Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.279
      1 /*	$NetBSD: kern_sig.c,v 1.279 2008/04/25 11:24:11 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  * (c) UNIX System Laboratories, Inc.
     43  * All or some portions of this file are derived from material licensed
     44  * to the University of California by American Telephone and Telegraph
     45  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     46  * the permission of UNIX System Laboratories, Inc.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that the following conditions
     50  * are met:
     51  * 1. Redistributions of source code must retain the above copyright
     52  *    notice, this list of conditions and the following disclaimer.
     53  * 2. Redistributions in binary form must reproduce the above copyright
     54  *    notice, this list of conditions and the following disclaimer in the
     55  *    documentation and/or other materials provided with the distribution.
     56  * 3. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.279 2008/04/25 11:24:11 ad Exp $");
     77 
     78 #include "opt_ptrace.h"
     79 #include "opt_multiprocessor.h"
     80 #include "opt_compat_sunos.h"
     81 #include "opt_compat_netbsd.h"
     82 #include "opt_compat_netbsd32.h"
     83 #include "opt_pax.h"
     84 
     85 #define	SIGPROP		/* include signal properties table */
     86 #include <sys/param.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/proc.h>
     89 #include <sys/systm.h>
     90 #include <sys/wait.h>
     91 #include <sys/ktrace.h>
     92 #include <sys/syslog.h>
     93 #include <sys/filedesc.h>
     94 #include <sys/file.h>
     95 #include <sys/malloc.h>
     96 #include <sys/pool.h>
     97 #include <sys/ucontext.h>
     98 #include <sys/exec.h>
     99 #include <sys/kauth.h>
    100 #include <sys/acct.h>
    101 #include <sys/callout.h>
    102 #include <sys/atomic.h>
    103 #include <sys/cpu.h>
    104 
    105 #ifdef PAX_SEGVGUARD
    106 #include <sys/pax.h>
    107 #endif /* PAX_SEGVGUARD */
    108 
    109 #include <uvm/uvm.h>
    110 #include <uvm/uvm_extern.h>
    111 
    112 static void	ksiginfo_exechook(struct proc *, void *);
    113 static void	proc_stop_callout(void *);
    114 
    115 int	sigunwait(struct proc *, const ksiginfo_t *);
    116 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    117 int	sigpost(struct lwp *, sig_t, int, int);
    118 int	sigchecktrace(sigpend_t **);
    119 void	sigswitch(bool, int, int);
    120 void	sigrealloc(ksiginfo_t *);
    121 
    122 sigset_t	contsigmask, stopsigmask, sigcantmask;
    123 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    124 static void	sigacts_poolpage_free(struct pool *, void *);
    125 static void	*sigacts_poolpage_alloc(struct pool *, int);
    126 static callout_t proc_stop_ch;
    127 
    128 static struct pool_allocator sigactspool_allocator = {
    129         .pa_alloc = sigacts_poolpage_alloc,
    130 	.pa_free = sigacts_poolpage_free,
    131 };
    132 
    133 #ifdef DEBUG
    134 int	kern_logsigexit = 1;
    135 #else
    136 int	kern_logsigexit = 0;
    137 #endif
    138 
    139 static	const char logcoredump[] =
    140     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    141 static	const char lognocoredump[] =
    142     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    143 
    144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    145     &pool_allocator_nointr, IPL_NONE);
    146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    147     NULL, IPL_VM);
    148 
    149 /*
    150  * signal_init:
    151  *
    152  * 	Initialize global signal-related data structures.
    153  */
    154 void
    155 signal_init(void)
    156 {
    157 
    158 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    159 
    160 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    161 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    162 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    163 
    164 	exechook_establish(ksiginfo_exechook, NULL);
    165 
    166 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    167 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    168 }
    169 
    170 /*
    171  * sigacts_poolpage_alloc:
    172  *
    173  *	 Allocate a page for the sigacts memory pool.
    174  */
    175 static void *
    176 sigacts_poolpage_alloc(struct pool *pp, int flags)
    177 {
    178 
    179 	return (void *)uvm_km_alloc(kernel_map,
    180 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    181 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    182 	    | UVM_KMF_WIRED);
    183 }
    184 
    185 /*
    186  * sigacts_poolpage_free:
    187  *
    188  *	 Free a page on behalf of the sigacts memory pool.
    189  */
    190 static void
    191 sigacts_poolpage_free(struct pool *pp, void *v)
    192 {
    193 
    194         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    195 }
    196 
    197 /*
    198  * sigactsinit:
    199  *
    200  *	 Create an initial sigctx structure, using the same signal state as
    201  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    202  *	 copy it from parent.
    203  */
    204 struct sigacts *
    205 sigactsinit(struct proc *pp, int share)
    206 {
    207 	struct sigacts *ps, *ps2;
    208 
    209 	ps = pp->p_sigacts;
    210 
    211 	if (share) {
    212 		atomic_inc_uint(&ps->sa_refcnt);
    213 		ps2 = ps;
    214 	} else {
    215 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    216 		/* XXXAD get rid of this */
    217 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    218 		mutex_enter(&ps->sa_mutex);
    219 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    220 		    sizeof(ps2->sa_sigdesc));
    221 		mutex_exit(&ps->sa_mutex);
    222 		ps2->sa_refcnt = 1;
    223 	}
    224 
    225 	return ps2;
    226 }
    227 
    228 /*
    229  * sigactsunshare:
    230  *
    231  *	Make this process not share its sigctx, maintaining all
    232  *	signal state.
    233  */
    234 void
    235 sigactsunshare(struct proc *p)
    236 {
    237 	struct sigacts *ps, *oldps;
    238 
    239 	oldps = p->p_sigacts;
    240 	if (oldps->sa_refcnt == 1)
    241 		return;
    242 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    243 	/* XXXAD get rid of this */
    244 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    245 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    246 	p->p_sigacts = ps;
    247 	sigactsfree(oldps);
    248 }
    249 
    250 /*
    251  * sigactsfree;
    252  *
    253  *	Release a sigctx structure.
    254  */
    255 void
    256 sigactsfree(struct sigacts *ps)
    257 {
    258 
    259 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    260 		mutex_destroy(&ps->sa_mutex);
    261 		pool_cache_put(sigacts_cache, ps);
    262 	}
    263 }
    264 
    265 /*
    266  * siginit:
    267  *
    268  *	Initialize signal state for process 0; set to ignore signals that
    269  *	are ignored by default and disable the signal stack.  Locking not
    270  *	required as the system is still cold.
    271  */
    272 void
    273 siginit(struct proc *p)
    274 {
    275 	struct lwp *l;
    276 	struct sigacts *ps;
    277 	int signo, prop;
    278 
    279 	ps = p->p_sigacts;
    280 	sigemptyset(&contsigmask);
    281 	sigemptyset(&stopsigmask);
    282 	sigemptyset(&sigcantmask);
    283 	for (signo = 1; signo < NSIG; signo++) {
    284 		prop = sigprop[signo];
    285 		if (prop & SA_CONT)
    286 			sigaddset(&contsigmask, signo);
    287 		if (prop & SA_STOP)
    288 			sigaddset(&stopsigmask, signo);
    289 		if (prop & SA_CANTMASK)
    290 			sigaddset(&sigcantmask, signo);
    291 		if (prop & SA_IGNORE && signo != SIGCONT)
    292 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    293 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    294 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    295 	}
    296 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    297 	p->p_sflag &= ~PS_NOCLDSTOP;
    298 
    299 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    300 	sigemptyset(&p->p_sigpend.sp_set);
    301 
    302 	/*
    303 	 * Reset per LWP state.
    304 	 */
    305 	l = LIST_FIRST(&p->p_lwps);
    306 	l->l_sigwaited = NULL;
    307 	l->l_sigstk.ss_flags = SS_DISABLE;
    308 	l->l_sigstk.ss_size = 0;
    309 	l->l_sigstk.ss_sp = 0;
    310 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    311 	sigemptyset(&l->l_sigpend.sp_set);
    312 
    313 	/* One reference. */
    314 	ps->sa_refcnt = 1;
    315 }
    316 
    317 /*
    318  * execsigs:
    319  *
    320  *	Reset signals for an exec of the specified process.
    321  */
    322 void
    323 execsigs(struct proc *p)
    324 {
    325 	struct sigacts *ps;
    326 	struct lwp *l;
    327 	int signo, prop;
    328 	sigset_t tset;
    329 	ksiginfoq_t kq;
    330 
    331 	KASSERT(p->p_nlwps == 1);
    332 
    333 	sigactsunshare(p);
    334 	ps = p->p_sigacts;
    335 
    336 	/*
    337 	 * Reset caught signals.  Held signals remain held through
    338 	 * l->l_sigmask (unless they were caught, and are now ignored
    339 	 * by default).
    340 	 *
    341 	 * No need to lock yet, the process has only one LWP and
    342 	 * at this point the sigacts are private to the process.
    343 	 */
    344 	sigemptyset(&tset);
    345 	for (signo = 1; signo < NSIG; signo++) {
    346 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    347 			prop = sigprop[signo];
    348 			if (prop & SA_IGNORE) {
    349 				if ((prop & SA_CONT) == 0)
    350 					sigaddset(&p->p_sigctx.ps_sigignore,
    351 					    signo);
    352 				sigaddset(&tset, signo);
    353 			}
    354 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    355 		}
    356 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    357 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    358 	}
    359 	ksiginfo_queue_init(&kq);
    360 
    361 	mutex_enter(p->p_lock);
    362 	sigclearall(p, &tset, &kq);
    363 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    364 
    365 	/*
    366 	 * Reset no zombies if child dies flag as Solaris does.
    367 	 */
    368 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    369 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    370 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    371 
    372 	/*
    373 	 * Reset per-LWP state.
    374 	 */
    375 	l = LIST_FIRST(&p->p_lwps);
    376 	l->l_sigwaited = NULL;
    377 	l->l_sigstk.ss_flags = SS_DISABLE;
    378 	l->l_sigstk.ss_size = 0;
    379 	l->l_sigstk.ss_sp = 0;
    380 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    381 	sigemptyset(&l->l_sigpend.sp_set);
    382 	mutex_exit(p->p_lock);
    383 
    384 	ksiginfo_queue_drain(&kq);
    385 }
    386 
    387 /*
    388  * ksiginfo_exechook:
    389  *
    390  *	Free all pending ksiginfo entries from a process on exec.
    391  *	Additionally, drain any unused ksiginfo structures in the
    392  *	system back to the pool.
    393  *
    394  *	XXX This should not be a hook, every process has signals.
    395  */
    396 static void
    397 ksiginfo_exechook(struct proc *p, void *v)
    398 {
    399 	ksiginfoq_t kq;
    400 
    401 	ksiginfo_queue_init(&kq);
    402 
    403 	mutex_enter(p->p_lock);
    404 	sigclearall(p, NULL, &kq);
    405 	mutex_exit(p->p_lock);
    406 
    407 	ksiginfo_queue_drain(&kq);
    408 }
    409 
    410 /*
    411  * ksiginfo_alloc:
    412  *
    413  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    414  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    415  *	has not been queued somewhere, then just return it.  Additionally,
    416  *	if the existing ksiginfo_t does not contain any information beyond
    417  *	the signal number, then just return it.
    418  */
    419 ksiginfo_t *
    420 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    421 {
    422 	ksiginfo_t *kp;
    423 
    424 	if (ok != NULL) {
    425 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    426 		    KSI_FROMPOOL)
    427 		    	return ok;
    428 		if (KSI_EMPTY_P(ok))
    429 			return ok;
    430 	}
    431 
    432 	kp = pool_get(&ksiginfo_pool, flags);
    433 	if (kp == NULL) {
    434 #ifdef DIAGNOSTIC
    435 		printf("Out of memory allocating ksiginfo for pid %d\n",
    436 		    p->p_pid);
    437 #endif
    438 		return NULL;
    439 	}
    440 
    441 	if (ok != NULL) {
    442 		memcpy(kp, ok, sizeof(*kp));
    443 		kp->ksi_flags &= ~KSI_QUEUED;
    444 	} else
    445 		KSI_INIT_EMPTY(kp);
    446 
    447 	kp->ksi_flags |= KSI_FROMPOOL;
    448 
    449 	return kp;
    450 }
    451 
    452 /*
    453  * ksiginfo_free:
    454  *
    455  *	If the given ksiginfo_t is from the pool and has not been queued,
    456  *	then free it.
    457  */
    458 void
    459 ksiginfo_free(ksiginfo_t *kp)
    460 {
    461 
    462 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    463 		return;
    464 	pool_put(&ksiginfo_pool, kp);
    465 }
    466 
    467 /*
    468  * ksiginfo_queue_drain:
    469  *
    470  *	Drain a non-empty ksiginfo_t queue.
    471  */
    472 void
    473 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    474 {
    475 	ksiginfo_t *ksi;
    476 
    477 	KASSERT(!CIRCLEQ_EMPTY(kq));
    478 
    479 	while (!CIRCLEQ_EMPTY(kq)) {
    480 		ksi = CIRCLEQ_FIRST(kq);
    481 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    482 		pool_put(&ksiginfo_pool, ksi);
    483 	}
    484 }
    485 
    486 /*
    487  * sigget:
    488  *
    489  *	Fetch the first pending signal from a set.  Optionally, also fetch
    490  *	or manufacture a ksiginfo element.  Returns the number of the first
    491  *	pending signal, or zero.
    492  */
    493 int
    494 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    495 {
    496         ksiginfo_t *ksi;
    497 	sigset_t tset;
    498 
    499 	/* If there's no pending set, the signal is from the debugger. */
    500 	if (sp == NULL) {
    501 		if (out != NULL) {
    502 			KSI_INIT(out);
    503 			out->ksi_info._signo = signo;
    504 			out->ksi_info._code = SI_USER;
    505 		}
    506 		return signo;
    507 	}
    508 
    509 	/* Construct mask from signo, and 'mask'. */
    510 	if (signo == 0) {
    511 		if (mask != NULL) {
    512 			tset = *mask;
    513 			__sigandset(&sp->sp_set, &tset);
    514 		} else
    515 			tset = sp->sp_set;
    516 
    517 		/* If there are no signals pending, that's it. */
    518 		if ((signo = firstsig(&tset)) == 0)
    519 			return 0;
    520 	} else {
    521 		KASSERT(sigismember(&sp->sp_set, signo));
    522 	}
    523 
    524 	sigdelset(&sp->sp_set, signo);
    525 
    526 	/* Find siginfo and copy it out. */
    527 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    528 		if (ksi->ksi_signo == signo) {
    529 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    530 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    531 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    532 			ksi->ksi_flags &= ~KSI_QUEUED;
    533 			if (out != NULL) {
    534 				memcpy(out, ksi, sizeof(*out));
    535 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    536 			}
    537 			ksiginfo_free(ksi);
    538 			return signo;
    539 		}
    540 	}
    541 
    542 	/* If there's no siginfo, then manufacture it. */
    543 	if (out != NULL) {
    544 		KSI_INIT(out);
    545 		out->ksi_info._signo = signo;
    546 		out->ksi_info._code = SI_USER;
    547 	}
    548 
    549 	return signo;
    550 }
    551 
    552 /*
    553  * sigput:
    554  *
    555  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    556  *	we need to (e.g. SA_SIGINFO was requested).
    557  */
    558 void
    559 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    560 {
    561 	ksiginfo_t *kp;
    562 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    563 
    564 	KASSERT(mutex_owned(p->p_lock));
    565 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    566 
    567 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    568 
    569 	/*
    570 	 * If siginfo is not required, or there is none, then just mark the
    571 	 * signal as pending.
    572 	 */
    573 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
    574 		return;
    575 
    576 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    577 
    578 #ifdef notyet	/* XXX: QUEUING */
    579 	if (ksi->ksi_signo < SIGRTMIN)
    580 #endif
    581 	{
    582 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    583 			if (kp->ksi_signo == ksi->ksi_signo) {
    584 				KSI_COPY(ksi, kp);
    585 				kp->ksi_flags |= KSI_QUEUED;
    586 				return;
    587 			}
    588 		}
    589 	}
    590 
    591 	ksi->ksi_flags |= KSI_QUEUED;
    592 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    593 }
    594 
    595 /*
    596  * sigclear:
    597  *
    598  *	Clear all pending signals in the specified set.
    599  */
    600 void
    601 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    602 {
    603 	ksiginfo_t *ksi, *next;
    604 
    605 	if (mask == NULL)
    606 		sigemptyset(&sp->sp_set);
    607 	else
    608 		sigminusset(mask, &sp->sp_set);
    609 
    610 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    611 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    612 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    613 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    614 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    615 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    616 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    617 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    618 		}
    619 	}
    620 }
    621 
    622 /*
    623  * sigclearall:
    624  *
    625  *	Clear all pending signals in the specified set from a process and
    626  *	its LWPs.
    627  */
    628 void
    629 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    630 {
    631 	struct lwp *l;
    632 
    633 	KASSERT(mutex_owned(p->p_lock));
    634 
    635 	sigclear(&p->p_sigpend, mask, kq);
    636 
    637 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    638 		sigclear(&l->l_sigpend, mask, kq);
    639 	}
    640 }
    641 
    642 /*
    643  * sigispending:
    644  *
    645  *	Return true if there are pending signals for the current LWP.  May
    646  *	be called unlocked provided that LW_PENDSIG is set, and that the
    647  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    648  *	set.
    649  */
    650 int
    651 sigispending(struct lwp *l, int signo)
    652 {
    653 	struct proc *p = l->l_proc;
    654 	sigset_t tset;
    655 
    656 	membar_consumer();
    657 
    658 	tset = l->l_sigpend.sp_set;
    659 	sigplusset(&p->p_sigpend.sp_set, &tset);
    660 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    661 	sigminusset(&l->l_sigmask, &tset);
    662 
    663 	if (signo == 0) {
    664 		if (firstsig(&tset) != 0)
    665 			return EINTR;
    666 	} else if (sigismember(&tset, signo))
    667 		return EINTR;
    668 
    669 	return 0;
    670 }
    671 
    672 /*
    673  * siginfo_alloc:
    674  *
    675  *	 Allocate a new siginfo_t structure from the pool.
    676  */
    677 siginfo_t *
    678 siginfo_alloc(int flags)
    679 {
    680 
    681 	return pool_get(&siginfo_pool, flags);
    682 }
    683 
    684 /*
    685  * siginfo_free:
    686  *
    687  *	 Return a siginfo_t structure to the pool.
    688  */
    689 void
    690 siginfo_free(void *arg)
    691 {
    692 
    693 	pool_put(&siginfo_pool, arg);
    694 }
    695 
    696 void
    697 getucontext(struct lwp *l, ucontext_t *ucp)
    698 {
    699 	struct proc *p = l->l_proc;
    700 
    701 	KASSERT(mutex_owned(p->p_lock));
    702 
    703 	ucp->uc_flags = 0;
    704 	ucp->uc_link = l->l_ctxlink;
    705 
    706 	ucp->uc_sigmask = l->l_sigmask;
    707 	ucp->uc_flags |= _UC_SIGMASK;
    708 
    709 	/*
    710 	 * The (unsupplied) definition of the `current execution stack'
    711 	 * in the System V Interface Definition appears to allow returning
    712 	 * the main context stack.
    713 	 */
    714 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    715 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    716 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    717 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    718 	} else {
    719 		/* Simply copy alternate signal execution stack. */
    720 		ucp->uc_stack = l->l_sigstk;
    721 	}
    722 	ucp->uc_flags |= _UC_STACK;
    723 	mutex_exit(p->p_lock);
    724 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    725 	mutex_enter(p->p_lock);
    726 }
    727 
    728 int
    729 setucontext(struct lwp *l, const ucontext_t *ucp)
    730 {
    731 	struct proc *p = l->l_proc;
    732 	int error;
    733 
    734 	KASSERT(mutex_owned(p->p_lock));
    735 
    736 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    737 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    738 		if (error != 0)
    739 			return error;
    740 	}
    741 
    742 	mutex_exit(p->p_lock);
    743 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    744 	mutex_enter(p->p_lock);
    745 	if (error != 0)
    746 		return (error);
    747 
    748 	l->l_ctxlink = ucp->uc_link;
    749 
    750 	/*
    751 	 * If there was stack information, update whether or not we are
    752 	 * still running on an alternate signal stack.
    753 	 */
    754 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    755 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    756 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    757 		else
    758 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    759 	}
    760 
    761 	return 0;
    762 }
    763 
    764 /*
    765  * Common code for kill process group/broadcast kill.  cp is calling
    766  * process.
    767  */
    768 int
    769 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    770 {
    771 	struct proc	*p, *cp;
    772 	kauth_cred_t	pc;
    773 	struct pgrp	*pgrp;
    774 	int		nfound;
    775 	int		signo = ksi->ksi_signo;
    776 
    777 	cp = l->l_proc;
    778 	pc = l->l_cred;
    779 	nfound = 0;
    780 
    781 	mutex_enter(proc_lock);
    782 	if (all) {
    783 		/*
    784 		 * broadcast
    785 		 */
    786 		PROCLIST_FOREACH(p, &allproc) {
    787 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
    788 				continue;
    789 			mutex_enter(p->p_lock);
    790 			if (kauth_authorize_process(pc,
    791 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    792 			    NULL) == 0) {
    793 				nfound++;
    794 				if (signo)
    795 					kpsignal2(p, ksi);
    796 			}
    797 			mutex_exit(p->p_lock);
    798 		}
    799 	} else {
    800 		if (pgid == 0)
    801 			/*
    802 			 * zero pgid means send to my process group.
    803 			 */
    804 			pgrp = cp->p_pgrp;
    805 		else {
    806 			pgrp = pg_find(pgid, PFIND_LOCKED);
    807 			if (pgrp == NULL)
    808 				goto out;
    809 		}
    810 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    811 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    812 				continue;
    813 			mutex_enter(p->p_lock);
    814 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    815 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    816 				nfound++;
    817 				if (signo && P_ZOMBIE(p) == 0)
    818 					kpsignal2(p, ksi);
    819 			}
    820 			mutex_exit(p->p_lock);
    821 		}
    822 	}
    823   out:
    824 	mutex_exit(proc_lock);
    825 	return (nfound ? 0 : ESRCH);
    826 }
    827 
    828 /*
    829  * Send a signal to a process group. If checktty is 1, limit to members
    830  * which have a controlling terminal.
    831  */
    832 void
    833 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    834 {
    835 	ksiginfo_t ksi;
    836 
    837 	KASSERT(!cpu_intr_p());
    838 	KASSERT(mutex_owned(proc_lock));
    839 
    840 	KSI_INIT_EMPTY(&ksi);
    841 	ksi.ksi_signo = sig;
    842 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    843 }
    844 
    845 void
    846 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    847 {
    848 	struct proc *p;
    849 
    850 	KASSERT(!cpu_intr_p());
    851 	KASSERT(mutex_owned(proc_lock));
    852 
    853 	if (pgrp)
    854 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    855 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    856 				kpsignal(p, ksi, data);
    857 }
    858 
    859 /*
    860  * Send a signal caused by a trap to the current LWP.  If it will be caught
    861  * immediately, deliver it with correct code.  Otherwise, post it normally.
    862  */
    863 void
    864 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    865 {
    866 	struct proc	*p;
    867 	struct sigacts	*ps;
    868 	int signo = ksi->ksi_signo;
    869 
    870 	KASSERT(KSI_TRAP_P(ksi));
    871 
    872 	ksi->ksi_lid = l->l_lid;
    873 	p = l->l_proc;
    874 
    875 	KASSERT(!cpu_intr_p());
    876 	mutex_enter(proc_lock);
    877 	mutex_enter(p->p_lock);
    878 	ps = p->p_sigacts;
    879 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    880 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    881 	    !sigismember(&l->l_sigmask, signo)) {
    882 		mutex_exit(proc_lock);
    883 		l->l_ru.ru_nsignals++;
    884 		kpsendsig(l, ksi, &l->l_sigmask);
    885 		mutex_exit(p->p_lock);
    886 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    887 		    &l->l_sigmask, ksi);
    888 	} else {
    889 		/* XXX for core dump/debugger */
    890 		p->p_sigctx.ps_lwp = l->l_lid;
    891 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    892 		p->p_sigctx.ps_code = ksi->ksi_trap;
    893 		kpsignal2(p, ksi);
    894 		mutex_exit(p->p_lock);
    895 		mutex_exit(proc_lock);
    896 	}
    897 }
    898 
    899 /*
    900  * Fill in signal information and signal the parent for a child status change.
    901  */
    902 void
    903 child_psignal(struct proc *p, int mask)
    904 {
    905 	ksiginfo_t ksi;
    906 	struct proc *q;
    907 	int xstat;
    908 
    909 	KASSERT(mutex_owned(proc_lock));
    910 	KASSERT(mutex_owned(p->p_lock));
    911 
    912 	xstat = p->p_xstat;
    913 
    914 	KSI_INIT(&ksi);
    915 	ksi.ksi_signo = SIGCHLD;
    916 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    917 	ksi.ksi_pid = p->p_pid;
    918 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    919 	ksi.ksi_status = xstat;
    920 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    921 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    922 
    923 	q = p->p_pptr;
    924 
    925 	mutex_exit(p->p_lock);
    926 	mutex_enter(q->p_lock);
    927 
    928 	if ((q->p_sflag & mask) == 0)
    929 		kpsignal2(q, &ksi);
    930 
    931 	mutex_exit(q->p_lock);
    932 	mutex_enter(p->p_lock);
    933 }
    934 
    935 void
    936 psignal(struct proc *p, int signo)
    937 {
    938 	ksiginfo_t ksi;
    939 
    940 	KASSERT(!cpu_intr_p());
    941 	KASSERT(mutex_owned(proc_lock));
    942 
    943 	KSI_INIT_EMPTY(&ksi);
    944 	ksi.ksi_signo = signo;
    945 	mutex_enter(p->p_lock);
    946 	kpsignal2(p, &ksi);
    947 	mutex_exit(p->p_lock);
    948 }
    949 
    950 void
    951 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    952 {
    953 	fdfile_t *ff;
    954 	file_t *fp;
    955 
    956 	KASSERT(!cpu_intr_p());
    957 	KASSERT(mutex_owned(proc_lock));
    958 
    959 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    960 		size_t fd;
    961 		filedesc_t *fdp = p->p_fd;
    962 
    963 		/* XXXSMP locking */
    964 		ksi->ksi_fd = -1;
    965 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    966 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
    967 				continue;
    968 			if ((fp = ff->ff_file) == NULL)
    969 				continue;
    970 			if (fp->f_data == data) {
    971 				ksi->ksi_fd = fd;
    972 				break;
    973 			}
    974 		}
    975 	}
    976 	mutex_enter(p->p_lock);
    977 	kpsignal2(p, ksi);
    978 	mutex_exit(p->p_lock);
    979 }
    980 
    981 /*
    982  * sigismasked:
    983  *
    984  *	 Returns true if signal is ignored or masked for the specified LWP.
    985  */
    986 int
    987 sigismasked(struct lwp *l, int sig)
    988 {
    989 	struct proc *p = l->l_proc;
    990 
    991 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
    992 	    sigismember(&l->l_sigmask, sig));
    993 }
    994 
    995 /*
    996  * sigpost:
    997  *
    998  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
    999  *	 able to take the signal.
   1000  */
   1001 int
   1002 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1003 {
   1004 	int rv, masked;
   1005 
   1006 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1007 
   1008 	/*
   1009 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1010 	 * pending signals.  Don't give it more.
   1011 	 */
   1012 	if (l->l_refcnt == 0)
   1013 		return 0;
   1014 
   1015 	lwp_lock(l);
   1016 
   1017 	/*
   1018 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1019 	 * is found to take the signal immediately, it should be taken soon.
   1020 	 */
   1021 	l->l_flag |= LW_PENDSIG;
   1022 
   1023 	/*
   1024 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1025 	 */
   1026 	masked = sigismember(&l->l_sigmask, sig);
   1027 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1028 		lwp_unlock(l);
   1029 		return 0;
   1030 	}
   1031 
   1032 	/*
   1033 	 * If killing the process, make it run fast.
   1034 	 */
   1035 	if (__predict_false((prop & SA_KILL) != 0) &&
   1036 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1037 		KASSERT(l->l_class == SCHED_OTHER);
   1038 		lwp_changepri(l, MAXPRI_USER);
   1039 	}
   1040 
   1041 	/*
   1042 	 * If the LWP is running or on a run queue, then we win.  If it's
   1043 	 * sleeping interruptably, wake it and make it take the signal.  If
   1044 	 * the sleep isn't interruptable, then the chances are it will get
   1045 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1046 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1047 	 * for later; otherwise punt.
   1048 	 */
   1049 	rv = 0;
   1050 
   1051 	switch (l->l_stat) {
   1052 	case LSRUN:
   1053 	case LSONPROC:
   1054 		lwp_need_userret(l);
   1055 		rv = 1;
   1056 		break;
   1057 
   1058 	case LSSLEEP:
   1059 		if ((l->l_flag & LW_SINTR) != 0) {
   1060 			/* setrunnable() will release the lock. */
   1061 			setrunnable(l);
   1062 			return 1;
   1063 		}
   1064 		break;
   1065 
   1066 	case LSSUSPENDED:
   1067 		if ((prop & SA_KILL) != 0) {
   1068 			/* lwp_continue() will release the lock. */
   1069 			lwp_continue(l);
   1070 			return 1;
   1071 		}
   1072 		break;
   1073 
   1074 	case LSSTOP:
   1075 		if ((prop & SA_STOP) != 0)
   1076 			break;
   1077 
   1078 		/*
   1079 		 * If the LWP is stopped and we are sending a continue
   1080 		 * signal, then start it again.
   1081 		 */
   1082 		if ((prop & SA_CONT) != 0) {
   1083 			if (l->l_wchan != NULL) {
   1084 				l->l_stat = LSSLEEP;
   1085 				l->l_proc->p_nrlwps++;
   1086 				rv = 1;
   1087 				break;
   1088 			}
   1089 			/* setrunnable() will release the lock. */
   1090 			setrunnable(l);
   1091 			return 1;
   1092 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1093 			/* setrunnable() will release the lock. */
   1094 			setrunnable(l);
   1095 			return 1;
   1096 		}
   1097 		break;
   1098 
   1099 	default:
   1100 		break;
   1101 	}
   1102 
   1103 	lwp_unlock(l);
   1104 	return rv;
   1105 }
   1106 
   1107 /*
   1108  * Notify an LWP that it has a pending signal.
   1109  */
   1110 void
   1111 signotify(struct lwp *l)
   1112 {
   1113 	KASSERT(lwp_locked(l, NULL));
   1114 
   1115 	l->l_flag |= LW_PENDSIG;
   1116 	lwp_need_userret(l);
   1117 }
   1118 
   1119 /*
   1120  * Find an LWP within process p that is waiting on signal ksi, and hand
   1121  * it on.
   1122  */
   1123 int
   1124 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1125 {
   1126 	struct lwp *l;
   1127 	int signo;
   1128 
   1129 	KASSERT(mutex_owned(p->p_lock));
   1130 
   1131 	signo = ksi->ksi_signo;
   1132 
   1133 	if (ksi->ksi_lid != 0) {
   1134 		/*
   1135 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1136 		 * it's interested.
   1137 		 */
   1138 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1139 			return 0;
   1140 		if (l->l_sigwaited == NULL ||
   1141 		    !sigismember(&l->l_sigwaitset, signo))
   1142 			return 0;
   1143 	} else {
   1144 		/*
   1145 		 * Look for any LWP that may be interested.
   1146 		 */
   1147 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1148 			KASSERT(l->l_sigwaited != NULL);
   1149 			if (sigismember(&l->l_sigwaitset, signo))
   1150 				break;
   1151 		}
   1152 	}
   1153 
   1154 	if (l != NULL) {
   1155 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1156 		l->l_sigwaited = NULL;
   1157 		LIST_REMOVE(l, l_sigwaiter);
   1158 		cv_signal(&l->l_sigcv);
   1159 		return 1;
   1160 	}
   1161 
   1162 	return 0;
   1163 }
   1164 
   1165 /*
   1166  * Send the signal to the process.  If the signal has an action, the action
   1167  * is usually performed by the target process rather than the caller; we add
   1168  * the signal to the set of pending signals for the process.
   1169  *
   1170  * Exceptions:
   1171  *   o When a stop signal is sent to a sleeping process that takes the
   1172  *     default action, the process is stopped without awakening it.
   1173  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1174  *     regardless of the signal action (eg, blocked or ignored).
   1175  *
   1176  * Other ignored signals are discarded immediately.
   1177  */
   1178 void
   1179 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1180 {
   1181 	int prop, lid, toall, signo = ksi->ksi_signo;
   1182 	struct sigacts *sa;
   1183 	struct lwp *l;
   1184 	ksiginfo_t *kp;
   1185 	ksiginfoq_t kq;
   1186 	sig_t action;
   1187 
   1188 	KASSERT(!cpu_intr_p());
   1189 	KASSERT(mutex_owned(proc_lock));
   1190 	KASSERT(mutex_owned(p->p_lock));
   1191 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1192 	KASSERT(signo > 0 && signo < NSIG);
   1193 
   1194 	/*
   1195 	 * If the process is being created by fork, is a zombie or is
   1196 	 * exiting, then just drop the signal here and bail out.
   1197 	 */
   1198 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1199 		return;
   1200 
   1201 	/*
   1202 	 * Notify any interested parties of the signal.
   1203 	 */
   1204 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1205 
   1206 	/*
   1207 	 * Some signals including SIGKILL must act on the entire process.
   1208 	 */
   1209 	kp = NULL;
   1210 	prop = sigprop[signo];
   1211 	toall = ((prop & SA_TOALL) != 0);
   1212 
   1213 	if (toall)
   1214 		lid = 0;
   1215 	else
   1216 		lid = ksi->ksi_lid;
   1217 
   1218 	/*
   1219 	 * If proc is traced, always give parent a chance.
   1220 	 */
   1221 	if (p->p_slflag & PSL_TRACED) {
   1222 		action = SIG_DFL;
   1223 
   1224 		if (lid == 0) {
   1225 			/*
   1226 			 * If the process is being traced and the signal
   1227 			 * is being caught, make sure to save any ksiginfo.
   1228 			 */
   1229 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1230 				return;
   1231 			sigput(&p->p_sigpend, p, kp);
   1232 		}
   1233 	} else {
   1234 		/*
   1235 		 * If the signal was the result of a trap and is not being
   1236 		 * caught, then reset it to default action so that the
   1237 		 * process dumps core immediately.
   1238 		 */
   1239 		if (KSI_TRAP_P(ksi)) {
   1240 			sa = p->p_sigacts;
   1241 			mutex_enter(&sa->sa_mutex);
   1242 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1243 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1244 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1245 			}
   1246 			mutex_exit(&sa->sa_mutex);
   1247 		}
   1248 
   1249 		/*
   1250 		 * If the signal is being ignored, then drop it.  Note: we
   1251 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1252 		 * SIG_IGN, action will be SIG_DFL here.
   1253 		 */
   1254 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1255 			return;
   1256 
   1257 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1258 			action = SIG_CATCH;
   1259 		else {
   1260 			action = SIG_DFL;
   1261 
   1262 			/*
   1263 			 * If sending a tty stop signal to a member of an
   1264 			 * orphaned process group, discard the signal here if
   1265 			 * the action is default; don't stop the process below
   1266 			 * if sleeping, and don't clear any pending SIGCONT.
   1267 			 */
   1268 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1269 				return;
   1270 
   1271 			if (prop & SA_KILL && p->p_nice > NZERO)
   1272 				p->p_nice = NZERO;
   1273 		}
   1274 	}
   1275 
   1276 	/*
   1277 	 * If stopping or continuing a process, discard any pending
   1278 	 * signals that would do the inverse.
   1279 	 */
   1280 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1281 		ksiginfo_queue_init(&kq);
   1282 		if ((prop & SA_CONT) != 0)
   1283 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1284 		if ((prop & SA_STOP) != 0)
   1285 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1286 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1287 	}
   1288 
   1289 	/*
   1290 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1291 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1292 	 * the signal info.  The signal won't be processed further here.
   1293 	 */
   1294 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1295 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1296 	    sigunwait(p, ksi))
   1297 		return;
   1298 
   1299 	/*
   1300 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1301 	 * here.
   1302 	 */
   1303 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1304 		return;
   1305 
   1306 	/*
   1307 	 * LWP private signals are easy - just find the LWP and post
   1308 	 * the signal to it.
   1309 	 */
   1310 	if (lid != 0) {
   1311 		l = lwp_find(p, lid);
   1312 		if (l != NULL) {
   1313 			sigput(&l->l_sigpend, p, kp);
   1314 			membar_producer();
   1315 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1316 		}
   1317 		goto out;
   1318 	}
   1319 
   1320 	/*
   1321 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
   1322 	 */
   1323 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1324 		if ((p->p_slflag & PSL_TRACED) != 0)
   1325 			goto deliver;
   1326 
   1327 		/*
   1328 		 * If SIGCONT is default (or ignored) and process is
   1329 		 * asleep, we are finished; the process should not
   1330 		 * be awakened.
   1331 		 */
   1332 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1333 			goto out;
   1334 
   1335 		sigput(&p->p_sigpend, p, kp);
   1336 	} else {
   1337 		/*
   1338 		 * Process is stopped or stopping.  If traced, then no
   1339 		 * further action is necessary.
   1340 		 */
   1341 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1342 			goto out;
   1343 
   1344 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1345 			/*
   1346 			 * Re-adjust p_nstopchild if the process wasn't
   1347 			 * collected by its parent.
   1348 			 */
   1349 			p->p_stat = SACTIVE;
   1350 			p->p_sflag &= ~PS_STOPPING;
   1351 			if (!p->p_waited)
   1352 				p->p_pptr->p_nstopchild--;
   1353 
   1354 			/*
   1355 			 * If SIGCONT is default (or ignored), we continue
   1356 			 * the process but don't leave the signal in
   1357 			 * ps_siglist, as it has no further action.  If
   1358 			 * SIGCONT is held, we continue the process and
   1359 			 * leave the signal in ps_siglist.  If the process
   1360 			 * catches SIGCONT, let it handle the signal itself.
   1361 			 * If it isn't waiting on an event, then it goes
   1362 			 * back to run state.  Otherwise, process goes back
   1363 			 * to sleep state.
   1364 			 */
   1365 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1366 				sigput(&p->p_sigpend, p, kp);
   1367 		} else if ((prop & SA_STOP) != 0) {
   1368 			/*
   1369 			 * Already stopped, don't need to stop again.
   1370 			 * (If we did the shell could get confused.)
   1371 			 */
   1372 			goto out;
   1373 		} else
   1374 			sigput(&p->p_sigpend, p, kp);
   1375 	}
   1376 
   1377  deliver:
   1378 	/*
   1379 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1380 	 * visible on the per process list (for sigispending()).  This
   1381 	 * is unlikely to be needed in practice, but...
   1382 	 */
   1383 	membar_producer();
   1384 
   1385 	/*
   1386 	 * Try to find an LWP that can take the signal.
   1387 	 */
   1388 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1389 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1390 			break;
   1391 
   1392  out:
   1393  	/*
   1394  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1395  	 * with locks held.  The caller should take care of this.
   1396  	 */
   1397  	ksiginfo_free(kp);
   1398 }
   1399 
   1400 void
   1401 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1402 {
   1403 	struct proc *p = l->l_proc;
   1404 
   1405 	KASSERT(mutex_owned(p->p_lock));
   1406 
   1407 	(*p->p_emul->e_sendsig)(ksi, mask);
   1408 }
   1409 
   1410 /*
   1411  * Stop any LWPs sleeping interruptably.
   1412  */
   1413 static void
   1414 proc_stop_lwps(struct proc *p)
   1415 {
   1416 	struct lwp *l;
   1417 
   1418 	KASSERT(mutex_owned(p->p_lock));
   1419 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1420 
   1421 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1422 		lwp_lock(l);
   1423 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1424 			l->l_stat = LSSTOP;
   1425 			p->p_nrlwps--;
   1426 		}
   1427 		lwp_unlock(l);
   1428 	}
   1429 }
   1430 
   1431 /*
   1432  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1433  *
   1434  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1435  */
   1436 static void
   1437 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1438 {
   1439 
   1440 	KASSERT(mutex_owned(proc_lock));
   1441 	KASSERT(mutex_owned(p->p_lock));
   1442 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1443 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1444 
   1445 	p->p_sflag &= ~PS_STOPPING;
   1446 	p->p_stat = SSTOP;
   1447 	p->p_waited = 0;
   1448 	p->p_pptr->p_nstopchild++;
   1449 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1450 		if (ppsig) {
   1451 			/* child_psignal drops p_lock briefly. */
   1452 			child_psignal(p, ppmask);
   1453 		}
   1454 		cv_broadcast(&p->p_pptr->p_waitcv);
   1455 	}
   1456 }
   1457 
   1458 /*
   1459  * Stop the current process and switch away when being stopped or traced.
   1460  */
   1461 void
   1462 sigswitch(bool ppsig, int ppmask, int signo)
   1463 {
   1464 	struct lwp *l = curlwp;
   1465 	struct proc *p = l->l_proc;
   1466 #ifdef MULTIPROCESSOR
   1467 	int biglocks;
   1468 #endif
   1469 
   1470 	KASSERT(mutex_owned(p->p_lock));
   1471 	KASSERT(l->l_stat == LSONPROC);
   1472 	KASSERT(p->p_nrlwps > 0);
   1473 
   1474 	/*
   1475 	 * On entry we know that the process needs to stop.  If it's
   1476 	 * the result of a 'sideways' stop signal that has been sourced
   1477 	 * through issignal(), then stop other LWPs in the process too.
   1478 	 */
   1479 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1480 		KASSERT(signo != 0);
   1481 		proc_stop(p, 1, signo);
   1482 		KASSERT(p->p_nrlwps > 0);
   1483 	}
   1484 
   1485 	/*
   1486 	 * If we are the last live LWP, and the stop was a result of
   1487 	 * a new signal, then signal the parent.
   1488 	 */
   1489 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1490 		if (!mutex_tryenter(proc_lock)) {
   1491 			mutex_exit(p->p_lock);
   1492 			mutex_enter(proc_lock);
   1493 			mutex_enter(p->p_lock);
   1494 		}
   1495 
   1496 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1497 			/*
   1498 			 * Note that proc_stop_done() can drop
   1499 			 * p->p_lock briefly.
   1500 			 */
   1501 			proc_stop_done(p, ppsig, ppmask);
   1502 		}
   1503 
   1504 		mutex_exit(proc_lock);
   1505 	}
   1506 
   1507 	/*
   1508 	 * Unlock and switch away.
   1509 	 */
   1510 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1511 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1512 		p->p_nrlwps--;
   1513 		lwp_lock(l);
   1514 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1515 		l->l_stat = LSSTOP;
   1516 		lwp_unlock(l);
   1517 	}
   1518 
   1519 	mutex_exit(p->p_lock);
   1520 	lwp_lock(l);
   1521 	mi_switch(l);
   1522 	KERNEL_LOCK(biglocks, l);
   1523 	mutex_enter(p->p_lock);
   1524 }
   1525 
   1526 /*
   1527  * Check for a signal from the debugger.
   1528  */
   1529 int
   1530 sigchecktrace(sigpend_t **spp)
   1531 {
   1532 	struct lwp *l = curlwp;
   1533 	struct proc *p = l->l_proc;
   1534 	int signo;
   1535 
   1536 	KASSERT(mutex_owned(p->p_lock));
   1537 
   1538 	/*
   1539 	 * If we are no longer being traced, or the parent didn't
   1540 	 * give us a signal, look for more signals.
   1541 	 */
   1542 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1543 		return 0;
   1544 
   1545 	/* If there's a pending SIGKILL, process it immediately. */
   1546 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1547 		return 0;
   1548 
   1549 	/*
   1550 	 * If the new signal is being masked, look for other signals.
   1551 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1552 	 */
   1553 	signo = p->p_xstat;
   1554 	p->p_xstat = 0;
   1555 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1556 		*spp = &l->l_sigpend;
   1557 	else
   1558 		*spp = &p->p_sigpend;
   1559 	if (sigismember(&l->l_sigmask, signo))
   1560 		signo = 0;
   1561 
   1562 	return signo;
   1563 }
   1564 
   1565 /*
   1566  * If the current process has received a signal (should be caught or cause
   1567  * termination, should interrupt current syscall), return the signal number.
   1568  *
   1569  * Stop signals with default action are processed immediately, then cleared;
   1570  * they aren't returned.  This is checked after each entry to the system for
   1571  * a syscall or trap.
   1572  *
   1573  * We will also return -1 if the process is exiting and the current LWP must
   1574  * follow suit.
   1575  *
   1576  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1577  * can switch away, though.
   1578  */
   1579 int
   1580 issignal(struct lwp *l)
   1581 {
   1582 	struct proc *p = l->l_proc;
   1583 	int signo = 0, prop;
   1584 	sigpend_t *sp = NULL;
   1585 	sigset_t ss;
   1586 
   1587 	KASSERT(mutex_owned(p->p_lock));
   1588 
   1589 	for (;;) {
   1590 		/* Discard any signals that we have decided not to take. */
   1591 		if (signo != 0)
   1592 			(void)sigget(sp, NULL, signo, NULL);
   1593 
   1594 		/*
   1595 		 * If the process is stopped/stopping, then stop ourselves
   1596 		 * now that we're on the kernel/userspace boundary.  When
   1597 		 * we awaken, check for a signal from the debugger.
   1598 		 */
   1599 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1600 			sigswitch(true, PS_NOCLDSTOP, 0);
   1601 			signo = sigchecktrace(&sp);
   1602 		} else
   1603 			signo = 0;
   1604 
   1605 		/*
   1606 		 * If the debugger didn't provide a signal, find a pending
   1607 		 * signal from our set.  Check per-LWP signals first, and
   1608 		 * then per-process.
   1609 		 */
   1610 		if (signo == 0) {
   1611 			sp = &l->l_sigpend;
   1612 			ss = sp->sp_set;
   1613 			if ((p->p_sflag & PS_PPWAIT) != 0)
   1614 				sigminusset(&stopsigmask, &ss);
   1615 			sigminusset(&l->l_sigmask, &ss);
   1616 
   1617 			if ((signo = firstsig(&ss)) == 0) {
   1618 				sp = &p->p_sigpend;
   1619 				ss = sp->sp_set;
   1620 				if ((p->p_sflag & PS_PPWAIT) != 0)
   1621 					sigminusset(&stopsigmask, &ss);
   1622 				sigminusset(&l->l_sigmask, &ss);
   1623 
   1624 				if ((signo = firstsig(&ss)) == 0) {
   1625 					/*
   1626 					 * No signal pending - clear the
   1627 					 * indicator and bail out.
   1628 					 */
   1629 					lwp_lock(l);
   1630 					l->l_flag &= ~LW_PENDSIG;
   1631 					lwp_unlock(l);
   1632 					sp = NULL;
   1633 					break;
   1634 				}
   1635 			}
   1636 		}
   1637 
   1638 		/*
   1639 		 * We should see pending but ignored signals only if
   1640 		 * we are being traced.
   1641 		 */
   1642 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1643 		    (p->p_slflag & PSL_TRACED) == 0) {
   1644 			/* Discard the signal. */
   1645 			continue;
   1646 		}
   1647 
   1648 		/*
   1649 		 * If traced, always stop, and stay stopped until released
   1650 		 * by the debugger.  If the our parent process is waiting
   1651 		 * for us, don't hang as we could deadlock.
   1652 		 */
   1653 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1654 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
   1655 			/* Take the signal. */
   1656 			(void)sigget(sp, NULL, signo, NULL);
   1657 			p->p_xstat = signo;
   1658 
   1659 			/* Emulation-specific handling of signal trace */
   1660 			if (p->p_emul->e_tracesig == NULL ||
   1661 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1662 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1663 				    signo);
   1664 
   1665 			/* Check for a signal from the debugger. */
   1666 			if ((signo = sigchecktrace(&sp)) == 0)
   1667 				continue;
   1668 		}
   1669 
   1670 		prop = sigprop[signo];
   1671 
   1672 		/*
   1673 		 * Decide whether the signal should be returned.
   1674 		 */
   1675 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1676 		case (long)SIG_DFL:
   1677 			/*
   1678 			 * Don't take default actions on system processes.
   1679 			 */
   1680 			if (p->p_pid <= 1) {
   1681 #ifdef DIAGNOSTIC
   1682 				/*
   1683 				 * Are you sure you want to ignore SIGSEGV
   1684 				 * in init? XXX
   1685 				 */
   1686 				printf_nolog("Process (pid %d) got sig %d\n",
   1687 				    p->p_pid, signo);
   1688 #endif
   1689 				continue;
   1690 			}
   1691 
   1692 			/*
   1693 			 * If there is a pending stop signal to process with
   1694 			 * default action, stop here, then clear the signal.
   1695 			 * However, if process is member of an orphaned
   1696 			 * process group, ignore tty stop signals.
   1697 			 */
   1698 			if (prop & SA_STOP) {
   1699 				/*
   1700 				 * XXX Don't hold proc_lock for p_lflag,
   1701 				 * but it's not a big deal.
   1702 				 */
   1703 				if (p->p_slflag & PSL_TRACED ||
   1704 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1705 				    prop & SA_TTYSTOP)) {
   1706 				    	/* Ignore the signal. */
   1707 					continue;
   1708 				}
   1709 				/* Take the signal. */
   1710 				(void)sigget(sp, NULL, signo, NULL);
   1711 				p->p_xstat = signo;
   1712 				signo = 0;
   1713 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1714 			} else if (prop & SA_IGNORE) {
   1715 				/*
   1716 				 * Except for SIGCONT, shouldn't get here.
   1717 				 * Default action is to ignore; drop it.
   1718 				 */
   1719 				continue;
   1720 			}
   1721 			break;
   1722 
   1723 		case (long)SIG_IGN:
   1724 #ifdef DEBUG_ISSIGNAL
   1725 			/*
   1726 			 * Masking above should prevent us ever trying
   1727 			 * to take action on an ignored signal other
   1728 			 * than SIGCONT, unless process is traced.
   1729 			 */
   1730 			if ((prop & SA_CONT) == 0 &&
   1731 			    (p->p_slflag & PSL_TRACED) == 0)
   1732 				printf_nolog("issignal\n");
   1733 #endif
   1734 			continue;
   1735 
   1736 		default:
   1737 			/*
   1738 			 * This signal has an action, let postsig() process
   1739 			 * it.
   1740 			 */
   1741 			break;
   1742 		}
   1743 
   1744 		break;
   1745 	}
   1746 
   1747 	l->l_sigpendset = sp;
   1748 	return signo;
   1749 }
   1750 
   1751 /*
   1752  * Take the action for the specified signal
   1753  * from the current set of pending signals.
   1754  */
   1755 void
   1756 postsig(int signo)
   1757 {
   1758 	struct lwp	*l;
   1759 	struct proc	*p;
   1760 	struct sigacts	*ps;
   1761 	sig_t		action;
   1762 	sigset_t	*returnmask;
   1763 	ksiginfo_t	ksi;
   1764 
   1765 	l = curlwp;
   1766 	p = l->l_proc;
   1767 	ps = p->p_sigacts;
   1768 
   1769 	KASSERT(mutex_owned(p->p_lock));
   1770 	KASSERT(signo > 0);
   1771 
   1772 	/*
   1773 	 * Set the new mask value and also defer further occurrences of this
   1774 	 * signal.
   1775 	 *
   1776 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1777 	 * not of interest, but rather the mask from before the sigsuspen is
   1778 	 * what we want restored after the signal processing is completed.
   1779 	 */
   1780 	if (l->l_sigrestore) {
   1781 		returnmask = &l->l_sigoldmask;
   1782 		l->l_sigrestore = 0;
   1783 	} else
   1784 		returnmask = &l->l_sigmask;
   1785 
   1786 	/*
   1787 	 * Commit to taking the signal before releasing the mutex.
   1788 	 */
   1789 	action = SIGACTION_PS(ps, signo).sa_handler;
   1790 	l->l_ru.ru_nsignals++;
   1791 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1792 
   1793 	if (ktrpoint(KTR_PSIG)) {
   1794 		mutex_exit(p->p_lock);
   1795 		ktrpsig(signo, action, returnmask, NULL);
   1796 		mutex_enter(p->p_lock);
   1797 	}
   1798 
   1799 	if (action == SIG_DFL) {
   1800 		/*
   1801 		 * Default action, where the default is to kill
   1802 		 * the process.  (Other cases were ignored above.)
   1803 		 */
   1804 		sigexit(l, signo);
   1805 		return;
   1806 	}
   1807 
   1808 	/*
   1809 	 * If we get here, the signal must be caught.
   1810 	 */
   1811 #ifdef DIAGNOSTIC
   1812 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1813 		panic("postsig action");
   1814 #endif
   1815 
   1816 	kpsendsig(l, &ksi, returnmask);
   1817 }
   1818 
   1819 /*
   1820  * sendsig_reset:
   1821  *
   1822  *	Reset the signal action.  Called from emulation specific sendsig()
   1823  *	before unlocking to deliver the signal.
   1824  */
   1825 void
   1826 sendsig_reset(struct lwp *l, int signo)
   1827 {
   1828 	struct proc *p = l->l_proc;
   1829 	struct sigacts *ps = p->p_sigacts;
   1830 
   1831 	KASSERT(mutex_owned(p->p_lock));
   1832 
   1833 	p->p_sigctx.ps_lwp = 0;
   1834 	p->p_sigctx.ps_code = 0;
   1835 	p->p_sigctx.ps_signo = 0;
   1836 
   1837 	mutex_enter(&ps->sa_mutex);
   1838 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1839 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1840 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1841 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1842 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1843 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1844 	}
   1845 	mutex_exit(&ps->sa_mutex);
   1846 }
   1847 
   1848 /*
   1849  * Kill the current process for stated reason.
   1850  */
   1851 void
   1852 killproc(struct proc *p, const char *why)
   1853 {
   1854 
   1855 	KASSERT(mutex_owned(proc_lock));
   1856 
   1857 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1858 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1859 	psignal(p, SIGKILL);
   1860 }
   1861 
   1862 /*
   1863  * Force the current process to exit with the specified signal, dumping core
   1864  * if appropriate.  We bypass the normal tests for masked and caught
   1865  * signals, allowing unrecoverable failures to terminate the process without
   1866  * changing signal state.  Mark the accounting record with the signal
   1867  * termination.  If dumping core, save the signal number for the debugger.
   1868  * Calls exit and does not return.
   1869  */
   1870 void
   1871 sigexit(struct lwp *l, int signo)
   1872 {
   1873 	int exitsig, error, docore;
   1874 	struct proc *p;
   1875 	struct lwp *t;
   1876 
   1877 	p = l->l_proc;
   1878 
   1879 	KASSERT(mutex_owned(p->p_lock));
   1880 	KERNEL_UNLOCK_ALL(l, NULL);
   1881 
   1882 	/*
   1883 	 * Don't permit coredump() multiple times in the same process.
   1884 	 * Call back into sigexit, where we will be suspended until
   1885 	 * the deed is done.  Note that this is a recursive call, but
   1886 	 * LW_WCORE will prevent us from coming back this way.
   1887 	 */
   1888 	if ((p->p_sflag & PS_WCORE) != 0) {
   1889 		lwp_lock(l);
   1890 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1891 		lwp_unlock(l);
   1892 		mutex_exit(p->p_lock);
   1893 		lwp_userret(l);
   1894 #ifdef DIAGNOSTIC
   1895 		panic("sigexit");
   1896 #endif
   1897 		/* NOTREACHED */
   1898 	}
   1899 
   1900 	/*
   1901 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1902 	 * so that their registers are available long enough to be dumped.
   1903  	 */
   1904 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1905 		p->p_sflag |= PS_WCORE;
   1906 		for (;;) {
   1907 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1908 				lwp_lock(t);
   1909 				if (t == l) {
   1910 					t->l_flag &= ~LW_WSUSPEND;
   1911 					lwp_unlock(t);
   1912 					continue;
   1913 				}
   1914 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1915 				lwp_suspend(l, t);
   1916 			}
   1917 
   1918 			if (p->p_nrlwps == 1)
   1919 				break;
   1920 
   1921 			/*
   1922 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   1923 			 * for everyone else to stop before proceeding.
   1924 			 */
   1925 			p->p_nlwpwait++;
   1926 			cv_broadcast(&p->p_lwpcv);
   1927 			cv_wait(&p->p_lwpcv, p->p_lock);
   1928 			p->p_nlwpwait--;
   1929 		}
   1930 	}
   1931 
   1932 	exitsig = signo;
   1933 	p->p_acflag |= AXSIG;
   1934 	p->p_sigctx.ps_signo = signo;
   1935 	mutex_exit(p->p_lock);
   1936 
   1937 	if (docore) {
   1938 		if ((error = coredump(l, NULL)) == 0)
   1939 			exitsig |= WCOREFLAG;
   1940 
   1941 		if (kern_logsigexit) {
   1942 			int uid = l->l_cred ?
   1943 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   1944 
   1945 			if (error)
   1946 				log(LOG_INFO, lognocoredump, p->p_pid,
   1947 				    p->p_comm, uid, signo, error);
   1948 			else
   1949 				log(LOG_INFO, logcoredump, p->p_pid,
   1950 				    p->p_comm, uid, signo);
   1951 		}
   1952 
   1953 #ifdef PAX_SEGVGUARD
   1954 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   1955 #endif /* PAX_SEGVGUARD */
   1956 	}
   1957 
   1958 	/* Acquire the sched state mutex.  exit1() will release it. */
   1959 	mutex_enter(p->p_lock);
   1960 
   1961 	/* No longer dumping core. */
   1962 	p->p_sflag &= ~PS_WCORE;
   1963 
   1964 	exit1(l, W_EXITCODE(0, exitsig));
   1965 	/* NOTREACHED */
   1966 }
   1967 
   1968 /*
   1969  * Put process 'p' into the stopped state and optionally, notify the parent.
   1970  */
   1971 void
   1972 proc_stop(struct proc *p, int notify, int signo)
   1973 {
   1974 	struct lwp *l;
   1975 
   1976 	KASSERT(mutex_owned(p->p_lock));
   1977 
   1978 	/*
   1979 	 * First off, set the stopping indicator and bring all sleeping
   1980 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   1981 	 * unlock between here and the p->p_nrlwps check below.
   1982 	 */
   1983 	p->p_sflag |= PS_STOPPING;
   1984 	if (notify)
   1985 		p->p_sflag |= PS_NOTIFYSTOP;
   1986 	else
   1987 		p->p_sflag &= ~PS_NOTIFYSTOP;
   1988 	membar_producer();
   1989 
   1990 	proc_stop_lwps(p);
   1991 
   1992 	/*
   1993 	 * If there are no LWPs available to take the signal, then we
   1994 	 * signal the parent process immediately.  Otherwise, the last
   1995 	 * LWP to stop will take care of it.
   1996 	 */
   1997 
   1998 	if (p->p_nrlwps == 0) {
   1999 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2000 	} else {
   2001 		/*
   2002 		 * Have the remaining LWPs come to a halt, and trigger
   2003 		 * proc_stop_callout() to ensure that they do.
   2004 		 */
   2005 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2006 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2007 		callout_schedule(&proc_stop_ch, 1);
   2008 	}
   2009 }
   2010 
   2011 /*
   2012  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2013  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2014  * to allow LWPs to release any locks that they may hold before stopping.
   2015  *
   2016  * Non-interruptable sleeps can be long, and there is the potential for an
   2017  * LWP to begin sleeping interruptably soon after the process has been set
   2018  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2019  * stopping, and so complete halt of the process and the return of status
   2020  * information to the parent could be delayed indefinitely.
   2021  *
   2022  * To handle this race, proc_stop_callout() runs once per tick while there
   2023  * are stopping processes in the system.  It sets LWPs that are sleeping
   2024  * interruptably into the LSSTOP state.
   2025  *
   2026  * Note that we are not concerned about keeping all LWPs stopped while the
   2027  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2028  * What we do need to ensure is that all LWPs in a stopping process have
   2029  * stopped at least once, so that notification can be sent to the parent
   2030  * process.
   2031  */
   2032 static void
   2033 proc_stop_callout(void *cookie)
   2034 {
   2035 	bool more, restart;
   2036 	struct proc *p;
   2037 
   2038 	(void)cookie;
   2039 
   2040 	do {
   2041 		restart = false;
   2042 		more = false;
   2043 
   2044 		mutex_enter(proc_lock);
   2045 		PROCLIST_FOREACH(p, &allproc) {
   2046 			mutex_enter(p->p_lock);
   2047 
   2048 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2049 				mutex_exit(p->p_lock);
   2050 				continue;
   2051 			}
   2052 
   2053 			/* Stop any LWPs sleeping interruptably. */
   2054 			proc_stop_lwps(p);
   2055 			if (p->p_nrlwps == 0) {
   2056 				/*
   2057 				 * We brought the process to a halt.
   2058 				 * Mark it as stopped and notify the
   2059 				 * parent.
   2060 				 */
   2061 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2062 					/*
   2063 					 * Note that proc_stop_done() will
   2064 					 * drop p->p_lock briefly.
   2065 					 * Arrange to restart and check
   2066 					 * all processes again.
   2067 					 */
   2068 					restart = true;
   2069 				}
   2070 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2071 			} else
   2072 				more = true;
   2073 
   2074 			mutex_exit(p->p_lock);
   2075 			if (restart)
   2076 				break;
   2077 		}
   2078 		mutex_exit(proc_lock);
   2079 	} while (restart);
   2080 
   2081 	/*
   2082 	 * If we noted processes that are stopping but still have
   2083 	 * running LWPs, then arrange to check again in 1 tick.
   2084 	 */
   2085 	if (more)
   2086 		callout_schedule(&proc_stop_ch, 1);
   2087 }
   2088 
   2089 /*
   2090  * Given a process in state SSTOP, set the state back to SACTIVE and
   2091  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2092  */
   2093 void
   2094 proc_unstop(struct proc *p)
   2095 {
   2096 	struct lwp *l;
   2097 	int sig;
   2098 
   2099 	KASSERT(mutex_owned(proc_lock));
   2100 	KASSERT(mutex_owned(p->p_lock));
   2101 
   2102 	p->p_stat = SACTIVE;
   2103 	p->p_sflag &= ~PS_STOPPING;
   2104 	sig = p->p_xstat;
   2105 
   2106 	if (!p->p_waited)
   2107 		p->p_pptr->p_nstopchild--;
   2108 
   2109 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2110 		lwp_lock(l);
   2111 		if (l->l_stat != LSSTOP) {
   2112 			lwp_unlock(l);
   2113 			continue;
   2114 		}
   2115 		if (l->l_wchan == NULL) {
   2116 			setrunnable(l);
   2117 			continue;
   2118 		}
   2119 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2120 		        setrunnable(l);
   2121 		        sig = 0;
   2122 		} else {
   2123 			l->l_stat = LSSLEEP;
   2124 			p->p_nrlwps++;
   2125 			lwp_unlock(l);
   2126 		}
   2127 	}
   2128 }
   2129 
   2130 static int
   2131 filt_sigattach(struct knote *kn)
   2132 {
   2133 	struct proc *p = curproc;
   2134 
   2135 	kn->kn_obj = p;
   2136 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2137 
   2138 	mutex_enter(p->p_lock);
   2139 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2140 	mutex_exit(p->p_lock);
   2141 
   2142 	return (0);
   2143 }
   2144 
   2145 static void
   2146 filt_sigdetach(struct knote *kn)
   2147 {
   2148 	struct proc *p = kn->kn_obj;
   2149 
   2150 	mutex_enter(p->p_lock);
   2151 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2152 	mutex_exit(p->p_lock);
   2153 }
   2154 
   2155 /*
   2156  * signal knotes are shared with proc knotes, so we apply a mask to
   2157  * the hint in order to differentiate them from process hints.  This
   2158  * could be avoided by using a signal-specific knote list, but probably
   2159  * isn't worth the trouble.
   2160  */
   2161 static int
   2162 filt_signal(struct knote *kn, long hint)
   2163 {
   2164 
   2165 	if (hint & NOTE_SIGNAL) {
   2166 		hint &= ~NOTE_SIGNAL;
   2167 
   2168 		if (kn->kn_id == hint)
   2169 			kn->kn_data++;
   2170 	}
   2171 	return (kn->kn_data != 0);
   2172 }
   2173 
   2174 const struct filterops sig_filtops = {
   2175 	0, filt_sigattach, filt_sigdetach, filt_signal
   2176 };
   2177