kern_sig.c revision 1.276 1 /* $NetBSD: kern_sig.c,v 1.276 2008/04/24 15:35:29 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1991, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.276 2008/04/24 15:35:29 ad Exp $");
77
78 #include "opt_ptrace.h"
79 #include "opt_multiprocessor.h"
80 #include "opt_compat_sunos.h"
81 #include "opt_compat_netbsd.h"
82 #include "opt_compat_netbsd32.h"
83 #include "opt_pax.h"
84
85 #define SIGPROP /* include signal properties table */
86 #include <sys/param.h>
87 #include <sys/signalvar.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/wait.h>
91 #include <sys/ktrace.h>
92 #include <sys/syslog.h>
93 #include <sys/filedesc.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/pool.h>
97 #include <sys/ucontext.h>
98 #include <sys/exec.h>
99 #include <sys/kauth.h>
100 #include <sys/acct.h>
101 #include <sys/callout.h>
102 #include <sys/atomic.h>
103 #include <sys/cpu.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111
112 static void ksiginfo_exechook(struct proc *, void *);
113 static void proc_stop_callout(void *);
114
115 int sigunwait(struct proc *, const ksiginfo_t *);
116 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
117 int sigpost(struct lwp *, sig_t, int, int);
118 int sigchecktrace(sigpend_t **);
119 void sigswitch(bool, int, int);
120 void sigrealloc(ksiginfo_t *);
121
122 sigset_t contsigmask, stopsigmask, sigcantmask;
123 struct pool sigacts_pool; /* memory pool for sigacts structures */
124 static void sigacts_poolpage_free(struct pool *, void *);
125 static void *sigacts_poolpage_alloc(struct pool *, int);
126 static callout_t proc_stop_ch;
127
128 static struct pool_allocator sigactspool_allocator = {
129 .pa_alloc = sigacts_poolpage_alloc,
130 .pa_free = sigacts_poolpage_free,
131 };
132
133 #ifdef DEBUG
134 int kern_logsigexit = 1;
135 #else
136 int kern_logsigexit = 0;
137 #endif
138
139 static const char logcoredump[] =
140 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
141 static const char lognocoredump[] =
142 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
143
144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
145 &pool_allocator_nointr, IPL_NONE);
146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
147 NULL, IPL_VM);
148
149 /*
150 * signal_init:
151 *
152 * Initialize global signal-related data structures.
153 */
154 void
155 signal_init(void)
156 {
157
158 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
159
160 pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
161 sizeof(struct sigacts) > PAGE_SIZE ?
162 &sigactspool_allocator : &pool_allocator_nointr,
163 IPL_NONE);
164
165 exechook_establish(ksiginfo_exechook, NULL);
166
167 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
168 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
169 }
170
171 /*
172 * sigacts_poolpage_alloc:
173 *
174 * Allocate a page for the sigacts memory pool.
175 */
176 static void *
177 sigacts_poolpage_alloc(struct pool *pp, int flags)
178 {
179
180 return (void *)uvm_km_alloc(kernel_map,
181 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
182 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
183 | UVM_KMF_WIRED);
184 }
185
186 /*
187 * sigacts_poolpage_free:
188 *
189 * Free a page on behalf of the sigacts memory pool.
190 */
191 static void
192 sigacts_poolpage_free(struct pool *pp, void *v)
193 {
194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196
197 /*
198 * sigactsinit:
199 *
200 * Create an initial sigctx structure, using the same signal state as
201 * p. If 'share' is set, share the sigctx_proc part, otherwise just
202 * copy it from parent.
203 */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 struct sigacts *ps, *ps2;
208
209 ps = pp->p_sigacts;
210
211 if (share) {
212 mutex_enter(&ps->sa_mutex);
213 ps->sa_refcnt++;
214 mutex_exit(&ps->sa_mutex);
215 ps2 = ps;
216 } else {
217 ps2 = pool_get(&sigacts_pool, PR_WAITOK);
218 /* XXX IPL_SCHED to match p_smutex */
219 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
220 mutex_enter(&ps->sa_mutex);
221 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
222 sizeof(ps2->sa_sigdesc));
223 mutex_exit(&ps->sa_mutex);
224 ps2->sa_refcnt = 1;
225 }
226
227 return ps2;
228 }
229
230 /*
231 * sigactsunshare:
232 *
233 * Make this process not share its sigctx, maintaining all
234 * signal state.
235 */
236 void
237 sigactsunshare(struct proc *p)
238 {
239 struct sigacts *ps, *oldps;
240
241 oldps = p->p_sigacts;
242 if (oldps->sa_refcnt == 1)
243 return;
244 ps = pool_get(&sigacts_pool, PR_WAITOK);
245 /* XXX IPL_SCHED to match p_smutex */
246 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
247 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
248 p->p_sigacts = ps;
249 sigactsfree(oldps);
250 }
251
252 /*
253 * sigactsfree;
254 *
255 * Release a sigctx structure.
256 */
257 void
258 sigactsfree(struct sigacts *ps)
259 {
260 int refcnt;
261
262 mutex_enter(&ps->sa_mutex);
263 refcnt = --ps->sa_refcnt;
264 mutex_exit(&ps->sa_mutex);
265
266 if (refcnt == 0) {
267 mutex_destroy(&ps->sa_mutex);
268 pool_put(&sigacts_pool, ps);
269 }
270 }
271
272 /*
273 * siginit:
274 *
275 * Initialize signal state for process 0; set to ignore signals that
276 * are ignored by default and disable the signal stack. Locking not
277 * required as the system is still cold.
278 */
279 void
280 siginit(struct proc *p)
281 {
282 struct lwp *l;
283 struct sigacts *ps;
284 int signo, prop;
285
286 ps = p->p_sigacts;
287 sigemptyset(&contsigmask);
288 sigemptyset(&stopsigmask);
289 sigemptyset(&sigcantmask);
290 for (signo = 1; signo < NSIG; signo++) {
291 prop = sigprop[signo];
292 if (prop & SA_CONT)
293 sigaddset(&contsigmask, signo);
294 if (prop & SA_STOP)
295 sigaddset(&stopsigmask, signo);
296 if (prop & SA_CANTMASK)
297 sigaddset(&sigcantmask, signo);
298 if (prop & SA_IGNORE && signo != SIGCONT)
299 sigaddset(&p->p_sigctx.ps_sigignore, signo);
300 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
301 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
302 }
303 sigemptyset(&p->p_sigctx.ps_sigcatch);
304 p->p_sflag &= ~PS_NOCLDSTOP;
305
306 ksiginfo_queue_init(&p->p_sigpend.sp_info);
307 sigemptyset(&p->p_sigpend.sp_set);
308
309 /*
310 * Reset per LWP state.
311 */
312 l = LIST_FIRST(&p->p_lwps);
313 l->l_sigwaited = NULL;
314 l->l_sigstk.ss_flags = SS_DISABLE;
315 l->l_sigstk.ss_size = 0;
316 l->l_sigstk.ss_sp = 0;
317 ksiginfo_queue_init(&l->l_sigpend.sp_info);
318 sigemptyset(&l->l_sigpend.sp_set);
319
320 /* One reference. */
321 ps->sa_refcnt = 1;
322 }
323
324 /*
325 * execsigs:
326 *
327 * Reset signals for an exec of the specified process.
328 */
329 void
330 execsigs(struct proc *p)
331 {
332 struct sigacts *ps;
333 struct lwp *l;
334 int signo, prop;
335 sigset_t tset;
336 ksiginfoq_t kq;
337
338 KASSERT(p->p_nlwps == 1);
339
340 sigactsunshare(p);
341 ps = p->p_sigacts;
342
343 /*
344 * Reset caught signals. Held signals remain held through
345 * l->l_sigmask (unless they were caught, and are now ignored
346 * by default).
347 *
348 * No need to lock yet, the process has only one LWP and
349 * at this point the sigacts are private to the process.
350 */
351 sigemptyset(&tset);
352 for (signo = 1; signo < NSIG; signo++) {
353 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
354 prop = sigprop[signo];
355 if (prop & SA_IGNORE) {
356 if ((prop & SA_CONT) == 0)
357 sigaddset(&p->p_sigctx.ps_sigignore,
358 signo);
359 sigaddset(&tset, signo);
360 }
361 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
362 }
363 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
364 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
365 }
366 ksiginfo_queue_init(&kq);
367
368 mutex_enter(&p->p_smutex);
369 sigclearall(p, &tset, &kq);
370 sigemptyset(&p->p_sigctx.ps_sigcatch);
371
372 /*
373 * Reset no zombies if child dies flag as Solaris does.
374 */
375 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
376 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
377 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
378
379 /*
380 * Reset per-LWP state.
381 */
382 l = LIST_FIRST(&p->p_lwps);
383 l->l_sigwaited = NULL;
384 l->l_sigstk.ss_flags = SS_DISABLE;
385 l->l_sigstk.ss_size = 0;
386 l->l_sigstk.ss_sp = 0;
387 ksiginfo_queue_init(&l->l_sigpend.sp_info);
388 sigemptyset(&l->l_sigpend.sp_set);
389 mutex_exit(&p->p_smutex);
390
391 ksiginfo_queue_drain(&kq);
392 }
393
394 /*
395 * ksiginfo_exechook:
396 *
397 * Free all pending ksiginfo entries from a process on exec.
398 * Additionally, drain any unused ksiginfo structures in the
399 * system back to the pool.
400 *
401 * XXX This should not be a hook, every process has signals.
402 */
403 static void
404 ksiginfo_exechook(struct proc *p, void *v)
405 {
406 ksiginfoq_t kq;
407
408 ksiginfo_queue_init(&kq);
409
410 mutex_enter(&p->p_smutex);
411 sigclearall(p, NULL, &kq);
412 mutex_exit(&p->p_smutex);
413
414 ksiginfo_queue_drain(&kq);
415 }
416
417 /*
418 * ksiginfo_alloc:
419 *
420 * Allocate a new ksiginfo structure from the pool, and optionally copy
421 * an existing one. If the existing ksiginfo_t is from the pool, and
422 * has not been queued somewhere, then just return it. Additionally,
423 * if the existing ksiginfo_t does not contain any information beyond
424 * the signal number, then just return it.
425 */
426 ksiginfo_t *
427 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
428 {
429 ksiginfo_t *kp;
430 int s;
431
432 if (ok != NULL) {
433 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
434 KSI_FROMPOOL)
435 return ok;
436 if (KSI_EMPTY_P(ok))
437 return ok;
438 }
439
440 s = splvm();
441 kp = pool_get(&ksiginfo_pool, flags);
442 splx(s);
443 if (kp == NULL) {
444 #ifdef DIAGNOSTIC
445 printf("Out of memory allocating ksiginfo for pid %d\n",
446 p->p_pid);
447 #endif
448 return NULL;
449 }
450
451 if (ok != NULL) {
452 memcpy(kp, ok, sizeof(*kp));
453 kp->ksi_flags &= ~KSI_QUEUED;
454 } else
455 KSI_INIT_EMPTY(kp);
456
457 kp->ksi_flags |= KSI_FROMPOOL;
458
459 return kp;
460 }
461
462 /*
463 * ksiginfo_free:
464 *
465 * If the given ksiginfo_t is from the pool and has not been queued,
466 * then free it.
467 */
468 void
469 ksiginfo_free(ksiginfo_t *kp)
470 {
471 int s;
472
473 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
474 return;
475 s = splvm();
476 pool_put(&ksiginfo_pool, kp);
477 splx(s);
478 }
479
480 /*
481 * ksiginfo_queue_drain:
482 *
483 * Drain a non-empty ksiginfo_t queue.
484 */
485 void
486 ksiginfo_queue_drain0(ksiginfoq_t *kq)
487 {
488 ksiginfo_t *ksi;
489 int s;
490
491 KASSERT(!CIRCLEQ_EMPTY(kq));
492
493 KERNEL_LOCK(1, curlwp); /* XXXSMP */
494 while (!CIRCLEQ_EMPTY(kq)) {
495 ksi = CIRCLEQ_FIRST(kq);
496 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
497 s = splvm();
498 pool_put(&ksiginfo_pool, ksi);
499 splx(s);
500 }
501 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
502 }
503
504 /*
505 * sigget:
506 *
507 * Fetch the first pending signal from a set. Optionally, also fetch
508 * or manufacture a ksiginfo element. Returns the number of the first
509 * pending signal, or zero.
510 */
511 int
512 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
513 {
514 ksiginfo_t *ksi;
515 sigset_t tset;
516
517 /* If there's no pending set, the signal is from the debugger. */
518 if (sp == NULL) {
519 if (out != NULL) {
520 KSI_INIT(out);
521 out->ksi_info._signo = signo;
522 out->ksi_info._code = SI_USER;
523 }
524 return signo;
525 }
526
527 /* Construct mask from signo, and 'mask'. */
528 if (signo == 0) {
529 if (mask != NULL) {
530 tset = *mask;
531 __sigandset(&sp->sp_set, &tset);
532 } else
533 tset = sp->sp_set;
534
535 /* If there are no signals pending, that's it. */
536 if ((signo = firstsig(&tset)) == 0)
537 return 0;
538 } else {
539 KASSERT(sigismember(&sp->sp_set, signo));
540 }
541
542 sigdelset(&sp->sp_set, signo);
543
544 /* Find siginfo and copy it out. */
545 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
546 if (ksi->ksi_signo == signo) {
547 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
548 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
549 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
550 ksi->ksi_flags &= ~KSI_QUEUED;
551 if (out != NULL) {
552 memcpy(out, ksi, sizeof(*out));
553 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
554 }
555 ksiginfo_free(ksi);
556 return signo;
557 }
558 }
559
560 /* If there's no siginfo, then manufacture it. */
561 if (out != NULL) {
562 KSI_INIT(out);
563 out->ksi_info._signo = signo;
564 out->ksi_info._code = SI_USER;
565 }
566
567 return signo;
568 }
569
570 /*
571 * sigput:
572 *
573 * Append a new ksiginfo element to the list of pending ksiginfo's, if
574 * we need to (e.g. SA_SIGINFO was requested).
575 */
576 void
577 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
578 {
579 ksiginfo_t *kp;
580 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
581
582 KASSERT(mutex_owned(&p->p_smutex));
583 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
584
585 sigaddset(&sp->sp_set, ksi->ksi_signo);
586
587 /*
588 * If siginfo is not required, or there is none, then just mark the
589 * signal as pending.
590 */
591 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
592 return;
593
594 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
595
596 #ifdef notyet /* XXX: QUEUING */
597 if (ksi->ksi_signo < SIGRTMIN)
598 #endif
599 {
600 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
601 if (kp->ksi_signo == ksi->ksi_signo) {
602 KSI_COPY(ksi, kp);
603 kp->ksi_flags |= KSI_QUEUED;
604 return;
605 }
606 }
607 }
608
609 ksi->ksi_flags |= KSI_QUEUED;
610 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
611 }
612
613 /*
614 * sigclear:
615 *
616 * Clear all pending signals in the specified set.
617 */
618 void
619 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
620 {
621 ksiginfo_t *ksi, *next;
622
623 if (mask == NULL)
624 sigemptyset(&sp->sp_set);
625 else
626 sigminusset(mask, &sp->sp_set);
627
628 ksi = CIRCLEQ_FIRST(&sp->sp_info);
629 for (; ksi != (void *)&sp->sp_info; ksi = next) {
630 next = CIRCLEQ_NEXT(ksi, ksi_list);
631 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
632 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
633 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
634 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
635 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
636 }
637 }
638 }
639
640 /*
641 * sigclearall:
642 *
643 * Clear all pending signals in the specified set from a process and
644 * its LWPs.
645 */
646 void
647 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
648 {
649 struct lwp *l;
650
651 KASSERT(mutex_owned(&p->p_smutex));
652
653 sigclear(&p->p_sigpend, mask, kq);
654
655 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
656 sigclear(&l->l_sigpend, mask, kq);
657 }
658 }
659
660 /*
661 * sigispending:
662 *
663 * Return true if there are pending signals for the current LWP. May
664 * be called unlocked provided that LW_PENDSIG is set, and that the
665 * signal has been posted to the appopriate queue before LW_PENDSIG is
666 * set.
667 */
668 int
669 sigispending(struct lwp *l, int signo)
670 {
671 struct proc *p = l->l_proc;
672 sigset_t tset;
673
674 membar_consumer();
675
676 tset = l->l_sigpend.sp_set;
677 sigplusset(&p->p_sigpend.sp_set, &tset);
678 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
679 sigminusset(&l->l_sigmask, &tset);
680
681 if (signo == 0) {
682 if (firstsig(&tset) != 0)
683 return EINTR;
684 } else if (sigismember(&tset, signo))
685 return EINTR;
686
687 return 0;
688 }
689
690 /*
691 * siginfo_alloc:
692 *
693 * Allocate a new siginfo_t structure from the pool.
694 */
695 siginfo_t *
696 siginfo_alloc(int flags)
697 {
698
699 return pool_get(&siginfo_pool, flags);
700 }
701
702 /*
703 * siginfo_free:
704 *
705 * Return a siginfo_t structure to the pool.
706 */
707 void
708 siginfo_free(void *arg)
709 {
710
711 pool_put(&siginfo_pool, arg);
712 }
713
714 void
715 getucontext(struct lwp *l, ucontext_t *ucp)
716 {
717 struct proc *p = l->l_proc;
718
719 KASSERT(mutex_owned(&p->p_smutex));
720
721 ucp->uc_flags = 0;
722 ucp->uc_link = l->l_ctxlink;
723
724 ucp->uc_sigmask = l->l_sigmask;
725 ucp->uc_flags |= _UC_SIGMASK;
726
727 /*
728 * The (unsupplied) definition of the `current execution stack'
729 * in the System V Interface Definition appears to allow returning
730 * the main context stack.
731 */
732 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
733 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
734 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
735 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
736 } else {
737 /* Simply copy alternate signal execution stack. */
738 ucp->uc_stack = l->l_sigstk;
739 }
740 ucp->uc_flags |= _UC_STACK;
741 mutex_exit(&p->p_smutex);
742 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
743 mutex_enter(&p->p_smutex);
744 }
745
746 int
747 setucontext(struct lwp *l, const ucontext_t *ucp)
748 {
749 struct proc *p = l->l_proc;
750 int error;
751
752 KASSERT(mutex_owned(&p->p_smutex));
753
754 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
755 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
756 if (error != 0)
757 return error;
758 }
759
760 mutex_exit(&p->p_smutex);
761 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
762 mutex_enter(&p->p_smutex);
763 if (error != 0)
764 return (error);
765
766 l->l_ctxlink = ucp->uc_link;
767
768 /*
769 * If there was stack information, update whether or not we are
770 * still running on an alternate signal stack.
771 */
772 if ((ucp->uc_flags & _UC_STACK) != 0) {
773 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
774 l->l_sigstk.ss_flags |= SS_ONSTACK;
775 else
776 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
777 }
778
779 return 0;
780 }
781
782 /*
783 * Common code for kill process group/broadcast kill. cp is calling
784 * process.
785 */
786 int
787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
788 {
789 struct proc *p, *cp;
790 kauth_cred_t pc;
791 struct pgrp *pgrp;
792 int nfound;
793 int signo = ksi->ksi_signo;
794
795 cp = l->l_proc;
796 pc = l->l_cred;
797 nfound = 0;
798
799 mutex_enter(proc_lock);
800 if (all) {
801 /*
802 * broadcast
803 */
804 PROCLIST_FOREACH(p, &allproc) {
805 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
806 continue;
807 mutex_enter(&p->p_mutex);
808 if (kauth_authorize_process(pc,
809 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
810 NULL) == 0) {
811 nfound++;
812 if (signo) {
813 mutex_enter(&p->p_smutex);
814 kpsignal2(p, ksi);
815 mutex_exit(&p->p_smutex);
816 }
817 }
818 mutex_exit(&p->p_mutex);
819 }
820 } else {
821 if (pgid == 0)
822 /*
823 * zero pgid means send to my process group.
824 */
825 pgrp = cp->p_pgrp;
826 else {
827 pgrp = pg_find(pgid, PFIND_LOCKED);
828 if (pgrp == NULL)
829 goto out;
830 }
831 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
832 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
833 continue;
834 mutex_enter(&p->p_mutex);
835 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
836 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
837 nfound++;
838 if (signo) {
839 mutex_enter(&p->p_smutex);
840 if (P_ZOMBIE(p) == 0)
841 kpsignal2(p, ksi);
842 mutex_exit(&p->p_smutex);
843 }
844 }
845 mutex_exit(&p->p_mutex);
846 }
847 }
848 out:
849 mutex_exit(proc_lock);
850 return (nfound ? 0 : ESRCH);
851 }
852
853 /*
854 * Send a signal to a process group. If checktty is 1, limit to members
855 * which have a controlling terminal.
856 */
857 void
858 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
859 {
860 ksiginfo_t ksi;
861
862 KASSERT(!cpu_intr_p());
863 KASSERT(mutex_owned(proc_lock));
864
865 KSI_INIT_EMPTY(&ksi);
866 ksi.ksi_signo = sig;
867 kpgsignal(pgrp, &ksi, NULL, checkctty);
868 }
869
870 void
871 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
872 {
873 struct proc *p;
874
875 KASSERT(!cpu_intr_p());
876 KASSERT(mutex_owned(proc_lock));
877
878 if (pgrp)
879 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
880 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
881 kpsignal(p, ksi, data);
882 }
883
884 /*
885 * Send a signal caused by a trap to the current LWP. If it will be caught
886 * immediately, deliver it with correct code. Otherwise, post it normally.
887 */
888 void
889 trapsignal(struct lwp *l, ksiginfo_t *ksi)
890 {
891 struct proc *p;
892 struct sigacts *ps;
893 int signo = ksi->ksi_signo;
894
895 KASSERT(KSI_TRAP_P(ksi));
896
897 ksi->ksi_lid = l->l_lid;
898 p = l->l_proc;
899
900 KASSERT(!cpu_intr_p());
901 mutex_enter(proc_lock);
902 mutex_enter(&p->p_smutex);
903 ps = p->p_sigacts;
904 if ((p->p_slflag & PSL_TRACED) == 0 &&
905 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
906 !sigismember(&l->l_sigmask, signo)) {
907 mutex_exit(proc_lock);
908 l->l_ru.ru_nsignals++;
909 kpsendsig(l, ksi, &l->l_sigmask);
910 mutex_exit(&p->p_smutex);
911 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
912 &l->l_sigmask, ksi);
913 } else {
914 /* XXX for core dump/debugger */
915 p->p_sigctx.ps_lwp = l->l_lid;
916 p->p_sigctx.ps_signo = ksi->ksi_signo;
917 p->p_sigctx.ps_code = ksi->ksi_trap;
918 kpsignal2(p, ksi);
919 mutex_exit(&p->p_smutex);
920 mutex_exit(proc_lock);
921 }
922 }
923
924 /*
925 * Fill in signal information and signal the parent for a child status change.
926 */
927 void
928 child_psignal(struct proc *p, int mask)
929 {
930 ksiginfo_t ksi;
931 struct proc *q;
932 int xstat;
933
934 KASSERT(mutex_owned(proc_lock));
935 KASSERT(mutex_owned(&p->p_smutex));
936
937 xstat = p->p_xstat;
938
939 KSI_INIT(&ksi);
940 ksi.ksi_signo = SIGCHLD;
941 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
942 ksi.ksi_pid = p->p_pid;
943 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
944 ksi.ksi_status = xstat;
945 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
946 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
947
948 q = p->p_pptr;
949
950 mutex_exit(&p->p_smutex);
951 mutex_enter(&q->p_smutex);
952
953 if ((q->p_sflag & mask) == 0)
954 kpsignal2(q, &ksi);
955
956 mutex_exit(&q->p_smutex);
957 mutex_enter(&p->p_smutex);
958 }
959
960 void
961 psignal(struct proc *p, int signo)
962 {
963 ksiginfo_t ksi;
964
965 KASSERT(!cpu_intr_p());
966 KASSERT(mutex_owned(proc_lock));
967
968 KSI_INIT_EMPTY(&ksi);
969 ksi.ksi_signo = signo;
970 mutex_enter(&p->p_smutex);
971 kpsignal2(p, &ksi);
972 mutex_exit(&p->p_smutex);
973 }
974
975 void
976 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
977 {
978 fdfile_t *ff;
979 file_t *fp;
980
981 KASSERT(!cpu_intr_p());
982 KASSERT(mutex_owned(proc_lock));
983
984 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
985 size_t fd;
986 filedesc_t *fdp = p->p_fd;
987
988 /* XXXSMP locking */
989 ksi->ksi_fd = -1;
990 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
991 if ((ff = fdp->fd_ofiles[fd]) == NULL)
992 continue;
993 if ((fp = ff->ff_file) == NULL)
994 continue;
995 if (fp->f_data == data) {
996 ksi->ksi_fd = fd;
997 break;
998 }
999 }
1000 }
1001 mutex_enter(&p->p_smutex);
1002 kpsignal2(p, ksi);
1003 mutex_exit(&p->p_smutex);
1004 }
1005
1006 /*
1007 * sigismasked:
1008 *
1009 * Returns true if signal is ignored or masked for the specified LWP.
1010 */
1011 int
1012 sigismasked(struct lwp *l, int sig)
1013 {
1014 struct proc *p = l->l_proc;
1015
1016 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1017 sigismember(&l->l_sigmask, sig));
1018 }
1019
1020 /*
1021 * sigpost:
1022 *
1023 * Post a pending signal to an LWP. Returns non-zero if the LWP was
1024 * able to take the signal.
1025 */
1026 int
1027 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1028 {
1029 int rv, masked;
1030
1031 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1032
1033 /*
1034 * If the LWP is on the way out, sigclear() will be busy draining all
1035 * pending signals. Don't give it more.
1036 */
1037 if (l->l_refcnt == 0)
1038 return 0;
1039
1040 lwp_lock(l);
1041
1042 /*
1043 * Have the LWP check for signals. This ensures that even if no LWP
1044 * is found to take the signal immediately, it should be taken soon.
1045 */
1046 l->l_flag |= LW_PENDSIG;
1047
1048 /*
1049 * SIGCONT can be masked, but must always restart stopped LWPs.
1050 */
1051 masked = sigismember(&l->l_sigmask, sig);
1052 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1053 lwp_unlock(l);
1054 return 0;
1055 }
1056
1057 /*
1058 * If killing the process, make it run fast.
1059 */
1060 if (__predict_false((prop & SA_KILL) != 0) &&
1061 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1062 KASSERT(l->l_class == SCHED_OTHER);
1063 lwp_changepri(l, MAXPRI_USER);
1064 }
1065
1066 /*
1067 * If the LWP is running or on a run queue, then we win. If it's
1068 * sleeping interruptably, wake it and make it take the signal. If
1069 * the sleep isn't interruptable, then the chances are it will get
1070 * to see the signal soon anyhow. If suspended, it can't take the
1071 * signal right now. If it's LWP private or for all LWPs, save it
1072 * for later; otherwise punt.
1073 */
1074 rv = 0;
1075
1076 switch (l->l_stat) {
1077 case LSRUN:
1078 case LSONPROC:
1079 lwp_need_userret(l);
1080 rv = 1;
1081 break;
1082
1083 case LSSLEEP:
1084 if ((l->l_flag & LW_SINTR) != 0) {
1085 /* setrunnable() will release the lock. */
1086 setrunnable(l);
1087 return 1;
1088 }
1089 break;
1090
1091 case LSSUSPENDED:
1092 if ((prop & SA_KILL) != 0) {
1093 /* lwp_continue() will release the lock. */
1094 lwp_continue(l);
1095 return 1;
1096 }
1097 break;
1098
1099 case LSSTOP:
1100 if ((prop & SA_STOP) != 0)
1101 break;
1102
1103 /*
1104 * If the LWP is stopped and we are sending a continue
1105 * signal, then start it again.
1106 */
1107 if ((prop & SA_CONT) != 0) {
1108 if (l->l_wchan != NULL) {
1109 l->l_stat = LSSLEEP;
1110 l->l_proc->p_nrlwps++;
1111 rv = 1;
1112 break;
1113 }
1114 /* setrunnable() will release the lock. */
1115 setrunnable(l);
1116 return 1;
1117 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1118 /* setrunnable() will release the lock. */
1119 setrunnable(l);
1120 return 1;
1121 }
1122 break;
1123
1124 default:
1125 break;
1126 }
1127
1128 lwp_unlock(l);
1129 return rv;
1130 }
1131
1132 /*
1133 * Notify an LWP that it has a pending signal.
1134 */
1135 void
1136 signotify(struct lwp *l)
1137 {
1138 KASSERT(lwp_locked(l, NULL));
1139
1140 l->l_flag |= LW_PENDSIG;
1141 lwp_need_userret(l);
1142 }
1143
1144 /*
1145 * Find an LWP within process p that is waiting on signal ksi, and hand
1146 * it on.
1147 */
1148 int
1149 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1150 {
1151 struct lwp *l;
1152 int signo;
1153
1154 KASSERT(mutex_owned(&p->p_smutex));
1155
1156 signo = ksi->ksi_signo;
1157
1158 if (ksi->ksi_lid != 0) {
1159 /*
1160 * Signal came via _lwp_kill(). Find the LWP and see if
1161 * it's interested.
1162 */
1163 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1164 return 0;
1165 if (l->l_sigwaited == NULL ||
1166 !sigismember(&l->l_sigwaitset, signo))
1167 return 0;
1168 } else {
1169 /*
1170 * Look for any LWP that may be interested.
1171 */
1172 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1173 KASSERT(l->l_sigwaited != NULL);
1174 if (sigismember(&l->l_sigwaitset, signo))
1175 break;
1176 }
1177 }
1178
1179 if (l != NULL) {
1180 l->l_sigwaited->ksi_info = ksi->ksi_info;
1181 l->l_sigwaited = NULL;
1182 LIST_REMOVE(l, l_sigwaiter);
1183 cv_signal(&l->l_sigcv);
1184 return 1;
1185 }
1186
1187 return 0;
1188 }
1189
1190 /*
1191 * Send the signal to the process. If the signal has an action, the action
1192 * is usually performed by the target process rather than the caller; we add
1193 * the signal to the set of pending signals for the process.
1194 *
1195 * Exceptions:
1196 * o When a stop signal is sent to a sleeping process that takes the
1197 * default action, the process is stopped without awakening it.
1198 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1199 * regardless of the signal action (eg, blocked or ignored).
1200 *
1201 * Other ignored signals are discarded immediately.
1202 */
1203 void
1204 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1205 {
1206 int prop, lid, toall, signo = ksi->ksi_signo;
1207 struct sigacts *sa;
1208 struct lwp *l;
1209 ksiginfo_t *kp;
1210 ksiginfoq_t kq;
1211 sig_t action;
1212
1213 KASSERT(!cpu_intr_p());
1214 KASSERT(mutex_owned(proc_lock));
1215 KASSERT(mutex_owned(&p->p_smutex));
1216 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1217 KASSERT(signo > 0 && signo < NSIG);
1218
1219 /*
1220 * If the process is being created by fork, is a zombie or is
1221 * exiting, then just drop the signal here and bail out.
1222 */
1223 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1224 return;
1225
1226 /*
1227 * Notify any interested parties of the signal.
1228 */
1229 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1230
1231 /*
1232 * Some signals including SIGKILL must act on the entire process.
1233 */
1234 kp = NULL;
1235 prop = sigprop[signo];
1236 toall = ((prop & SA_TOALL) != 0);
1237
1238 if (toall)
1239 lid = 0;
1240 else
1241 lid = ksi->ksi_lid;
1242
1243 /*
1244 * If proc is traced, always give parent a chance.
1245 */
1246 if (p->p_slflag & PSL_TRACED) {
1247 action = SIG_DFL;
1248
1249 if (lid == 0) {
1250 /*
1251 * If the process is being traced and the signal
1252 * is being caught, make sure to save any ksiginfo.
1253 */
1254 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1255 return;
1256 sigput(&p->p_sigpend, p, kp);
1257 }
1258 } else {
1259 /*
1260 * If the signal was the result of a trap and is not being
1261 * caught, then reset it to default action so that the
1262 * process dumps core immediately.
1263 */
1264 if (KSI_TRAP_P(ksi)) {
1265 sa = p->p_sigacts;
1266 mutex_enter(&sa->sa_mutex);
1267 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1268 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1269 SIGACTION(p, signo).sa_handler = SIG_DFL;
1270 }
1271 mutex_exit(&sa->sa_mutex);
1272 }
1273
1274 /*
1275 * If the signal is being ignored, then drop it. Note: we
1276 * don't set SIGCONT in ps_sigignore, and if it is set to
1277 * SIG_IGN, action will be SIG_DFL here.
1278 */
1279 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1280 return;
1281
1282 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1283 action = SIG_CATCH;
1284 else {
1285 action = SIG_DFL;
1286
1287 /*
1288 * If sending a tty stop signal to a member of an
1289 * orphaned process group, discard the signal here if
1290 * the action is default; don't stop the process below
1291 * if sleeping, and don't clear any pending SIGCONT.
1292 */
1293 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1294 return;
1295
1296 if (prop & SA_KILL && p->p_nice > NZERO)
1297 p->p_nice = NZERO;
1298 }
1299 }
1300
1301 /*
1302 * If stopping or continuing a process, discard any pending
1303 * signals that would do the inverse.
1304 */
1305 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1306 ksiginfo_queue_init(&kq);
1307 if ((prop & SA_CONT) != 0)
1308 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1309 if ((prop & SA_STOP) != 0)
1310 sigclear(&p->p_sigpend, &contsigmask, &kq);
1311 ksiginfo_queue_drain(&kq); /* XXXSMP */
1312 }
1313
1314 /*
1315 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1316 * please!), check if any LWPs are waiting on it. If yes, pass on
1317 * the signal info. The signal won't be processed further here.
1318 */
1319 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1320 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1321 sigunwait(p, ksi))
1322 return;
1323
1324 /*
1325 * XXXSMP Should be allocated by the caller, we're holding locks
1326 * here.
1327 */
1328 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1329 return;
1330
1331 /*
1332 * LWP private signals are easy - just find the LWP and post
1333 * the signal to it.
1334 */
1335 if (lid != 0) {
1336 l = lwp_find(p, lid);
1337 if (l != NULL) {
1338 sigput(&l->l_sigpend, p, kp);
1339 membar_producer();
1340 (void)sigpost(l, action, prop, kp->ksi_signo);
1341 }
1342 goto out;
1343 }
1344
1345 /*
1346 * Some signals go to all LWPs, even if posted with _lwp_kill().
1347 */
1348 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1349 if ((p->p_slflag & PSL_TRACED) != 0)
1350 goto deliver;
1351
1352 /*
1353 * If SIGCONT is default (or ignored) and process is
1354 * asleep, we are finished; the process should not
1355 * be awakened.
1356 */
1357 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1358 goto out;
1359
1360 sigput(&p->p_sigpend, p, kp);
1361 } else {
1362 /*
1363 * Process is stopped or stopping. If traced, then no
1364 * further action is necessary.
1365 */
1366 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1367 goto out;
1368
1369 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1370 /*
1371 * Re-adjust p_nstopchild if the process wasn't
1372 * collected by its parent.
1373 */
1374 p->p_stat = SACTIVE;
1375 p->p_sflag &= ~PS_STOPPING;
1376 if (!p->p_waited)
1377 p->p_pptr->p_nstopchild--;
1378
1379 /*
1380 * If SIGCONT is default (or ignored), we continue
1381 * the process but don't leave the signal in
1382 * ps_siglist, as it has no further action. If
1383 * SIGCONT is held, we continue the process and
1384 * leave the signal in ps_siglist. If the process
1385 * catches SIGCONT, let it handle the signal itself.
1386 * If it isn't waiting on an event, then it goes
1387 * back to run state. Otherwise, process goes back
1388 * to sleep state.
1389 */
1390 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1391 sigput(&p->p_sigpend, p, kp);
1392 } else if ((prop & SA_STOP) != 0) {
1393 /*
1394 * Already stopped, don't need to stop again.
1395 * (If we did the shell could get confused.)
1396 */
1397 goto out;
1398 } else
1399 sigput(&p->p_sigpend, p, kp);
1400 }
1401
1402 deliver:
1403 /*
1404 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1405 * visible on the per process list (for sigispending()). This
1406 * is unlikely to be needed in practice, but...
1407 */
1408 membar_producer();
1409
1410 /*
1411 * Try to find an LWP that can take the signal.
1412 */
1413 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1414 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1415 break;
1416
1417 out:
1418 /*
1419 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1420 * with locks held. The caller should take care of this.
1421 */
1422 ksiginfo_free(kp);
1423 }
1424
1425 void
1426 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1427 {
1428 struct proc *p = l->l_proc;
1429
1430 KASSERT(mutex_owned(&p->p_smutex));
1431
1432 (*p->p_emul->e_sendsig)(ksi, mask);
1433 }
1434
1435 /*
1436 * Stop any LWPs sleeping interruptably.
1437 */
1438 static void
1439 proc_stop_lwps(struct proc *p)
1440 {
1441 struct lwp *l;
1442
1443 KASSERT(mutex_owned(&p->p_smutex));
1444 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1445
1446 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1447 lwp_lock(l);
1448 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1449 l->l_stat = LSSTOP;
1450 p->p_nrlwps--;
1451 }
1452 lwp_unlock(l);
1453 }
1454 }
1455
1456 /*
1457 * Finish stopping of a process. Mark it stopped and notify the parent.
1458 *
1459 * Drop p_smutex briefly if PS_NOTIFYSTOP is set and ppsig is true.
1460 */
1461 static void
1462 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1463 {
1464
1465 KASSERT(mutex_owned(proc_lock));
1466 KASSERT(mutex_owned(&p->p_smutex));
1467 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1468 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1469
1470 p->p_sflag &= ~PS_STOPPING;
1471 p->p_stat = SSTOP;
1472 p->p_waited = 0;
1473 p->p_pptr->p_nstopchild++;
1474 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1475 if (ppsig) {
1476 /* child_psignal drops p_smutex briefly. */
1477 child_psignal(p, ppmask);
1478 }
1479 cv_broadcast(&p->p_pptr->p_waitcv);
1480 }
1481 }
1482
1483 /*
1484 * Stop the current process and switch away when being stopped or traced.
1485 */
1486 void
1487 sigswitch(bool ppsig, int ppmask, int signo)
1488 {
1489 struct lwp *l = curlwp;
1490 struct proc *p = l->l_proc;
1491 #ifdef MULTIPROCESSOR
1492 int biglocks;
1493 #endif
1494
1495 KASSERT(mutex_owned(&p->p_smutex));
1496 KASSERT(l->l_stat == LSONPROC);
1497 KASSERT(p->p_nrlwps > 0);
1498
1499 /*
1500 * On entry we know that the process needs to stop. If it's
1501 * the result of a 'sideways' stop signal that has been sourced
1502 * through issignal(), then stop other LWPs in the process too.
1503 */
1504 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1505 KASSERT(signo != 0);
1506 proc_stop(p, 1, signo);
1507 KASSERT(p->p_nrlwps > 0);
1508 }
1509
1510 /*
1511 * If we are the last live LWP, and the stop was a result of
1512 * a new signal, then signal the parent.
1513 */
1514 if ((p->p_sflag & PS_STOPPING) != 0) {
1515 if (!mutex_tryenter(proc_lock)) {
1516 mutex_exit(&p->p_smutex);
1517 mutex_enter(proc_lock);
1518 mutex_enter(&p->p_smutex);
1519 }
1520
1521 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1522 /*
1523 * Note that proc_stop_done() can drop
1524 * p->p_smutex briefly.
1525 */
1526 proc_stop_done(p, ppsig, ppmask);
1527 }
1528
1529 mutex_exit(proc_lock);
1530 }
1531
1532 /*
1533 * Unlock and switch away.
1534 */
1535 KERNEL_UNLOCK_ALL(l, &biglocks);
1536 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1537 p->p_nrlwps--;
1538 lwp_lock(l);
1539 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1540 l->l_stat = LSSTOP;
1541 lwp_unlock(l);
1542 }
1543
1544 mutex_exit(&p->p_smutex);
1545 lwp_lock(l);
1546 mi_switch(l);
1547 KERNEL_LOCK(biglocks, l);
1548 mutex_enter(&p->p_smutex);
1549 }
1550
1551 /*
1552 * Check for a signal from the debugger.
1553 */
1554 int
1555 sigchecktrace(sigpend_t **spp)
1556 {
1557 struct lwp *l = curlwp;
1558 struct proc *p = l->l_proc;
1559 int signo;
1560
1561 KASSERT(mutex_owned(&p->p_smutex));
1562
1563 /*
1564 * If we are no longer being traced, or the parent didn't
1565 * give us a signal, look for more signals.
1566 */
1567 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1568 return 0;
1569
1570 /* If there's a pending SIGKILL, process it immediately. */
1571 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1572 return 0;
1573
1574 /*
1575 * If the new signal is being masked, look for other signals.
1576 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1577 */
1578 signo = p->p_xstat;
1579 p->p_xstat = 0;
1580 if ((sigprop[signo] & SA_TOLWP) != 0)
1581 *spp = &l->l_sigpend;
1582 else
1583 *spp = &p->p_sigpend;
1584 if (sigismember(&l->l_sigmask, signo))
1585 signo = 0;
1586
1587 return signo;
1588 }
1589
1590 /*
1591 * If the current process has received a signal (should be caught or cause
1592 * termination, should interrupt current syscall), return the signal number.
1593 *
1594 * Stop signals with default action are processed immediately, then cleared;
1595 * they aren't returned. This is checked after each entry to the system for
1596 * a syscall or trap.
1597 *
1598 * We will also return -1 if the process is exiting and the current LWP must
1599 * follow suit.
1600 *
1601 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1602 * can switch away, though.
1603 */
1604 int
1605 issignal(struct lwp *l)
1606 {
1607 struct proc *p = l->l_proc;
1608 int signo = 0, prop;
1609 sigpend_t *sp = NULL;
1610 sigset_t ss;
1611
1612 KASSERT(mutex_owned(&p->p_smutex));
1613
1614 for (;;) {
1615 /* Discard any signals that we have decided not to take. */
1616 if (signo != 0)
1617 (void)sigget(sp, NULL, signo, NULL);
1618
1619 /*
1620 * If the process is stopped/stopping, then stop ourselves
1621 * now that we're on the kernel/userspace boundary. When
1622 * we awaken, check for a signal from the debugger.
1623 */
1624 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1625 sigswitch(true, PS_NOCLDSTOP, 0);
1626 signo = sigchecktrace(&sp);
1627 } else
1628 signo = 0;
1629
1630 /*
1631 * If the debugger didn't provide a signal, find a pending
1632 * signal from our set. Check per-LWP signals first, and
1633 * then per-process.
1634 */
1635 if (signo == 0) {
1636 sp = &l->l_sigpend;
1637 ss = sp->sp_set;
1638 if ((p->p_sflag & PS_PPWAIT) != 0)
1639 sigminusset(&stopsigmask, &ss);
1640 sigminusset(&l->l_sigmask, &ss);
1641
1642 if ((signo = firstsig(&ss)) == 0) {
1643 sp = &p->p_sigpend;
1644 ss = sp->sp_set;
1645 if ((p->p_sflag & PS_PPWAIT) != 0)
1646 sigminusset(&stopsigmask, &ss);
1647 sigminusset(&l->l_sigmask, &ss);
1648
1649 if ((signo = firstsig(&ss)) == 0) {
1650 /*
1651 * No signal pending - clear the
1652 * indicator and bail out.
1653 */
1654 lwp_lock(l);
1655 l->l_flag &= ~LW_PENDSIG;
1656 lwp_unlock(l);
1657 sp = NULL;
1658 break;
1659 }
1660 }
1661 }
1662
1663 /*
1664 * We should see pending but ignored signals only if
1665 * we are being traced.
1666 */
1667 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1668 (p->p_slflag & PSL_TRACED) == 0) {
1669 /* Discard the signal. */
1670 continue;
1671 }
1672
1673 /*
1674 * If traced, always stop, and stay stopped until released
1675 * by the debugger. If the our parent process is waiting
1676 * for us, don't hang as we could deadlock.
1677 */
1678 if ((p->p_slflag & PSL_TRACED) != 0 &&
1679 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1680 /* Take the signal. */
1681 (void)sigget(sp, NULL, signo, NULL);
1682 p->p_xstat = signo;
1683
1684 /* Emulation-specific handling of signal trace */
1685 if (p->p_emul->e_tracesig == NULL ||
1686 (*p->p_emul->e_tracesig)(p, signo) == 0)
1687 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1688 signo);
1689
1690 /* Check for a signal from the debugger. */
1691 if ((signo = sigchecktrace(&sp)) == 0)
1692 continue;
1693 }
1694
1695 prop = sigprop[signo];
1696
1697 /*
1698 * Decide whether the signal should be returned.
1699 */
1700 switch ((long)SIGACTION(p, signo).sa_handler) {
1701 case (long)SIG_DFL:
1702 /*
1703 * Don't take default actions on system processes.
1704 */
1705 if (p->p_pid <= 1) {
1706 #ifdef DIAGNOSTIC
1707 /*
1708 * Are you sure you want to ignore SIGSEGV
1709 * in init? XXX
1710 */
1711 printf_nolog("Process (pid %d) got sig %d\n",
1712 p->p_pid, signo);
1713 #endif
1714 continue;
1715 }
1716
1717 /*
1718 * If there is a pending stop signal to process with
1719 * default action, stop here, then clear the signal.
1720 * However, if process is member of an orphaned
1721 * process group, ignore tty stop signals.
1722 */
1723 if (prop & SA_STOP) {
1724 /*
1725 * XXX Don't hold proc_lock for p_lflag,
1726 * but it's not a big deal.
1727 */
1728 if (p->p_slflag & PSL_TRACED ||
1729 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1730 prop & SA_TTYSTOP)) {
1731 /* Ignore the signal. */
1732 continue;
1733 }
1734 /* Take the signal. */
1735 (void)sigget(sp, NULL, signo, NULL);
1736 p->p_xstat = signo;
1737 signo = 0;
1738 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1739 } else if (prop & SA_IGNORE) {
1740 /*
1741 * Except for SIGCONT, shouldn't get here.
1742 * Default action is to ignore; drop it.
1743 */
1744 continue;
1745 }
1746 break;
1747
1748 case (long)SIG_IGN:
1749 #ifdef DEBUG_ISSIGNAL
1750 /*
1751 * Masking above should prevent us ever trying
1752 * to take action on an ignored signal other
1753 * than SIGCONT, unless process is traced.
1754 */
1755 if ((prop & SA_CONT) == 0 &&
1756 (p->p_slflag & PSL_TRACED) == 0)
1757 printf_nolog("issignal\n");
1758 #endif
1759 continue;
1760
1761 default:
1762 /*
1763 * This signal has an action, let postsig() process
1764 * it.
1765 */
1766 break;
1767 }
1768
1769 break;
1770 }
1771
1772 l->l_sigpendset = sp;
1773 return signo;
1774 }
1775
1776 /*
1777 * Take the action for the specified signal
1778 * from the current set of pending signals.
1779 */
1780 void
1781 postsig(int signo)
1782 {
1783 struct lwp *l;
1784 struct proc *p;
1785 struct sigacts *ps;
1786 sig_t action;
1787 sigset_t *returnmask;
1788 ksiginfo_t ksi;
1789
1790 l = curlwp;
1791 p = l->l_proc;
1792 ps = p->p_sigacts;
1793
1794 KASSERT(mutex_owned(&p->p_smutex));
1795 KASSERT(signo > 0);
1796
1797 /*
1798 * Set the new mask value and also defer further occurrences of this
1799 * signal.
1800 *
1801 * Special case: user has done a sigsuspend. Here the current mask is
1802 * not of interest, but rather the mask from before the sigsuspen is
1803 * what we want restored after the signal processing is completed.
1804 */
1805 if (l->l_sigrestore) {
1806 returnmask = &l->l_sigoldmask;
1807 l->l_sigrestore = 0;
1808 } else
1809 returnmask = &l->l_sigmask;
1810
1811 /*
1812 * Commit to taking the signal before releasing the mutex.
1813 */
1814 action = SIGACTION_PS(ps, signo).sa_handler;
1815 l->l_ru.ru_nsignals++;
1816 sigget(l->l_sigpendset, &ksi, signo, NULL);
1817
1818 if (ktrpoint(KTR_PSIG)) {
1819 mutex_exit(&p->p_smutex);
1820 ktrpsig(signo, action, returnmask, NULL);
1821 mutex_enter(&p->p_smutex);
1822 }
1823
1824 if (action == SIG_DFL) {
1825 /*
1826 * Default action, where the default is to kill
1827 * the process. (Other cases were ignored above.)
1828 */
1829 sigexit(l, signo);
1830 return;
1831 }
1832
1833 /*
1834 * If we get here, the signal must be caught.
1835 */
1836 #ifdef DIAGNOSTIC
1837 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1838 panic("postsig action");
1839 #endif
1840
1841 kpsendsig(l, &ksi, returnmask);
1842 }
1843
1844 /*
1845 * sendsig_reset:
1846 *
1847 * Reset the signal action. Called from emulation specific sendsig()
1848 * before unlocking to deliver the signal.
1849 */
1850 void
1851 sendsig_reset(struct lwp *l, int signo)
1852 {
1853 struct proc *p = l->l_proc;
1854 struct sigacts *ps = p->p_sigacts;
1855
1856 KASSERT(mutex_owned(&p->p_smutex));
1857
1858 p->p_sigctx.ps_lwp = 0;
1859 p->p_sigctx.ps_code = 0;
1860 p->p_sigctx.ps_signo = 0;
1861
1862 mutex_enter(&ps->sa_mutex);
1863 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1864 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1865 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1866 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1867 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1868 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1869 }
1870 mutex_exit(&ps->sa_mutex);
1871 }
1872
1873 /*
1874 * Kill the current process for stated reason.
1875 */
1876 void
1877 killproc(struct proc *p, const char *why)
1878 {
1879
1880 KASSERT(mutex_owned(proc_lock));
1881
1882 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1883 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1884 psignal(p, SIGKILL);
1885 }
1886
1887 /*
1888 * Force the current process to exit with the specified signal, dumping core
1889 * if appropriate. We bypass the normal tests for masked and caught
1890 * signals, allowing unrecoverable failures to terminate the process without
1891 * changing signal state. Mark the accounting record with the signal
1892 * termination. If dumping core, save the signal number for the debugger.
1893 * Calls exit and does not return.
1894 */
1895 void
1896 sigexit(struct lwp *l, int signo)
1897 {
1898 int exitsig, error, docore;
1899 struct proc *p;
1900 struct lwp *t;
1901
1902 p = l->l_proc;
1903
1904 KASSERT(mutex_owned(&p->p_smutex));
1905 KERNEL_UNLOCK_ALL(l, NULL);
1906
1907 /*
1908 * Don't permit coredump() multiple times in the same process.
1909 * Call back into sigexit, where we will be suspended until
1910 * the deed is done. Note that this is a recursive call, but
1911 * LW_WCORE will prevent us from coming back this way.
1912 */
1913 if ((p->p_sflag & PS_WCORE) != 0) {
1914 lwp_lock(l);
1915 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1916 lwp_unlock(l);
1917 mutex_exit(&p->p_smutex);
1918 lwp_userret(l);
1919 #ifdef DIAGNOSTIC
1920 panic("sigexit");
1921 #endif
1922 /* NOTREACHED */
1923 }
1924
1925 /*
1926 * Prepare all other LWPs for exit. If dumping core, suspend them
1927 * so that their registers are available long enough to be dumped.
1928 */
1929 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1930 p->p_sflag |= PS_WCORE;
1931 for (;;) {
1932 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1933 lwp_lock(t);
1934 if (t == l) {
1935 t->l_flag &= ~LW_WSUSPEND;
1936 lwp_unlock(t);
1937 continue;
1938 }
1939 t->l_flag |= (LW_WCORE | LW_WEXIT);
1940 lwp_suspend(l, t);
1941 }
1942
1943 if (p->p_nrlwps == 1)
1944 break;
1945
1946 /*
1947 * Kick any LWPs sitting in lwp_wait1(), and wait
1948 * for everyone else to stop before proceeding.
1949 */
1950 p->p_nlwpwait++;
1951 cv_broadcast(&p->p_lwpcv);
1952 cv_wait(&p->p_lwpcv, &p->p_smutex);
1953 p->p_nlwpwait--;
1954 }
1955 }
1956
1957 exitsig = signo;
1958 p->p_acflag |= AXSIG;
1959 p->p_sigctx.ps_signo = signo;
1960 mutex_exit(&p->p_smutex);
1961
1962 KERNEL_LOCK(1, l);
1963
1964 if (docore) {
1965 if ((error = coredump(l, NULL)) == 0)
1966 exitsig |= WCOREFLAG;
1967
1968 if (kern_logsigexit) {
1969 int uid = l->l_cred ?
1970 (int)kauth_cred_geteuid(l->l_cred) : -1;
1971
1972 if (error)
1973 log(LOG_INFO, lognocoredump, p->p_pid,
1974 p->p_comm, uid, signo, error);
1975 else
1976 log(LOG_INFO, logcoredump, p->p_pid,
1977 p->p_comm, uid, signo);
1978 }
1979
1980 #ifdef PAX_SEGVGUARD
1981 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1982 #endif /* PAX_SEGVGUARD */
1983 }
1984
1985 /* Acquire the sched state mutex. exit1() will release it. */
1986 mutex_enter(&p->p_smutex);
1987
1988 /* No longer dumping core. */
1989 p->p_sflag &= ~PS_WCORE;
1990
1991 exit1(l, W_EXITCODE(0, exitsig));
1992 /* NOTREACHED */
1993 }
1994
1995 /*
1996 * Put process 'p' into the stopped state and optionally, notify the parent.
1997 */
1998 void
1999 proc_stop(struct proc *p, int notify, int signo)
2000 {
2001 struct lwp *l;
2002
2003 KASSERT(mutex_owned(&p->p_smutex));
2004
2005 /*
2006 * First off, set the stopping indicator and bring all sleeping
2007 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2008 * unlock between here and the p->p_nrlwps check below.
2009 */
2010 p->p_sflag |= PS_STOPPING;
2011 if (notify)
2012 p->p_sflag |= PS_NOTIFYSTOP;
2013 else
2014 p->p_sflag &= ~PS_NOTIFYSTOP;
2015 membar_producer();
2016
2017 proc_stop_lwps(p);
2018
2019 /*
2020 * If there are no LWPs available to take the signal, then we
2021 * signal the parent process immediately. Otherwise, the last
2022 * LWP to stop will take care of it.
2023 */
2024
2025 if (p->p_nrlwps == 0) {
2026 proc_stop_done(p, true, PS_NOCLDSTOP);
2027 } else {
2028 /*
2029 * Have the remaining LWPs come to a halt, and trigger
2030 * proc_stop_callout() to ensure that they do.
2031 */
2032 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2033 sigpost(l, SIG_DFL, SA_STOP, signo);
2034 callout_schedule(&proc_stop_ch, 1);
2035 }
2036 }
2037
2038 /*
2039 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2040 * but wait for them to come to a halt at the kernel-user boundary. This is
2041 * to allow LWPs to release any locks that they may hold before stopping.
2042 *
2043 * Non-interruptable sleeps can be long, and there is the potential for an
2044 * LWP to begin sleeping interruptably soon after the process has been set
2045 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2046 * stopping, and so complete halt of the process and the return of status
2047 * information to the parent could be delayed indefinitely.
2048 *
2049 * To handle this race, proc_stop_callout() runs once per tick while there
2050 * are stopping processes in the system. It sets LWPs that are sleeping
2051 * interruptably into the LSSTOP state.
2052 *
2053 * Note that we are not concerned about keeping all LWPs stopped while the
2054 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2055 * What we do need to ensure is that all LWPs in a stopping process have
2056 * stopped at least once, so that notification can be sent to the parent
2057 * process.
2058 */
2059 static void
2060 proc_stop_callout(void *cookie)
2061 {
2062 bool more, restart;
2063 struct proc *p;
2064
2065 (void)cookie;
2066
2067 do {
2068 restart = false;
2069 more = false;
2070
2071 mutex_enter(proc_lock);
2072 PROCLIST_FOREACH(p, &allproc) {
2073 mutex_enter(&p->p_smutex);
2074
2075 if ((p->p_sflag & PS_STOPPING) == 0) {
2076 mutex_exit(&p->p_smutex);
2077 continue;
2078 }
2079
2080 /* Stop any LWPs sleeping interruptably. */
2081 proc_stop_lwps(p);
2082 if (p->p_nrlwps == 0) {
2083 /*
2084 * We brought the process to a halt.
2085 * Mark it as stopped and notify the
2086 * parent.
2087 */
2088 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2089 /*
2090 * Note that proc_stop_done() will
2091 * drop p->p_smutex briefly.
2092 * Arrange to restart and check
2093 * all processes again.
2094 */
2095 restart = true;
2096 }
2097 proc_stop_done(p, true, PS_NOCLDSTOP);
2098 } else
2099 more = true;
2100
2101 mutex_exit(&p->p_smutex);
2102 if (restart)
2103 break;
2104 }
2105 mutex_exit(proc_lock);
2106 } while (restart);
2107
2108 /*
2109 * If we noted processes that are stopping but still have
2110 * running LWPs, then arrange to check again in 1 tick.
2111 */
2112 if (more)
2113 callout_schedule(&proc_stop_ch, 1);
2114 }
2115
2116 /*
2117 * Given a process in state SSTOP, set the state back to SACTIVE and
2118 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2119 */
2120 void
2121 proc_unstop(struct proc *p)
2122 {
2123 struct lwp *l;
2124 int sig;
2125
2126 KASSERT(mutex_owned(proc_lock));
2127 KASSERT(mutex_owned(&p->p_smutex));
2128
2129 p->p_stat = SACTIVE;
2130 p->p_sflag &= ~PS_STOPPING;
2131 sig = p->p_xstat;
2132
2133 if (!p->p_waited)
2134 p->p_pptr->p_nstopchild--;
2135
2136 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2137 lwp_lock(l);
2138 if (l->l_stat != LSSTOP) {
2139 lwp_unlock(l);
2140 continue;
2141 }
2142 if (l->l_wchan == NULL) {
2143 setrunnable(l);
2144 continue;
2145 }
2146 if (sig && (l->l_flag & LW_SINTR) != 0) {
2147 setrunnable(l);
2148 sig = 0;
2149 } else {
2150 l->l_stat = LSSLEEP;
2151 p->p_nrlwps++;
2152 lwp_unlock(l);
2153 }
2154 }
2155 }
2156
2157 static int
2158 filt_sigattach(struct knote *kn)
2159 {
2160 struct proc *p = curproc;
2161
2162 kn->kn_obj = p;
2163 kn->kn_flags |= EV_CLEAR; /* automatically set */
2164
2165 mutex_enter(&p->p_smutex);
2166 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2167 mutex_exit(&p->p_smutex);
2168
2169 return (0);
2170 }
2171
2172 static void
2173 filt_sigdetach(struct knote *kn)
2174 {
2175 struct proc *p = kn->kn_obj;
2176
2177 mutex_enter(&p->p_smutex);
2178 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2179 mutex_exit(&p->p_smutex);
2180 }
2181
2182 /*
2183 * signal knotes are shared with proc knotes, so we apply a mask to
2184 * the hint in order to differentiate them from process hints. This
2185 * could be avoided by using a signal-specific knote list, but probably
2186 * isn't worth the trouble.
2187 */
2188 static int
2189 filt_signal(struct knote *kn, long hint)
2190 {
2191
2192 if (hint & NOTE_SIGNAL) {
2193 hint &= ~NOTE_SIGNAL;
2194
2195 if (kn->kn_id == hint)
2196 kn->kn_data++;
2197 }
2198 return (kn->kn_data != 0);
2199 }
2200
2201 const struct filterops sig_filtops = {
2202 0, filt_sigattach, filt_sigdetach, filt_signal
2203 };
2204