kern_sig.c revision 1.279 1 /* $NetBSD: kern_sig.c,v 1.279 2008/04/25 11:24:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1991, 1993
41 * The Regents of the University of California. All rights reserved.
42 * (c) UNIX System Laboratories, Inc.
43 * All or some portions of this file are derived from material licensed
44 * to the University of California by American Telephone and Telegraph
45 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
46 * the permission of UNIX System Laboratories, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 * notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 * notice, this list of conditions and the following disclaimer in the
55 * documentation and/or other materials provided with the distribution.
56 * 3. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.279 2008/04/25 11:24:11 ad Exp $");
77
78 #include "opt_ptrace.h"
79 #include "opt_multiprocessor.h"
80 #include "opt_compat_sunos.h"
81 #include "opt_compat_netbsd.h"
82 #include "opt_compat_netbsd32.h"
83 #include "opt_pax.h"
84
85 #define SIGPROP /* include signal properties table */
86 #include <sys/param.h>
87 #include <sys/signalvar.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/wait.h>
91 #include <sys/ktrace.h>
92 #include <sys/syslog.h>
93 #include <sys/filedesc.h>
94 #include <sys/file.h>
95 #include <sys/malloc.h>
96 #include <sys/pool.h>
97 #include <sys/ucontext.h>
98 #include <sys/exec.h>
99 #include <sys/kauth.h>
100 #include <sys/acct.h>
101 #include <sys/callout.h>
102 #include <sys/atomic.h>
103 #include <sys/cpu.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm.h>
110 #include <uvm/uvm_extern.h>
111
112 static void ksiginfo_exechook(struct proc *, void *);
113 static void proc_stop_callout(void *);
114
115 int sigunwait(struct proc *, const ksiginfo_t *);
116 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
117 int sigpost(struct lwp *, sig_t, int, int);
118 int sigchecktrace(sigpend_t **);
119 void sigswitch(bool, int, int);
120 void sigrealloc(ksiginfo_t *);
121
122 sigset_t contsigmask, stopsigmask, sigcantmask;
123 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
124 static void sigacts_poolpage_free(struct pool *, void *);
125 static void *sigacts_poolpage_alloc(struct pool *, int);
126 static callout_t proc_stop_ch;
127
128 static struct pool_allocator sigactspool_allocator = {
129 .pa_alloc = sigacts_poolpage_alloc,
130 .pa_free = sigacts_poolpage_free,
131 };
132
133 #ifdef DEBUG
134 int kern_logsigexit = 1;
135 #else
136 int kern_logsigexit = 0;
137 #endif
138
139 static const char logcoredump[] =
140 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
141 static const char lognocoredump[] =
142 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
143
144 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
145 &pool_allocator_nointr, IPL_NONE);
146 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
147 NULL, IPL_VM);
148
149 /*
150 * signal_init:
151 *
152 * Initialize global signal-related data structures.
153 */
154 void
155 signal_init(void)
156 {
157
158 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
159
160 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
161 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
162 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
163
164 exechook_establish(ksiginfo_exechook, NULL);
165
166 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
167 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
168 }
169
170 /*
171 * sigacts_poolpage_alloc:
172 *
173 * Allocate a page for the sigacts memory pool.
174 */
175 static void *
176 sigacts_poolpage_alloc(struct pool *pp, int flags)
177 {
178
179 return (void *)uvm_km_alloc(kernel_map,
180 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
181 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
182 | UVM_KMF_WIRED);
183 }
184
185 /*
186 * sigacts_poolpage_free:
187 *
188 * Free a page on behalf of the sigacts memory pool.
189 */
190 static void
191 sigacts_poolpage_free(struct pool *pp, void *v)
192 {
193
194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196
197 /*
198 * sigactsinit:
199 *
200 * Create an initial sigctx structure, using the same signal state as
201 * p. If 'share' is set, share the sigctx_proc part, otherwise just
202 * copy it from parent.
203 */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 struct sigacts *ps, *ps2;
208
209 ps = pp->p_sigacts;
210
211 if (share) {
212 atomic_inc_uint(&ps->sa_refcnt);
213 ps2 = ps;
214 } else {
215 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
216 /* XXXAD get rid of this */
217 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
218 mutex_enter(&ps->sa_mutex);
219 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
220 sizeof(ps2->sa_sigdesc));
221 mutex_exit(&ps->sa_mutex);
222 ps2->sa_refcnt = 1;
223 }
224
225 return ps2;
226 }
227
228 /*
229 * sigactsunshare:
230 *
231 * Make this process not share its sigctx, maintaining all
232 * signal state.
233 */
234 void
235 sigactsunshare(struct proc *p)
236 {
237 struct sigacts *ps, *oldps;
238
239 oldps = p->p_sigacts;
240 if (oldps->sa_refcnt == 1)
241 return;
242 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
243 /* XXXAD get rid of this */
244 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
245 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
246 p->p_sigacts = ps;
247 sigactsfree(oldps);
248 }
249
250 /*
251 * sigactsfree;
252 *
253 * Release a sigctx structure.
254 */
255 void
256 sigactsfree(struct sigacts *ps)
257 {
258
259 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
260 mutex_destroy(&ps->sa_mutex);
261 pool_cache_put(sigacts_cache, ps);
262 }
263 }
264
265 /*
266 * siginit:
267 *
268 * Initialize signal state for process 0; set to ignore signals that
269 * are ignored by default and disable the signal stack. Locking not
270 * required as the system is still cold.
271 */
272 void
273 siginit(struct proc *p)
274 {
275 struct lwp *l;
276 struct sigacts *ps;
277 int signo, prop;
278
279 ps = p->p_sigacts;
280 sigemptyset(&contsigmask);
281 sigemptyset(&stopsigmask);
282 sigemptyset(&sigcantmask);
283 for (signo = 1; signo < NSIG; signo++) {
284 prop = sigprop[signo];
285 if (prop & SA_CONT)
286 sigaddset(&contsigmask, signo);
287 if (prop & SA_STOP)
288 sigaddset(&stopsigmask, signo);
289 if (prop & SA_CANTMASK)
290 sigaddset(&sigcantmask, signo);
291 if (prop & SA_IGNORE && signo != SIGCONT)
292 sigaddset(&p->p_sigctx.ps_sigignore, signo);
293 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
294 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
295 }
296 sigemptyset(&p->p_sigctx.ps_sigcatch);
297 p->p_sflag &= ~PS_NOCLDSTOP;
298
299 ksiginfo_queue_init(&p->p_sigpend.sp_info);
300 sigemptyset(&p->p_sigpend.sp_set);
301
302 /*
303 * Reset per LWP state.
304 */
305 l = LIST_FIRST(&p->p_lwps);
306 l->l_sigwaited = NULL;
307 l->l_sigstk.ss_flags = SS_DISABLE;
308 l->l_sigstk.ss_size = 0;
309 l->l_sigstk.ss_sp = 0;
310 ksiginfo_queue_init(&l->l_sigpend.sp_info);
311 sigemptyset(&l->l_sigpend.sp_set);
312
313 /* One reference. */
314 ps->sa_refcnt = 1;
315 }
316
317 /*
318 * execsigs:
319 *
320 * Reset signals for an exec of the specified process.
321 */
322 void
323 execsigs(struct proc *p)
324 {
325 struct sigacts *ps;
326 struct lwp *l;
327 int signo, prop;
328 sigset_t tset;
329 ksiginfoq_t kq;
330
331 KASSERT(p->p_nlwps == 1);
332
333 sigactsunshare(p);
334 ps = p->p_sigacts;
335
336 /*
337 * Reset caught signals. Held signals remain held through
338 * l->l_sigmask (unless they were caught, and are now ignored
339 * by default).
340 *
341 * No need to lock yet, the process has only one LWP and
342 * at this point the sigacts are private to the process.
343 */
344 sigemptyset(&tset);
345 for (signo = 1; signo < NSIG; signo++) {
346 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
347 prop = sigprop[signo];
348 if (prop & SA_IGNORE) {
349 if ((prop & SA_CONT) == 0)
350 sigaddset(&p->p_sigctx.ps_sigignore,
351 signo);
352 sigaddset(&tset, signo);
353 }
354 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
355 }
356 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
357 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
358 }
359 ksiginfo_queue_init(&kq);
360
361 mutex_enter(p->p_lock);
362 sigclearall(p, &tset, &kq);
363 sigemptyset(&p->p_sigctx.ps_sigcatch);
364
365 /*
366 * Reset no zombies if child dies flag as Solaris does.
367 */
368 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
369 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
370 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
371
372 /*
373 * Reset per-LWP state.
374 */
375 l = LIST_FIRST(&p->p_lwps);
376 l->l_sigwaited = NULL;
377 l->l_sigstk.ss_flags = SS_DISABLE;
378 l->l_sigstk.ss_size = 0;
379 l->l_sigstk.ss_sp = 0;
380 ksiginfo_queue_init(&l->l_sigpend.sp_info);
381 sigemptyset(&l->l_sigpend.sp_set);
382 mutex_exit(p->p_lock);
383
384 ksiginfo_queue_drain(&kq);
385 }
386
387 /*
388 * ksiginfo_exechook:
389 *
390 * Free all pending ksiginfo entries from a process on exec.
391 * Additionally, drain any unused ksiginfo structures in the
392 * system back to the pool.
393 *
394 * XXX This should not be a hook, every process has signals.
395 */
396 static void
397 ksiginfo_exechook(struct proc *p, void *v)
398 {
399 ksiginfoq_t kq;
400
401 ksiginfo_queue_init(&kq);
402
403 mutex_enter(p->p_lock);
404 sigclearall(p, NULL, &kq);
405 mutex_exit(p->p_lock);
406
407 ksiginfo_queue_drain(&kq);
408 }
409
410 /*
411 * ksiginfo_alloc:
412 *
413 * Allocate a new ksiginfo structure from the pool, and optionally copy
414 * an existing one. If the existing ksiginfo_t is from the pool, and
415 * has not been queued somewhere, then just return it. Additionally,
416 * if the existing ksiginfo_t does not contain any information beyond
417 * the signal number, then just return it.
418 */
419 ksiginfo_t *
420 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
421 {
422 ksiginfo_t *kp;
423
424 if (ok != NULL) {
425 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
426 KSI_FROMPOOL)
427 return ok;
428 if (KSI_EMPTY_P(ok))
429 return ok;
430 }
431
432 kp = pool_get(&ksiginfo_pool, flags);
433 if (kp == NULL) {
434 #ifdef DIAGNOSTIC
435 printf("Out of memory allocating ksiginfo for pid %d\n",
436 p->p_pid);
437 #endif
438 return NULL;
439 }
440
441 if (ok != NULL) {
442 memcpy(kp, ok, sizeof(*kp));
443 kp->ksi_flags &= ~KSI_QUEUED;
444 } else
445 KSI_INIT_EMPTY(kp);
446
447 kp->ksi_flags |= KSI_FROMPOOL;
448
449 return kp;
450 }
451
452 /*
453 * ksiginfo_free:
454 *
455 * If the given ksiginfo_t is from the pool and has not been queued,
456 * then free it.
457 */
458 void
459 ksiginfo_free(ksiginfo_t *kp)
460 {
461
462 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
463 return;
464 pool_put(&ksiginfo_pool, kp);
465 }
466
467 /*
468 * ksiginfo_queue_drain:
469 *
470 * Drain a non-empty ksiginfo_t queue.
471 */
472 void
473 ksiginfo_queue_drain0(ksiginfoq_t *kq)
474 {
475 ksiginfo_t *ksi;
476
477 KASSERT(!CIRCLEQ_EMPTY(kq));
478
479 while (!CIRCLEQ_EMPTY(kq)) {
480 ksi = CIRCLEQ_FIRST(kq);
481 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
482 pool_put(&ksiginfo_pool, ksi);
483 }
484 }
485
486 /*
487 * sigget:
488 *
489 * Fetch the first pending signal from a set. Optionally, also fetch
490 * or manufacture a ksiginfo element. Returns the number of the first
491 * pending signal, or zero.
492 */
493 int
494 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
495 {
496 ksiginfo_t *ksi;
497 sigset_t tset;
498
499 /* If there's no pending set, the signal is from the debugger. */
500 if (sp == NULL) {
501 if (out != NULL) {
502 KSI_INIT(out);
503 out->ksi_info._signo = signo;
504 out->ksi_info._code = SI_USER;
505 }
506 return signo;
507 }
508
509 /* Construct mask from signo, and 'mask'. */
510 if (signo == 0) {
511 if (mask != NULL) {
512 tset = *mask;
513 __sigandset(&sp->sp_set, &tset);
514 } else
515 tset = sp->sp_set;
516
517 /* If there are no signals pending, that's it. */
518 if ((signo = firstsig(&tset)) == 0)
519 return 0;
520 } else {
521 KASSERT(sigismember(&sp->sp_set, signo));
522 }
523
524 sigdelset(&sp->sp_set, signo);
525
526 /* Find siginfo and copy it out. */
527 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
528 if (ksi->ksi_signo == signo) {
529 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
530 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
531 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
532 ksi->ksi_flags &= ~KSI_QUEUED;
533 if (out != NULL) {
534 memcpy(out, ksi, sizeof(*out));
535 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
536 }
537 ksiginfo_free(ksi);
538 return signo;
539 }
540 }
541
542 /* If there's no siginfo, then manufacture it. */
543 if (out != NULL) {
544 KSI_INIT(out);
545 out->ksi_info._signo = signo;
546 out->ksi_info._code = SI_USER;
547 }
548
549 return signo;
550 }
551
552 /*
553 * sigput:
554 *
555 * Append a new ksiginfo element to the list of pending ksiginfo's, if
556 * we need to (e.g. SA_SIGINFO was requested).
557 */
558 void
559 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
560 {
561 ksiginfo_t *kp;
562 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
563
564 KASSERT(mutex_owned(p->p_lock));
565 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
566
567 sigaddset(&sp->sp_set, ksi->ksi_signo);
568
569 /*
570 * If siginfo is not required, or there is none, then just mark the
571 * signal as pending.
572 */
573 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
574 return;
575
576 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
577
578 #ifdef notyet /* XXX: QUEUING */
579 if (ksi->ksi_signo < SIGRTMIN)
580 #endif
581 {
582 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
583 if (kp->ksi_signo == ksi->ksi_signo) {
584 KSI_COPY(ksi, kp);
585 kp->ksi_flags |= KSI_QUEUED;
586 return;
587 }
588 }
589 }
590
591 ksi->ksi_flags |= KSI_QUEUED;
592 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
593 }
594
595 /*
596 * sigclear:
597 *
598 * Clear all pending signals in the specified set.
599 */
600 void
601 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
602 {
603 ksiginfo_t *ksi, *next;
604
605 if (mask == NULL)
606 sigemptyset(&sp->sp_set);
607 else
608 sigminusset(mask, &sp->sp_set);
609
610 ksi = CIRCLEQ_FIRST(&sp->sp_info);
611 for (; ksi != (void *)&sp->sp_info; ksi = next) {
612 next = CIRCLEQ_NEXT(ksi, ksi_list);
613 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
614 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
615 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
616 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
617 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
618 }
619 }
620 }
621
622 /*
623 * sigclearall:
624 *
625 * Clear all pending signals in the specified set from a process and
626 * its LWPs.
627 */
628 void
629 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
630 {
631 struct lwp *l;
632
633 KASSERT(mutex_owned(p->p_lock));
634
635 sigclear(&p->p_sigpend, mask, kq);
636
637 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
638 sigclear(&l->l_sigpend, mask, kq);
639 }
640 }
641
642 /*
643 * sigispending:
644 *
645 * Return true if there are pending signals for the current LWP. May
646 * be called unlocked provided that LW_PENDSIG is set, and that the
647 * signal has been posted to the appopriate queue before LW_PENDSIG is
648 * set.
649 */
650 int
651 sigispending(struct lwp *l, int signo)
652 {
653 struct proc *p = l->l_proc;
654 sigset_t tset;
655
656 membar_consumer();
657
658 tset = l->l_sigpend.sp_set;
659 sigplusset(&p->p_sigpend.sp_set, &tset);
660 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
661 sigminusset(&l->l_sigmask, &tset);
662
663 if (signo == 0) {
664 if (firstsig(&tset) != 0)
665 return EINTR;
666 } else if (sigismember(&tset, signo))
667 return EINTR;
668
669 return 0;
670 }
671
672 /*
673 * siginfo_alloc:
674 *
675 * Allocate a new siginfo_t structure from the pool.
676 */
677 siginfo_t *
678 siginfo_alloc(int flags)
679 {
680
681 return pool_get(&siginfo_pool, flags);
682 }
683
684 /*
685 * siginfo_free:
686 *
687 * Return a siginfo_t structure to the pool.
688 */
689 void
690 siginfo_free(void *arg)
691 {
692
693 pool_put(&siginfo_pool, arg);
694 }
695
696 void
697 getucontext(struct lwp *l, ucontext_t *ucp)
698 {
699 struct proc *p = l->l_proc;
700
701 KASSERT(mutex_owned(p->p_lock));
702
703 ucp->uc_flags = 0;
704 ucp->uc_link = l->l_ctxlink;
705
706 ucp->uc_sigmask = l->l_sigmask;
707 ucp->uc_flags |= _UC_SIGMASK;
708
709 /*
710 * The (unsupplied) definition of the `current execution stack'
711 * in the System V Interface Definition appears to allow returning
712 * the main context stack.
713 */
714 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
715 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
716 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
717 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
718 } else {
719 /* Simply copy alternate signal execution stack. */
720 ucp->uc_stack = l->l_sigstk;
721 }
722 ucp->uc_flags |= _UC_STACK;
723 mutex_exit(p->p_lock);
724 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
725 mutex_enter(p->p_lock);
726 }
727
728 int
729 setucontext(struct lwp *l, const ucontext_t *ucp)
730 {
731 struct proc *p = l->l_proc;
732 int error;
733
734 KASSERT(mutex_owned(p->p_lock));
735
736 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
737 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
738 if (error != 0)
739 return error;
740 }
741
742 mutex_exit(p->p_lock);
743 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
744 mutex_enter(p->p_lock);
745 if (error != 0)
746 return (error);
747
748 l->l_ctxlink = ucp->uc_link;
749
750 /*
751 * If there was stack information, update whether or not we are
752 * still running on an alternate signal stack.
753 */
754 if ((ucp->uc_flags & _UC_STACK) != 0) {
755 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
756 l->l_sigstk.ss_flags |= SS_ONSTACK;
757 else
758 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
759 }
760
761 return 0;
762 }
763
764 /*
765 * Common code for kill process group/broadcast kill. cp is calling
766 * process.
767 */
768 int
769 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
770 {
771 struct proc *p, *cp;
772 kauth_cred_t pc;
773 struct pgrp *pgrp;
774 int nfound;
775 int signo = ksi->ksi_signo;
776
777 cp = l->l_proc;
778 pc = l->l_cred;
779 nfound = 0;
780
781 mutex_enter(proc_lock);
782 if (all) {
783 /*
784 * broadcast
785 */
786 PROCLIST_FOREACH(p, &allproc) {
787 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
788 continue;
789 mutex_enter(p->p_lock);
790 if (kauth_authorize_process(pc,
791 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
792 NULL) == 0) {
793 nfound++;
794 if (signo)
795 kpsignal2(p, ksi);
796 }
797 mutex_exit(p->p_lock);
798 }
799 } else {
800 if (pgid == 0)
801 /*
802 * zero pgid means send to my process group.
803 */
804 pgrp = cp->p_pgrp;
805 else {
806 pgrp = pg_find(pgid, PFIND_LOCKED);
807 if (pgrp == NULL)
808 goto out;
809 }
810 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
811 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
812 continue;
813 mutex_enter(p->p_lock);
814 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
815 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
816 nfound++;
817 if (signo && P_ZOMBIE(p) == 0)
818 kpsignal2(p, ksi);
819 }
820 mutex_exit(p->p_lock);
821 }
822 }
823 out:
824 mutex_exit(proc_lock);
825 return (nfound ? 0 : ESRCH);
826 }
827
828 /*
829 * Send a signal to a process group. If checktty is 1, limit to members
830 * which have a controlling terminal.
831 */
832 void
833 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
834 {
835 ksiginfo_t ksi;
836
837 KASSERT(!cpu_intr_p());
838 KASSERT(mutex_owned(proc_lock));
839
840 KSI_INIT_EMPTY(&ksi);
841 ksi.ksi_signo = sig;
842 kpgsignal(pgrp, &ksi, NULL, checkctty);
843 }
844
845 void
846 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
847 {
848 struct proc *p;
849
850 KASSERT(!cpu_intr_p());
851 KASSERT(mutex_owned(proc_lock));
852
853 if (pgrp)
854 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
855 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
856 kpsignal(p, ksi, data);
857 }
858
859 /*
860 * Send a signal caused by a trap to the current LWP. If it will be caught
861 * immediately, deliver it with correct code. Otherwise, post it normally.
862 */
863 void
864 trapsignal(struct lwp *l, ksiginfo_t *ksi)
865 {
866 struct proc *p;
867 struct sigacts *ps;
868 int signo = ksi->ksi_signo;
869
870 KASSERT(KSI_TRAP_P(ksi));
871
872 ksi->ksi_lid = l->l_lid;
873 p = l->l_proc;
874
875 KASSERT(!cpu_intr_p());
876 mutex_enter(proc_lock);
877 mutex_enter(p->p_lock);
878 ps = p->p_sigacts;
879 if ((p->p_slflag & PSL_TRACED) == 0 &&
880 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
881 !sigismember(&l->l_sigmask, signo)) {
882 mutex_exit(proc_lock);
883 l->l_ru.ru_nsignals++;
884 kpsendsig(l, ksi, &l->l_sigmask);
885 mutex_exit(p->p_lock);
886 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
887 &l->l_sigmask, ksi);
888 } else {
889 /* XXX for core dump/debugger */
890 p->p_sigctx.ps_lwp = l->l_lid;
891 p->p_sigctx.ps_signo = ksi->ksi_signo;
892 p->p_sigctx.ps_code = ksi->ksi_trap;
893 kpsignal2(p, ksi);
894 mutex_exit(p->p_lock);
895 mutex_exit(proc_lock);
896 }
897 }
898
899 /*
900 * Fill in signal information and signal the parent for a child status change.
901 */
902 void
903 child_psignal(struct proc *p, int mask)
904 {
905 ksiginfo_t ksi;
906 struct proc *q;
907 int xstat;
908
909 KASSERT(mutex_owned(proc_lock));
910 KASSERT(mutex_owned(p->p_lock));
911
912 xstat = p->p_xstat;
913
914 KSI_INIT(&ksi);
915 ksi.ksi_signo = SIGCHLD;
916 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
917 ksi.ksi_pid = p->p_pid;
918 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
919 ksi.ksi_status = xstat;
920 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
921 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
922
923 q = p->p_pptr;
924
925 mutex_exit(p->p_lock);
926 mutex_enter(q->p_lock);
927
928 if ((q->p_sflag & mask) == 0)
929 kpsignal2(q, &ksi);
930
931 mutex_exit(q->p_lock);
932 mutex_enter(p->p_lock);
933 }
934
935 void
936 psignal(struct proc *p, int signo)
937 {
938 ksiginfo_t ksi;
939
940 KASSERT(!cpu_intr_p());
941 KASSERT(mutex_owned(proc_lock));
942
943 KSI_INIT_EMPTY(&ksi);
944 ksi.ksi_signo = signo;
945 mutex_enter(p->p_lock);
946 kpsignal2(p, &ksi);
947 mutex_exit(p->p_lock);
948 }
949
950 void
951 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
952 {
953 fdfile_t *ff;
954 file_t *fp;
955
956 KASSERT(!cpu_intr_p());
957 KASSERT(mutex_owned(proc_lock));
958
959 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
960 size_t fd;
961 filedesc_t *fdp = p->p_fd;
962
963 /* XXXSMP locking */
964 ksi->ksi_fd = -1;
965 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
966 if ((ff = fdp->fd_ofiles[fd]) == NULL)
967 continue;
968 if ((fp = ff->ff_file) == NULL)
969 continue;
970 if (fp->f_data == data) {
971 ksi->ksi_fd = fd;
972 break;
973 }
974 }
975 }
976 mutex_enter(p->p_lock);
977 kpsignal2(p, ksi);
978 mutex_exit(p->p_lock);
979 }
980
981 /*
982 * sigismasked:
983 *
984 * Returns true if signal is ignored or masked for the specified LWP.
985 */
986 int
987 sigismasked(struct lwp *l, int sig)
988 {
989 struct proc *p = l->l_proc;
990
991 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
992 sigismember(&l->l_sigmask, sig));
993 }
994
995 /*
996 * sigpost:
997 *
998 * Post a pending signal to an LWP. Returns non-zero if the LWP was
999 * able to take the signal.
1000 */
1001 int
1002 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1003 {
1004 int rv, masked;
1005
1006 KASSERT(mutex_owned(l->l_proc->p_lock));
1007
1008 /*
1009 * If the LWP is on the way out, sigclear() will be busy draining all
1010 * pending signals. Don't give it more.
1011 */
1012 if (l->l_refcnt == 0)
1013 return 0;
1014
1015 lwp_lock(l);
1016
1017 /*
1018 * Have the LWP check for signals. This ensures that even if no LWP
1019 * is found to take the signal immediately, it should be taken soon.
1020 */
1021 l->l_flag |= LW_PENDSIG;
1022
1023 /*
1024 * SIGCONT can be masked, but must always restart stopped LWPs.
1025 */
1026 masked = sigismember(&l->l_sigmask, sig);
1027 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1028 lwp_unlock(l);
1029 return 0;
1030 }
1031
1032 /*
1033 * If killing the process, make it run fast.
1034 */
1035 if (__predict_false((prop & SA_KILL) != 0) &&
1036 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1037 KASSERT(l->l_class == SCHED_OTHER);
1038 lwp_changepri(l, MAXPRI_USER);
1039 }
1040
1041 /*
1042 * If the LWP is running or on a run queue, then we win. If it's
1043 * sleeping interruptably, wake it and make it take the signal. If
1044 * the sleep isn't interruptable, then the chances are it will get
1045 * to see the signal soon anyhow. If suspended, it can't take the
1046 * signal right now. If it's LWP private or for all LWPs, save it
1047 * for later; otherwise punt.
1048 */
1049 rv = 0;
1050
1051 switch (l->l_stat) {
1052 case LSRUN:
1053 case LSONPROC:
1054 lwp_need_userret(l);
1055 rv = 1;
1056 break;
1057
1058 case LSSLEEP:
1059 if ((l->l_flag & LW_SINTR) != 0) {
1060 /* setrunnable() will release the lock. */
1061 setrunnable(l);
1062 return 1;
1063 }
1064 break;
1065
1066 case LSSUSPENDED:
1067 if ((prop & SA_KILL) != 0) {
1068 /* lwp_continue() will release the lock. */
1069 lwp_continue(l);
1070 return 1;
1071 }
1072 break;
1073
1074 case LSSTOP:
1075 if ((prop & SA_STOP) != 0)
1076 break;
1077
1078 /*
1079 * If the LWP is stopped and we are sending a continue
1080 * signal, then start it again.
1081 */
1082 if ((prop & SA_CONT) != 0) {
1083 if (l->l_wchan != NULL) {
1084 l->l_stat = LSSLEEP;
1085 l->l_proc->p_nrlwps++;
1086 rv = 1;
1087 break;
1088 }
1089 /* setrunnable() will release the lock. */
1090 setrunnable(l);
1091 return 1;
1092 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1093 /* setrunnable() will release the lock. */
1094 setrunnable(l);
1095 return 1;
1096 }
1097 break;
1098
1099 default:
1100 break;
1101 }
1102
1103 lwp_unlock(l);
1104 return rv;
1105 }
1106
1107 /*
1108 * Notify an LWP that it has a pending signal.
1109 */
1110 void
1111 signotify(struct lwp *l)
1112 {
1113 KASSERT(lwp_locked(l, NULL));
1114
1115 l->l_flag |= LW_PENDSIG;
1116 lwp_need_userret(l);
1117 }
1118
1119 /*
1120 * Find an LWP within process p that is waiting on signal ksi, and hand
1121 * it on.
1122 */
1123 int
1124 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1125 {
1126 struct lwp *l;
1127 int signo;
1128
1129 KASSERT(mutex_owned(p->p_lock));
1130
1131 signo = ksi->ksi_signo;
1132
1133 if (ksi->ksi_lid != 0) {
1134 /*
1135 * Signal came via _lwp_kill(). Find the LWP and see if
1136 * it's interested.
1137 */
1138 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1139 return 0;
1140 if (l->l_sigwaited == NULL ||
1141 !sigismember(&l->l_sigwaitset, signo))
1142 return 0;
1143 } else {
1144 /*
1145 * Look for any LWP that may be interested.
1146 */
1147 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1148 KASSERT(l->l_sigwaited != NULL);
1149 if (sigismember(&l->l_sigwaitset, signo))
1150 break;
1151 }
1152 }
1153
1154 if (l != NULL) {
1155 l->l_sigwaited->ksi_info = ksi->ksi_info;
1156 l->l_sigwaited = NULL;
1157 LIST_REMOVE(l, l_sigwaiter);
1158 cv_signal(&l->l_sigcv);
1159 return 1;
1160 }
1161
1162 return 0;
1163 }
1164
1165 /*
1166 * Send the signal to the process. If the signal has an action, the action
1167 * is usually performed by the target process rather than the caller; we add
1168 * the signal to the set of pending signals for the process.
1169 *
1170 * Exceptions:
1171 * o When a stop signal is sent to a sleeping process that takes the
1172 * default action, the process is stopped without awakening it.
1173 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1174 * regardless of the signal action (eg, blocked or ignored).
1175 *
1176 * Other ignored signals are discarded immediately.
1177 */
1178 void
1179 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1180 {
1181 int prop, lid, toall, signo = ksi->ksi_signo;
1182 struct sigacts *sa;
1183 struct lwp *l;
1184 ksiginfo_t *kp;
1185 ksiginfoq_t kq;
1186 sig_t action;
1187
1188 KASSERT(!cpu_intr_p());
1189 KASSERT(mutex_owned(proc_lock));
1190 KASSERT(mutex_owned(p->p_lock));
1191 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1192 KASSERT(signo > 0 && signo < NSIG);
1193
1194 /*
1195 * If the process is being created by fork, is a zombie or is
1196 * exiting, then just drop the signal here and bail out.
1197 */
1198 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1199 return;
1200
1201 /*
1202 * Notify any interested parties of the signal.
1203 */
1204 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1205
1206 /*
1207 * Some signals including SIGKILL must act on the entire process.
1208 */
1209 kp = NULL;
1210 prop = sigprop[signo];
1211 toall = ((prop & SA_TOALL) != 0);
1212
1213 if (toall)
1214 lid = 0;
1215 else
1216 lid = ksi->ksi_lid;
1217
1218 /*
1219 * If proc is traced, always give parent a chance.
1220 */
1221 if (p->p_slflag & PSL_TRACED) {
1222 action = SIG_DFL;
1223
1224 if (lid == 0) {
1225 /*
1226 * If the process is being traced and the signal
1227 * is being caught, make sure to save any ksiginfo.
1228 */
1229 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1230 return;
1231 sigput(&p->p_sigpend, p, kp);
1232 }
1233 } else {
1234 /*
1235 * If the signal was the result of a trap and is not being
1236 * caught, then reset it to default action so that the
1237 * process dumps core immediately.
1238 */
1239 if (KSI_TRAP_P(ksi)) {
1240 sa = p->p_sigacts;
1241 mutex_enter(&sa->sa_mutex);
1242 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1243 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1244 SIGACTION(p, signo).sa_handler = SIG_DFL;
1245 }
1246 mutex_exit(&sa->sa_mutex);
1247 }
1248
1249 /*
1250 * If the signal is being ignored, then drop it. Note: we
1251 * don't set SIGCONT in ps_sigignore, and if it is set to
1252 * SIG_IGN, action will be SIG_DFL here.
1253 */
1254 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1255 return;
1256
1257 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1258 action = SIG_CATCH;
1259 else {
1260 action = SIG_DFL;
1261
1262 /*
1263 * If sending a tty stop signal to a member of an
1264 * orphaned process group, discard the signal here if
1265 * the action is default; don't stop the process below
1266 * if sleeping, and don't clear any pending SIGCONT.
1267 */
1268 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1269 return;
1270
1271 if (prop & SA_KILL && p->p_nice > NZERO)
1272 p->p_nice = NZERO;
1273 }
1274 }
1275
1276 /*
1277 * If stopping or continuing a process, discard any pending
1278 * signals that would do the inverse.
1279 */
1280 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1281 ksiginfo_queue_init(&kq);
1282 if ((prop & SA_CONT) != 0)
1283 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1284 if ((prop & SA_STOP) != 0)
1285 sigclear(&p->p_sigpend, &contsigmask, &kq);
1286 ksiginfo_queue_drain(&kq); /* XXXSMP */
1287 }
1288
1289 /*
1290 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1291 * please!), check if any LWPs are waiting on it. If yes, pass on
1292 * the signal info. The signal won't be processed further here.
1293 */
1294 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1295 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1296 sigunwait(p, ksi))
1297 return;
1298
1299 /*
1300 * XXXSMP Should be allocated by the caller, we're holding locks
1301 * here.
1302 */
1303 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1304 return;
1305
1306 /*
1307 * LWP private signals are easy - just find the LWP and post
1308 * the signal to it.
1309 */
1310 if (lid != 0) {
1311 l = lwp_find(p, lid);
1312 if (l != NULL) {
1313 sigput(&l->l_sigpend, p, kp);
1314 membar_producer();
1315 (void)sigpost(l, action, prop, kp->ksi_signo);
1316 }
1317 goto out;
1318 }
1319
1320 /*
1321 * Some signals go to all LWPs, even if posted with _lwp_kill().
1322 */
1323 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1324 if ((p->p_slflag & PSL_TRACED) != 0)
1325 goto deliver;
1326
1327 /*
1328 * If SIGCONT is default (or ignored) and process is
1329 * asleep, we are finished; the process should not
1330 * be awakened.
1331 */
1332 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1333 goto out;
1334
1335 sigput(&p->p_sigpend, p, kp);
1336 } else {
1337 /*
1338 * Process is stopped or stopping. If traced, then no
1339 * further action is necessary.
1340 */
1341 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1342 goto out;
1343
1344 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1345 /*
1346 * Re-adjust p_nstopchild if the process wasn't
1347 * collected by its parent.
1348 */
1349 p->p_stat = SACTIVE;
1350 p->p_sflag &= ~PS_STOPPING;
1351 if (!p->p_waited)
1352 p->p_pptr->p_nstopchild--;
1353
1354 /*
1355 * If SIGCONT is default (or ignored), we continue
1356 * the process but don't leave the signal in
1357 * ps_siglist, as it has no further action. If
1358 * SIGCONT is held, we continue the process and
1359 * leave the signal in ps_siglist. If the process
1360 * catches SIGCONT, let it handle the signal itself.
1361 * If it isn't waiting on an event, then it goes
1362 * back to run state. Otherwise, process goes back
1363 * to sleep state.
1364 */
1365 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1366 sigput(&p->p_sigpend, p, kp);
1367 } else if ((prop & SA_STOP) != 0) {
1368 /*
1369 * Already stopped, don't need to stop again.
1370 * (If we did the shell could get confused.)
1371 */
1372 goto out;
1373 } else
1374 sigput(&p->p_sigpend, p, kp);
1375 }
1376
1377 deliver:
1378 /*
1379 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1380 * visible on the per process list (for sigispending()). This
1381 * is unlikely to be needed in practice, but...
1382 */
1383 membar_producer();
1384
1385 /*
1386 * Try to find an LWP that can take the signal.
1387 */
1388 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1389 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1390 break;
1391
1392 out:
1393 /*
1394 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1395 * with locks held. The caller should take care of this.
1396 */
1397 ksiginfo_free(kp);
1398 }
1399
1400 void
1401 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1402 {
1403 struct proc *p = l->l_proc;
1404
1405 KASSERT(mutex_owned(p->p_lock));
1406
1407 (*p->p_emul->e_sendsig)(ksi, mask);
1408 }
1409
1410 /*
1411 * Stop any LWPs sleeping interruptably.
1412 */
1413 static void
1414 proc_stop_lwps(struct proc *p)
1415 {
1416 struct lwp *l;
1417
1418 KASSERT(mutex_owned(p->p_lock));
1419 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1420
1421 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1422 lwp_lock(l);
1423 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1424 l->l_stat = LSSTOP;
1425 p->p_nrlwps--;
1426 }
1427 lwp_unlock(l);
1428 }
1429 }
1430
1431 /*
1432 * Finish stopping of a process. Mark it stopped and notify the parent.
1433 *
1434 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1435 */
1436 static void
1437 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1438 {
1439
1440 KASSERT(mutex_owned(proc_lock));
1441 KASSERT(mutex_owned(p->p_lock));
1442 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1443 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1444
1445 p->p_sflag &= ~PS_STOPPING;
1446 p->p_stat = SSTOP;
1447 p->p_waited = 0;
1448 p->p_pptr->p_nstopchild++;
1449 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1450 if (ppsig) {
1451 /* child_psignal drops p_lock briefly. */
1452 child_psignal(p, ppmask);
1453 }
1454 cv_broadcast(&p->p_pptr->p_waitcv);
1455 }
1456 }
1457
1458 /*
1459 * Stop the current process and switch away when being stopped or traced.
1460 */
1461 void
1462 sigswitch(bool ppsig, int ppmask, int signo)
1463 {
1464 struct lwp *l = curlwp;
1465 struct proc *p = l->l_proc;
1466 #ifdef MULTIPROCESSOR
1467 int biglocks;
1468 #endif
1469
1470 KASSERT(mutex_owned(p->p_lock));
1471 KASSERT(l->l_stat == LSONPROC);
1472 KASSERT(p->p_nrlwps > 0);
1473
1474 /*
1475 * On entry we know that the process needs to stop. If it's
1476 * the result of a 'sideways' stop signal that has been sourced
1477 * through issignal(), then stop other LWPs in the process too.
1478 */
1479 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1480 KASSERT(signo != 0);
1481 proc_stop(p, 1, signo);
1482 KASSERT(p->p_nrlwps > 0);
1483 }
1484
1485 /*
1486 * If we are the last live LWP, and the stop was a result of
1487 * a new signal, then signal the parent.
1488 */
1489 if ((p->p_sflag & PS_STOPPING) != 0) {
1490 if (!mutex_tryenter(proc_lock)) {
1491 mutex_exit(p->p_lock);
1492 mutex_enter(proc_lock);
1493 mutex_enter(p->p_lock);
1494 }
1495
1496 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1497 /*
1498 * Note that proc_stop_done() can drop
1499 * p->p_lock briefly.
1500 */
1501 proc_stop_done(p, ppsig, ppmask);
1502 }
1503
1504 mutex_exit(proc_lock);
1505 }
1506
1507 /*
1508 * Unlock and switch away.
1509 */
1510 KERNEL_UNLOCK_ALL(l, &biglocks);
1511 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1512 p->p_nrlwps--;
1513 lwp_lock(l);
1514 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1515 l->l_stat = LSSTOP;
1516 lwp_unlock(l);
1517 }
1518
1519 mutex_exit(p->p_lock);
1520 lwp_lock(l);
1521 mi_switch(l);
1522 KERNEL_LOCK(biglocks, l);
1523 mutex_enter(p->p_lock);
1524 }
1525
1526 /*
1527 * Check for a signal from the debugger.
1528 */
1529 int
1530 sigchecktrace(sigpend_t **spp)
1531 {
1532 struct lwp *l = curlwp;
1533 struct proc *p = l->l_proc;
1534 int signo;
1535
1536 KASSERT(mutex_owned(p->p_lock));
1537
1538 /*
1539 * If we are no longer being traced, or the parent didn't
1540 * give us a signal, look for more signals.
1541 */
1542 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1543 return 0;
1544
1545 /* If there's a pending SIGKILL, process it immediately. */
1546 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1547 return 0;
1548
1549 /*
1550 * If the new signal is being masked, look for other signals.
1551 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1552 */
1553 signo = p->p_xstat;
1554 p->p_xstat = 0;
1555 if ((sigprop[signo] & SA_TOLWP) != 0)
1556 *spp = &l->l_sigpend;
1557 else
1558 *spp = &p->p_sigpend;
1559 if (sigismember(&l->l_sigmask, signo))
1560 signo = 0;
1561
1562 return signo;
1563 }
1564
1565 /*
1566 * If the current process has received a signal (should be caught or cause
1567 * termination, should interrupt current syscall), return the signal number.
1568 *
1569 * Stop signals with default action are processed immediately, then cleared;
1570 * they aren't returned. This is checked after each entry to the system for
1571 * a syscall or trap.
1572 *
1573 * We will also return -1 if the process is exiting and the current LWP must
1574 * follow suit.
1575 *
1576 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1577 * can switch away, though.
1578 */
1579 int
1580 issignal(struct lwp *l)
1581 {
1582 struct proc *p = l->l_proc;
1583 int signo = 0, prop;
1584 sigpend_t *sp = NULL;
1585 sigset_t ss;
1586
1587 KASSERT(mutex_owned(p->p_lock));
1588
1589 for (;;) {
1590 /* Discard any signals that we have decided not to take. */
1591 if (signo != 0)
1592 (void)sigget(sp, NULL, signo, NULL);
1593
1594 /*
1595 * If the process is stopped/stopping, then stop ourselves
1596 * now that we're on the kernel/userspace boundary. When
1597 * we awaken, check for a signal from the debugger.
1598 */
1599 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1600 sigswitch(true, PS_NOCLDSTOP, 0);
1601 signo = sigchecktrace(&sp);
1602 } else
1603 signo = 0;
1604
1605 /*
1606 * If the debugger didn't provide a signal, find a pending
1607 * signal from our set. Check per-LWP signals first, and
1608 * then per-process.
1609 */
1610 if (signo == 0) {
1611 sp = &l->l_sigpend;
1612 ss = sp->sp_set;
1613 if ((p->p_sflag & PS_PPWAIT) != 0)
1614 sigminusset(&stopsigmask, &ss);
1615 sigminusset(&l->l_sigmask, &ss);
1616
1617 if ((signo = firstsig(&ss)) == 0) {
1618 sp = &p->p_sigpend;
1619 ss = sp->sp_set;
1620 if ((p->p_sflag & PS_PPWAIT) != 0)
1621 sigminusset(&stopsigmask, &ss);
1622 sigminusset(&l->l_sigmask, &ss);
1623
1624 if ((signo = firstsig(&ss)) == 0) {
1625 /*
1626 * No signal pending - clear the
1627 * indicator and bail out.
1628 */
1629 lwp_lock(l);
1630 l->l_flag &= ~LW_PENDSIG;
1631 lwp_unlock(l);
1632 sp = NULL;
1633 break;
1634 }
1635 }
1636 }
1637
1638 /*
1639 * We should see pending but ignored signals only if
1640 * we are being traced.
1641 */
1642 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1643 (p->p_slflag & PSL_TRACED) == 0) {
1644 /* Discard the signal. */
1645 continue;
1646 }
1647
1648 /*
1649 * If traced, always stop, and stay stopped until released
1650 * by the debugger. If the our parent process is waiting
1651 * for us, don't hang as we could deadlock.
1652 */
1653 if ((p->p_slflag & PSL_TRACED) != 0 &&
1654 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1655 /* Take the signal. */
1656 (void)sigget(sp, NULL, signo, NULL);
1657 p->p_xstat = signo;
1658
1659 /* Emulation-specific handling of signal trace */
1660 if (p->p_emul->e_tracesig == NULL ||
1661 (*p->p_emul->e_tracesig)(p, signo) == 0)
1662 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1663 signo);
1664
1665 /* Check for a signal from the debugger. */
1666 if ((signo = sigchecktrace(&sp)) == 0)
1667 continue;
1668 }
1669
1670 prop = sigprop[signo];
1671
1672 /*
1673 * Decide whether the signal should be returned.
1674 */
1675 switch ((long)SIGACTION(p, signo).sa_handler) {
1676 case (long)SIG_DFL:
1677 /*
1678 * Don't take default actions on system processes.
1679 */
1680 if (p->p_pid <= 1) {
1681 #ifdef DIAGNOSTIC
1682 /*
1683 * Are you sure you want to ignore SIGSEGV
1684 * in init? XXX
1685 */
1686 printf_nolog("Process (pid %d) got sig %d\n",
1687 p->p_pid, signo);
1688 #endif
1689 continue;
1690 }
1691
1692 /*
1693 * If there is a pending stop signal to process with
1694 * default action, stop here, then clear the signal.
1695 * However, if process is member of an orphaned
1696 * process group, ignore tty stop signals.
1697 */
1698 if (prop & SA_STOP) {
1699 /*
1700 * XXX Don't hold proc_lock for p_lflag,
1701 * but it's not a big deal.
1702 */
1703 if (p->p_slflag & PSL_TRACED ||
1704 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1705 prop & SA_TTYSTOP)) {
1706 /* Ignore the signal. */
1707 continue;
1708 }
1709 /* Take the signal. */
1710 (void)sigget(sp, NULL, signo, NULL);
1711 p->p_xstat = signo;
1712 signo = 0;
1713 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1714 } else if (prop & SA_IGNORE) {
1715 /*
1716 * Except for SIGCONT, shouldn't get here.
1717 * Default action is to ignore; drop it.
1718 */
1719 continue;
1720 }
1721 break;
1722
1723 case (long)SIG_IGN:
1724 #ifdef DEBUG_ISSIGNAL
1725 /*
1726 * Masking above should prevent us ever trying
1727 * to take action on an ignored signal other
1728 * than SIGCONT, unless process is traced.
1729 */
1730 if ((prop & SA_CONT) == 0 &&
1731 (p->p_slflag & PSL_TRACED) == 0)
1732 printf_nolog("issignal\n");
1733 #endif
1734 continue;
1735
1736 default:
1737 /*
1738 * This signal has an action, let postsig() process
1739 * it.
1740 */
1741 break;
1742 }
1743
1744 break;
1745 }
1746
1747 l->l_sigpendset = sp;
1748 return signo;
1749 }
1750
1751 /*
1752 * Take the action for the specified signal
1753 * from the current set of pending signals.
1754 */
1755 void
1756 postsig(int signo)
1757 {
1758 struct lwp *l;
1759 struct proc *p;
1760 struct sigacts *ps;
1761 sig_t action;
1762 sigset_t *returnmask;
1763 ksiginfo_t ksi;
1764
1765 l = curlwp;
1766 p = l->l_proc;
1767 ps = p->p_sigacts;
1768
1769 KASSERT(mutex_owned(p->p_lock));
1770 KASSERT(signo > 0);
1771
1772 /*
1773 * Set the new mask value and also defer further occurrences of this
1774 * signal.
1775 *
1776 * Special case: user has done a sigsuspend. Here the current mask is
1777 * not of interest, but rather the mask from before the sigsuspen is
1778 * what we want restored after the signal processing is completed.
1779 */
1780 if (l->l_sigrestore) {
1781 returnmask = &l->l_sigoldmask;
1782 l->l_sigrestore = 0;
1783 } else
1784 returnmask = &l->l_sigmask;
1785
1786 /*
1787 * Commit to taking the signal before releasing the mutex.
1788 */
1789 action = SIGACTION_PS(ps, signo).sa_handler;
1790 l->l_ru.ru_nsignals++;
1791 sigget(l->l_sigpendset, &ksi, signo, NULL);
1792
1793 if (ktrpoint(KTR_PSIG)) {
1794 mutex_exit(p->p_lock);
1795 ktrpsig(signo, action, returnmask, NULL);
1796 mutex_enter(p->p_lock);
1797 }
1798
1799 if (action == SIG_DFL) {
1800 /*
1801 * Default action, where the default is to kill
1802 * the process. (Other cases were ignored above.)
1803 */
1804 sigexit(l, signo);
1805 return;
1806 }
1807
1808 /*
1809 * If we get here, the signal must be caught.
1810 */
1811 #ifdef DIAGNOSTIC
1812 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1813 panic("postsig action");
1814 #endif
1815
1816 kpsendsig(l, &ksi, returnmask);
1817 }
1818
1819 /*
1820 * sendsig_reset:
1821 *
1822 * Reset the signal action. Called from emulation specific sendsig()
1823 * before unlocking to deliver the signal.
1824 */
1825 void
1826 sendsig_reset(struct lwp *l, int signo)
1827 {
1828 struct proc *p = l->l_proc;
1829 struct sigacts *ps = p->p_sigacts;
1830
1831 KASSERT(mutex_owned(p->p_lock));
1832
1833 p->p_sigctx.ps_lwp = 0;
1834 p->p_sigctx.ps_code = 0;
1835 p->p_sigctx.ps_signo = 0;
1836
1837 mutex_enter(&ps->sa_mutex);
1838 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1839 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1840 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1841 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1842 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1843 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1844 }
1845 mutex_exit(&ps->sa_mutex);
1846 }
1847
1848 /*
1849 * Kill the current process for stated reason.
1850 */
1851 void
1852 killproc(struct proc *p, const char *why)
1853 {
1854
1855 KASSERT(mutex_owned(proc_lock));
1856
1857 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1858 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1859 psignal(p, SIGKILL);
1860 }
1861
1862 /*
1863 * Force the current process to exit with the specified signal, dumping core
1864 * if appropriate. We bypass the normal tests for masked and caught
1865 * signals, allowing unrecoverable failures to terminate the process without
1866 * changing signal state. Mark the accounting record with the signal
1867 * termination. If dumping core, save the signal number for the debugger.
1868 * Calls exit and does not return.
1869 */
1870 void
1871 sigexit(struct lwp *l, int signo)
1872 {
1873 int exitsig, error, docore;
1874 struct proc *p;
1875 struct lwp *t;
1876
1877 p = l->l_proc;
1878
1879 KASSERT(mutex_owned(p->p_lock));
1880 KERNEL_UNLOCK_ALL(l, NULL);
1881
1882 /*
1883 * Don't permit coredump() multiple times in the same process.
1884 * Call back into sigexit, where we will be suspended until
1885 * the deed is done. Note that this is a recursive call, but
1886 * LW_WCORE will prevent us from coming back this way.
1887 */
1888 if ((p->p_sflag & PS_WCORE) != 0) {
1889 lwp_lock(l);
1890 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1891 lwp_unlock(l);
1892 mutex_exit(p->p_lock);
1893 lwp_userret(l);
1894 #ifdef DIAGNOSTIC
1895 panic("sigexit");
1896 #endif
1897 /* NOTREACHED */
1898 }
1899
1900 /*
1901 * Prepare all other LWPs for exit. If dumping core, suspend them
1902 * so that their registers are available long enough to be dumped.
1903 */
1904 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1905 p->p_sflag |= PS_WCORE;
1906 for (;;) {
1907 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1908 lwp_lock(t);
1909 if (t == l) {
1910 t->l_flag &= ~LW_WSUSPEND;
1911 lwp_unlock(t);
1912 continue;
1913 }
1914 t->l_flag |= (LW_WCORE | LW_WEXIT);
1915 lwp_suspend(l, t);
1916 }
1917
1918 if (p->p_nrlwps == 1)
1919 break;
1920
1921 /*
1922 * Kick any LWPs sitting in lwp_wait1(), and wait
1923 * for everyone else to stop before proceeding.
1924 */
1925 p->p_nlwpwait++;
1926 cv_broadcast(&p->p_lwpcv);
1927 cv_wait(&p->p_lwpcv, p->p_lock);
1928 p->p_nlwpwait--;
1929 }
1930 }
1931
1932 exitsig = signo;
1933 p->p_acflag |= AXSIG;
1934 p->p_sigctx.ps_signo = signo;
1935 mutex_exit(p->p_lock);
1936
1937 if (docore) {
1938 if ((error = coredump(l, NULL)) == 0)
1939 exitsig |= WCOREFLAG;
1940
1941 if (kern_logsigexit) {
1942 int uid = l->l_cred ?
1943 (int)kauth_cred_geteuid(l->l_cred) : -1;
1944
1945 if (error)
1946 log(LOG_INFO, lognocoredump, p->p_pid,
1947 p->p_comm, uid, signo, error);
1948 else
1949 log(LOG_INFO, logcoredump, p->p_pid,
1950 p->p_comm, uid, signo);
1951 }
1952
1953 #ifdef PAX_SEGVGUARD
1954 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1955 #endif /* PAX_SEGVGUARD */
1956 }
1957
1958 /* Acquire the sched state mutex. exit1() will release it. */
1959 mutex_enter(p->p_lock);
1960
1961 /* No longer dumping core. */
1962 p->p_sflag &= ~PS_WCORE;
1963
1964 exit1(l, W_EXITCODE(0, exitsig));
1965 /* NOTREACHED */
1966 }
1967
1968 /*
1969 * Put process 'p' into the stopped state and optionally, notify the parent.
1970 */
1971 void
1972 proc_stop(struct proc *p, int notify, int signo)
1973 {
1974 struct lwp *l;
1975
1976 KASSERT(mutex_owned(p->p_lock));
1977
1978 /*
1979 * First off, set the stopping indicator and bring all sleeping
1980 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
1981 * unlock between here and the p->p_nrlwps check below.
1982 */
1983 p->p_sflag |= PS_STOPPING;
1984 if (notify)
1985 p->p_sflag |= PS_NOTIFYSTOP;
1986 else
1987 p->p_sflag &= ~PS_NOTIFYSTOP;
1988 membar_producer();
1989
1990 proc_stop_lwps(p);
1991
1992 /*
1993 * If there are no LWPs available to take the signal, then we
1994 * signal the parent process immediately. Otherwise, the last
1995 * LWP to stop will take care of it.
1996 */
1997
1998 if (p->p_nrlwps == 0) {
1999 proc_stop_done(p, true, PS_NOCLDSTOP);
2000 } else {
2001 /*
2002 * Have the remaining LWPs come to a halt, and trigger
2003 * proc_stop_callout() to ensure that they do.
2004 */
2005 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2006 sigpost(l, SIG_DFL, SA_STOP, signo);
2007 callout_schedule(&proc_stop_ch, 1);
2008 }
2009 }
2010
2011 /*
2012 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2013 * but wait for them to come to a halt at the kernel-user boundary. This is
2014 * to allow LWPs to release any locks that they may hold before stopping.
2015 *
2016 * Non-interruptable sleeps can be long, and there is the potential for an
2017 * LWP to begin sleeping interruptably soon after the process has been set
2018 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2019 * stopping, and so complete halt of the process and the return of status
2020 * information to the parent could be delayed indefinitely.
2021 *
2022 * To handle this race, proc_stop_callout() runs once per tick while there
2023 * are stopping processes in the system. It sets LWPs that are sleeping
2024 * interruptably into the LSSTOP state.
2025 *
2026 * Note that we are not concerned about keeping all LWPs stopped while the
2027 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2028 * What we do need to ensure is that all LWPs in a stopping process have
2029 * stopped at least once, so that notification can be sent to the parent
2030 * process.
2031 */
2032 static void
2033 proc_stop_callout(void *cookie)
2034 {
2035 bool more, restart;
2036 struct proc *p;
2037
2038 (void)cookie;
2039
2040 do {
2041 restart = false;
2042 more = false;
2043
2044 mutex_enter(proc_lock);
2045 PROCLIST_FOREACH(p, &allproc) {
2046 mutex_enter(p->p_lock);
2047
2048 if ((p->p_sflag & PS_STOPPING) == 0) {
2049 mutex_exit(p->p_lock);
2050 continue;
2051 }
2052
2053 /* Stop any LWPs sleeping interruptably. */
2054 proc_stop_lwps(p);
2055 if (p->p_nrlwps == 0) {
2056 /*
2057 * We brought the process to a halt.
2058 * Mark it as stopped and notify the
2059 * parent.
2060 */
2061 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2062 /*
2063 * Note that proc_stop_done() will
2064 * drop p->p_lock briefly.
2065 * Arrange to restart and check
2066 * all processes again.
2067 */
2068 restart = true;
2069 }
2070 proc_stop_done(p, true, PS_NOCLDSTOP);
2071 } else
2072 more = true;
2073
2074 mutex_exit(p->p_lock);
2075 if (restart)
2076 break;
2077 }
2078 mutex_exit(proc_lock);
2079 } while (restart);
2080
2081 /*
2082 * If we noted processes that are stopping but still have
2083 * running LWPs, then arrange to check again in 1 tick.
2084 */
2085 if (more)
2086 callout_schedule(&proc_stop_ch, 1);
2087 }
2088
2089 /*
2090 * Given a process in state SSTOP, set the state back to SACTIVE and
2091 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2092 */
2093 void
2094 proc_unstop(struct proc *p)
2095 {
2096 struct lwp *l;
2097 int sig;
2098
2099 KASSERT(mutex_owned(proc_lock));
2100 KASSERT(mutex_owned(p->p_lock));
2101
2102 p->p_stat = SACTIVE;
2103 p->p_sflag &= ~PS_STOPPING;
2104 sig = p->p_xstat;
2105
2106 if (!p->p_waited)
2107 p->p_pptr->p_nstopchild--;
2108
2109 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2110 lwp_lock(l);
2111 if (l->l_stat != LSSTOP) {
2112 lwp_unlock(l);
2113 continue;
2114 }
2115 if (l->l_wchan == NULL) {
2116 setrunnable(l);
2117 continue;
2118 }
2119 if (sig && (l->l_flag & LW_SINTR) != 0) {
2120 setrunnable(l);
2121 sig = 0;
2122 } else {
2123 l->l_stat = LSSLEEP;
2124 p->p_nrlwps++;
2125 lwp_unlock(l);
2126 }
2127 }
2128 }
2129
2130 static int
2131 filt_sigattach(struct knote *kn)
2132 {
2133 struct proc *p = curproc;
2134
2135 kn->kn_obj = p;
2136 kn->kn_flags |= EV_CLEAR; /* automatically set */
2137
2138 mutex_enter(p->p_lock);
2139 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2140 mutex_exit(p->p_lock);
2141
2142 return (0);
2143 }
2144
2145 static void
2146 filt_sigdetach(struct knote *kn)
2147 {
2148 struct proc *p = kn->kn_obj;
2149
2150 mutex_enter(p->p_lock);
2151 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2152 mutex_exit(p->p_lock);
2153 }
2154
2155 /*
2156 * signal knotes are shared with proc knotes, so we apply a mask to
2157 * the hint in order to differentiate them from process hints. This
2158 * could be avoided by using a signal-specific knote list, but probably
2159 * isn't worth the trouble.
2160 */
2161 static int
2162 filt_signal(struct knote *kn, long hint)
2163 {
2164
2165 if (hint & NOTE_SIGNAL) {
2166 hint &= ~NOTE_SIGNAL;
2167
2168 if (kn->kn_id == hint)
2169 kn->kn_data++;
2170 }
2171 return (kn->kn_data != 0);
2172 }
2173
2174 const struct filterops sig_filtops = {
2175 0, filt_sigattach, filt_sigdetach, filt_signal
2176 };
2177