 
    674 	membar_consumer();
    675 
    676 	tset = l->l_sigpend.sp_set;
    677 	sigplusset(&p->p_sigpend.sp_set, &tset);
    678 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    679 	sigminusset(&l->l_sigmask, &tset);
    680 
    681 	if (signo == 0) {
    682 		if (firstsig(&tset) != 0)
    683 			return EINTR;
    684 	} else if (sigismember(&tset, signo))
    685 		return EINTR;
    686 
    687 	return 0;
    688 }
    689 
    690 /*
    691  * siginfo_alloc:
    692  *
    693  *	 Allocate a new siginfo_t structure from the pool.
    694  */
    695 siginfo_t *
    696 siginfo_alloc(int flags)
    697 {
    698 
    699 	return pool_get(&siginfo_pool, flags);
    700 }
    701 
    702 /*
    703  * siginfo_free:
    704  *
    705  *	 Return a siginfo_t structure to the pool.
    706  */
    707 void
    708 siginfo_free(void *arg)
    709 {
    710 
    711 	pool_put(&siginfo_pool, arg);
    712 }
    713 
    714 void
    715 getucontext(struct lwp *l, ucontext_t *ucp)
    716 {
    717 	struct proc *p = l->l_proc;
    718 
    719 	KASSERT(mutex_owned(&p->p_smutex));
    720 
    721 	ucp->uc_flags = 0;
    722 	ucp->uc_link = l->l_ctxlink;
    723 
    724 	ucp->uc_sigmask = l->l_sigmask;
    725 	ucp->uc_flags |= _UC_SIGMASK;
    726 
    727 	/*
    728 	 * The (unsupplied) definition of the `current execution stack'
    729 	 * in the System V Interface Definition appears to allow returning
    730 	 * the main context stack.
    731 	 */
    732 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    733 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    734 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    735 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    736 	} else {
    737 		/* Simply copy alternate signal execution stack. */
    738 		ucp->uc_stack = l->l_sigstk;
    739 	}
    740 	ucp->uc_flags |= _UC_STACK;
    741 	mutex_exit(&p->p_smutex);
    742 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    743 	mutex_enter(&p->p_smutex);
    744 }
    745 
    746 int
    747 setucontext(struct lwp *l, const ucontext_t *ucp)
    748 {
    749 	struct proc *p = l->l_proc;
    750 	int error;
    751 
    752 	KASSERT(mutex_owned(&p->p_smutex));
    753 
    754 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    755 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    756 		if (error != 0)
    757 			return error;
    758 	}
    759 
    760 	mutex_exit(&p->p_smutex);
    761 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    762 	mutex_enter(&p->p_smutex);
    763 	if (error != 0)
    764 		return (error);
    765 
    766 	l->l_ctxlink = ucp->uc_link;
    767 
    768 	/*
    769 	 * If there was stack information, update whether or not we are
    770 	 * still running on an alternate signal stack.
    771 	 */
    772 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    773 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    774 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    775 		else
    776 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    777 	}
    778 
    779 	return 0;
    780 }
    781 
    782 /*
    783  * Common code for kill process group/broadcast kill.  cp is calling
    784  * process.
    785  */
    786 int
    787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    788 {
    789 	struct proc	*p, *cp;
    790 	kauth_cred_t	pc;
    791 	struct pgrp	*pgrp;
    792 	int		nfound;
    793 	int		signo = ksi->ksi_signo;
    794 
    795 	cp = l->l_proc;
    796 	pc = l->l_cred;
    797 	nfound = 0;
    798 
    799 	mutex_enter(&proclist_lock);
    800 	if (all) {
    801 		/*
    802 		 * broadcast
    803 		 */
    804 		PROCLIST_FOREACH(p, &allproc) {
    805 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
    806 				continue;
    807 			mutex_enter(&p->p_mutex);
    808 			if (kauth_authorize_process(pc,
    809 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    810 			    NULL) == 0) {
    811 				nfound++;
    812 				if (signo) {
    813 					mutex_enter(&proclist_mutex);
    814 					mutex_enter(&p->p_smutex);
    815 					kpsignal2(p, ksi);
    816 					mutex_exit(&p->p_smutex);
    817 					mutex_exit(&proclist_mutex);
    818 				}
    819 			}
    820 			mutex_exit(&p->p_mutex);
    821 		}
    822 	} else {
    823 		if (pgid == 0)
    824 			/*
    825 			 * zero pgid means send to my process group.
    826 			 */
    827 			pgrp = cp->p_pgrp;
    828 		else {
    829 			pgrp = pg_find(pgid, PFIND_LOCKED);
    830 			if (pgrp == NULL)
    831 				goto out;
    832 		}
    833 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    834 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    835 				continue;
    836 			mutex_enter(&p->p_mutex);
    837 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    838 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    839 				nfound++;
    840 				if (signo) {
    841 					mutex_enter(&proclist_mutex);
    842 					mutex_enter(&p->p_smutex);
    843 					if (P_ZOMBIE(p) == 0)
    844 						kpsignal2(p, ksi);
    845 					mutex_exit(&p->p_smutex);
    846 					mutex_exit(&proclist_mutex);
    847 				}
    848 			}
    849 			mutex_exit(&p->p_mutex);
    850 		}
    851 	}
    852   out:
    853 	mutex_exit(&proclist_lock);
    854 	return (nfound ? 0 : ESRCH);
    855 }
    856 
    857 /*
    858  * Send a signal to a process group. If checktty is 1, limit to members
    859  * which have a controlling terminal.
    860  */
    861 void
    862 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    863 {
    864 	ksiginfo_t ksi;
    865 
    866 	KASSERT(mutex_owned(&proclist_mutex));
    867 
    868 	KSI_INIT_EMPTY(&ksi);
    869 	ksi.ksi_signo = sig;
    870 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    871 }
    872 
    873 void
    874 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    875 {
    876 	struct proc *p;
    877 
    878 	KASSERT(mutex_owned(&proclist_mutex));
    879 
    880 	if (pgrp)
    881 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    882 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    883 				kpsignal(p, ksi, data);
    884 }
    885 
    886 /*
    887  * Send a signal caused by a trap to the current LWP.  If it will be caught
    888  * immediately, deliver it with correct code.  Otherwise, post it normally.
    889  */
    890 void
    891 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    892 {
    893 	struct proc	*p;
    894 	struct sigacts	*ps;
    895 	int signo = ksi->ksi_signo;
    896 
    897 	KASSERT(KSI_TRAP_P(ksi));
    898 
    899 	ksi->ksi_lid = l->l_lid;
    900 	p = l->l_proc;
    901 
    902 	mutex_enter(&proclist_mutex);
    903 	mutex_enter(&p->p_smutex);
    904 	ps = p->p_sigacts;
    905 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    906 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    907 	    !sigismember(&l->l_sigmask, signo)) {
    908 		mutex_exit(&proclist_mutex);
    909 		l->l_ru.ru_nsignals++;
    910 		kpsendsig(l, ksi, &l->l_sigmask);
    911 		mutex_exit(&p->p_smutex);
    912 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    913 		    &l->l_sigmask, ksi);
    914 	} else {
    915 		/* XXX for core dump/debugger */
    916 		p->p_sigctx.ps_lwp = l->l_lid;
    917 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    918 		p->p_sigctx.ps_code = ksi->ksi_trap;
    919 		kpsignal2(p, ksi);
    920 		mutex_exit(&proclist_mutex);
    921 		mutex_exit(&p->p_smutex);
    922 	}
    923 }
    924 
    925 /*
    926  * Fill in signal information and signal the parent for a child status change.
    927  */
    928 void
    929 child_psignal(struct proc *p, int mask)
    930 {
    931 	ksiginfo_t ksi;
    932 	struct proc *q;
    933 	int xstat;
    934 
    935 	KASSERT(mutex_owned(&proclist_mutex));
    936 	KASSERT(mutex_owned(&p->p_smutex));
    937 
    938 	xstat = p->p_xstat;
    939 
    940 	KSI_INIT(&ksi);
    941 	ksi.ksi_signo = SIGCHLD;
    942 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    943 	ksi.ksi_pid = p->p_pid;
    944 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    945 	ksi.ksi_status = xstat;
    946 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    947 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    948 
    949 	q = p->p_pptr;
    950 
    951 	mutex_exit(&p->p_smutex);
    952 	mutex_enter(&q->p_smutex);
    953 
    954 	if ((q->p_sflag & mask) == 0)
    955 		kpsignal2(q, &ksi);
    956 
    957 	mutex_exit(&q->p_smutex);
    958 	mutex_enter(&p->p_smutex);
    959 }
    960 
    961 void
    962 psignal(struct proc *p, int signo)
    963 {
    964 	ksiginfo_t ksi;
    965 
    966 	KASSERT(mutex_owned(&proclist_mutex));
    967 
    968 	KSI_INIT_EMPTY(&ksi);
    969 	ksi.ksi_signo = signo;
    970 	mutex_enter(&p->p_smutex);
    971 	kpsignal2(p, &ksi);
    972 	mutex_exit(&p->p_smutex);
    973 }
    974 
    975 void
    976 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    977 {
    978 	fdfile_t *ff;
    979 	file_t *fp;
    980 
    981 	KASSERT(mutex_owned(&proclist_mutex));
    982 
    983 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    984 		size_t fd;
    985 		filedesc_t *fdp = p->p_fd;
    986 
    987 		/* XXXSMP locking */
    988 		ksi->ksi_fd = -1;
    989 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    990 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
    991 				continue;
    992 			if ((fp = ff->ff_file) == NULL)
    993 				continue;
    994 			if (fp->f_data == data) {
    995 				ksi->ksi_fd = fd;
    996 				break;
    997 			}
    998 		}
    999 	}
   1000 	mutex_enter(&p->p_smutex);
   1001 	kpsignal2(p, ksi);
   1002 	mutex_exit(&p->p_smutex);
   1003 }
   1004 
   1005 /*
   1006  * sigismasked:
   1007  *
   1008  *	 Returns true if signal is ignored or masked for the specified LWP.
   1009  */
   1010 int
   1011 sigismasked(struct lwp *l, int sig)
   1012 {
   1013 	struct proc *p = l->l_proc;
   1014 
   1015 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1016 	    sigismember(&l->l_sigmask, sig));
   1017 }
   1018 
   1019 /*
   1020  * sigpost:
   1021  *
   1022  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
   1023  *	 able to take the signal.
   1024  */
   1025 int
   1026 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1027 {
   1028 	int rv, masked;
   1029 
   1030 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1031 
   1032 	/*
   1033 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1034 	 * pending signals.  Don't give it more.
   1035 	 */
   1036 	if (l->l_refcnt == 0)
   1037 		return 0;
   1038 
   1039 	lwp_lock(l);
   1040 
   1041 	/*
   1042 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1043 	 * is found to take the signal immediately, it should be taken soon.
   1044 	 */
   1045 	l->l_flag |= LW_PENDSIG;
   1046 
   1047 	/*
   1048 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1049 	 */
   1050 	masked = sigismember(&l->l_sigmask, sig);
   1051 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1052 		lwp_unlock(l);
   1053 		return 0;
   1054 	}
   1055 
   1056 	/*
   1057 	 * If killing the process, make it run fast.
   1058 	 */
   1059 	if (__predict_false((prop & SA_KILL) != 0) &&
   1060 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1061 		KASSERT(l->l_class == SCHED_OTHER);
   1062 		lwp_changepri(l, MAXPRI_USER);
   1063 	}
   1064 
   1065 	/*
   1066 	 * If the LWP is running or on a run queue, then we win.  If it's
   1067 	 * sleeping interruptably, wake it and make it take the signal.  If
   1068 	 * the sleep isn't interruptable, then the chances are it will get
   1069 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1070 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1071 	 * for later; otherwise punt.
   1072 	 */
   1073 	rv = 0;
   1074 
   1075 	switch (l->l_stat) {
   1076 	case LSRUN:
   1077 	case LSONPROC:
   1078 		lwp_need_userret(l);
   1079 		rv = 1;
   1080 		break;
   1081 
   1082 	case LSSLEEP:
   1083 		if ((l->l_flag & LW_SINTR) != 0) {
   1084 			/* setrunnable() will release the lock. */
   1085 			setrunnable(l);
   1086 			return 1;
   1087 		}
   1088 		break;
   1089 
   1090 	case LSSUSPENDED:
   1091 		if ((prop & SA_KILL) != 0) {
   1092 			/* lwp_continue() will release the lock. */
   1093 			lwp_continue(l);
   1094 			return 1;
   1095 		}
   1096 		break;
   1097 
   1098 	case LSSTOP:
   1099 		if ((prop & SA_STOP) != 0)
   1100 			break;
   1101 
   1102 		/*
   1103 		 * If the LWP is stopped and we are sending a continue
   1104 		 * signal, then start it again.
   1105 		 */
   1106 		if ((prop & SA_CONT) != 0) {
   1107 			if (l->l_wchan != NULL) {
   1108 				l->l_stat = LSSLEEP;
   1109 				l->l_proc->p_nrlwps++;
   1110 				rv = 1;
   1111 				break;
   1112 			}
   1113 			/* setrunnable() will release the lock. */
   1114 			setrunnable(l);
   1115 			return 1;
   1116 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1117 			/* setrunnable() will release the lock. */
   1118 			setrunnable(l);
   1119 			return 1;
   1120 		}
   1121 		break;
   1122 
   1123 	default:
   1124 		break;
   1125 	}
   1126 
   1127 	lwp_unlock(l);
   1128 	return rv;
   1129 }
   1130 
   1131 /*
   1132  * Notify an LWP that it has a pending signal.
   1133  */
   1134 void
   1135 signotify(struct lwp *l)
   1136 {
   1137 	KASSERT(lwp_locked(l, NULL));
   1138 
   1139 	l->l_flag |= LW_PENDSIG;
   1140 	lwp_need_userret(l);
   1141 }
   1142 
   1143 /*
   1144  * Find an LWP within process p that is waiting on signal ksi, and hand
   1145  * it on.
   1146  */
   1147 int
   1148 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1149 {
   1150 	struct lwp *l;
   1151 	int signo;
   1152 
   1153 	KASSERT(mutex_owned(&p->p_smutex));
   1154 
   1155 	signo = ksi->ksi_signo;
   1156 
   1157 	if (ksi->ksi_lid != 0) {
   1158 		/*
   1159 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1160 		 * it's interested.
   1161 		 */
   1162 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1163 			return 0;
   1164 		if (l->l_sigwaited == NULL ||
   1165 		    !sigismember(&l->l_sigwaitset, signo))
   1166 			return 0;
   1167 	} else {
   1168 		/*
   1169 		 * Look for any LWP that may be interested.
   1170 		 */
   1171 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1172 			KASSERT(l->l_sigwaited != NULL);
   1173 			if (sigismember(&l->l_sigwaitset, signo))
   1174 				break;
   1175 		}
   1176 	}
   1177 
   1178 	if (l != NULL) {
   1179 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1180 		l->l_sigwaited = NULL;
   1181 		LIST_REMOVE(l, l_sigwaiter);
   1182 		cv_signal(&l->l_sigcv);
   1183 		return 1;
   1184 	}
   1185 
   1186 	return 0;
   1187 }
   1188 
   1189 /*
   1190  * Send the signal to the process.  If the signal has an action, the action
   1191  * is usually performed by the target process rather than the caller; we add
   1192  * the signal to the set of pending signals for the process.
   1193  *
   1194  * Exceptions:
   1195  *   o When a stop signal is sent to a sleeping process that takes the
   1196  *     default action, the process is stopped without awakening it.
   1197  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1198  *     regardless of the signal action (eg, blocked or ignored).
   1199  *
   1200  * Other ignored signals are discarded immediately.
   1201  */
   1202 void
   1203 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1204 {
   1205 	int prop, lid, toall, signo = ksi->ksi_signo;
   1206 	struct sigacts *sa;
   1207 	struct lwp *l;
   1208 	ksiginfo_t *kp;
   1209 	ksiginfoq_t kq;
   1210 	sig_t action;
   1211 
   1212 	KASSERT(mutex_owned(&proclist_mutex));
   1213 	KASSERT(mutex_owned(&p->p_smutex));
   1214 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1215 	KASSERT(signo > 0 && signo < NSIG);
   1216 
   1217 	/*
   1218 	 * If the process is being created by fork, is a zombie or is
   1219 	 * exiting, then just drop the signal here and bail out.
   1220 	 */
   1221 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1222 		return;
   1223 
   1224 	/*
   1225 	 * Notify any interested parties of the signal.
   1226 	 */
   1227 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1228 
   1229 	/*
   1230 	 * Some signals including SIGKILL must act on the entire process.
   1231 	 */
   1232 	kp = NULL;
   1233 	prop = sigprop[signo];
   1234 	toall = ((prop & SA_TOALL) != 0);
   1235 
   1236 	if (toall)
   1237 		lid = 0;
   1238 	else
   1239 		lid = ksi->ksi_lid;
   1240 
   1241 	/*
   1242 	 * If proc is traced, always give parent a chance.
   1243 	 */
   1244 	if (p->p_slflag & PSL_TRACED) {
   1245 		action = SIG_DFL;
   1246 
   1247 		if (lid == 0) {
   1248 			/*
   1249 			 * If the process is being traced and the signal
   1250 			 * is being caught, make sure to save any ksiginfo.
   1251 			 */
   1252 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1253 				return;
   1254 			sigput(&p->p_sigpend, p, kp);
   1255 		}
   1256 	} else {
   1257 		/*
   1258 		 * If the signal was the result of a trap and is not being
   1259 		 * caught, then reset it to default action so that the
   1260 		 * process dumps core immediately.
   1261 		 */
   1262 		if (KSI_TRAP_P(ksi)) {
   1263 			sa = p->p_sigacts;
   1264 			mutex_enter(&sa->sa_mutex);
   1265 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1266 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1267 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1268 			}
   1269 			mutex_exit(&sa->sa_mutex);
   1270 		}
   1271 
   1272 		/*
   1273 		 * If the signal is being ignored, then drop it.  Note: we
   1274 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1275 		 * SIG_IGN, action will be SIG_DFL here.
   1276 		 */
   1277 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1278 			return;
   1279 
   1280 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1281 			action = SIG_CATCH;
   1282 		else {
   1283 			action = SIG_DFL;
   1284 
   1285 			/*
   1286 			 * If sending a tty stop signal to a member of an
   1287 			 * orphaned process group, discard the signal here if
   1288 			 * the action is default; don't stop the process below
   1289 			 * if sleeping, and don't clear any pending SIGCONT.
   1290 			 */
   1291 			if (prop & SA_TTYSTOP &&
   1292 			    (p->p_sflag & PS_ORPHANPG) != 0)
   1293 				return;
   1294 
   1295 			if (prop & SA_KILL && p->p_nice > NZERO)
   1296 				p->p_nice = NZERO;
   1297 		}
   1298 	}
   1299 
   1300 	/*
   1301 	 * If stopping or continuing a process, discard any pending
   1302 	 * signals that would do the inverse.
   1303 	 */
   1304 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1305 		ksiginfo_queue_init(&kq);
   1306 		if ((prop & SA_CONT) != 0)
   1307 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1308 		if ((prop & SA_STOP) != 0)
   1309 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1310 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1311 	}
   1312 
   1313 	/*
   1314 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1315 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1316 	 * the signal info.  The signal won't be processed further here.
   1317 	 */
   1318 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1319 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1320 	    sigunwait(p, ksi))
   1321 		return;
   1322 
   1323 	/*
   1324 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1325 	 * here.
   1326 	 */
   1327 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1328 		return;
   1329 
   1330 	/*
   1331 	 * LWP private signals are easy - just find the LWP and post
   1332 	 * the signal to it.
   1333 	 */
   1334 	if (lid != 0) {
   1335 		l = lwp_find(p, lid);
   1336 		if (l != NULL) {
   1337 			sigput(&l->l_sigpend, p, kp);
   1338 			membar_producer();
   1339 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1340 		}
   1341 		goto out;
   1342 	}
   1343 
   1344 	/*
   1345 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
   1346 	 */
   1347 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1348 		if ((p->p_slflag & PSL_TRACED) != 0)
   1349 			goto deliver;
   1350 
   1351 		/*
   1352 		 * If SIGCONT is default (or ignored) and process is
   1353 		 * asleep, we are finished; the process should not
   1354 		 * be awakened.
   1355 		 */
   1356 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1357 			goto out;
   1358 
   1359 		sigput(&p->p_sigpend, p, kp);
   1360 	} else {
   1361 		/*
   1362 		 * Process is stopped or stopping.  If traced, then no
   1363 		 * further action is necessary.
   1364 		 */
   1365 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1366 			goto out;
   1367 
   1368 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1369 			/*
   1370 			 * Re-adjust p_nstopchild if the process wasn't
   1371 			 * collected by its parent.
   1372 			 */
   1373 			p->p_stat = SACTIVE;
   1374 			p->p_sflag &= ~PS_STOPPING;
   1375 			if (!p->p_waited)
   1376 				p->p_pptr->p_nstopchild--;
   1377 
   1378 			/*
   1379 			 * If SIGCONT is default (or ignored), we continue
   1380 			 * the process but don't leave the signal in
   1381 			 * ps_siglist, as it has no further action.  If
   1382 			 * SIGCONT is held, we continue the process and
   1383 			 * leave the signal in ps_siglist.  If the process
   1384 			 * catches SIGCONT, let it handle the signal itself.
   1385 			 * If it isn't waiting on an event, then it goes
   1386 			 * back to run state.  Otherwise, process goes back
   1387 			 * to sleep state.
   1388 			 */
   1389 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1390 				sigput(&p->p_sigpend, p, kp);
   1391 		} else if ((prop & SA_STOP) != 0) {
   1392 			/*
   1393 			 * Already stopped, don't need to stop again.
   1394 			 * (If we did the shell could get confused.)
   1395 			 */
   1396 			goto out;
   1397 		} else
   1398 			sigput(&p->p_sigpend, p, kp);
   1399 	}
   1400 
   1401  deliver:
   1402 	/*
   1403 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1404 	 * visible on the per process list (for sigispending()).  This
   1405 	 * is unlikely to be needed in practice, but...
   1406 	 */
   1407 	membar_producer();
   1408 
   1409 	/*
   1410 	 * Try to find an LWP that can take the signal.
   1411 	 */
   1412 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1413 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1414 			break;
   1415 
   1416  out:
   1417  	/*
   1418  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1419  	 * with locks held.  The caller should take care of this.
   1420  	 */
   1421  	ksiginfo_free(kp);
   1422 }
   1423 
   1424 void
   1425 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1426 {
   1427 	struct proc *p = l->l_proc;
   1428 
   1429 	KASSERT(mutex_owned(&p->p_smutex));
   1430 
   1431 	(*p->p_emul->e_sendsig)(ksi, mask);
   1432 }
   1433 
   1434 /*
   1435  * Stop any LWPs sleeping interruptably.
   1436  */
   1437 static void
   1438 proc_stop_lwps(struct proc *p)
   1439 {
   1440 	struct lwp *l;
   1441 
   1442 	KASSERT(mutex_owned(&p->p_smutex));
   1443 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1444 
   1445 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1446 		lwp_lock(l);
   1447 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1448 			l->l_stat = LSSTOP;
   1449 			p->p_nrlwps--;
   1450 		}
   1451 		lwp_unlock(l);
   1452 	}
   1453 }
   1454 
   1455 /*
   1456  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1457  *
   1458  * Drop p_smutex briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1459  */
   1460 static void
   1461 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1462 {
   1463 
   1464 	KASSERT(mutex_owned(&proclist_mutex));
   1465 	KASSERT(mutex_owned(&p->p_smutex));
   1466 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1467 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1468 
   1469 	p->p_sflag &= ~PS_STOPPING;
   1470 	p->p_stat = SSTOP;
   1471 	p->p_waited = 0;
   1472 	p->p_pptr->p_nstopchild++;
   1473 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1474 		if (ppsig) {
   1475 			/* child_psignal drops p_smutex briefly. */
   1476 			child_psignal(p, ppmask);
   1477 		}
   1478 		cv_broadcast(&p->p_pptr->p_waitcv);
   1479 	}
   1480 }
   1481 
   1482 /*
   1483  * Stop the current process and switch away when being stopped or traced.
   1484  */
   1485 void
   1486 sigswitch(bool ppsig, int ppmask, int signo)
   1487 {
   1488 	struct lwp *l = curlwp;
   1489 	struct proc *p = l->l_proc;
   1490 #ifdef MULTIPROCESSOR
   1491 	int biglocks;
   1492 #endif
   1493 
   1494 	KASSERT(mutex_owned(&p->p_smutex));
   1495 	KASSERT(l->l_stat == LSONPROC);
   1496 	KASSERT(p->p_nrlwps > 0);
   1497 
   1498 	/*
   1499 	 * On entry we know that the process needs to stop.  If it's
   1500 	 * the result of a 'sideways' stop signal that has been sourced
   1501 	 * through issignal(), then stop other LWPs in the process too.
   1502 	 */
   1503 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1504 		KASSERT(signo != 0);
   1505 		proc_stop(p, 1, signo);
   1506 		KASSERT(p->p_nrlwps > 0);
   1507 	}
   1508 
   1509 	/*
   1510 	 * If we are the last live LWP, and the stop was a result of
   1511 	 * a new signal, then signal the parent.
   1512 	 */
   1513 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1514 		if (!mutex_tryenter(&proclist_mutex)) {
   1515 			mutex_exit(&p->p_smutex);
   1516 			mutex_enter(&proclist_mutex);
   1517 			mutex_enter(&p->p_smutex);
   1518 		}
   1519 
   1520 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1521 			/*
   1522 			 * Note that proc_stop_done() can drop
   1523 			 * p->p_smutex briefly.
   1524 			 */
   1525 			proc_stop_done(p, ppsig, ppmask);
   1526 		}
   1527 
   1528 		mutex_exit(&proclist_mutex);
   1529 	}
   1530 
   1531 	/*
   1532 	 * Unlock and switch away.
   1533 	 */
   1534 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1535 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1536 		p->p_nrlwps--;
   1537 		lwp_lock(l);
   1538 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1539 		l->l_stat = LSSTOP;
   1540 		lwp_unlock(l);
   1541 	}
   1542 
   1543 	mutex_exit(&p->p_smutex);
   1544 	lwp_lock(l);
   1545 	mi_switch(l);
   1546 	KERNEL_LOCK(biglocks, l);
   1547 	mutex_enter(&p->p_smutex);
   1548 }
   1549 
   1550 /*
   1551  * Check for a signal from the debugger.
   1552  */
   1553 int
   1554 sigchecktrace(sigpend_t **spp)
   1555 {
   1556 	struct lwp *l = curlwp;
   1557 	struct proc *p = l->l_proc;
   1558 	int signo;
   1559 
   1560 	KASSERT(mutex_owned(&p->p_smutex));
   1561 
   1562 	/*
   1563 	 * If we are no longer being traced, or the parent didn't
   1564 	 * give us a signal, look for more signals.
   1565 	 */
   1566 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1567 		return 0;
   1568 
   1569 	/* If there's a pending SIGKILL, process it immediately. */
   1570 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1571 		return 0;
   1572 
   1573 	/*
   1574 	 * If the new signal is being masked, look for other signals.
   1575 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1576 	 */
   1577 	signo = p->p_xstat;
   1578 	p->p_xstat = 0;
   1579 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1580 		*spp = &l->l_sigpend;
   1581 	else
   1582 		*spp = &p->p_sigpend;
   1583 	if (sigismember(&l->l_sigmask, signo))
   1584 		signo = 0;
   1585 
   1586 	return signo;
   1587 }
   1588 
   1589 /*
   1590  * If the current process has received a signal (should be caught or cause
   1591  * termination, should interrupt current syscall), return the signal number.
   1592  *
   1593  * Stop signals with default action are processed immediately, then cleared;
   1594  * they aren't returned.  This is checked after each entry to the system for
   1595  * a syscall or trap.
   1596  *
   1597  * We will also return -1 if the process is exiting and the current LWP must
   1598  * follow suit.
   1599  *
   1600  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1601  * can switch away, though.
   1602  */
   1603 int
   1604 issignal(struct lwp *l)
   1605 {
   1606 	struct proc *p = l->l_proc;
   1607 	int signo = 0, prop;
   1608 	sigpend_t *sp = NULL;
   1609 	sigset_t ss;
   1610 
   1611 	KASSERT(mutex_owned(&p->p_smutex));
   1612 
   1613 	for (;;) {
   1614 		/* Discard any signals that we have decided not to take. */
   1615 		if (signo != 0)
   1616 			(void)sigget(sp, NULL, signo, NULL);
   1617 
   1618 		/*
   1619 		 * If the process is stopped/stopping, then stop ourselves
   1620 		 * now that we're on the kernel/userspace boundary.  When
   1621 		 * we awaken, check for a signal from the debugger.
   1622 		 */
   1623 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1624 			sigswitch(true, PS_NOCLDSTOP, 0);
   1625 			signo = sigchecktrace(&sp);
   1626 		} else
   1627 			signo = 0;
   1628 
   1629 		/*
   1630 		 * If the debugger didn't provide a signal, find a pending
   1631 		 * signal from our set.  Check per-LWP signals first, and
   1632 		 * then per-process.
   1633 		 */
   1634 		if (signo == 0) {
   1635 			sp = &l->l_sigpend;
   1636 			ss = sp->sp_set;
   1637 			if ((p->p_sflag & PS_PPWAIT) != 0)
   1638 				sigminusset(&stopsigmask, &ss);
   1639 			sigminusset(&l->l_sigmask, &ss);
   1640 
   1641 			if ((signo = firstsig(&ss)) == 0) {
   1642 				sp = &p->p_sigpend;
   1643 				ss = sp->sp_set;
   1644 				if ((p->p_sflag & PS_PPWAIT) != 0)
   1645 					sigminusset(&stopsigmask, &ss);
   1646 				sigminusset(&l->l_sigmask, &ss);
   1647 
   1648 				if ((signo = firstsig(&ss)) == 0) {
   1649 					/*
   1650 					 * No signal pending - clear the
   1651 					 * indicator and bail out.
   1652 					 */
   1653 					lwp_lock(l);
   1654 					l->l_flag &= ~LW_PENDSIG;
   1655 					lwp_unlock(l);
   1656 					sp = NULL;
   1657 					break;
   1658 				}
   1659 			}
   1660 		}
   1661 
   1662 		/*
   1663 		 * We should see pending but ignored signals only if
   1664 		 * we are being traced.
   1665 		 */
   1666 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1667 		    (p->p_slflag & PSL_TRACED) == 0) {
   1668 			/* Discard the signal. */
   1669 			continue;
   1670 		}
   1671 
   1672 		/*
   1673 		 * If traced, always stop, and stay stopped until released
   1674 		 * by the debugger.  If the our parent process is waiting
   1675 		 * for us, don't hang as we could deadlock.
   1676 		 */
   1677 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1678 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
   1679 			/* Take the signal. */
   1680 			(void)sigget(sp, NULL, signo, NULL);
   1681 			p->p_xstat = signo;
   1682 
   1683 			/* Emulation-specific handling of signal trace */
   1684 			if (p->p_emul->e_tracesig == NULL ||
   1685 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1686 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1687 				    signo);
   1688 
   1689 			/* Check for a signal from the debugger. */
   1690 			if ((signo = sigchecktrace(&sp)) == 0)
   1691 				continue;
   1692 		}
   1693 
   1694 		prop = sigprop[signo];
   1695 
   1696 		/*
   1697 		 * Decide whether the signal should be returned.
   1698 		 */
   1699 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1700 		case (long)SIG_DFL:
   1701 			/*
   1702 			 * Don't take default actions on system processes.
   1703 			 */
   1704 			if (p->p_pid <= 1) {
   1705 #ifdef DIAGNOSTIC
   1706 				/*
   1707 				 * Are you sure you want to ignore SIGSEGV
   1708 				 * in init? XXX
   1709 				 */
   1710 				printf_nolog("Process (pid %d) got sig %d\n",
   1711 				    p->p_pid, signo);
   1712 #endif
   1713 				continue;
   1714 			}
   1715 
   1716 			/*
   1717 			 * If there is a pending stop signal to process with
   1718 			 * default action, stop here, then clear the signal.
   1719 			 * However, if process is member of an orphaned
   1720 			 * process group, ignore tty stop signals.
   1721 			 */
   1722 			if (prop & SA_STOP) {
   1723 				if (p->p_slflag & PSL_TRACED ||
   1724 		    		    ((p->p_sflag & PS_ORPHANPG) != 0 &&
   1725 				    prop & SA_TTYSTOP)) {
   1726 				    	/* Ignore the signal. */
   1727 					continue;
   1728 				}
   1729 				/* Take the signal. */
   1730 				(void)sigget(sp, NULL, signo, NULL);
   1731 				p->p_xstat = signo;
   1732 				signo = 0;
   1733 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1734 			} else if (prop & SA_IGNORE) {
   1735 				/*
   1736 				 * Except for SIGCONT, shouldn't get here.
   1737 				 * Default action is to ignore; drop it.
   1738 				 */
   1739 				continue;
   1740 			}
   1741 			break;
   1742 
   1743 		case (long)SIG_IGN:
   1744 #ifdef DEBUG_ISSIGNAL
   1745 			/*
   1746 			 * Masking above should prevent us ever trying
   1747 			 * to take action on an ignored signal other
   1748 			 * than SIGCONT, unless process is traced.
   1749 			 */
   1750 			if ((prop & SA_CONT) == 0 &&
   1751 			    (p->p_slflag & PSL_TRACED) == 0)
   1752 				printf_nolog("issignal\n");
   1753 #endif
   1754 			continue;
   1755 
   1756 		default:
   1757 			/*
   1758 			 * This signal has an action, let postsig() process
   1759 			 * it.
   1760 			 */
   1761 			break;
   1762 		}
   1763 
   1764 		break;
   1765 	}
   1766 
   1767 	l->l_sigpendset = sp;
   1768 	return signo;
   1769 }
   1770 
   1771 /*
   1772  * Take the action for the specified signal
   1773  * from the current set of pending signals.
   1774  */
   1775 void
   1776 postsig(int signo)
   1777 {
   1778 	struct lwp	*l;
   1779 	struct proc	*p;
   1780 	struct sigacts	*ps;
   1781 	sig_t		action;
   1782 	sigset_t	*returnmask;
   1783 	ksiginfo_t	ksi;
   1784 
   1785 	l = curlwp;
   1786 	p = l->l_proc;
   1787 	ps = p->p_sigacts;
   1788 
   1789 	KASSERT(mutex_owned(&p->p_smutex));
   1790 	KASSERT(signo > 0);
   1791 
   1792 	/*
   1793 	 * Set the new mask value and also defer further occurrences of this
   1794 	 * signal.
   1795 	 *
   1796 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1797 	 * not of interest, but rather the mask from before the sigsuspen is
   1798 	 * what we want restored after the signal processing is completed.
   1799 	 */
   1800 	if (l->l_sigrestore) {
   1801 		returnmask = &l->l_sigoldmask;
   1802 		l->l_sigrestore = 0;
   1803 	} else
   1804 		returnmask = &l->l_sigmask;
   1805 
   1806 	/*
   1807 	 * Commit to taking the signal before releasing the mutex.
   1808 	 */
   1809 	action = SIGACTION_PS(ps, signo).sa_handler;
   1810 	l->l_ru.ru_nsignals++;
   1811 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1812 
   1813 	if (ktrpoint(KTR_PSIG)) {
   1814 		mutex_exit(&p->p_smutex);
   1815 		ktrpsig(signo, action, returnmask, NULL);
   1816 		mutex_enter(&p->p_smutex);
   1817 	}
   1818 
   1819 	if (action == SIG_DFL) {
   1820 		/*
   1821 		 * Default action, where the default is to kill
   1822 		 * the process.  (Other cases were ignored above.)
   1823 		 */
   1824 		sigexit(l, signo);
   1825 		return;
   1826 	}
   1827 
   1828 	/*
   1829 	 * If we get here, the signal must be caught.
   1830 	 */
   1831 #ifdef DIAGNOSTIC
   1832 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1833 		panic("postsig action");
   1834 #endif
   1835 
   1836 	kpsendsig(l, &ksi, returnmask);
   1837 }
   1838 
   1839 /*
   1840  * sendsig_reset:
   1841  *
   1842  *	Reset the signal action.  Called from emulation specific sendsig()
   1843  *	before unlocking to deliver the signal.
   1844  */
   1845 void
   1846 sendsig_reset(struct lwp *l, int signo)
   1847 {
   1848 	struct proc *p = l->l_proc;
   1849 	struct sigacts *ps = p->p_sigacts;
   1850 
   1851 	KASSERT(mutex_owned(&p->p_smutex));
   1852 
   1853 	p->p_sigctx.ps_lwp = 0;
   1854 	p->p_sigctx.ps_code = 0;
   1855 	p->p_sigctx.ps_signo = 0;
   1856 
   1857 	mutex_enter(&ps->sa_mutex);
   1858 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1859 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1860 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1861 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1862 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1863 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1864 	}
   1865 	mutex_exit(&ps->sa_mutex);
   1866 }
   1867 
   1868 /*
   1869  * Kill the current process for stated reason.
   1870  */
   1871 void
   1872 killproc(struct proc *p, const char *why)
   1873 {
   1874 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1875 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1876 	mutex_enter(&proclist_mutex);	/* XXXSMP */
   1877 	psignal(p, SIGKILL);
   1878 	mutex_exit(&proclist_mutex);	/* XXXSMP */
   1879 }
   1880 
   1881 /*
   1882  * Force the current process to exit with the specified signal, dumping core
   1883  * if appropriate.  We bypass the normal tests for masked and caught
   1884  * signals, allowing unrecoverable failures to terminate the process without
   1885  * changing signal state.  Mark the accounting record with the signal
   1886  * termination.  If dumping core, save the signal number for the debugger.
   1887  * Calls exit and does not return.
   1888  */
   1889 void
   1890 sigexit(struct lwp *l, int signo)
   1891 {
   1892 	int exitsig, error, docore;
   1893 	struct proc *p;
   1894 	struct lwp *t;
   1895 
   1896 	p = l->l_proc;
   1897 
   1898 	KASSERT(mutex_owned(&p->p_smutex));
   1899 	KERNEL_UNLOCK_ALL(l, NULL);
   1900 
   1901 	/*
   1902 	 * Don't permit coredump() multiple times in the same process.
   1903 	 * Call back into sigexit, where we will be suspended until
   1904 	 * the deed is done.  Note that this is a recursive call, but
   1905 	 * LW_WCORE will prevent us from coming back this way.
   1906 	 */
   1907 	if ((p->p_sflag & PS_WCORE) != 0) {
   1908 		lwp_lock(l);
   1909 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1910 		lwp_unlock(l);
   1911 		mutex_exit(&p->p_smutex);
   1912 		lwp_userret(l);
   1913 #ifdef DIAGNOSTIC
   1914 		panic("sigexit");
   1915 #endif
   1916 		/* NOTREACHED */
   1917 	}
   1918 
   1919 	/*
   1920 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1921 	 * so that their registers are available long enough to be dumped.
   1922  	 */
   1923 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1924 		p->p_sflag |= PS_WCORE;
   1925 		for (;;) {
   1926 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1927 				lwp_lock(t);
   1928 				if (t == l) {
   1929 					t->l_flag &= ~LW_WSUSPEND;
   1930 					lwp_unlock(t);
   1931 					continue;
   1932 				}
   1933 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1934 				lwp_suspend(l, t);
   1935 			}
   1936 
   1937 			if (p->p_nrlwps == 1)
   1938 				break;
   1939 
   1940 			/*
   1941 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   1942 			 * for everyone else to stop before proceeding.
   1943 			 */
   1944 			p->p_nlwpwait++;
   1945 			cv_broadcast(&p->p_lwpcv);
   1946 			cv_wait(&p->p_lwpcv, &p->p_smutex);
   1947 			p->p_nlwpwait--;
   1948 		}
   1949 	}
   1950 
   1951 	exitsig = signo;
   1952 	p->p_acflag |= AXSIG;
   1953 	p->p_sigctx.ps_signo = signo;
   1954 	mutex_exit(&p->p_smutex);
   1955 
   1956 	KERNEL_LOCK(1, l);
   1957 
   1958 	if (docore) {
   1959 		if ((error = coredump(l, NULL)) == 0)
   1960 			exitsig |= WCOREFLAG;
   1961 
   1962 		if (kern_logsigexit) {
   1963 			int uid = l->l_cred ?
   1964 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   1965 
   1966 			if (error)
   1967 				log(LOG_INFO, lognocoredump, p->p_pid,
   1968 				    p->p_comm, uid, signo, error);
   1969 			else
   1970 				log(LOG_INFO, logcoredump, p->p_pid,
   1971 				    p->p_comm, uid, signo);
   1972 		}
   1973 
   1974 #ifdef PAX_SEGVGUARD
   1975 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   1976 #endif /* PAX_SEGVGUARD */
   1977 	}
   1978 
   1979 	/* Acquire the sched state mutex.  exit1() will release it. */
   1980 	mutex_enter(&p->p_smutex);
   1981 
   1982 	/* No longer dumping core. */
   1983 	p->p_sflag &= ~PS_WCORE;
   1984 
   1985 	exit1(l, W_EXITCODE(0, exitsig));
   1986 	/* NOTREACHED */
   1987 }
   1988 
   1989 /*
   1990  * Put process 'p' into the stopped state and optionally, notify the parent.
   1991  */
   1992 void
   1993 proc_stop(struct proc *p, int notify, int signo)
   1994 {
   1995 	struct lwp *l;
   1996 
   1997 	KASSERT(mutex_owned(&p->p_smutex));
   1998 
   1999 	/*
   2000 	 * First off, set the stopping indicator and bring all sleeping
   2001 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2002 	 * unlock between here and the p->p_nrlwps check below.
   2003 	 */
   2004 	p->p_sflag |= PS_STOPPING;
   2005 	if (notify)
   2006 		p->p_sflag |= PS_NOTIFYSTOP;
   2007 	else
   2008 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2009 	membar_producer();
   2010 
   2011 	proc_stop_lwps(p);
   2012 
   2013 	/*
   2014 	 * If there are no LWPs available to take the signal, then we
   2015 	 * signal the parent process immediately.  Otherwise, the last
   2016 	 * LWP to stop will take care of it.
   2017 	 */
   2018 
   2019 	if (p->p_nrlwps == 0) {
   2020 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2021 	} else {
   2022 		/*
   2023 		 * Have the remaining LWPs come to a halt, and trigger
   2024 		 * proc_stop_callout() to ensure that they do.
   2025 		 */
   2026 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2027 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2028 		callout_schedule(&proc_stop_ch, 1);
   2029 	}
   2030 }
   2031 
   2032 /*
   2033  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2034  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2035  * to allow LWPs to release any locks that they may hold before stopping.
   2036  *
   2037  * Non-interruptable sleeps can be long, and there is the potential for an
   2038  * LWP to begin sleeping interruptably soon after the process has been set
   2039  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2040  * stopping, and so complete halt of the process and the return of status
   2041  * information to the parent could be delayed indefinitely.
   2042  *
   2043  * To handle this race, proc_stop_callout() runs once per tick while there
   2044  * are stopping processes in the system.  It sets LWPs that are sleeping
   2045  * interruptably into the LSSTOP state.
   2046  *
   2047  * Note that we are not concerned about keeping all LWPs stopped while the
   2048  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2049  * What we do need to ensure is that all LWPs in a stopping process have
   2050  * stopped at least once, so that notification can be sent to the parent
   2051  * process.
   2052  */
   2053 static void
   2054 proc_stop_callout(void *cookie)
   2055 {
   2056 	bool more, restart;
   2057 	struct proc *p;
   2058 
   2059 	(void)cookie;
   2060 
   2061 	do {
   2062 		restart = false;
   2063 		more = false;
   2064 
   2065 		mutex_enter(&proclist_lock);
   2066 		mutex_enter(&proclist_mutex);
   2067 		PROCLIST_FOREACH(p, &allproc) {
   2068 			mutex_enter(&p->p_smutex);
   2069 
   2070 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2071 				mutex_exit(&p->p_smutex);
   2072 				continue;
   2073 			}
   2074 
   2075 			/* Stop any LWPs sleeping interruptably. */
   2076 			proc_stop_lwps(p);
   2077 			if (p->p_nrlwps == 0) {
   2078 				/*
   2079 				 * We brought the process to a halt.
   2080 				 * Mark it as stopped and notify the
   2081 				 * parent.
   2082 				 */
   2083 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2084 					/*
   2085 					 * Note that proc_stop_done() will
   2086 					 * drop p->p_smutex briefly.
   2087 					 * Arrange to restart and check
   2088 					 * all processes again.
   2089 					 */
   2090 					restart = true;
   2091 				}
   2092 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2093 			} else
   2094 				more = true;
   2095 
   2096 			mutex_exit(&p->p_smutex);
   2097 			if (restart)
   2098 				break;
   2099 		}
   2100 		mutex_exit(&proclist_mutex);
   2101 		mutex_exit(&proclist_lock);
   2102 	} while (restart);
   2103 
   2104 	/*
   2105 	 * If we noted processes that are stopping but still have
   2106 	 * running LWPs, then arrange to check again in 1 tick.
   2107 	 */
   2108 	if (more)
   2109 		callout_schedule(&proc_stop_ch, 1);
   2110 }
   2111 
   2112 /*
   2113  * Given a process in state SSTOP, set the state back to SACTIVE and
   2114  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2115  */
   2116 void
   2117 proc_unstop(struct proc *p)
   2118 {
   2119 	struct lwp *l;
   2120 	int sig;
   2121 
   2122 	KASSERT(mutex_owned(&proclist_mutex));
   2123 	KASSERT(mutex_owned(&p->p_smutex));
   2124 
   2125 	p->p_stat = SACTIVE;
   2126 	p->p_sflag &= ~PS_STOPPING;
   2127 	sig = p->p_xstat;
   2128 
   2129 	if (!p->p_waited)
   2130 		p->p_pptr->p_nstopchild--;
   2131 
   2132 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2133 		lwp_lock(l);
   2134 		if (l->l_stat != LSSTOP) {
   2135 			lwp_unlock(l);
   2136 			continue;
   2137 		}
   2138 		if (l->l_wchan == NULL) {
   2139 			setrunnable(l);
   2140 			continue;
   2141 		}
   2142 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2143 		        setrunnable(l);
   2144 		        sig = 0;
   2145 		} else {
   2146 			l->l_stat = LSSLEEP;
   2147 			p->p_nrlwps++;
   2148 			lwp_unlock(l);
   2149 		}
   2150 	}
   2151 }
   2152 
   2153 static int
   2154 filt_sigattach(struct knote *kn)
   2155 {
   2156 	struct proc *p = curproc;
   2157 
   2158 	kn->kn_obj = p;
   2159 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2160 
   2161 	mutex_enter(&p->p_smutex);
   2162 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2163 	mutex_exit(&p->p_smutex);
   2164 
   2165 	return (0);
   2166 }
   2167 
   2168 static void
   2169 filt_sigdetach(struct knote *kn)
   2170 {
   2171 	struct proc *p = kn->kn_obj;
   2172 
   2173 	mutex_enter(&p->p_smutex);
   2174 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2175 	mutex_exit(&p->p_smutex);
   2176 }
   2177 
   2178 /*
   2179  * signal knotes are shared with proc knotes, so we apply a mask to
   2180  * the hint in order to differentiate them from process hints.  This
   2181  * could be avoided by using a signal-specific knote list, but probably
   2182  * isn't worth the trouble.
   2183  */
   2184 static int
   2185 filt_signal(struct knote *kn, long hint)
   2186 {
   2187 
   2188 	if (hint & NOTE_SIGNAL) {
   2189 		hint &= ~NOTE_SIGNAL;
   2190 
   2191 		if (kn->kn_id == hint)
   2192 			kn->kn_data++;
   2193 	}
   2194 	return (kn->kn_data != 0);
   2195 }
   2196 
   2197 const struct filterops sig_filtops = {
   2198 	0, filt_sigattach, filt_sigdetach, filt_signal
   2199 };
   2200