kern_sig.c revision 1.283 1 /* $NetBSD: kern_sig.c,v 1.283 2008/04/29 15:55:24 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.283 2008/04/29 15:55:24 ad Exp $");
70
71 #include "opt_ptrace.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_compat_sunos.h"
74 #include "opt_compat_netbsd.h"
75 #include "opt_compat_netbsd32.h"
76 #include "opt_pax.h"
77
78 #define SIGPROP /* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/ucontext.h>
91 #include <sys/exec.h>
92 #include <sys/kauth.h>
93 #include <sys/acct.h>
94 #include <sys/callout.h>
95 #include <sys/atomic.h>
96 #include <sys/cpu.h>
97
98 #ifdef PAX_SEGVGUARD
99 #include <sys/pax.h>
100 #endif /* PAX_SEGVGUARD */
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_extern.h>
104
105 static void ksiginfo_exechook(struct proc *, void *);
106 static void proc_stop_callout(void *);
107
108 int sigunwait(struct proc *, const ksiginfo_t *);
109 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
110 int sigpost(struct lwp *, sig_t, int, int);
111 int sigchecktrace(sigpend_t **);
112 void sigswitch(bool, int, int);
113 void sigrealloc(ksiginfo_t *);
114
115 sigset_t contsigmask, stopsigmask, sigcantmask;
116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
117 static void sigacts_poolpage_free(struct pool *, void *);
118 static void *sigacts_poolpage_alloc(struct pool *, int);
119 static callout_t proc_stop_ch;
120
121 static struct pool_allocator sigactspool_allocator = {
122 .pa_alloc = sigacts_poolpage_alloc,
123 .pa_free = sigacts_poolpage_free,
124 };
125
126 #ifdef DEBUG
127 int kern_logsigexit = 1;
128 #else
129 int kern_logsigexit = 0;
130 #endif
131
132 static const char logcoredump[] =
133 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
134 static const char lognocoredump[] =
135 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
136
137 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
138 &pool_allocator_nointr, IPL_NONE);
139 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
140 NULL, IPL_VM);
141
142 /*
143 * signal_init:
144 *
145 * Initialize global signal-related data structures.
146 */
147 void
148 signal_init(void)
149 {
150
151 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
152
153 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
154 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
155 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
156
157 exechook_establish(ksiginfo_exechook, NULL);
158
159 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
160 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
161 }
162
163 /*
164 * sigacts_poolpage_alloc:
165 *
166 * Allocate a page for the sigacts memory pool.
167 */
168 static void *
169 sigacts_poolpage_alloc(struct pool *pp, int flags)
170 {
171
172 return (void *)uvm_km_alloc(kernel_map,
173 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
174 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
175 | UVM_KMF_WIRED);
176 }
177
178 /*
179 * sigacts_poolpage_free:
180 *
181 * Free a page on behalf of the sigacts memory pool.
182 */
183 static void
184 sigacts_poolpage_free(struct pool *pp, void *v)
185 {
186
187 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
188 }
189
190 /*
191 * sigactsinit:
192 *
193 * Create an initial sigctx structure, using the same signal state as
194 * p. If 'share' is set, share the sigctx_proc part, otherwise just
195 * copy it from parent.
196 */
197 struct sigacts *
198 sigactsinit(struct proc *pp, int share)
199 {
200 struct sigacts *ps, *ps2;
201
202 ps = pp->p_sigacts;
203
204 if (share) {
205 atomic_inc_uint(&ps->sa_refcnt);
206 ps2 = ps;
207 } else {
208 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
209 /* XXXAD get rid of this */
210 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
211 mutex_enter(&ps->sa_mutex);
212 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
213 sizeof(ps2->sa_sigdesc));
214 mutex_exit(&ps->sa_mutex);
215 ps2->sa_refcnt = 1;
216 }
217
218 return ps2;
219 }
220
221 /*
222 * sigactsunshare:
223 *
224 * Make this process not share its sigctx, maintaining all
225 * signal state.
226 */
227 void
228 sigactsunshare(struct proc *p)
229 {
230 struct sigacts *ps, *oldps;
231
232 oldps = p->p_sigacts;
233 if (oldps->sa_refcnt == 1)
234 return;
235 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
236 /* XXXAD get rid of this */
237 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
238 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
239 p->p_sigacts = ps;
240 sigactsfree(oldps);
241 }
242
243 /*
244 * sigactsfree;
245 *
246 * Release a sigctx structure.
247 */
248 void
249 sigactsfree(struct sigacts *ps)
250 {
251
252 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
253 mutex_destroy(&ps->sa_mutex);
254 pool_cache_put(sigacts_cache, ps);
255 }
256 }
257
258 /*
259 * siginit:
260 *
261 * Initialize signal state for process 0; set to ignore signals that
262 * are ignored by default and disable the signal stack. Locking not
263 * required as the system is still cold.
264 */
265 void
266 siginit(struct proc *p)
267 {
268 struct lwp *l;
269 struct sigacts *ps;
270 int signo, prop;
271
272 ps = p->p_sigacts;
273 sigemptyset(&contsigmask);
274 sigemptyset(&stopsigmask);
275 sigemptyset(&sigcantmask);
276 for (signo = 1; signo < NSIG; signo++) {
277 prop = sigprop[signo];
278 if (prop & SA_CONT)
279 sigaddset(&contsigmask, signo);
280 if (prop & SA_STOP)
281 sigaddset(&stopsigmask, signo);
282 if (prop & SA_CANTMASK)
283 sigaddset(&sigcantmask, signo);
284 if (prop & SA_IGNORE && signo != SIGCONT)
285 sigaddset(&p->p_sigctx.ps_sigignore, signo);
286 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
287 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
288 }
289 sigemptyset(&p->p_sigctx.ps_sigcatch);
290 p->p_sflag &= ~PS_NOCLDSTOP;
291
292 ksiginfo_queue_init(&p->p_sigpend.sp_info);
293 sigemptyset(&p->p_sigpend.sp_set);
294
295 /*
296 * Reset per LWP state.
297 */
298 l = LIST_FIRST(&p->p_lwps);
299 l->l_sigwaited = NULL;
300 l->l_sigstk.ss_flags = SS_DISABLE;
301 l->l_sigstk.ss_size = 0;
302 l->l_sigstk.ss_sp = 0;
303 ksiginfo_queue_init(&l->l_sigpend.sp_info);
304 sigemptyset(&l->l_sigpend.sp_set);
305
306 /* One reference. */
307 ps->sa_refcnt = 1;
308 }
309
310 /*
311 * execsigs:
312 *
313 * Reset signals for an exec of the specified process.
314 */
315 void
316 execsigs(struct proc *p)
317 {
318 struct sigacts *ps;
319 struct lwp *l;
320 int signo, prop;
321 sigset_t tset;
322 ksiginfoq_t kq;
323
324 KASSERT(p->p_nlwps == 1);
325
326 sigactsunshare(p);
327 ps = p->p_sigacts;
328
329 /*
330 * Reset caught signals. Held signals remain held through
331 * l->l_sigmask (unless they were caught, and are now ignored
332 * by default).
333 *
334 * No need to lock yet, the process has only one LWP and
335 * at this point the sigacts are private to the process.
336 */
337 sigemptyset(&tset);
338 for (signo = 1; signo < NSIG; signo++) {
339 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
340 prop = sigprop[signo];
341 if (prop & SA_IGNORE) {
342 if ((prop & SA_CONT) == 0)
343 sigaddset(&p->p_sigctx.ps_sigignore,
344 signo);
345 sigaddset(&tset, signo);
346 }
347 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
348 }
349 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
350 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
351 }
352 ksiginfo_queue_init(&kq);
353
354 mutex_enter(p->p_lock);
355 sigclearall(p, &tset, &kq);
356 sigemptyset(&p->p_sigctx.ps_sigcatch);
357
358 /*
359 * Reset no zombies if child dies flag as Solaris does.
360 */
361 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
362 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
363 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
364
365 /*
366 * Reset per-LWP state.
367 */
368 l = LIST_FIRST(&p->p_lwps);
369 l->l_sigwaited = NULL;
370 l->l_sigstk.ss_flags = SS_DISABLE;
371 l->l_sigstk.ss_size = 0;
372 l->l_sigstk.ss_sp = 0;
373 ksiginfo_queue_init(&l->l_sigpend.sp_info);
374 sigemptyset(&l->l_sigpend.sp_set);
375 mutex_exit(p->p_lock);
376
377 ksiginfo_queue_drain(&kq);
378 }
379
380 /*
381 * ksiginfo_exechook:
382 *
383 * Free all pending ksiginfo entries from a process on exec.
384 * Additionally, drain any unused ksiginfo structures in the
385 * system back to the pool.
386 *
387 * XXX This should not be a hook, every process has signals.
388 */
389 static void
390 ksiginfo_exechook(struct proc *p, void *v)
391 {
392 ksiginfoq_t kq;
393
394 ksiginfo_queue_init(&kq);
395
396 mutex_enter(p->p_lock);
397 sigclearall(p, NULL, &kq);
398 mutex_exit(p->p_lock);
399
400 ksiginfo_queue_drain(&kq);
401 }
402
403 /*
404 * ksiginfo_alloc:
405 *
406 * Allocate a new ksiginfo structure from the pool, and optionally copy
407 * an existing one. If the existing ksiginfo_t is from the pool, and
408 * has not been queued somewhere, then just return it. Additionally,
409 * if the existing ksiginfo_t does not contain any information beyond
410 * the signal number, then just return it.
411 */
412 ksiginfo_t *
413 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
414 {
415 ksiginfo_t *kp;
416
417 if (ok != NULL) {
418 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
419 KSI_FROMPOOL)
420 return ok;
421 if (KSI_EMPTY_P(ok))
422 return ok;
423 }
424
425 kp = pool_get(&ksiginfo_pool, flags);
426 if (kp == NULL) {
427 #ifdef DIAGNOSTIC
428 printf("Out of memory allocating ksiginfo for pid %d\n",
429 p->p_pid);
430 #endif
431 return NULL;
432 }
433
434 if (ok != NULL) {
435 memcpy(kp, ok, sizeof(*kp));
436 kp->ksi_flags &= ~KSI_QUEUED;
437 } else
438 KSI_INIT_EMPTY(kp);
439
440 kp->ksi_flags |= KSI_FROMPOOL;
441
442 return kp;
443 }
444
445 /*
446 * ksiginfo_free:
447 *
448 * If the given ksiginfo_t is from the pool and has not been queued,
449 * then free it.
450 */
451 void
452 ksiginfo_free(ksiginfo_t *kp)
453 {
454
455 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
456 return;
457 pool_put(&ksiginfo_pool, kp);
458 }
459
460 /*
461 * ksiginfo_queue_drain:
462 *
463 * Drain a non-empty ksiginfo_t queue.
464 */
465 void
466 ksiginfo_queue_drain0(ksiginfoq_t *kq)
467 {
468 ksiginfo_t *ksi;
469
470 KASSERT(!CIRCLEQ_EMPTY(kq));
471
472 while (!CIRCLEQ_EMPTY(kq)) {
473 ksi = CIRCLEQ_FIRST(kq);
474 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
475 pool_put(&ksiginfo_pool, ksi);
476 }
477 }
478
479 /*
480 * sigget:
481 *
482 * Fetch the first pending signal from a set. Optionally, also fetch
483 * or manufacture a ksiginfo element. Returns the number of the first
484 * pending signal, or zero.
485 */
486 int
487 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
488 {
489 ksiginfo_t *ksi;
490 sigset_t tset;
491
492 /* If there's no pending set, the signal is from the debugger. */
493 if (sp == NULL) {
494 if (out != NULL) {
495 KSI_INIT(out);
496 out->ksi_info._signo = signo;
497 out->ksi_info._code = SI_USER;
498 }
499 return signo;
500 }
501
502 /* Construct mask from signo, and 'mask'. */
503 if (signo == 0) {
504 if (mask != NULL) {
505 tset = *mask;
506 __sigandset(&sp->sp_set, &tset);
507 } else
508 tset = sp->sp_set;
509
510 /* If there are no signals pending, that's it. */
511 if ((signo = firstsig(&tset)) == 0)
512 return 0;
513 } else {
514 KASSERT(sigismember(&sp->sp_set, signo));
515 }
516
517 sigdelset(&sp->sp_set, signo);
518
519 /* Find siginfo and copy it out. */
520 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
521 if (ksi->ksi_signo == signo) {
522 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
523 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
524 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
525 ksi->ksi_flags &= ~KSI_QUEUED;
526 if (out != NULL) {
527 memcpy(out, ksi, sizeof(*out));
528 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
529 }
530 ksiginfo_free(ksi);
531 return signo;
532 }
533 }
534
535 /* If there's no siginfo, then manufacture it. */
536 if (out != NULL) {
537 KSI_INIT(out);
538 out->ksi_info._signo = signo;
539 out->ksi_info._code = SI_USER;
540 }
541
542 return signo;
543 }
544
545 /*
546 * sigput:
547 *
548 * Append a new ksiginfo element to the list of pending ksiginfo's, if
549 * we need to (e.g. SA_SIGINFO was requested).
550 */
551 void
552 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
553 {
554 ksiginfo_t *kp;
555 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
556
557 KASSERT(mutex_owned(p->p_lock));
558 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
559
560 sigaddset(&sp->sp_set, ksi->ksi_signo);
561
562 /*
563 * If siginfo is not required, or there is none, then just mark the
564 * signal as pending.
565 */
566 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
567 return;
568
569 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
570
571 #ifdef notyet /* XXX: QUEUING */
572 if (ksi->ksi_signo < SIGRTMIN)
573 #endif
574 {
575 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
576 if (kp->ksi_signo == ksi->ksi_signo) {
577 KSI_COPY(ksi, kp);
578 kp->ksi_flags |= KSI_QUEUED;
579 return;
580 }
581 }
582 }
583
584 ksi->ksi_flags |= KSI_QUEUED;
585 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
586 }
587
588 /*
589 * sigclear:
590 *
591 * Clear all pending signals in the specified set.
592 */
593 void
594 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
595 {
596 ksiginfo_t *ksi, *next;
597
598 if (mask == NULL)
599 sigemptyset(&sp->sp_set);
600 else
601 sigminusset(mask, &sp->sp_set);
602
603 ksi = CIRCLEQ_FIRST(&sp->sp_info);
604 for (; ksi != (void *)&sp->sp_info; ksi = next) {
605 next = CIRCLEQ_NEXT(ksi, ksi_list);
606 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
607 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
608 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
609 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
610 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
611 }
612 }
613 }
614
615 /*
616 * sigclearall:
617 *
618 * Clear all pending signals in the specified set from a process and
619 * its LWPs.
620 */
621 void
622 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
623 {
624 struct lwp *l;
625
626 KASSERT(mutex_owned(p->p_lock));
627
628 sigclear(&p->p_sigpend, mask, kq);
629
630 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
631 sigclear(&l->l_sigpend, mask, kq);
632 }
633 }
634
635 /*
636 * sigispending:
637 *
638 * Return true if there are pending signals for the current LWP. May
639 * be called unlocked provided that LW_PENDSIG is set, and that the
640 * signal has been posted to the appopriate queue before LW_PENDSIG is
641 * set.
642 */
643 int
644 sigispending(struct lwp *l, int signo)
645 {
646 struct proc *p = l->l_proc;
647 sigset_t tset;
648
649 membar_consumer();
650
651 tset = l->l_sigpend.sp_set;
652 sigplusset(&p->p_sigpend.sp_set, &tset);
653 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
654 sigminusset(&l->l_sigmask, &tset);
655
656 if (signo == 0) {
657 if (firstsig(&tset) != 0)
658 return EINTR;
659 } else if (sigismember(&tset, signo))
660 return EINTR;
661
662 return 0;
663 }
664
665 /*
666 * siginfo_alloc:
667 *
668 * Allocate a new siginfo_t structure from the pool.
669 */
670 siginfo_t *
671 siginfo_alloc(int flags)
672 {
673
674 return pool_get(&siginfo_pool, flags);
675 }
676
677 /*
678 * siginfo_free:
679 *
680 * Return a siginfo_t structure to the pool.
681 */
682 void
683 siginfo_free(void *arg)
684 {
685
686 pool_put(&siginfo_pool, arg);
687 }
688
689 void
690 getucontext(struct lwp *l, ucontext_t *ucp)
691 {
692 struct proc *p = l->l_proc;
693
694 KASSERT(mutex_owned(p->p_lock));
695
696 ucp->uc_flags = 0;
697 ucp->uc_link = l->l_ctxlink;
698
699 ucp->uc_sigmask = l->l_sigmask;
700 ucp->uc_flags |= _UC_SIGMASK;
701
702 /*
703 * The (unsupplied) definition of the `current execution stack'
704 * in the System V Interface Definition appears to allow returning
705 * the main context stack.
706 */
707 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
708 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
709 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
710 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
711 } else {
712 /* Simply copy alternate signal execution stack. */
713 ucp->uc_stack = l->l_sigstk;
714 }
715 ucp->uc_flags |= _UC_STACK;
716 mutex_exit(p->p_lock);
717 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
718 mutex_enter(p->p_lock);
719 }
720
721 int
722 setucontext(struct lwp *l, const ucontext_t *ucp)
723 {
724 struct proc *p = l->l_proc;
725 int error;
726
727 KASSERT(mutex_owned(p->p_lock));
728
729 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
730 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
731 if (error != 0)
732 return error;
733 }
734
735 mutex_exit(p->p_lock);
736 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
737 mutex_enter(p->p_lock);
738 if (error != 0)
739 return (error);
740
741 l->l_ctxlink = ucp->uc_link;
742
743 /*
744 * If there was stack information, update whether or not we are
745 * still running on an alternate signal stack.
746 */
747 if ((ucp->uc_flags & _UC_STACK) != 0) {
748 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
749 l->l_sigstk.ss_flags |= SS_ONSTACK;
750 else
751 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
752 }
753
754 return 0;
755 }
756
757 /*
758 * Common code for kill process group/broadcast kill. cp is calling
759 * process.
760 */
761 int
762 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
763 {
764 struct proc *p, *cp;
765 kauth_cred_t pc;
766 struct pgrp *pgrp;
767 int nfound;
768 int signo = ksi->ksi_signo;
769
770 cp = l->l_proc;
771 pc = l->l_cred;
772 nfound = 0;
773
774 mutex_enter(proc_lock);
775 if (all) {
776 /*
777 * broadcast
778 */
779 PROCLIST_FOREACH(p, &allproc) {
780 if (p->p_pid <= 1 || p == cp ||
781 p->p_flag & (PK_SYSTEM|PK_MARKER))
782 continue;
783 mutex_enter(p->p_lock);
784 if (kauth_authorize_process(pc,
785 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
786 NULL) == 0) {
787 nfound++;
788 if (signo)
789 kpsignal2(p, ksi);
790 }
791 mutex_exit(p->p_lock);
792 }
793 } else {
794 if (pgid == 0)
795 /*
796 * zero pgid means send to my process group.
797 */
798 pgrp = cp->p_pgrp;
799 else {
800 pgrp = pg_find(pgid, PFIND_LOCKED);
801 if (pgrp == NULL)
802 goto out;
803 }
804 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
805 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
806 continue;
807 mutex_enter(p->p_lock);
808 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
809 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
810 nfound++;
811 if (signo && P_ZOMBIE(p) == 0)
812 kpsignal2(p, ksi);
813 }
814 mutex_exit(p->p_lock);
815 }
816 }
817 out:
818 mutex_exit(proc_lock);
819 return (nfound ? 0 : ESRCH);
820 }
821
822 /*
823 * Send a signal to a process group. If checktty is 1, limit to members
824 * which have a controlling terminal.
825 */
826 void
827 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
828 {
829 ksiginfo_t ksi;
830
831 KASSERT(!cpu_intr_p());
832 KASSERT(mutex_owned(proc_lock));
833
834 KSI_INIT_EMPTY(&ksi);
835 ksi.ksi_signo = sig;
836 kpgsignal(pgrp, &ksi, NULL, checkctty);
837 }
838
839 void
840 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
841 {
842 struct proc *p;
843
844 KASSERT(!cpu_intr_p());
845 KASSERT(mutex_owned(proc_lock));
846
847 if (pgrp)
848 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
849 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
850 kpsignal(p, ksi, data);
851 }
852
853 /*
854 * Send a signal caused by a trap to the current LWP. If it will be caught
855 * immediately, deliver it with correct code. Otherwise, post it normally.
856 */
857 void
858 trapsignal(struct lwp *l, ksiginfo_t *ksi)
859 {
860 struct proc *p;
861 struct sigacts *ps;
862 int signo = ksi->ksi_signo;
863
864 KASSERT(KSI_TRAP_P(ksi));
865
866 ksi->ksi_lid = l->l_lid;
867 p = l->l_proc;
868
869 KASSERT(!cpu_intr_p());
870 mutex_enter(proc_lock);
871 mutex_enter(p->p_lock);
872 ps = p->p_sigacts;
873 if ((p->p_slflag & PSL_TRACED) == 0 &&
874 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
875 !sigismember(&l->l_sigmask, signo)) {
876 mutex_exit(proc_lock);
877 l->l_ru.ru_nsignals++;
878 kpsendsig(l, ksi, &l->l_sigmask);
879 mutex_exit(p->p_lock);
880 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
881 &l->l_sigmask, ksi);
882 } else {
883 /* XXX for core dump/debugger */
884 p->p_sigctx.ps_lwp = l->l_lid;
885 p->p_sigctx.ps_signo = ksi->ksi_signo;
886 p->p_sigctx.ps_code = ksi->ksi_trap;
887 kpsignal2(p, ksi);
888 mutex_exit(p->p_lock);
889 mutex_exit(proc_lock);
890 }
891 }
892
893 /*
894 * Fill in signal information and signal the parent for a child status change.
895 */
896 void
897 child_psignal(struct proc *p, int mask)
898 {
899 ksiginfo_t ksi;
900 struct proc *q;
901 int xstat;
902
903 KASSERT(mutex_owned(proc_lock));
904 KASSERT(mutex_owned(p->p_lock));
905
906 xstat = p->p_xstat;
907
908 KSI_INIT(&ksi);
909 ksi.ksi_signo = SIGCHLD;
910 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
911 ksi.ksi_pid = p->p_pid;
912 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
913 ksi.ksi_status = xstat;
914 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
915 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
916
917 q = p->p_pptr;
918
919 mutex_exit(p->p_lock);
920 mutex_enter(q->p_lock);
921
922 if ((q->p_sflag & mask) == 0)
923 kpsignal2(q, &ksi);
924
925 mutex_exit(q->p_lock);
926 mutex_enter(p->p_lock);
927 }
928
929 void
930 psignal(struct proc *p, int signo)
931 {
932 ksiginfo_t ksi;
933
934 KASSERT(!cpu_intr_p());
935 KASSERT(mutex_owned(proc_lock));
936
937 KSI_INIT_EMPTY(&ksi);
938 ksi.ksi_signo = signo;
939 mutex_enter(p->p_lock);
940 kpsignal2(p, &ksi);
941 mutex_exit(p->p_lock);
942 }
943
944 void
945 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
946 {
947 fdfile_t *ff;
948 file_t *fp;
949
950 KASSERT(!cpu_intr_p());
951 KASSERT(mutex_owned(proc_lock));
952
953 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
954 size_t fd;
955 filedesc_t *fdp = p->p_fd;
956
957 /* XXXSMP locking */
958 ksi->ksi_fd = -1;
959 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
960 if ((ff = fdp->fd_ofiles[fd]) == NULL)
961 continue;
962 if ((fp = ff->ff_file) == NULL)
963 continue;
964 if (fp->f_data == data) {
965 ksi->ksi_fd = fd;
966 break;
967 }
968 }
969 }
970 mutex_enter(p->p_lock);
971 kpsignal2(p, ksi);
972 mutex_exit(p->p_lock);
973 }
974
975 /*
976 * sigismasked:
977 *
978 * Returns true if signal is ignored or masked for the specified LWP.
979 */
980 int
981 sigismasked(struct lwp *l, int sig)
982 {
983 struct proc *p = l->l_proc;
984
985 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
986 sigismember(&l->l_sigmask, sig));
987 }
988
989 /*
990 * sigpost:
991 *
992 * Post a pending signal to an LWP. Returns non-zero if the LWP was
993 * able to take the signal.
994 */
995 int
996 sigpost(struct lwp *l, sig_t action, int prop, int sig)
997 {
998 int rv, masked;
999
1000 KASSERT(mutex_owned(l->l_proc->p_lock));
1001
1002 /*
1003 * If the LWP is on the way out, sigclear() will be busy draining all
1004 * pending signals. Don't give it more.
1005 */
1006 if (l->l_refcnt == 0)
1007 return 0;
1008
1009 lwp_lock(l);
1010
1011 /*
1012 * Have the LWP check for signals. This ensures that even if no LWP
1013 * is found to take the signal immediately, it should be taken soon.
1014 */
1015 l->l_flag |= LW_PENDSIG;
1016
1017 /*
1018 * SIGCONT can be masked, but must always restart stopped LWPs.
1019 */
1020 masked = sigismember(&l->l_sigmask, sig);
1021 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1022 lwp_unlock(l);
1023 return 0;
1024 }
1025
1026 /*
1027 * If killing the process, make it run fast.
1028 */
1029 if (__predict_false((prop & SA_KILL) != 0) &&
1030 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1031 KASSERT(l->l_class == SCHED_OTHER);
1032 lwp_changepri(l, MAXPRI_USER);
1033 }
1034
1035 /*
1036 * If the LWP is running or on a run queue, then we win. If it's
1037 * sleeping interruptably, wake it and make it take the signal. If
1038 * the sleep isn't interruptable, then the chances are it will get
1039 * to see the signal soon anyhow. If suspended, it can't take the
1040 * signal right now. If it's LWP private or for all LWPs, save it
1041 * for later; otherwise punt.
1042 */
1043 rv = 0;
1044
1045 switch (l->l_stat) {
1046 case LSRUN:
1047 case LSONPROC:
1048 lwp_need_userret(l);
1049 rv = 1;
1050 break;
1051
1052 case LSSLEEP:
1053 if ((l->l_flag & LW_SINTR) != 0) {
1054 /* setrunnable() will release the lock. */
1055 setrunnable(l);
1056 return 1;
1057 }
1058 break;
1059
1060 case LSSUSPENDED:
1061 if ((prop & SA_KILL) != 0) {
1062 /* lwp_continue() will release the lock. */
1063 lwp_continue(l);
1064 return 1;
1065 }
1066 break;
1067
1068 case LSSTOP:
1069 if ((prop & SA_STOP) != 0)
1070 break;
1071
1072 /*
1073 * If the LWP is stopped and we are sending a continue
1074 * signal, then start it again.
1075 */
1076 if ((prop & SA_CONT) != 0) {
1077 if (l->l_wchan != NULL) {
1078 l->l_stat = LSSLEEP;
1079 l->l_proc->p_nrlwps++;
1080 rv = 1;
1081 break;
1082 }
1083 /* setrunnable() will release the lock. */
1084 setrunnable(l);
1085 return 1;
1086 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1087 /* setrunnable() will release the lock. */
1088 setrunnable(l);
1089 return 1;
1090 }
1091 break;
1092
1093 default:
1094 break;
1095 }
1096
1097 lwp_unlock(l);
1098 return rv;
1099 }
1100
1101 /*
1102 * Notify an LWP that it has a pending signal.
1103 */
1104 void
1105 signotify(struct lwp *l)
1106 {
1107 KASSERT(lwp_locked(l, NULL));
1108
1109 l->l_flag |= LW_PENDSIG;
1110 lwp_need_userret(l);
1111 }
1112
1113 /*
1114 * Find an LWP within process p that is waiting on signal ksi, and hand
1115 * it on.
1116 */
1117 int
1118 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1119 {
1120 struct lwp *l;
1121 int signo;
1122
1123 KASSERT(mutex_owned(p->p_lock));
1124
1125 signo = ksi->ksi_signo;
1126
1127 if (ksi->ksi_lid != 0) {
1128 /*
1129 * Signal came via _lwp_kill(). Find the LWP and see if
1130 * it's interested.
1131 */
1132 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1133 return 0;
1134 if (l->l_sigwaited == NULL ||
1135 !sigismember(&l->l_sigwaitset, signo))
1136 return 0;
1137 } else {
1138 /*
1139 * Look for any LWP that may be interested.
1140 */
1141 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1142 KASSERT(l->l_sigwaited != NULL);
1143 if (sigismember(&l->l_sigwaitset, signo))
1144 break;
1145 }
1146 }
1147
1148 if (l != NULL) {
1149 l->l_sigwaited->ksi_info = ksi->ksi_info;
1150 l->l_sigwaited = NULL;
1151 LIST_REMOVE(l, l_sigwaiter);
1152 cv_signal(&l->l_sigcv);
1153 return 1;
1154 }
1155
1156 return 0;
1157 }
1158
1159 /*
1160 * Send the signal to the process. If the signal has an action, the action
1161 * is usually performed by the target process rather than the caller; we add
1162 * the signal to the set of pending signals for the process.
1163 *
1164 * Exceptions:
1165 * o When a stop signal is sent to a sleeping process that takes the
1166 * default action, the process is stopped without awakening it.
1167 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1168 * regardless of the signal action (eg, blocked or ignored).
1169 *
1170 * Other ignored signals are discarded immediately.
1171 */
1172 void
1173 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1174 {
1175 int prop, lid, toall, signo = ksi->ksi_signo;
1176 struct sigacts *sa;
1177 struct lwp *l;
1178 ksiginfo_t *kp;
1179 ksiginfoq_t kq;
1180 sig_t action;
1181
1182 KASSERT(!cpu_intr_p());
1183 KASSERT(mutex_owned(proc_lock));
1184 KASSERT(mutex_owned(p->p_lock));
1185 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1186 KASSERT(signo > 0 && signo < NSIG);
1187
1188 /*
1189 * If the process is being created by fork, is a zombie or is
1190 * exiting, then just drop the signal here and bail out.
1191 */
1192 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1193 return;
1194
1195 /*
1196 * Notify any interested parties of the signal.
1197 */
1198 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1199
1200 /*
1201 * Some signals including SIGKILL must act on the entire process.
1202 */
1203 kp = NULL;
1204 prop = sigprop[signo];
1205 toall = ((prop & SA_TOALL) != 0);
1206
1207 if (toall)
1208 lid = 0;
1209 else
1210 lid = ksi->ksi_lid;
1211
1212 /*
1213 * If proc is traced, always give parent a chance.
1214 */
1215 if (p->p_slflag & PSL_TRACED) {
1216 action = SIG_DFL;
1217
1218 if (lid == 0) {
1219 /*
1220 * If the process is being traced and the signal
1221 * is being caught, make sure to save any ksiginfo.
1222 */
1223 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1224 return;
1225 sigput(&p->p_sigpend, p, kp);
1226 }
1227 } else {
1228 /*
1229 * If the signal was the result of a trap and is not being
1230 * caught, then reset it to default action so that the
1231 * process dumps core immediately.
1232 */
1233 if (KSI_TRAP_P(ksi)) {
1234 sa = p->p_sigacts;
1235 mutex_enter(&sa->sa_mutex);
1236 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1237 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1238 SIGACTION(p, signo).sa_handler = SIG_DFL;
1239 }
1240 mutex_exit(&sa->sa_mutex);
1241 }
1242
1243 /*
1244 * If the signal is being ignored, then drop it. Note: we
1245 * don't set SIGCONT in ps_sigignore, and if it is set to
1246 * SIG_IGN, action will be SIG_DFL here.
1247 */
1248 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1249 return;
1250
1251 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1252 action = SIG_CATCH;
1253 else {
1254 action = SIG_DFL;
1255
1256 /*
1257 * If sending a tty stop signal to a member of an
1258 * orphaned process group, discard the signal here if
1259 * the action is default; don't stop the process below
1260 * if sleeping, and don't clear any pending SIGCONT.
1261 */
1262 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1263 return;
1264
1265 if (prop & SA_KILL && p->p_nice > NZERO)
1266 p->p_nice = NZERO;
1267 }
1268 }
1269
1270 /*
1271 * If stopping or continuing a process, discard any pending
1272 * signals that would do the inverse.
1273 */
1274 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1275 ksiginfo_queue_init(&kq);
1276 if ((prop & SA_CONT) != 0)
1277 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1278 if ((prop & SA_STOP) != 0)
1279 sigclear(&p->p_sigpend, &contsigmask, &kq);
1280 ksiginfo_queue_drain(&kq); /* XXXSMP */
1281 }
1282
1283 /*
1284 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1285 * please!), check if any LWPs are waiting on it. If yes, pass on
1286 * the signal info. The signal won't be processed further here.
1287 */
1288 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1289 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1290 sigunwait(p, ksi))
1291 return;
1292
1293 /*
1294 * XXXSMP Should be allocated by the caller, we're holding locks
1295 * here.
1296 */
1297 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1298 return;
1299
1300 /*
1301 * LWP private signals are easy - just find the LWP and post
1302 * the signal to it.
1303 */
1304 if (lid != 0) {
1305 l = lwp_find(p, lid);
1306 if (l != NULL) {
1307 sigput(&l->l_sigpend, p, kp);
1308 membar_producer();
1309 (void)sigpost(l, action, prop, kp->ksi_signo);
1310 }
1311 goto out;
1312 }
1313
1314 /*
1315 * Some signals go to all LWPs, even if posted with _lwp_kill().
1316 */
1317 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1318 if ((p->p_slflag & PSL_TRACED) != 0)
1319 goto deliver;
1320
1321 /*
1322 * If SIGCONT is default (or ignored) and process is
1323 * asleep, we are finished; the process should not
1324 * be awakened.
1325 */
1326 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1327 goto out;
1328
1329 sigput(&p->p_sigpend, p, kp);
1330 } else {
1331 /*
1332 * Process is stopped or stopping. If traced, then no
1333 * further action is necessary.
1334 */
1335 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1336 goto out;
1337
1338 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1339 /*
1340 * Re-adjust p_nstopchild if the process wasn't
1341 * collected by its parent.
1342 */
1343 p->p_stat = SACTIVE;
1344 p->p_sflag &= ~PS_STOPPING;
1345 if (!p->p_waited)
1346 p->p_pptr->p_nstopchild--;
1347
1348 /*
1349 * If SIGCONT is default (or ignored), we continue
1350 * the process but don't leave the signal in
1351 * ps_siglist, as it has no further action. If
1352 * SIGCONT is held, we continue the process and
1353 * leave the signal in ps_siglist. If the process
1354 * catches SIGCONT, let it handle the signal itself.
1355 * If it isn't waiting on an event, then it goes
1356 * back to run state. Otherwise, process goes back
1357 * to sleep state.
1358 */
1359 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1360 sigput(&p->p_sigpend, p, kp);
1361 } else if ((prop & SA_STOP) != 0) {
1362 /*
1363 * Already stopped, don't need to stop again.
1364 * (If we did the shell could get confused.)
1365 */
1366 goto out;
1367 } else
1368 sigput(&p->p_sigpend, p, kp);
1369 }
1370
1371 deliver:
1372 /*
1373 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1374 * visible on the per process list (for sigispending()). This
1375 * is unlikely to be needed in practice, but...
1376 */
1377 membar_producer();
1378
1379 /*
1380 * Try to find an LWP that can take the signal.
1381 */
1382 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1383 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1384 break;
1385
1386 out:
1387 /*
1388 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1389 * with locks held. The caller should take care of this.
1390 */
1391 ksiginfo_free(kp);
1392 }
1393
1394 void
1395 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1396 {
1397 struct proc *p = l->l_proc;
1398
1399 KASSERT(mutex_owned(p->p_lock));
1400
1401 (*p->p_emul->e_sendsig)(ksi, mask);
1402 }
1403
1404 /*
1405 * Stop any LWPs sleeping interruptably.
1406 */
1407 static void
1408 proc_stop_lwps(struct proc *p)
1409 {
1410 struct lwp *l;
1411
1412 KASSERT(mutex_owned(p->p_lock));
1413 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1414
1415 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1416 lwp_lock(l);
1417 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1418 l->l_stat = LSSTOP;
1419 p->p_nrlwps--;
1420 }
1421 lwp_unlock(l);
1422 }
1423 }
1424
1425 /*
1426 * Finish stopping of a process. Mark it stopped and notify the parent.
1427 *
1428 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1429 */
1430 static void
1431 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1432 {
1433
1434 KASSERT(mutex_owned(proc_lock));
1435 KASSERT(mutex_owned(p->p_lock));
1436 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1437 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1438
1439 p->p_sflag &= ~PS_STOPPING;
1440 p->p_stat = SSTOP;
1441 p->p_waited = 0;
1442 p->p_pptr->p_nstopchild++;
1443 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1444 if (ppsig) {
1445 /* child_psignal drops p_lock briefly. */
1446 child_psignal(p, ppmask);
1447 }
1448 cv_broadcast(&p->p_pptr->p_waitcv);
1449 }
1450 }
1451
1452 /*
1453 * Stop the current process and switch away when being stopped or traced.
1454 */
1455 void
1456 sigswitch(bool ppsig, int ppmask, int signo)
1457 {
1458 struct lwp *l = curlwp;
1459 struct proc *p = l->l_proc;
1460 #ifdef MULTIPROCESSOR
1461 int biglocks;
1462 #endif
1463
1464 KASSERT(mutex_owned(p->p_lock));
1465 KASSERT(l->l_stat == LSONPROC);
1466 KASSERT(p->p_nrlwps > 0);
1467
1468 /*
1469 * On entry we know that the process needs to stop. If it's
1470 * the result of a 'sideways' stop signal that has been sourced
1471 * through issignal(), then stop other LWPs in the process too.
1472 */
1473 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1474 KASSERT(signo != 0);
1475 proc_stop(p, 1, signo);
1476 KASSERT(p->p_nrlwps > 0);
1477 }
1478
1479 /*
1480 * If we are the last live LWP, and the stop was a result of
1481 * a new signal, then signal the parent.
1482 */
1483 if ((p->p_sflag & PS_STOPPING) != 0) {
1484 if (!mutex_tryenter(proc_lock)) {
1485 mutex_exit(p->p_lock);
1486 mutex_enter(proc_lock);
1487 mutex_enter(p->p_lock);
1488 }
1489
1490 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1491 /*
1492 * Note that proc_stop_done() can drop
1493 * p->p_lock briefly.
1494 */
1495 proc_stop_done(p, ppsig, ppmask);
1496 }
1497
1498 mutex_exit(proc_lock);
1499 }
1500
1501 /*
1502 * Unlock and switch away.
1503 */
1504 KERNEL_UNLOCK_ALL(l, &biglocks);
1505 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1506 p->p_nrlwps--;
1507 lwp_lock(l);
1508 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1509 l->l_stat = LSSTOP;
1510 lwp_unlock(l);
1511 }
1512
1513 mutex_exit(p->p_lock);
1514 lwp_lock(l);
1515 mi_switch(l);
1516 KERNEL_LOCK(biglocks, l);
1517 mutex_enter(p->p_lock);
1518 }
1519
1520 /*
1521 * Check for a signal from the debugger.
1522 */
1523 int
1524 sigchecktrace(sigpend_t **spp)
1525 {
1526 struct lwp *l = curlwp;
1527 struct proc *p = l->l_proc;
1528 int signo;
1529
1530 KASSERT(mutex_owned(p->p_lock));
1531
1532 /*
1533 * If we are no longer being traced, or the parent didn't
1534 * give us a signal, look for more signals.
1535 */
1536 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1537 return 0;
1538
1539 /* If there's a pending SIGKILL, process it immediately. */
1540 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1541 return 0;
1542
1543 /*
1544 * If the new signal is being masked, look for other signals.
1545 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1546 */
1547 signo = p->p_xstat;
1548 p->p_xstat = 0;
1549 if ((sigprop[signo] & SA_TOLWP) != 0)
1550 *spp = &l->l_sigpend;
1551 else
1552 *spp = &p->p_sigpend;
1553 if (sigismember(&l->l_sigmask, signo))
1554 signo = 0;
1555
1556 return signo;
1557 }
1558
1559 /*
1560 * If the current process has received a signal (should be caught or cause
1561 * termination, should interrupt current syscall), return the signal number.
1562 *
1563 * Stop signals with default action are processed immediately, then cleared;
1564 * they aren't returned. This is checked after each entry to the system for
1565 * a syscall or trap.
1566 *
1567 * We will also return -1 if the process is exiting and the current LWP must
1568 * follow suit.
1569 *
1570 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1571 * can switch away, though.
1572 */
1573 int
1574 issignal(struct lwp *l)
1575 {
1576 struct proc *p = l->l_proc;
1577 int signo = 0, prop;
1578 sigpend_t *sp = NULL;
1579 sigset_t ss;
1580
1581 KASSERT(mutex_owned(p->p_lock));
1582
1583 for (;;) {
1584 /* Discard any signals that we have decided not to take. */
1585 if (signo != 0)
1586 (void)sigget(sp, NULL, signo, NULL);
1587
1588 /*
1589 * If the process is stopped/stopping, then stop ourselves
1590 * now that we're on the kernel/userspace boundary. When
1591 * we awaken, check for a signal from the debugger.
1592 */
1593 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1594 sigswitch(true, PS_NOCLDSTOP, 0);
1595 signo = sigchecktrace(&sp);
1596 } else
1597 signo = 0;
1598
1599 /*
1600 * If the debugger didn't provide a signal, find a pending
1601 * signal from our set. Check per-LWP signals first, and
1602 * then per-process.
1603 */
1604 if (signo == 0) {
1605 sp = &l->l_sigpend;
1606 ss = sp->sp_set;
1607 if ((p->p_sflag & PS_PPWAIT) != 0)
1608 sigminusset(&stopsigmask, &ss);
1609 sigminusset(&l->l_sigmask, &ss);
1610
1611 if ((signo = firstsig(&ss)) == 0) {
1612 sp = &p->p_sigpend;
1613 ss = sp->sp_set;
1614 if ((p->p_sflag & PS_PPWAIT) != 0)
1615 sigminusset(&stopsigmask, &ss);
1616 sigminusset(&l->l_sigmask, &ss);
1617
1618 if ((signo = firstsig(&ss)) == 0) {
1619 /*
1620 * No signal pending - clear the
1621 * indicator and bail out.
1622 */
1623 lwp_lock(l);
1624 l->l_flag &= ~LW_PENDSIG;
1625 lwp_unlock(l);
1626 sp = NULL;
1627 break;
1628 }
1629 }
1630 }
1631
1632 /*
1633 * We should see pending but ignored signals only if
1634 * we are being traced.
1635 */
1636 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1637 (p->p_slflag & PSL_TRACED) == 0) {
1638 /* Discard the signal. */
1639 continue;
1640 }
1641
1642 /*
1643 * If traced, always stop, and stay stopped until released
1644 * by the debugger. If the our parent process is waiting
1645 * for us, don't hang as we could deadlock.
1646 */
1647 if ((p->p_slflag & PSL_TRACED) != 0 &&
1648 (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
1649 /* Take the signal. */
1650 (void)sigget(sp, NULL, signo, NULL);
1651 p->p_xstat = signo;
1652
1653 /* Emulation-specific handling of signal trace */
1654 if (p->p_emul->e_tracesig == NULL ||
1655 (*p->p_emul->e_tracesig)(p, signo) == 0)
1656 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1657 signo);
1658
1659 /* Check for a signal from the debugger. */
1660 if ((signo = sigchecktrace(&sp)) == 0)
1661 continue;
1662 }
1663
1664 prop = sigprop[signo];
1665
1666 /*
1667 * Decide whether the signal should be returned.
1668 */
1669 switch ((long)SIGACTION(p, signo).sa_handler) {
1670 case (long)SIG_DFL:
1671 /*
1672 * Don't take default actions on system processes.
1673 */
1674 if (p->p_pid <= 1) {
1675 #ifdef DIAGNOSTIC
1676 /*
1677 * Are you sure you want to ignore SIGSEGV
1678 * in init? XXX
1679 */
1680 printf_nolog("Process (pid %d) got sig %d\n",
1681 p->p_pid, signo);
1682 #endif
1683 continue;
1684 }
1685
1686 /*
1687 * If there is a pending stop signal to process with
1688 * default action, stop here, then clear the signal.
1689 * However, if process is member of an orphaned
1690 * process group, ignore tty stop signals.
1691 */
1692 if (prop & SA_STOP) {
1693 /*
1694 * XXX Don't hold proc_lock for p_lflag,
1695 * but it's not a big deal.
1696 */
1697 if (p->p_slflag & PSL_TRACED ||
1698 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1699 prop & SA_TTYSTOP)) {
1700 /* Ignore the signal. */
1701 continue;
1702 }
1703 /* Take the signal. */
1704 (void)sigget(sp, NULL, signo, NULL);
1705 p->p_xstat = signo;
1706 signo = 0;
1707 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1708 } else if (prop & SA_IGNORE) {
1709 /*
1710 * Except for SIGCONT, shouldn't get here.
1711 * Default action is to ignore; drop it.
1712 */
1713 continue;
1714 }
1715 break;
1716
1717 case (long)SIG_IGN:
1718 #ifdef DEBUG_ISSIGNAL
1719 /*
1720 * Masking above should prevent us ever trying
1721 * to take action on an ignored signal other
1722 * than SIGCONT, unless process is traced.
1723 */
1724 if ((prop & SA_CONT) == 0 &&
1725 (p->p_slflag & PSL_TRACED) == 0)
1726 printf_nolog("issignal\n");
1727 #endif
1728 continue;
1729
1730 default:
1731 /*
1732 * This signal has an action, let postsig() process
1733 * it.
1734 */
1735 break;
1736 }
1737
1738 break;
1739 }
1740
1741 l->l_sigpendset = sp;
1742 return signo;
1743 }
1744
1745 /*
1746 * Take the action for the specified signal
1747 * from the current set of pending signals.
1748 */
1749 void
1750 postsig(int signo)
1751 {
1752 struct lwp *l;
1753 struct proc *p;
1754 struct sigacts *ps;
1755 sig_t action;
1756 sigset_t *returnmask;
1757 ksiginfo_t ksi;
1758
1759 l = curlwp;
1760 p = l->l_proc;
1761 ps = p->p_sigacts;
1762
1763 KASSERT(mutex_owned(p->p_lock));
1764 KASSERT(signo > 0);
1765
1766 /*
1767 * Set the new mask value and also defer further occurrences of this
1768 * signal.
1769 *
1770 * Special case: user has done a sigsuspend. Here the current mask is
1771 * not of interest, but rather the mask from before the sigsuspen is
1772 * what we want restored after the signal processing is completed.
1773 */
1774 if (l->l_sigrestore) {
1775 returnmask = &l->l_sigoldmask;
1776 l->l_sigrestore = 0;
1777 } else
1778 returnmask = &l->l_sigmask;
1779
1780 /*
1781 * Commit to taking the signal before releasing the mutex.
1782 */
1783 action = SIGACTION_PS(ps, signo).sa_handler;
1784 l->l_ru.ru_nsignals++;
1785 sigget(l->l_sigpendset, &ksi, signo, NULL);
1786
1787 if (ktrpoint(KTR_PSIG)) {
1788 mutex_exit(p->p_lock);
1789 ktrpsig(signo, action, returnmask, NULL);
1790 mutex_enter(p->p_lock);
1791 }
1792
1793 if (action == SIG_DFL) {
1794 /*
1795 * Default action, where the default is to kill
1796 * the process. (Other cases were ignored above.)
1797 */
1798 sigexit(l, signo);
1799 return;
1800 }
1801
1802 /*
1803 * If we get here, the signal must be caught.
1804 */
1805 #ifdef DIAGNOSTIC
1806 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1807 panic("postsig action");
1808 #endif
1809
1810 kpsendsig(l, &ksi, returnmask);
1811 }
1812
1813 /*
1814 * sendsig_reset:
1815 *
1816 * Reset the signal action. Called from emulation specific sendsig()
1817 * before unlocking to deliver the signal.
1818 */
1819 void
1820 sendsig_reset(struct lwp *l, int signo)
1821 {
1822 struct proc *p = l->l_proc;
1823 struct sigacts *ps = p->p_sigacts;
1824
1825 KASSERT(mutex_owned(p->p_lock));
1826
1827 p->p_sigctx.ps_lwp = 0;
1828 p->p_sigctx.ps_code = 0;
1829 p->p_sigctx.ps_signo = 0;
1830
1831 mutex_enter(&ps->sa_mutex);
1832 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1833 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1834 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1835 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1836 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1837 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1838 }
1839 mutex_exit(&ps->sa_mutex);
1840 }
1841
1842 /*
1843 * Kill the current process for stated reason.
1844 */
1845 void
1846 killproc(struct proc *p, const char *why)
1847 {
1848
1849 KASSERT(mutex_owned(proc_lock));
1850
1851 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1852 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1853 psignal(p, SIGKILL);
1854 }
1855
1856 /*
1857 * Force the current process to exit with the specified signal, dumping core
1858 * if appropriate. We bypass the normal tests for masked and caught
1859 * signals, allowing unrecoverable failures to terminate the process without
1860 * changing signal state. Mark the accounting record with the signal
1861 * termination. If dumping core, save the signal number for the debugger.
1862 * Calls exit and does not return.
1863 */
1864 void
1865 sigexit(struct lwp *l, int signo)
1866 {
1867 int exitsig, error, docore;
1868 struct proc *p;
1869 struct lwp *t;
1870
1871 p = l->l_proc;
1872
1873 KASSERT(mutex_owned(p->p_lock));
1874 KERNEL_UNLOCK_ALL(l, NULL);
1875
1876 /*
1877 * Don't permit coredump() multiple times in the same process.
1878 * Call back into sigexit, where we will be suspended until
1879 * the deed is done. Note that this is a recursive call, but
1880 * LW_WCORE will prevent us from coming back this way.
1881 */
1882 if ((p->p_sflag & PS_WCORE) != 0) {
1883 lwp_lock(l);
1884 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1885 lwp_unlock(l);
1886 mutex_exit(p->p_lock);
1887 lwp_userret(l);
1888 panic("sigexit 1");
1889 /* NOTREACHED */
1890 }
1891
1892 /* If process is already on the way out, then bail now. */
1893 if ((p->p_sflag & PS_WEXIT) != 0) {
1894 mutex_exit(p->p_lock);
1895 lwp_exit(l);
1896 panic("sigexit 2");
1897 /* NOTREACHED */
1898 }
1899
1900 /*
1901 * Prepare all other LWPs for exit. If dumping core, suspend them
1902 * so that their registers are available long enough to be dumped.
1903 */
1904 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1905 p->p_sflag |= PS_WCORE;
1906 for (;;) {
1907 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1908 lwp_lock(t);
1909 if (t == l) {
1910 t->l_flag &= ~LW_WSUSPEND;
1911 lwp_unlock(t);
1912 continue;
1913 }
1914 t->l_flag |= (LW_WCORE | LW_WEXIT);
1915 lwp_suspend(l, t);
1916 }
1917
1918 if (p->p_nrlwps == 1)
1919 break;
1920
1921 /*
1922 * Kick any LWPs sitting in lwp_wait1(), and wait
1923 * for everyone else to stop before proceeding.
1924 */
1925 p->p_nlwpwait++;
1926 cv_broadcast(&p->p_lwpcv);
1927 cv_wait(&p->p_lwpcv, p->p_lock);
1928 p->p_nlwpwait--;
1929 }
1930 }
1931
1932 exitsig = signo;
1933 p->p_acflag |= AXSIG;
1934 p->p_sigctx.ps_signo = signo;
1935
1936 if (docore) {
1937 mutex_exit(p->p_lock);
1938 if ((error = coredump(l, NULL)) == 0)
1939 exitsig |= WCOREFLAG;
1940
1941 if (kern_logsigexit) {
1942 int uid = l->l_cred ?
1943 (int)kauth_cred_geteuid(l->l_cred) : -1;
1944
1945 if (error)
1946 log(LOG_INFO, lognocoredump, p->p_pid,
1947 p->p_comm, uid, signo, error);
1948 else
1949 log(LOG_INFO, logcoredump, p->p_pid,
1950 p->p_comm, uid, signo);
1951 }
1952
1953 #ifdef PAX_SEGVGUARD
1954 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1955 #endif /* PAX_SEGVGUARD */
1956 /* Acquire the sched state mutex. exit1() will release it. */
1957 mutex_enter(p->p_lock);
1958 }
1959
1960 /* No longer dumping core. */
1961 p->p_sflag &= ~PS_WCORE;
1962
1963 exit1(l, W_EXITCODE(0, exitsig));
1964 /* NOTREACHED */
1965 }
1966
1967 /*
1968 * Put process 'p' into the stopped state and optionally, notify the parent.
1969 */
1970 void
1971 proc_stop(struct proc *p, int notify, int signo)
1972 {
1973 struct lwp *l;
1974
1975 KASSERT(mutex_owned(p->p_lock));
1976
1977 /*
1978 * First off, set the stopping indicator and bring all sleeping
1979 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
1980 * unlock between here and the p->p_nrlwps check below.
1981 */
1982 p->p_sflag |= PS_STOPPING;
1983 if (notify)
1984 p->p_sflag |= PS_NOTIFYSTOP;
1985 else
1986 p->p_sflag &= ~PS_NOTIFYSTOP;
1987 membar_producer();
1988
1989 proc_stop_lwps(p);
1990
1991 /*
1992 * If there are no LWPs available to take the signal, then we
1993 * signal the parent process immediately. Otherwise, the last
1994 * LWP to stop will take care of it.
1995 */
1996
1997 if (p->p_nrlwps == 0) {
1998 proc_stop_done(p, true, PS_NOCLDSTOP);
1999 } else {
2000 /*
2001 * Have the remaining LWPs come to a halt, and trigger
2002 * proc_stop_callout() to ensure that they do.
2003 */
2004 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2005 sigpost(l, SIG_DFL, SA_STOP, signo);
2006 callout_schedule(&proc_stop_ch, 1);
2007 }
2008 }
2009
2010 /*
2011 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2012 * but wait for them to come to a halt at the kernel-user boundary. This is
2013 * to allow LWPs to release any locks that they may hold before stopping.
2014 *
2015 * Non-interruptable sleeps can be long, and there is the potential for an
2016 * LWP to begin sleeping interruptably soon after the process has been set
2017 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2018 * stopping, and so complete halt of the process and the return of status
2019 * information to the parent could be delayed indefinitely.
2020 *
2021 * To handle this race, proc_stop_callout() runs once per tick while there
2022 * are stopping processes in the system. It sets LWPs that are sleeping
2023 * interruptably into the LSSTOP state.
2024 *
2025 * Note that we are not concerned about keeping all LWPs stopped while the
2026 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2027 * What we do need to ensure is that all LWPs in a stopping process have
2028 * stopped at least once, so that notification can be sent to the parent
2029 * process.
2030 */
2031 static void
2032 proc_stop_callout(void *cookie)
2033 {
2034 bool more, restart;
2035 struct proc *p;
2036
2037 (void)cookie;
2038
2039 do {
2040 restart = false;
2041 more = false;
2042
2043 mutex_enter(proc_lock);
2044 PROCLIST_FOREACH(p, &allproc) {
2045 if ((p->p_flag & PK_MARKER) != 0)
2046 continue;
2047 mutex_enter(p->p_lock);
2048
2049 if ((p->p_sflag & PS_STOPPING) == 0) {
2050 mutex_exit(p->p_lock);
2051 continue;
2052 }
2053
2054 /* Stop any LWPs sleeping interruptably. */
2055 proc_stop_lwps(p);
2056 if (p->p_nrlwps == 0) {
2057 /*
2058 * We brought the process to a halt.
2059 * Mark it as stopped and notify the
2060 * parent.
2061 */
2062 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2063 /*
2064 * Note that proc_stop_done() will
2065 * drop p->p_lock briefly.
2066 * Arrange to restart and check
2067 * all processes again.
2068 */
2069 restart = true;
2070 }
2071 proc_stop_done(p, true, PS_NOCLDSTOP);
2072 } else
2073 more = true;
2074
2075 mutex_exit(p->p_lock);
2076 if (restart)
2077 break;
2078 }
2079 mutex_exit(proc_lock);
2080 } while (restart);
2081
2082 /*
2083 * If we noted processes that are stopping but still have
2084 * running LWPs, then arrange to check again in 1 tick.
2085 */
2086 if (more)
2087 callout_schedule(&proc_stop_ch, 1);
2088 }
2089
2090 /*
2091 * Given a process in state SSTOP, set the state back to SACTIVE and
2092 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2093 */
2094 void
2095 proc_unstop(struct proc *p)
2096 {
2097 struct lwp *l;
2098 int sig;
2099
2100 KASSERT(mutex_owned(proc_lock));
2101 KASSERT(mutex_owned(p->p_lock));
2102
2103 p->p_stat = SACTIVE;
2104 p->p_sflag &= ~PS_STOPPING;
2105 sig = p->p_xstat;
2106
2107 if (!p->p_waited)
2108 p->p_pptr->p_nstopchild--;
2109
2110 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2111 lwp_lock(l);
2112 if (l->l_stat != LSSTOP) {
2113 lwp_unlock(l);
2114 continue;
2115 }
2116 if (l->l_wchan == NULL) {
2117 setrunnable(l);
2118 continue;
2119 }
2120 if (sig && (l->l_flag & LW_SINTR) != 0) {
2121 setrunnable(l);
2122 sig = 0;
2123 } else {
2124 l->l_stat = LSSLEEP;
2125 p->p_nrlwps++;
2126 lwp_unlock(l);
2127 }
2128 }
2129 }
2130
2131 static int
2132 filt_sigattach(struct knote *kn)
2133 {
2134 struct proc *p = curproc;
2135
2136 kn->kn_obj = p;
2137 kn->kn_flags |= EV_CLEAR; /* automatically set */
2138
2139 mutex_enter(p->p_lock);
2140 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2141 mutex_exit(p->p_lock);
2142
2143 return (0);
2144 }
2145
2146 static void
2147 filt_sigdetach(struct knote *kn)
2148 {
2149 struct proc *p = kn->kn_obj;
2150
2151 mutex_enter(p->p_lock);
2152 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2153 mutex_exit(p->p_lock);
2154 }
2155
2156 /*
2157 * signal knotes are shared with proc knotes, so we apply a mask to
2158 * the hint in order to differentiate them from process hints. This
2159 * could be avoided by using a signal-specific knote list, but probably
2160 * isn't worth the trouble.
2161 */
2162 static int
2163 filt_signal(struct knote *kn, long hint)
2164 {
2165
2166 if (hint & NOTE_SIGNAL) {
2167 hint &= ~NOTE_SIGNAL;
2168
2169 if (kn->kn_id == hint)
2170 kn->kn_data++;
2171 }
2172 return (kn->kn_data != 0);
2173 }
2174
2175 const struct filterops sig_filtops = {
2176 0, filt_sigattach, filt_sigdetach, filt_signal
2177 };
2178