kern_sig.c revision 1.282 1 /* $NetBSD: kern_sig.c,v 1.282 2008/04/29 15:51:23 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.282 2008/04/29 15:51:23 ad Exp $");
70
71 #include "opt_ptrace.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_compat_sunos.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_compat_netbsd32.h"
76 #include "opt_pax.h"
77
78 #define SIGPROP /* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/ucontext.h>
91 #include <sys/exec.h>
92 #include <sys/kauth.h>
93 #include <sys/acct.h>
94 #include <sys/callout.h>
95 #include <sys/atomic.h>
96 #include <sys/cpu.h>
97
98 #ifdef PAX_SEGVGUARD
99 #include <sys/pax.h>
100 #endif /* PAX_SEGVGUARD */
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 static void ksiginfo_exechook(struct proc *, void *);
106 static void proc_stop_callout(void *);
107
108 int sigunwait(struct proc *, const ksiginfo_t *);
109 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
110 int sigpost(struct lwp *, sig_t, int, int);
111 int sigchecktrace(sigpend_t **);
112 void sigswitch(bool, int, int);
113 void sigrealloc(ksiginfo_t *);
114
115 sigset_t contsigmask, stopsigmask, sigcantmask;
116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
117 static void sigacts_poolpage_free(struct pool *, void *);
118 static void *sigacts_poolpage_alloc(struct pool *, int);
119 static callout_t proc_stop_ch;
120
121 static struct pool_allocator sigactspool_allocator = {
122 .pa_alloc = sigacts_poolpage_alloc,
123 .pa_free = sigacts_poolpage_free,
124 };
125
126 #ifdef DEBUG
127 int kern_logsigexit = 1;
128 #else
129 int kern_logsigexit = 0;
130 #endif
131
132 static const char logcoredump[] =
133 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
134 static const char lognocoredump[] =
135 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
136
137 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
138 &pool_allocator_nointr, IPL_NONE);
139 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
140 NULL, IPL_VM);
141
142 /*
143 * signal_init:
144 *
145 * Initialize global signal-related data structures.
146 */
147 void
148 signal_init(void)
149 {
150
151 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
152
153 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
154 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
155 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
156
157 exechook_establish(ksiginfo_exechook, NULL);
158
159 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
160 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
161 }
162
163 /*
164 * sigacts_poolpage_alloc:
165 *
166 * Allocate a page for the sigacts memory pool.
167 */
168 static void *
169 sigacts_poolpage_alloc(struct pool *pp, int flags)
170 {
171
172 return (void *)uvm_km_alloc(kernel_map,
173 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
174 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
175 | UVM_KMF_WIRED);
176 }
177
178 /*
179 * sigacts_poolpage_free:
180 *
181 * Free a page on behalf of the sigacts memory pool.
182 */
183 static void
184 sigacts_poolpage_free(struct pool *pp, void *v)
185 {
186
187 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
188 }
189
190 /*
191 * sigactsinit:
192 *
193 * Create an initial sigctx structure, using the same signal state as
194 * p. If 'share' is set, share the sigctx_proc part, otherwise just
195 * copy it from parent.
196 */
197 struct sigacts *
198 sigactsinit(struct proc *pp, int share)
199 {
200 struct sigacts *ps, *ps2;
201
202 ps = pp->p_sigacts;
203
204 if (share) {
205 atomic_inc_uint(&ps->sa_refcnt);
206 ps2 = ps;
207 } else {
208 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
209 /* XXXAD get rid of this */
210 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
211 mutex_enter(&ps->sa_mutex);
212 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
213 sizeof(ps2->sa_sigdesc));
214 mutex_exit(&ps->sa_mutex);
215 ps2->sa_refcnt = 1;
216 }
217
218 return ps2;
219 }
220
221 /*
222 * sigactsunshare:
223 *
224 * Make this process not share its sigctx, maintaining all
225 * signal state.
226 */
227 void
228 sigactsunshare(struct proc *p)
229 {
230 struct sigacts *ps, *oldps;
231
232 oldps = p->p_sigacts;
233 if (oldps->sa_refcnt == 1)
234 return;
235 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
236 /* XXXAD get rid of this */
237 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
238 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
239 p->p_sigacts = ps;
240 sigactsfree(oldps);
241 }
242
243 /*
244 * sigactsfree;
245 *
246 * Release a sigctx structure.
247 */
248 void
249 sigactsfree(struct sigacts *ps)
250 {
251
252 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
253 mutex_destroy(&ps->sa_mutex);
254 pool_cache_put(sigacts_cache, ps);
255 }
256 }
257
258 /*
259 * siginit:
260 *
261 * Initialize signal state for process 0; set to ignore signals that
262 * are ignored by default and disable the signal stack. Locking not
263 * required as the system is still cold.
264 */
265 void
266 siginit(struct proc *p)
267 {
268 struct lwp *l;
269 struct sigacts *ps;
270 int signo, prop;
271
272 ps = p->p_sigacts;
273 sigemptyset(&contsigmask);
274 sigemptyset(&stopsigmask);
275 sigemptyset(&sigcantmask);
276 for (signo = 1; signo < NSIG; signo++) {
277 prop = sigprop[signo];
278 if (prop & SA_CONT)
279 sigaddset(&contsigmask, signo);
280 if (prop & SA_STOP)
281 sigaddset(&stopsigmask, signo);
282 if (prop & SA_CANTMASK)
283 sigaddset(&sigcantmask, signo);
284 if (prop & SA_IGNORE && signo != SIGCONT)
285 sigaddset(&p->p_sigctx.ps_sigignore, signo);
286 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
287 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
288 }
289 sigemptyset(&p->p_sigctx.ps_sigcatch);
290 p->p_sflag &= ~PS_NOCLDSTOP;
291
292 ksiginfo_queue_init(&p->p_sigpend.sp_info);
293 sigemptyset(&p->p_sigpend.sp_set);
294
295 /*
296 * Reset per LWP state.
297 */
298 l = LIST_FIRST(&p->p_lwps);
299 l->l_sigwaited = NULL;
300 l->l_sigstk.ss_flags = SS_DISABLE;
301 l->l_sigstk.ss_size = 0;
302 l->l_sigstk.ss_sp = 0;
303 ksiginfo_queue_init(&l->l_sigpend.sp_info);
304 sigemptyset(&l->l_sigpend.sp_set);
305
306 /* One reference. */
307 ps->sa_refcnt = 1;
308 }
309
310 /*
311 * execsigs:
312 *
313 * Reset signals for an exec of the specified process.
314 */
315 void
316 execsigs(struct proc *p)
317 {
318 struct sigacts *ps;
319 struct lwp *l;
320 int signo, prop;
321 sigset_t tset;
322 ksiginfoq_t kq;
323
324 KASSERT(p->p_nlwps == 1);
325
326 sigactsunshare(p);
327 ps = p->p_sigacts;
328
329 /*
330 * Reset caught signals. Held signals remain held through
331 * l->l_sigmask (unless they were caught, and are now ignored
332 * by default).
333 *
334 * No need to lock yet, the process has only one LWP and
335 * at this point the sigacts are private to the process.
336 */
337 sigemptyset(&tset);
338 for (signo = 1; signo < NSIG; signo++) {
339 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
340 prop = sigprop[signo];
341 if (prop & SA_IGNORE) {
342 if ((prop & SA_CONT) == 0)
343 sigaddset(&p->p_sigctx.ps_sigignore,
344 signo);
345 sigaddset(&tset, signo);
346 }
347 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
348 }
349 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
350 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
351 }
352 ksiginfo_queue_init(&kq);
353
354 mutex_enter(p->p_lock);
355 sigclearall(p, &tset, &kq);
356 sigemptyset(&p->p_sigctx.ps_sigcatch);
357
358 /*
359 * Reset no zombies if child dies flag as Solaris does.
360 */
361 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
362 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
363 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
364
365 /*
366 * Reset per-LWP state.
367 */
368 l = LIST_FIRST(&p->p_lwps);
369 l->l_sigwaited = NULL;
370 l->l_sigstk.ss_flags = SS_DISABLE;
371 l->l_sigstk.ss_size = 0;
372 l->l_sigstk.ss_sp = 0;
373 ksiginfo_queue_init(&l->l_sigpend.sp_info);
374 sigemptyset(&l->l_sigpend.sp_set);
375 mutex_exit(p->p_lock);
376
377 ksiginfo_queue_drain(&kq);
378 }
379
380 /*
381 * ksiginfo_exechook:
382 *
383 * Free all pending ksiginfo entries from a process on exec.
384 * Additionally, drain any unused ksiginfo structures in the
385 * system back to the pool.
386 *
387 * XXX This should not be a hook, every process has signals.
388 */
389 static void
390 ksiginfo_exechook(struct proc *p, void *v)
391 {
392 ksiginfoq_t kq;
393
394 ksiginfo_queue_init(&kq);
395
396 mutex_enter(p->p_lock);
397 sigclearall(p, NULL, &kq);
398 mutex_exit(p->p_lock);
399
400 ksiginfo_queue_drain(&kq);
401 }
402
403 /*
404 * ksiginfo_alloc:
405 *
406 * Allocate a new ksiginfo structure from the pool, and optionally copy
407 * an existing one. If the existing ksiginfo_t is from the pool, and
408 * has not been queued somewhere, then just return it. Additionally,
409 * if the existing ksiginfo_t does not contain any information beyond
410 * the signal number, then just return it.
411 */
412 ksiginfo_t *
413 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
414 {
415 ksiginfo_t *kp;
416
417 if (ok != NULL) {
418 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
419 KSI_FROMPOOL)
420 return ok;
421 if (KSI_EMPTY_P(ok))
422 return ok;
423 }
424
425 kp = pool_get(&ksiginfo_pool, flags);
426 if (kp == NULL) {
427 #ifdef DIAGNOSTIC
428 printf("Out of memory allocating ksiginfo for pid %d\n",
429 p->p_pid);
430 #endif
431 return NULL;
432 }
433
434 if (ok != NULL) {
435 memcpy(kp, ok, sizeof(*kp));
436 kp->ksi_flags &= ~KSI_QUEUED;
437 } else
438 KSI_INIT_EMPTY(kp);
439
440 kp->ksi_flags |= KSI_FROMPOOL;
441
442 return kp;
443 }
444
445 /*
446 * ksiginfo_free:
447 *
448 * If the given ksiginfo_t is from the pool and has not been queued,
449 * then free it.
450 */
451 void
452 ksiginfo_free(ksiginfo_t *kp)
453 {
454
455 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
456 return;
457 pool_put(&ksiginfo_pool, kp);
458 }
459
460 /*
461 * ksiginfo_queue_drain:
462 *
463 * Drain a non-empty ksiginfo_t queue.
464 */
465 void
466 ksiginfo_queue_drain0(ksiginfoq_t *kq)
467 {
468 ksiginfo_t *ksi;
469
470 KASSERT(!CIRCLEQ_EMPTY(kq));
471
472 while (!CIRCLEQ_EMPTY(kq)) {
473 ksi = CIRCLEQ_FIRST(kq);
474 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
475 pool_put(&ksiginfo_pool, ksi);
476 }
477 }
478
479 /*
480 * sigget:
481 *
482 * Fetch the first pending signal from a set. Optionally, also fetch
483 * or manufacture a ksiginfo element. Returns the number of the first
484 * pending signal, or zero.
485 */
486 int
487 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
488 {
489 ksiginfo_t *ksi;
490 sigset_t tset;
491
492 /* If there's no pending set, the signal is from the debugger. */
493 if (sp == NULL) {
494 if (out != NULL) {
495 KSI_INIT(out);
496 out->ksi_info._signo = signo;
497 out->ksi_info._code = SI_USER;
498 }
499 return signo;
500 }
501
502 /* Construct mask from signo, and 'mask'. */
503 if (signo == 0) {
504 if (mask != NULL) {
505 tset = *mask;
506 __sigandset(&sp->sp_set, &tset);
507 } else
508 tset = sp->sp_set;
509
510 /* If there are no signals pending, that's it. */
511 if ((signo = firstsig(&tset)) == 0)
512 return 0;
513 } else {
514 KASSERT(sigismember(&sp->sp_set, signo));
515 }
516
517 sigdelset(&sp->sp_set, signo);
518
519 /* Find siginfo and copy it out. */
520 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
521 if (ksi->ksi_signo == signo) {
522 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
523 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
524 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
525 ksi->ksi_flags &= ~KSI_QUEUED;
526 if (out != NULL) {
527 memcpy(out, ksi, sizeof(*out));
528 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
529 }
530 ksiginfo_free(ksi);
531 return signo;
532 }
533 }
534
535 /* If there's no siginfo, then manufacture it. */
536 if (out != NULL) {
537 KSI_INIT(out);
538 out->ksi_info._signo = signo;
539 out->ksi_info._code = SI_USER;
540 }
541
542 return signo;
543 }
544
545 /*
546 * sigput:
547 *
548 * Append a new ksiginfo element to the list of pending ksiginfo's, if
549 * we need to (e.g. SA_SIGINFO was requested).
550 */
551 void
552 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
553 {
554 ksiginfo_t *kp;
555 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
556
557 KASSERT(mutex_owned(p->p_lock));
558 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
559
560 sigaddset(&sp->sp_set, ksi->ksi_signo);
561
562 /*
563 * If siginfo is not required, or there is none, then just mark the
564 * signal as pending.
565 */
566 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
567 return;
568
569 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
570
571 #ifdef notyet /* XXX: QUEUING */
572 if (ksi->ksi_signo < SIGRTMIN)
573 #endif
574 {
575 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
576 if (kp->ksi_signo == ksi->ksi_signo) {
577 KSI_COPY(ksi, kp);
578 kp->ksi_flags |= KSI_QUEUED;
579 return;
580 }
581 }
582 }
583
584 ksi->ksi_flags |= KSI_QUEUED;
585 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
586 }
587
588 /*
589 * sigclear:
590 *
591 * Clear all pending signals in the specified set.
592 */
593 void
594 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
595 {
596 ksiginfo_t *ksi, *next;
597
598 if (mask == NULL)
599 sigemptyset(&sp->sp_set);
600 else
601 sigminusset(mask, &sp->sp_set);
602
603 ksi = CIRCLEQ_FIRST(&sp->sp_info);
604 for (; ksi != (void *)&sp->sp_info; ksi = next) {
605 next = CIRCLEQ_NEXT(ksi, ksi_list);
606 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
607 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
608 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
609 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
610 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
611 }
612 }
613 }
614
615 /*
616 * sigclearall:
617 *
618 * Clear all pending signals in the specified set from a process and
619 * its LWPs.
620 */
621 void
622 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
623 {
624 struct lwp *l;
625
626 KASSERT(mutex_owned(p->p_lock));
627
628 sigclear(&p->p_sigpend, mask, kq);
629
630 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
631 sigclear(&l->l_sigpend, mask, kq);
632 }
633 }
634
635 /*
636 * sigispending:
637 *
638 * Return true if there are pending signals for the current LWP. May
639 * be called unlocked provided that LW_PENDSIG is set, and that the
640 * signal has been posted to the appopriate queue before LW_PENDSIG is
641 * set.
642 */
643 int
644 sigispending(struct lwp *l, int signo)
645 {
646 struct proc *p = l->l_proc;
647 sigset_t tset;
648
649 membar_consumer();
650
651 tset = l->l_sigpend.sp_set;
652 sigplusset(&p->p_sigpend.sp_set, &tset);
653 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
654 sigminusset(&l->l_sigmask, &tset);
655
656 if (signo == 0) {
657 if (firstsig(&tset) != 0)
658 return EINTR;
659 } else if (sigismember(&tset, signo))
660 return EINTR;
661
662 return 0;
663 }
664
665 /*
666 * siginfo_alloc:
667 *
668 * Allocate a new siginfo_t structure from the pool.
669 */
670 siginfo_t *
671 siginfo_alloc(int flags)
672 {
673
674 return pool_get(&siginfo_pool, flags);
675 }
676
677 /*
678 * siginfo_free:
679 *
680 * Return a siginfo_t structure to the pool.
681 */
682 void
683 siginfo_free(void *arg)
684 {
685
686 pool_put(&siginfo_pool, arg);
687 }
688
689 void
690 getucontext(struct lwp *l, ucontext_t *ucp)
691 {
692 struct proc *p = l->l_proc;
693
694 KASSERT(mutex_owned(p->p_lock));
695
696 ucp->uc_flags = 0;
697 ucp->uc_link = l->l_ctxlink;
698
699 ucp->uc_sigmask = l->l_sigmask;
700 ucp->uc_flags |= _UC_SIGMASK;
701
702 /*
703 * The (unsupplied) definition of the `current execution stack'
704 * in the System V Interface Definition appears to allow returning
705 * the main context stack.
706 */
707 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
708 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
709 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
710 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
711 } else {
712 /* Simply copy alternate signal execution stack. */
713 ucp->uc_stack = l->l_sigstk;
714 }
715 ucp->uc_flags |= _UC_STACK;
716 mutex_exit(p->p_lock);
717 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
718 mutex_enter(p->p_lock);
719 }
720
721 int
722 setucontext(struct lwp *l, const ucontext_t *ucp)
723 {
724 struct proc *p = l->l_proc;
725 int error;
726
727 KASSERT(mutex_owned(p->p_lock));
728
729 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
730 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
731 if (error != 0)
732 return error;
733 }
734
735 mutex_exit(p->p_lock);
736 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
737 mutex_enter(p->p_lock);
738 if (error != 0)
739 return (error);
740
741 l->l_ctxlink = ucp->uc_link;
742
743 /*
744 * If there was stack information, update whether or not we are
745 * still running on an alternate signal stack.
746 */
747 if ((ucp->uc_flags & _UC_STACK) != 0) {
748 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
749 l->l_sigstk.ss_flags |= SS_ONSTACK;
750 else
751 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
752 }
753
754 return 0;
755 }
756
757 /*
758 * Common code for kill process group/broadcast kill. cp is calling
759 * process.
760 */
761 int
762 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
763 {
764 struct proc *p, *cp;
765 kauth_cred_t pc;
766 struct pgrp *pgrp;
767 int nfound;
768 int signo = ksi->ksi_signo;
769
770 cp = l->l_proc;
771 pc = l->l_cred;
772 nfound = 0;
773
774 mutex_enter(proc_lock);
775 if (all) {
776 /*
777 * broadcast
778 */
779 PROCLIST_FOREACH(p, &allproc) {
780 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
781 continue;
782 mutex_enter(p->p_lock);
783 if (kauth_authorize_process(pc,
784 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
785 NULL) == 0) {
786 nfound++;
787 if (signo)
788 kpsignal2(p, ksi);
789 }
790 mutex_exit(p->p_lock);
791 }
792 } else {
793 if (pgid == 0)
794 /*
795 * zero pgid means send to my process group.
796 */
797 pgrp = cp->p_pgrp;
798 else {
799 pgrp = pg_find(pgid, PFIND_LOCKED);
800 if (pgrp == NULL)
801 goto out;
802 }
803 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
804 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
805 continue;
806 mutex_enter(p->p_lock);
807 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
808 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
809 nfound++;
810 if (signo && P_ZOMBIE(p) == 0)
811 kpsignal2(p, ksi);
812 }
813 mutex_exit(p->p_lock);
814 }
815 }
816 out:
817 mutex_exit(proc_lock);
818 return (nfound ? 0 : ESRCH);
819 }
820
821 /*
822 * Send a signal to a process group. If checktty is 1, limit to members
823 * which have a controlling terminal.
824 */
825 void
826 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
827 {
828 ksiginfo_t ksi;
829
830 KASSERT(!cpu_intr_p());
831 KASSERT(mutex_owned(proc_lock));
832
833 KSI_INIT_EMPTY(&ksi);
834 ksi.ksi_signo = sig;
835 kpgsignal(pgrp, &ksi, NULL, checkctty);
836 }
837
838 void
839 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
840 {
841 struct proc *p;
842
843 KASSERT(!cpu_intr_p());
844 KASSERT(mutex_owned(proc_lock));
845
846 if (pgrp)
847 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
848 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
849 kpsignal(p, ksi, data);
850 }
851
852 /*
853 * Send a signal caused by a trap to the current LWP. If it will be caught
854 * immediately, deliver it with correct code. Otherwise, post it normally.
855 */
856 void
857 trapsignal(struct lwp *l, ksiginfo_t *ksi)
858 {
859 struct proc *p;
860 struct sigacts *ps;
861 int signo = ksi->ksi_signo;
862
863 KASSERT(KSI_TRAP_P(ksi));
864
865 ksi->ksi_lid = l->l_lid;
866 p = l->l_proc;
867
868 KASSERT(!cpu_intr_p());
869 mutex_enter(proc_lock);
870 mutex_enter(p->p_lock);
871 ps = p->p_sigacts;
872 if ((p->p_slflag & PSL_TRACED) == 0 &&
873 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
874 !sigismember(&l->l_sigmask, signo)) {
875 mutex_exit(proc_lock);
876 l->l_ru.ru_nsignals++;
877 kpsendsig(l, ksi, &l->l_sigmask);
878 mutex_exit(p->p_lock);
879 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
880 &l->l_sigmask, ksi);
881 } else {
882 /* XXX for core dump/debugger */
883 p->p_sigctx.ps_lwp = l->l_lid;
884 p->p_sigctx.ps_signo = ksi->ksi_signo;
885 p->p_sigctx.ps_code = ksi->ksi_trap;
886 kpsignal2(p, ksi);
887 mutex_exit(p->p_lock);
888 mutex_exit(proc_lock);
889 }
890 }
891
892 /*
893 * Fill in signal information and signal the parent for a child status change.
894 */
895 void
896 child_psignal(struct proc *p, int mask)
897 {
898 ksiginfo_t ksi;
899 struct proc *q;
900 int xstat;
901
902 KASSERT(mutex_owned(proc_lock));
903 KASSERT(mutex_owned(p->p_lock));
904
905 xstat = p->p_xstat;
906
907 KSI_INIT(&ksi);
908 ksi.ksi_signo = SIGCHLD;
909 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
910 ksi.ksi_pid = p->p_pid;
911 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
912 ksi.ksi_status = xstat;
913 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
914 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
915
916 q = p->p_pptr;
917
918 mutex_exit(p->p_lock);
919 mutex_enter(q->p_lock);
920
921 if ((q->p_sflag & mask) == 0)
922 kpsignal2(q, &ksi);
923
924 mutex_exit(q->p_lock);
925 mutex_enter(p->p_lock);
926 }
927
928 void
929 psignal(struct proc *p, int signo)
930 {
931 ksiginfo_t ksi;
932
933 KASSERT(!cpu_intr_p());
934 KASSERT(mutex_owned(proc_lock));
935
936 KSI_INIT_EMPTY(&ksi);
937 ksi.ksi_signo = signo;
938 mutex_enter(p->p_lock);
939 kpsignal2(p, &ksi);
940 mutex_exit(p->p_lock);
941 }
942
943 void
944 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
945 {
946 fdfile_t *ff;
947 file_t *fp;
948
949 KASSERT(!cpu_intr_p());
950 KASSERT(mutex_owned(proc_lock));
951
952 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
953 size_t fd;
954 filedesc_t *fdp = p->p_fd;
955
956 /* XXXSMP locking */
957 ksi->ksi_fd = -1;
958 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
959 if ((ff = fdp->fd_ofiles[fd]) == NULL)
960 continue;
961 if ((fp = ff->ff_file) == NULL)
962 continue;
963 if (fp->f_data == data) {
964 ksi->ksi_fd = fd;
965 break;
966 }
967 }
968 }
969 mutex_enter(p->p_lock);
970 kpsignal2(p, ksi);
971 mutex_exit(p->p_lock);
972 }
973
974 /*
975 * sigismasked:
976 *
977 * Returns true if signal is ignored or masked for the specified LWP.
978 */
979 int
980 sigismasked(struct lwp *l, int sig)
981 {
982 struct proc *p = l->l_proc;
983
984 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
985 sigismember(&l->l_sigmask, sig));
986 }
987
988 /*
989 * sigpost:
990 *
991 * Post a pending signal to an LWP. Returns non-zero if the LWP was
992 * able to take the signal.
993 */
994 int
995 sigpost(struct lwp *l, sig_t action, int prop, int sig)
996 {
997 int rv, masked;
998
999 KASSERT(mutex_owned(l->l_proc->p_lock));
1000
1001 /*
1002 * If the LWP is on the way out, sigclear() will be busy draining all
1003 * pending signals. Don't give it more.
1004 */
1005 if (l->l_refcnt == 0)
1006 return 0;
1007
1008 lwp_lock(l);
1009
1010 /*
1011 * Have the LWP check for signals. This ensures that even if no LWP
1012 * is found to take the signal immediately, it should be taken soon.
1013 */
1014 l->l_flag |= LW_PENDSIG;
1015
1016 /*
1017 * SIGCONT can be masked, but must always restart stopped LWPs.
1018 */
1019 masked = sigismember(&l->l_sigmask, sig);
1020 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1021 lwp_unlock(l);
1022 return 0;
1023 }
1024
1025 /*
1026 * If killing the process, make it run fast.
1027 */
1028 if (__predict_false((prop & SA_KILL) != 0) &&
1029 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1030 KASSERT(l->l_class == SCHED_OTHER);
1031 lwp_changepri(l, MAXPRI_USER);
1032 }
1033
1034 /*
1035 * If the LWP is running or on a run queue, then we win. If it's
1036 * sleeping interruptably, wake it and make it take the signal. If
1037 * the sleep isn't interruptable, then the chances are it will get
1038 * to see the signal soon anyhow. If suspended, it can't take the
1039 * signal right now. If it's LWP private or for all LWPs, save it
1040 * for later; otherwise punt.
1041 */
1042 rv = 0;
1043
1044 switch (l->l_stat) {
1045 case LSRUN:
1046 case LSONPROC:
1047 lwp_need_userret(l);
1048 rv = 1;
1049 break;
1050
1051 case LSSLEEP:
1052 if ((l->l_flag & LW_SINTR) != 0) {
1053 /* setrunnable() will release the lock. */
1054 setrunnable(l);
1055 return 1;
1056 }
1057 break;
1058
1059 case LSSUSPENDED:
1060 if ((prop & SA_KILL) != 0) {
1061 /* lwp_continue() will release the lock. */
1062 lwp_continue(l);
1063 return 1;
1064 }
1065 break;
1066
1067 case LSSTOP:
1068 if ((prop & SA_STOP) != 0)
1069 break;
1070
1071 /*
1072 * If the LWP is stopped and we are sending a continue
1073 * signal, then start it again.
1074 */
1075 if ((prop & SA_CONT) != 0) {
1076 if (l->l_wchan != NULL) {
1077 l->l_stat = LSSLEEP;
1078 l->l_proc->p_nrlwps++;
1079 rv = 1;
1080 break;
1081 }
1082 /* setrunnable() will release the lock. */
1083 setrunnable(l);
1084 return 1;
1085 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1086 /* setrunnable() will release the lock. */
1087 setrunnable(l);
1088 return 1;
1089 }
1090 break;
1091
1092 default:
1093 break;
1094 }
1095
1096 lwp_unlock(l);
1097 return rv;
1098 }
1099
1100 /*
1101 * Notify an LWP that it has a pending signal.
1102 */
1103 void
1104 signotify(struct lwp *l)
1105 {
1106 KASSERT(lwp_locked(l, NULL));
1107
1108 l->l_flag |= LW_PENDSIG;
1109 lwp_need_userret(l);
1110 }
1111
1112 /*
1113 * Find an LWP within process p that is waiting on signal ksi, and hand
1114 * it on.
1115 */
1116 int
1117 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1118 {
1119 struct lwp *l;
1120 int signo;
1121
1122 KASSERT(mutex_owned(p->p_lock));
1123
1124 signo = ksi->ksi_signo;
1125
1126 if (ksi->ksi_lid != 0) {
1127 /*
1128 * Signal came via _lwp_kill(). Find the LWP and see if
1129 * it's interested.
1130 */
1131 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1132 return 0;
1133 if (l->l_sigwaited == NULL ||
1134 !sigismember(&l->l_sigwaitset, signo))
1135 return 0;
1136 } else {
1137 /*
1138 * Look for any LWP that may be interested.
1139 */
1140 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1141 KASSERT(l->l_sigwaited != NULL);
1142 if (sigismember(&l->l_sigwaitset, signo))
1143 break;
1144 }
1145 }
1146
1147 if (l != NULL) {
1148 l->l_sigwaited->ksi_info = ksi->ksi_info;
1149 l->l_sigwaited = NULL;
1150 LIST_REMOVE(l, l_sigwaiter);
1151 cv_signal(&l->l_sigcv);
1152 return 1;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /*
1159 * Send the signal to the process. If the signal has an action, the action
1160 * is usually performed by the target process rather than the caller; we add
1161 * the signal to the set of pending signals for the process.
1162 *
1163 * Exceptions:
1164 * o When a stop signal is sent to a sleeping process that takes the
1165 * default action, the process is stopped without awakening it.
1166 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1167 * regardless of the signal action (eg, blocked or ignored).
1168 *
1169 * Other ignored signals are discarded immediately.
1170 */
1171 void
1172 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1173 {
1174 int prop, lid, toall, signo = ksi->ksi_signo;
1175 struct sigacts *sa;
1176 struct lwp *l;
1177 ksiginfo_t *kp;
1178 ksiginfoq_t kq;
1179 sig_t action;
1180
1181 KASSERT(!cpu_intr_p());
1182 KASSERT(mutex_owned(proc_lock));
1183 KASSERT(mutex_owned(p->p_lock));
1184 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1185 KASSERT(signo > 0 && signo < NSIG);
1186
1187 /*
1188 * If the process is being created by fork, is a zombie or is
1189 * exiting, then just drop the signal here and bail out.
1190 */
1191 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1192 return;
1193
1194 /*
1195 * Notify any interested parties of the signal.
1196 */
1197 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1198
1199 /*
1200 * Some signals including SIGKILL must act on the entire process.
1201 */
1202 kp = NULL;
1203 prop = sigprop[signo];
1204 toall = ((prop & SA_TOALL) != 0);
1205
1206 if (toall)
1207 lid = 0;
1208 else
1209 lid = ksi->ksi_lid;
1210
1211 /*
1212 * If proc is traced, always give parent a chance.
1213 */
1214 if (p->p_slflag & PSL_TRACED) {
1215 action = SIG_DFL;
1216
1217 if (lid == 0) {
1218 /*
1219 * If the process is being traced and the signal
1220 * is being caught, make sure to save any ksiginfo.
1221 */
1222 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1223 return;
1224 sigput(&p->p_sigpend, p, kp);
1225 }
1226 } else {
1227 /*
1228 * If the signal was the result of a trap and is not being
1229 * caught, then reset it to default action so that the
1230 * process dumps core immediately.
1231 */
1232 if (KSI_TRAP_P(ksi)) {
1233 sa = p->p_sigacts;
1234 mutex_enter(&sa->sa_mutex);
1235 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1236 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1237 SIGACTION(p, signo).sa_handler = SIG_DFL;
1238 }
1239 mutex_exit(&sa->sa_mutex);
1240 }
1241
1242 /*
1243 * If the signal is being ignored, then drop it. Note: we
1244 * don't set SIGCONT in ps_sigignore, and if it is set to
1245 * SIG_IGN, action will be SIG_DFL here.
1246 */
1247 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1248 return;
1249
1250 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1251 action = SIG_CATCH;
1252 else {
1253 action = SIG_DFL;
1254
1255 /*
1256 * If sending a tty stop signal to a member of an
1257 * orphaned process group, discard the signal here if
1258 * the action is default; don't stop the process below
1259 * if sleeping, and don't clear any pending SIGCONT.
1260 */
1261 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1262 return;
1263
1264 if (prop & SA_KILL && p->p_nice > NZERO)
1265 p->p_nice = NZERO;
1266 }
1267 }
1268
1269 /*
1270 * If stopping or continuing a process, discard any pending
1271 * signals that would do the inverse.
1272 */
1273 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1274 ksiginfo_queue_init(&kq);
1275 if ((prop & SA_CONT) != 0)
1276 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1277 if ((prop & SA_STOP) != 0)
1278 sigclear(&p->p_sigpend, &contsigmask, &kq);
1279 ksiginfo_queue_drain(&kq); /* XXXSMP */
1280 }
1281
1282 /*
1283 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1284 * please!), check if any LWPs are waiting on it. If yes, pass on
1285 * the signal info. The signal won't be processed further here.
1286 */
1287 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1288 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1289 sigunwait(p, ksi))
1290 return;
1291
1292 /*
1293 * XXXSMP Should be allocated by the caller, we're holding locks
1294 * here.
1295 */
1296 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1297 return;
1298
1299 /*
1300 * LWP private signals are easy - just find the LWP and post
1301 * the signal to it.
1302 */
1303 if (lid != 0) {
1304 l = lwp_find(p, lid);
1305 if (l != NULL) {
1306 sigput(&l->l_sigpend, p, kp);
1307 membar_producer();
1308 (void)sigpost(l, action, prop, kp->ksi_signo);
1309 }
1310 goto out;
1311 }
1312
1313 /*
1314 * Some signals go to all LWPs, even if posted with _lwp_kill().
1315 */
1316 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1317 if ((p->p_slflag & PSL_TRACED) != 0)
1318 goto deliver;
1319
1320 /*
1321 * If SIGCONT is default (or ignored) and process is
1322 * asleep, we are finished; the process should not
1323 * be awakened.
1324 */
1325 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1326 goto out;
1327
1328 sigput(&p->p_sigpend, p, kp);
1329 } else {
1330 /*
1331 * Process is stopped or stopping. If traced, then no
1332 * further action is necessary.
1333 */
1334 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1335 goto out;
1336
1337 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1338 /*
1339 * Re-adjust p_nstopchild if the process wasn't
1340 * collected by its parent.
1341 */
1342 p->p_stat = SACTIVE;
1343 p->p_sflag &= ~PS_STOPPING;
1344 if (!p->p_waited)
1345 p->p_pptr->p_nstopchild--;
1346
1347 /*
1348 * If SIGCONT is default (or ignored), we continue
1349 * the process but don't leave the signal in
1350 * ps_siglist, as it has no further action. If
1351 * SIGCONT is held, we continue the process and
1352 * leave the signal in ps_siglist. If the process
1353 * catches SIGCONT, let it handle the signal itself.
1354 * If it isn't waiting on an event, then it goes
1355 * back to run state. Otherwise, process goes back
1356 * to sleep state.
1357 */
1358 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1359 sigput(&p->p_sigpend, p, kp);
1360 } else if ((prop & SA_STOP) != 0) {
1361 /*
1362 * Already stopped, don't need to stop again.
1363 * (If we did the shell could get confused.)
1364 */
1365 goto out;
1366 } else
1367 sigput(&p->p_sigpend, p, kp);
1368 }
1369
1370 deliver:
1371 /*
1372 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1373 * visible on the per process list (for sigispending()). This
1374 * is unlikely to be needed in practice, but...
1375 */
1376 membar_producer();
1377
1378 /*
1379 * Try to find an LWP that can take the signal.
1380 */
1381 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1382 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1383 break;
1384
1385 out:
1386 /*
1387 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1388 * with locks held. The caller should take care of this.
1389 */
1390 ksiginfo_free(kp);
1391 }
1392
1393 void
1394 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1395 {
1396 struct proc *p = l->l_proc;
1397
1398 KASSERT(mutex_owned(p->p_lock));
1399
1400 (*p->p_emul->e_sendsig)(ksi, mask);
1401 }
1402
1403 /*
1404 * Stop any LWPs sleeping interruptably.
1405 */
1406 static void
1407 proc_stop_lwps(struct proc *p)
1408 {
1409 struct lwp *l;
1410
1411 KASSERT(mutex_owned(p->p_lock));
1412 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1413
1414 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1415 lwp_lock(l);
1416 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1417 l->l_stat = LSSTOP;
1418 p->p_nrlwps--;
1419 }
1420 lwp_unlock(l);
1421 }
1422 }
1423
1424 /*
1425 * Finish stopping of a process. Mark it stopped and notify the parent.
1426 *
1427 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1428 */
1429 static void
1430 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1431 {
1432
1433 KASSERT(mutex_owned(proc_lock));
1434 KASSERT(mutex_owned(p->p_lock));
1435 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1436 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1437
1438 p->p_sflag &= ~PS_STOPPING;
1439 p->p_stat = SSTOP;
1440 p->p_waited = 0;
1441 p->p_pptr->p_nstopchild++;
1442 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1443 if (ppsig) {
1444 /* child_psignal drops p_lock briefly. */
1445 child_psignal(p, ppmask);
1446 }
1447 cv_broadcast(&p->p_pptr->p_waitcv);
1448 }
1449 }
1450
1451 /*
1452 * Stop the current process and switch away when being stopped or traced.
1453 */
1454 void
1455 sigswitch(bool ppsig, int ppmask, int signo)
1456 {
1457 struct lwp *l = curlwp;
1458 struct proc *p = l->l_proc;
1459 #ifdef MULTIPROCESSOR
1460 int biglocks;
1461 #endif
1462
1463 KASSERT(mutex_owned(p->p_lock));
1464 KASSERT(l->l_stat == LSONPROC);
1465 KASSERT(p->p_nrlwps > 0);
1466
1467 /*
1468 * On entry we know that the process needs to stop. If it's
1469 * the result of a 'sideways' stop signal that has been sourced
1470 * through issignal(), then stop other LWPs in the process too.
1471 */
1472 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1473 KASSERT(signo != 0);
1474 proc_stop(p, 1, signo);
1475 KASSERT(p->p_nrlwps > 0);
1476 }
1477
1478 /*
1479 * If we are the last live LWP, and the stop was a result of
1480 * a new signal, then signal the parent.
1481 */
1482 if ((p->p_sflag & PS_STOPPING) != 0) {
1483 if (!mutex_tryenter(proc_lock)) {
1484 mutex_exit(p->p_lock);
1485 mutex_enter(proc_lock);
1486 mutex_enter(p->p_lock);
1487 }
1488
1489 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1490 /*
1491 * Note that proc_stop_done() can drop
1492 * p->p_lock briefly.
1493 */
1494 proc_stop_done(p, ppsig, ppmask);
1495 }
1496
1497 mutex_exit(proc_lock);
1498 }
1499
1500 /*
1501 * Unlock and switch away.
1502 */
1503 KERNEL_UNLOCK_ALL(l, &biglocks);
1504 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1505 p->p_nrlwps--;
1506 lwp_lock(l);
1507 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1508 l->l_stat = LSSTOP;
1509 lwp_unlock(l);
1510 }
1511
1512 mutex_exit(p->p_lock);
1513 lwp_lock(l);
1514 mi_switch(l);
1515 KERNEL_LOCK(biglocks, l);
1516 mutex_enter(p->p_lock);
1517 }
1518
1519 /*
1520 * Check for a signal from the debugger.
1521 */
1522 int
1523 sigchecktrace(sigpend_t **spp)
1524 {
1525 struct lwp *l = curlwp;
1526 struct proc *p = l->l_proc;
1527 int signo;
1528
1529 KASSERT(mutex_owned(p->p_lock));
1530
1531 /*
1532 * If we are no longer being traced, or the parent didn't
1533 * give us a signal, look for more signals.
1534 */
1535 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1536 return 0;
1537
1538 /* If there's a pending SIGKILL, process it immediately. */
1539 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1540 return 0;
1541
1542 /*
1543 * If the new signal is being masked, look for other signals.
1544 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1545 */
1546 signo = p->p_xstat;
1547 p->p_xstat = 0;
1548 if ((sigprop[signo] & SA_TOLWP) != 0)
1549 *spp = &l->l_sigpend;
1550 else
1551 *spp = &p->p_sigpend;
1552 if (sigismember(&l->l_sigmask, signo))
1553 signo = 0;
1554
1555 return signo;
1556 }
1557
1558 /*
1559 * If the current process has received a signal (should be caught or cause
1560 * termination, should interrupt current syscall), return the signal number.
1561 *
1562 * Stop signals with default action are processed immediately, then cleared;
1563 * they aren't returned. This is checked after each entry to the system for
1564 * a syscall or trap.
1565 *
1566 * We will also return -1 if the process is exiting and the current LWP must
1567 * follow suit.
1568 *
1569 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1570 * can switch away, though.
1571 */
1572 int
1573 issignal(struct lwp *l)
1574 {
1575 struct proc *p = l->l_proc;
1576 int signo = 0, prop;
1577 sigpend_t *sp = NULL;
1578 sigset_t ss;
1579
1580 KASSERT(mutex_owned(p->p_lock));
1581
1582 for (;;) {
1583 /* Discard any signals that we have decided not to take. */
1584 if (signo != 0)
1585 (void)sigget(sp, NULL, signo, NULL);
1586
1587 /*
1588 * If the process is stopped/stopping, then stop ourselves
1589 * now that we're on the kernel/userspace boundary. When
1590 * we awaken, check for a signal from the debugger.
1591 */
1592 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1593 sigswitch(true, PS_NOCLDSTOP, 0);
1594 signo = sigchecktrace(&sp);
1595 } else
1596 signo = 0;
1597
1598 /*
1599 * If the debugger didn't provide a signal, find a pending
1600 * signal from our set. Check per-LWP signals first, and
1601 * then per-process.
1602 */
1603 if (signo == 0) {
1604 sp = &l->l_sigpend;
1605 ss = sp->sp_set;
1606 if ((p->p_sflag & PS_PPWAIT) != 0)
1607 sigminusset(&stopsigmask, &ss);
1608 sigminusset(&l->l_sigmask, &ss);
1609
1610 if ((signo = firstsig(&ss)) == 0) {
1611 sp = &p->p_sigpend;
1612 ss = sp->sp_set;
1613 if ((p->p_sflag & PS_PPWAIT) != 0)
1614 sigminusset(&stopsigmask, &ss);
1615 sigminusset(&l->l_sigmask, &ss);
1616
1617 if ((signo = firstsig(&ss)) == 0) {
1618 /*
1619 * No signal pending - clear the
1620 * indicator and bail out.
1621 */
1622 lwp_lock(l);
1623 l->l_flag &= ~LW_PENDSIG;
1624 lwp_unlock(l);
1625 sp = NULL;
1626 break;
1627 }
1628 }
1629 }
1630
1631 /*
1632 * We should see pending but ignored signals only if
1633 * we are being traced.
1634 */
1635 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1636 (p->p_slflag & PSL_TRACED) == 0) {
1637 /* Discard the signal. */
1638 continue;
1639 }
1640
1641 /*
1642 * If traced, always stop, and stay stopped until released
1643 * by the debugger. If the our parent process is waiting
1644 * for us, don't hang as we could deadlock.
1645 */
1646 if ((p->p_slflag & PSL_TRACED) != 0 &&
1647 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1648 /* Take the signal. */
1649 (void)sigget(sp, NULL, signo, NULL);
1650 p->p_xstat = signo;
1651
1652 /* Emulation-specific handling of signal trace */
1653 if (p->p_emul->e_tracesig == NULL ||
1654 (*p->p_emul->e_tracesig)(p, signo) == 0)
1655 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1656 signo);
1657
1658 /* Check for a signal from the debugger. */
1659 if ((signo = sigchecktrace(&sp)) == 0)
1660 continue;
1661 }
1662
1663 prop = sigprop[signo];
1664
1665 /*
1666 * Decide whether the signal should be returned.
1667 */
1668 switch ((long)SIGACTION(p, signo).sa_handler) {
1669 case (long)SIG_DFL:
1670 /*
1671 * Don't take default actions on system processes.
1672 */
1673 if (p->p_pid <= 1) {
1674 #ifdef DIAGNOSTIC
1675 /*
1676 * Are you sure you want to ignore SIGSEGV
1677 * in init? XXX
1678 */
1679 printf_nolog("Process (pid %d) got sig %d\n",
1680 p->p_pid, signo);
1681 #endif
1682 continue;
1683 }
1684
1685 /*
1686 * If there is a pending stop signal to process with
1687 * default action, stop here, then clear the signal.
1688 * However, if process is member of an orphaned
1689 * process group, ignore tty stop signals.
1690 */
1691 if (prop & SA_STOP) {
1692 /*
1693 * XXX Don't hold proc_lock for p_lflag,
1694 * but it's not a big deal.
1695 */
1696 if (p->p_slflag & PSL_TRACED ||
1697 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1698 prop & SA_TTYSTOP)) {
1699 /* Ignore the signal. */
1700 continue;
1701 }
1702 /* Take the signal. */
1703 (void)sigget(sp, NULL, signo, NULL);
1704 p->p_xstat = signo;
1705 signo = 0;
1706 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1707 } else if (prop & SA_IGNORE) {
1708 /*
1709 * Except for SIGCONT, shouldn't get here.
1710 * Default action is to ignore; drop it.
1711 */
1712 continue;
1713 }
1714 break;
1715
1716 case (long)SIG_IGN:
1717 #ifdef DEBUG_ISSIGNAL
1718 /*
1719 * Masking above should prevent us ever trying
1720 * to take action on an ignored signal other
1721 * than SIGCONT, unless process is traced.
1722 */
1723 if ((prop & SA_CONT) == 0 &&
1724 (p->p_slflag & PSL_TRACED) == 0)
1725 printf_nolog("issignal\n");
1726 #endif
1727 continue;
1728
1729 default:
1730 /*
1731 * This signal has an action, let postsig() process
1732 * it.
1733 */
1734 break;
1735 }
1736
1737 break;
1738 }
1739
1740 l->l_sigpendset = sp;
1741 return signo;
1742 }
1743
1744 /*
1745 * Take the action for the specified signal
1746 * from the current set of pending signals.
1747 */
1748 void
1749 postsig(int signo)
1750 {
1751 struct lwp *l;
1752 struct proc *p;
1753 struct sigacts *ps;
1754 sig_t action;
1755 sigset_t *returnmask;
1756 ksiginfo_t ksi;
1757
1758 l = curlwp;
1759 p = l->l_proc;
1760 ps = p->p_sigacts;
1761
1762 KASSERT(mutex_owned(p->p_lock));
1763 KASSERT(signo > 0);
1764
1765 /*
1766 * Set the new mask value and also defer further occurrences of this
1767 * signal.
1768 *
1769 * Special case: user has done a sigsuspend. Here the current mask is
1770 * not of interest, but rather the mask from before the sigsuspen is
1771 * what we want restored after the signal processing is completed.
1772 */
1773 if (l->l_sigrestore) {
1774 returnmask = &l->l_sigoldmask;
1775 l->l_sigrestore = 0;
1776 } else
1777 returnmask = &l->l_sigmask;
1778
1779 /*
1780 * Commit to taking the signal before releasing the mutex.
1781 */
1782 action = SIGACTION_PS(ps, signo).sa_handler;
1783 l->l_ru.ru_nsignals++;
1784 sigget(l->l_sigpendset, &ksi, signo, NULL);
1785
1786 if (ktrpoint(KTR_PSIG)) {
1787 mutex_exit(p->p_lock);
1788 ktrpsig(signo, action, returnmask, NULL);
1789 mutex_enter(p->p_lock);
1790 }
1791
1792 if (action == SIG_DFL) {
1793 /*
1794 * Default action, where the default is to kill
1795 * the process. (Other cases were ignored above.)
1796 */
1797 sigexit(l, signo);
1798 return;
1799 }
1800
1801 /*
1802 * If we get here, the signal must be caught.
1803 */
1804 #ifdef DIAGNOSTIC
1805 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1806 panic("postsig action");
1807 #endif
1808
1809 kpsendsig(l, &ksi, returnmask);
1810 }
1811
1812 /*
1813 * sendsig_reset:
1814 *
1815 * Reset the signal action. Called from emulation specific sendsig()
1816 * before unlocking to deliver the signal.
1817 */
1818 void
1819 sendsig_reset(struct lwp *l, int signo)
1820 {
1821 struct proc *p = l->l_proc;
1822 struct sigacts *ps = p->p_sigacts;
1823
1824 KASSERT(mutex_owned(p->p_lock));
1825
1826 p->p_sigctx.ps_lwp = 0;
1827 p->p_sigctx.ps_code = 0;
1828 p->p_sigctx.ps_signo = 0;
1829
1830 mutex_enter(&ps->sa_mutex);
1831 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1832 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1833 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1834 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1835 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1836 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1837 }
1838 mutex_exit(&ps->sa_mutex);
1839 }
1840
1841 /*
1842 * Kill the current process for stated reason.
1843 */
1844 void
1845 killproc(struct proc *p, const char *why)
1846 {
1847
1848 KASSERT(mutex_owned(proc_lock));
1849
1850 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1851 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1852 psignal(p, SIGKILL);
1853 }
1854
1855 /*
1856 * Force the current process to exit with the specified signal, dumping core
1857 * if appropriate. We bypass the normal tests for masked and caught
1858 * signals, allowing unrecoverable failures to terminate the process without
1859 * changing signal state. Mark the accounting record with the signal
1860 * termination. If dumping core, save the signal number for the debugger.
1861 * Calls exit and does not return.
1862 */
1863 void
1864 sigexit(struct lwp *l, int signo)
1865 {
1866 int exitsig, error, docore;
1867 struct proc *p;
1868 struct lwp *t;
1869
1870 p = l->l_proc;
1871
1872 KASSERT(mutex_owned(p->p_lock));
1873 KERNEL_UNLOCK_ALL(l, NULL);
1874
1875 /*
1876 * Don't permit coredump() multiple times in the same process.
1877 * Call back into sigexit, where we will be suspended until
1878 * the deed is done. Note that this is a recursive call, but
1879 * LW_WCORE will prevent us from coming back this way.
1880 */
1881 if ((p->p_sflag & PS_WCORE) != 0) {
1882 lwp_lock(l);
1883 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1884 lwp_unlock(l);
1885 mutex_exit(p->p_lock);
1886 lwp_userret(l);
1887 panic("sigexit 1");
1888 /* NOTREACHED */
1889 }
1890
1891 /* If process is already on the way out, then bail now. */
1892 if ((p->p_sflag & PS_WEXIT) != 0) {
1893 mutex_exit(p->p_lock);
1894 lwp_exit(l);
1895 panic("sigexit 2");
1896 /* NOTREACHED */
1897 }
1898
1899 /*
1900 * Prepare all other LWPs for exit. If dumping core, suspend them
1901 * so that their registers are available long enough to be dumped.
1902 */
1903 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1904 p->p_sflag |= PS_WCORE;
1905 for (;;) {
1906 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1907 lwp_lock(t);
1908 if (t == l) {
1909 t->l_flag &= ~LW_WSUSPEND;
1910 lwp_unlock(t);
1911 continue;
1912 }
1913 t->l_flag |= (LW_WCORE | LW_WEXIT);
1914 lwp_suspend(l, t);
1915 }
1916
1917 if (p->p_nrlwps == 1)
1918 break;
1919
1920 /*
1921 * Kick any LWPs sitting in lwp_wait1(), and wait
1922 * for everyone else to stop before proceeding.
1923 */
1924 p->p_nlwpwait++;
1925 cv_broadcast(&p->p_lwpcv);
1926 cv_wait(&p->p_lwpcv, p->p_lock);
1927 p->p_nlwpwait--;
1928 }
1929 }
1930
1931 exitsig = signo;
1932 p->p_acflag |= AXSIG;
1933 p->p_sigctx.ps_signo = signo;
1934
1935 if (docore) {
1936 mutex_exit(p->p_lock);
1937 if ((error = coredump(l, NULL)) == 0)
1938 exitsig |= WCOREFLAG;
1939
1940 if (kern_logsigexit) {
1941 int uid = l->l_cred ?
1942 (int)kauth_cred_geteuid(l->l_cred) : -1;
1943
1944 if (error)
1945 log(LOG_INFO, lognocoredump, p->p_pid,
1946 p->p_comm, uid, signo, error);
1947 else
1948 log(LOG_INFO, logcoredump, p->p_pid,
1949 p->p_comm, uid, signo);
1950 }
1951
1952 #ifdef PAX_SEGVGUARD
1953 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1954 #endif /* PAX_SEGVGUARD */
1955 /* Acquire the sched state mutex. exit1() will release it. */
1956 mutex_enter(p->p_lock);
1957 }
1958
1959 /* No longer dumping core. */
1960 p->p_sflag &= ~PS_WCORE;
1961
1962 exit1(l, W_EXITCODE(0, exitsig));
1963 /* NOTREACHED */
1964 }
1965
1966 /*
1967 * Put process 'p' into the stopped state and optionally, notify the parent.
1968 */
1969 void
1970 proc_stop(struct proc *p, int notify, int signo)
1971 {
1972 struct lwp *l;
1973
1974 KASSERT(mutex_owned(p->p_lock));
1975
1976 /*
1977 * First off, set the stopping indicator and bring all sleeping
1978 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
1979 * unlock between here and the p->p_nrlwps check below.
1980 */
1981 p->p_sflag |= PS_STOPPING;
1982 if (notify)
1983 p->p_sflag |= PS_NOTIFYSTOP;
1984 else
1985 p->p_sflag &= ~PS_NOTIFYSTOP;
1986 membar_producer();
1987
1988 proc_stop_lwps(p);
1989
1990 /*
1991 * If there are no LWPs available to take the signal, then we
1992 * signal the parent process immediately. Otherwise, the last
1993 * LWP to stop will take care of it.
1994 */
1995
1996 if (p->p_nrlwps == 0) {
1997 proc_stop_done(p, true, PS_NOCLDSTOP);
1998 } else {
1999 /*
2000 * Have the remaining LWPs come to a halt, and trigger
2001 * proc_stop_callout() to ensure that they do.
2002 */
2003 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2004 sigpost(l, SIG_DFL, SA_STOP, signo);
2005 callout_schedule(&proc_stop_ch, 1);
2006 }
2007 }
2008
2009 /*
2010 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2011 * but wait for them to come to a halt at the kernel-user boundary. This is
2012 * to allow LWPs to release any locks that they may hold before stopping.
2013 *
2014 * Non-interruptable sleeps can be long, and there is the potential for an
2015 * LWP to begin sleeping interruptably soon after the process has been set
2016 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2017 * stopping, and so complete halt of the process and the return of status
2018 * information to the parent could be delayed indefinitely.
2019 *
2020 * To handle this race, proc_stop_callout() runs once per tick while there
2021 * are stopping processes in the system. It sets LWPs that are sleeping
2022 * interruptably into the LSSTOP state.
2023 *
2024 * Note that we are not concerned about keeping all LWPs stopped while the
2025 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2026 * What we do need to ensure is that all LWPs in a stopping process have
2027 * stopped at least once, so that notification can be sent to the parent
2028 * process.
2029 */
2030 static void
2031 proc_stop_callout(void *cookie)
2032 {
2033 bool more, restart;
2034 struct proc *p;
2035
2036 (void)cookie;
2037
2038 do {
2039 restart = false;
2040 more = false;
2041
2042 mutex_enter(proc_lock);
2043 PROCLIST_FOREACH(p, &allproc) {
2044 if ((p->p_flag & PK_MARKER) != 0)
2045 continue;
2046 mutex_enter(p->p_lock);
2047
2048 if ((p->p_sflag & PS_STOPPING) == 0) {
2049 mutex_exit(p->p_lock);
2050 continue;
2051 }
2052
2053 /* Stop any LWPs sleeping interruptably. */
2054 proc_stop_lwps(p);
2055 if (p->p_nrlwps == 0) {
2056 /*
2057 * We brought the process to a halt.
2058 * Mark it as stopped and notify the
2059 * parent.
2060 */
2061 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2062 /*
2063 * Note that proc_stop_done() will
2064 * drop p->p_lock briefly.
2065 * Arrange to restart and check
2066 * all processes again.
2067 */
2068 restart = true;
2069 }
2070 proc_stop_done(p, true, PS_NOCLDSTOP);
2071 } else
2072 more = true;
2073
2074 mutex_exit(p->p_lock);
2075 if (restart)
2076 break;
2077 }
2078 mutex_exit(proc_lock);
2079 } while (restart);
2080
2081 /*
2082 * If we noted processes that are stopping but still have
2083 * running LWPs, then arrange to check again in 1 tick.
2084 */
2085 if (more)
2086 callout_schedule(&proc_stop_ch, 1);
2087 }
2088
2089 /*
2090 * Given a process in state SSTOP, set the state back to SACTIVE and
2091 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2092 */
2093 void
2094 proc_unstop(struct proc *p)
2095 {
2096 struct lwp *l;
2097 int sig;
2098
2099 KASSERT(mutex_owned(proc_lock));
2100 KASSERT(mutex_owned(p->p_lock));
2101
2102 p->p_stat = SACTIVE;
2103 p->p_sflag &= ~PS_STOPPING;
2104 sig = p->p_xstat;
2105
2106 if (!p->p_waited)
2107 p->p_pptr->p_nstopchild--;
2108
2109 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2110 lwp_lock(l);
2111 if (l->l_stat != LSSTOP) {
2112 lwp_unlock(l);
2113 continue;
2114 }
2115 if (l->l_wchan == NULL) {
2116 setrunnable(l);
2117 continue;
2118 }
2119 if (sig && (l->l_flag & LW_SINTR) != 0) {
2120 setrunnable(l);
2121 sig = 0;
2122 } else {
2123 l->l_stat = LSSLEEP;
2124 p->p_nrlwps++;
2125 lwp_unlock(l);
2126 }
2127 }
2128 }
2129
2130 static int
2131 filt_sigattach(struct knote *kn)
2132 {
2133 struct proc *p = curproc;
2134
2135 kn->kn_obj = p;
2136 kn->kn_flags |= EV_CLEAR; /* automatically set */
2137
2138 mutex_enter(p->p_lock);
2139 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2140 mutex_exit(p->p_lock);
2141
2142 return (0);
2143 }
2144
2145 static void
2146 filt_sigdetach(struct knote *kn)
2147 {
2148 struct proc *p = kn->kn_obj;
2149
2150 mutex_enter(p->p_lock);
2151 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2152 mutex_exit(p->p_lock);
2153 }
2154
2155 /*
2156 * signal knotes are shared with proc knotes, so we apply a mask to
2157 * the hint in order to differentiate them from process hints. This
2158 * could be avoided by using a signal-specific knote list, but probably
2159 * isn't worth the trouble.
2160 */
2161 static int
2162 filt_signal(struct knote *kn, long hint)
2163 {
2164
2165 if (hint & NOTE_SIGNAL) {
2166 hint &= ~NOTE_SIGNAL;
2167
2168 if (kn->kn_id == hint)
2169 kn->kn_data++;
2170 }
2171 return (kn->kn_data != 0);
2172 }
2173
2174 const struct filterops sig_filtops = {
2175 0, filt_sigattach, filt_sigdetach, filt_signal
2176 };
2177