Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.283
      1 /*	$NetBSD: kern_sig.c,v 1.283 2008/04/29 15:55:24 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.283 2008/04/29 15:55:24 ad Exp $");
     70 
     71 #include "opt_ptrace.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_compat_sunos.h"
     74 #include "opt_compat_netbsd.h"
     75 #include "opt_compat_netbsd32.h"
     76 #include "opt_pax.h"
     77 
     78 #define	SIGPROP		/* include signal properties table */
     79 #include <sys/param.h>
     80 #include <sys/signalvar.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/wait.h>
     84 #include <sys/ktrace.h>
     85 #include <sys/syslog.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/file.h>
     88 #include <sys/malloc.h>
     89 #include <sys/pool.h>
     90 #include <sys/ucontext.h>
     91 #include <sys/exec.h>
     92 #include <sys/kauth.h>
     93 #include <sys/acct.h>
     94 #include <sys/callout.h>
     95 #include <sys/atomic.h>
     96 #include <sys/cpu.h>
     97 
     98 #ifdef PAX_SEGVGUARD
     99 #include <sys/pax.h>
    100 #endif /* PAX_SEGVGUARD */
    101 
    102 #include <uvm/uvm.h>
    103 #include <uvm/uvm_extern.h>
    104 
    105 static void	ksiginfo_exechook(struct proc *, void *);
    106 static void	proc_stop_callout(void *);
    107 
    108 int	sigunwait(struct proc *, const ksiginfo_t *);
    109 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    110 int	sigpost(struct lwp *, sig_t, int, int);
    111 int	sigchecktrace(sigpend_t **);
    112 void	sigswitch(bool, int, int);
    113 void	sigrealloc(ksiginfo_t *);
    114 
    115 sigset_t	contsigmask, stopsigmask, sigcantmask;
    116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    117 static void	sigacts_poolpage_free(struct pool *, void *);
    118 static void	*sigacts_poolpage_alloc(struct pool *, int);
    119 static callout_t proc_stop_ch;
    120 
    121 static struct pool_allocator sigactspool_allocator = {
    122         .pa_alloc = sigacts_poolpage_alloc,
    123 	.pa_free = sigacts_poolpage_free,
    124 };
    125 
    126 #ifdef DEBUG
    127 int	kern_logsigexit = 1;
    128 #else
    129 int	kern_logsigexit = 0;
    130 #endif
    131 
    132 static	const char logcoredump[] =
    133     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    134 static	const char lognocoredump[] =
    135     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    136 
    137 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    138     &pool_allocator_nointr, IPL_NONE);
    139 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    140     NULL, IPL_VM);
    141 
    142 /*
    143  * signal_init:
    144  *
    145  * 	Initialize global signal-related data structures.
    146  */
    147 void
    148 signal_init(void)
    149 {
    150 
    151 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    152 
    153 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    154 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    155 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    156 
    157 	exechook_establish(ksiginfo_exechook, NULL);
    158 
    159 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    160 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    161 }
    162 
    163 /*
    164  * sigacts_poolpage_alloc:
    165  *
    166  *	 Allocate a page for the sigacts memory pool.
    167  */
    168 static void *
    169 sigacts_poolpage_alloc(struct pool *pp, int flags)
    170 {
    171 
    172 	return (void *)uvm_km_alloc(kernel_map,
    173 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    174 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    175 	    | UVM_KMF_WIRED);
    176 }
    177 
    178 /*
    179  * sigacts_poolpage_free:
    180  *
    181  *	 Free a page on behalf of the sigacts memory pool.
    182  */
    183 static void
    184 sigacts_poolpage_free(struct pool *pp, void *v)
    185 {
    186 
    187         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    188 }
    189 
    190 /*
    191  * sigactsinit:
    192  *
    193  *	 Create an initial sigctx structure, using the same signal state as
    194  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    195  *	 copy it from parent.
    196  */
    197 struct sigacts *
    198 sigactsinit(struct proc *pp, int share)
    199 {
    200 	struct sigacts *ps, *ps2;
    201 
    202 	ps = pp->p_sigacts;
    203 
    204 	if (share) {
    205 		atomic_inc_uint(&ps->sa_refcnt);
    206 		ps2 = ps;
    207 	} else {
    208 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    209 		/* XXXAD get rid of this */
    210 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    211 		mutex_enter(&ps->sa_mutex);
    212 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    213 		    sizeof(ps2->sa_sigdesc));
    214 		mutex_exit(&ps->sa_mutex);
    215 		ps2->sa_refcnt = 1;
    216 	}
    217 
    218 	return ps2;
    219 }
    220 
    221 /*
    222  * sigactsunshare:
    223  *
    224  *	Make this process not share its sigctx, maintaining all
    225  *	signal state.
    226  */
    227 void
    228 sigactsunshare(struct proc *p)
    229 {
    230 	struct sigacts *ps, *oldps;
    231 
    232 	oldps = p->p_sigacts;
    233 	if (oldps->sa_refcnt == 1)
    234 		return;
    235 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    236 	/* XXXAD get rid of this */
    237 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    238 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    239 	p->p_sigacts = ps;
    240 	sigactsfree(oldps);
    241 }
    242 
    243 /*
    244  * sigactsfree;
    245  *
    246  *	Release a sigctx structure.
    247  */
    248 void
    249 sigactsfree(struct sigacts *ps)
    250 {
    251 
    252 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    253 		mutex_destroy(&ps->sa_mutex);
    254 		pool_cache_put(sigacts_cache, ps);
    255 	}
    256 }
    257 
    258 /*
    259  * siginit:
    260  *
    261  *	Initialize signal state for process 0; set to ignore signals that
    262  *	are ignored by default and disable the signal stack.  Locking not
    263  *	required as the system is still cold.
    264  */
    265 void
    266 siginit(struct proc *p)
    267 {
    268 	struct lwp *l;
    269 	struct sigacts *ps;
    270 	int signo, prop;
    271 
    272 	ps = p->p_sigacts;
    273 	sigemptyset(&contsigmask);
    274 	sigemptyset(&stopsigmask);
    275 	sigemptyset(&sigcantmask);
    276 	for (signo = 1; signo < NSIG; signo++) {
    277 		prop = sigprop[signo];
    278 		if (prop & SA_CONT)
    279 			sigaddset(&contsigmask, signo);
    280 		if (prop & SA_STOP)
    281 			sigaddset(&stopsigmask, signo);
    282 		if (prop & SA_CANTMASK)
    283 			sigaddset(&sigcantmask, signo);
    284 		if (prop & SA_IGNORE && signo != SIGCONT)
    285 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    286 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    287 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    288 	}
    289 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    290 	p->p_sflag &= ~PS_NOCLDSTOP;
    291 
    292 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    293 	sigemptyset(&p->p_sigpend.sp_set);
    294 
    295 	/*
    296 	 * Reset per LWP state.
    297 	 */
    298 	l = LIST_FIRST(&p->p_lwps);
    299 	l->l_sigwaited = NULL;
    300 	l->l_sigstk.ss_flags = SS_DISABLE;
    301 	l->l_sigstk.ss_size = 0;
    302 	l->l_sigstk.ss_sp = 0;
    303 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    304 	sigemptyset(&l->l_sigpend.sp_set);
    305 
    306 	/* One reference. */
    307 	ps->sa_refcnt = 1;
    308 }
    309 
    310 /*
    311  * execsigs:
    312  *
    313  *	Reset signals for an exec of the specified process.
    314  */
    315 void
    316 execsigs(struct proc *p)
    317 {
    318 	struct sigacts *ps;
    319 	struct lwp *l;
    320 	int signo, prop;
    321 	sigset_t tset;
    322 	ksiginfoq_t kq;
    323 
    324 	KASSERT(p->p_nlwps == 1);
    325 
    326 	sigactsunshare(p);
    327 	ps = p->p_sigacts;
    328 
    329 	/*
    330 	 * Reset caught signals.  Held signals remain held through
    331 	 * l->l_sigmask (unless they were caught, and are now ignored
    332 	 * by default).
    333 	 *
    334 	 * No need to lock yet, the process has only one LWP and
    335 	 * at this point the sigacts are private to the process.
    336 	 */
    337 	sigemptyset(&tset);
    338 	for (signo = 1; signo < NSIG; signo++) {
    339 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    340 			prop = sigprop[signo];
    341 			if (prop & SA_IGNORE) {
    342 				if ((prop & SA_CONT) == 0)
    343 					sigaddset(&p->p_sigctx.ps_sigignore,
    344 					    signo);
    345 				sigaddset(&tset, signo);
    346 			}
    347 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    348 		}
    349 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    350 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    351 	}
    352 	ksiginfo_queue_init(&kq);
    353 
    354 	mutex_enter(p->p_lock);
    355 	sigclearall(p, &tset, &kq);
    356 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    357 
    358 	/*
    359 	 * Reset no zombies if child dies flag as Solaris does.
    360 	 */
    361 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    362 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    363 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    364 
    365 	/*
    366 	 * Reset per-LWP state.
    367 	 */
    368 	l = LIST_FIRST(&p->p_lwps);
    369 	l->l_sigwaited = NULL;
    370 	l->l_sigstk.ss_flags = SS_DISABLE;
    371 	l->l_sigstk.ss_size = 0;
    372 	l->l_sigstk.ss_sp = 0;
    373 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    374 	sigemptyset(&l->l_sigpend.sp_set);
    375 	mutex_exit(p->p_lock);
    376 
    377 	ksiginfo_queue_drain(&kq);
    378 }
    379 
    380 /*
    381  * ksiginfo_exechook:
    382  *
    383  *	Free all pending ksiginfo entries from a process on exec.
    384  *	Additionally, drain any unused ksiginfo structures in the
    385  *	system back to the pool.
    386  *
    387  *	XXX This should not be a hook, every process has signals.
    388  */
    389 static void
    390 ksiginfo_exechook(struct proc *p, void *v)
    391 {
    392 	ksiginfoq_t kq;
    393 
    394 	ksiginfo_queue_init(&kq);
    395 
    396 	mutex_enter(p->p_lock);
    397 	sigclearall(p, NULL, &kq);
    398 	mutex_exit(p->p_lock);
    399 
    400 	ksiginfo_queue_drain(&kq);
    401 }
    402 
    403 /*
    404  * ksiginfo_alloc:
    405  *
    406  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    407  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    408  *	has not been queued somewhere, then just return it.  Additionally,
    409  *	if the existing ksiginfo_t does not contain any information beyond
    410  *	the signal number, then just return it.
    411  */
    412 ksiginfo_t *
    413 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    414 {
    415 	ksiginfo_t *kp;
    416 
    417 	if (ok != NULL) {
    418 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    419 		    KSI_FROMPOOL)
    420 		    	return ok;
    421 		if (KSI_EMPTY_P(ok))
    422 			return ok;
    423 	}
    424 
    425 	kp = pool_get(&ksiginfo_pool, flags);
    426 	if (kp == NULL) {
    427 #ifdef DIAGNOSTIC
    428 		printf("Out of memory allocating ksiginfo for pid %d\n",
    429 		    p->p_pid);
    430 #endif
    431 		return NULL;
    432 	}
    433 
    434 	if (ok != NULL) {
    435 		memcpy(kp, ok, sizeof(*kp));
    436 		kp->ksi_flags &= ~KSI_QUEUED;
    437 	} else
    438 		KSI_INIT_EMPTY(kp);
    439 
    440 	kp->ksi_flags |= KSI_FROMPOOL;
    441 
    442 	return kp;
    443 }
    444 
    445 /*
    446  * ksiginfo_free:
    447  *
    448  *	If the given ksiginfo_t is from the pool and has not been queued,
    449  *	then free it.
    450  */
    451 void
    452 ksiginfo_free(ksiginfo_t *kp)
    453 {
    454 
    455 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    456 		return;
    457 	pool_put(&ksiginfo_pool, kp);
    458 }
    459 
    460 /*
    461  * ksiginfo_queue_drain:
    462  *
    463  *	Drain a non-empty ksiginfo_t queue.
    464  */
    465 void
    466 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    467 {
    468 	ksiginfo_t *ksi;
    469 
    470 	KASSERT(!CIRCLEQ_EMPTY(kq));
    471 
    472 	while (!CIRCLEQ_EMPTY(kq)) {
    473 		ksi = CIRCLEQ_FIRST(kq);
    474 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    475 		pool_put(&ksiginfo_pool, ksi);
    476 	}
    477 }
    478 
    479 /*
    480  * sigget:
    481  *
    482  *	Fetch the first pending signal from a set.  Optionally, also fetch
    483  *	or manufacture a ksiginfo element.  Returns the number of the first
    484  *	pending signal, or zero.
    485  */
    486 int
    487 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    488 {
    489         ksiginfo_t *ksi;
    490 	sigset_t tset;
    491 
    492 	/* If there's no pending set, the signal is from the debugger. */
    493 	if (sp == NULL) {
    494 		if (out != NULL) {
    495 			KSI_INIT(out);
    496 			out->ksi_info._signo = signo;
    497 			out->ksi_info._code = SI_USER;
    498 		}
    499 		return signo;
    500 	}
    501 
    502 	/* Construct mask from signo, and 'mask'. */
    503 	if (signo == 0) {
    504 		if (mask != NULL) {
    505 			tset = *mask;
    506 			__sigandset(&sp->sp_set, &tset);
    507 		} else
    508 			tset = sp->sp_set;
    509 
    510 		/* If there are no signals pending, that's it. */
    511 		if ((signo = firstsig(&tset)) == 0)
    512 			return 0;
    513 	} else {
    514 		KASSERT(sigismember(&sp->sp_set, signo));
    515 	}
    516 
    517 	sigdelset(&sp->sp_set, signo);
    518 
    519 	/* Find siginfo and copy it out. */
    520 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    521 		if (ksi->ksi_signo == signo) {
    522 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    523 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    524 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    525 			ksi->ksi_flags &= ~KSI_QUEUED;
    526 			if (out != NULL) {
    527 				memcpy(out, ksi, sizeof(*out));
    528 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    529 			}
    530 			ksiginfo_free(ksi);
    531 			return signo;
    532 		}
    533 	}
    534 
    535 	/* If there's no siginfo, then manufacture it. */
    536 	if (out != NULL) {
    537 		KSI_INIT(out);
    538 		out->ksi_info._signo = signo;
    539 		out->ksi_info._code = SI_USER;
    540 	}
    541 
    542 	return signo;
    543 }
    544 
    545 /*
    546  * sigput:
    547  *
    548  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    549  *	we need to (e.g. SA_SIGINFO was requested).
    550  */
    551 void
    552 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    553 {
    554 	ksiginfo_t *kp;
    555 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    556 
    557 	KASSERT(mutex_owned(p->p_lock));
    558 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    559 
    560 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    561 
    562 	/*
    563 	 * If siginfo is not required, or there is none, then just mark the
    564 	 * signal as pending.
    565 	 */
    566 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
    567 		return;
    568 
    569 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    570 
    571 #ifdef notyet	/* XXX: QUEUING */
    572 	if (ksi->ksi_signo < SIGRTMIN)
    573 #endif
    574 	{
    575 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    576 			if (kp->ksi_signo == ksi->ksi_signo) {
    577 				KSI_COPY(ksi, kp);
    578 				kp->ksi_flags |= KSI_QUEUED;
    579 				return;
    580 			}
    581 		}
    582 	}
    583 
    584 	ksi->ksi_flags |= KSI_QUEUED;
    585 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    586 }
    587 
    588 /*
    589  * sigclear:
    590  *
    591  *	Clear all pending signals in the specified set.
    592  */
    593 void
    594 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    595 {
    596 	ksiginfo_t *ksi, *next;
    597 
    598 	if (mask == NULL)
    599 		sigemptyset(&sp->sp_set);
    600 	else
    601 		sigminusset(mask, &sp->sp_set);
    602 
    603 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    604 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    605 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    606 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    607 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    608 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    609 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    610 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    611 		}
    612 	}
    613 }
    614 
    615 /*
    616  * sigclearall:
    617  *
    618  *	Clear all pending signals in the specified set from a process and
    619  *	its LWPs.
    620  */
    621 void
    622 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    623 {
    624 	struct lwp *l;
    625 
    626 	KASSERT(mutex_owned(p->p_lock));
    627 
    628 	sigclear(&p->p_sigpend, mask, kq);
    629 
    630 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    631 		sigclear(&l->l_sigpend, mask, kq);
    632 	}
    633 }
    634 
    635 /*
    636  * sigispending:
    637  *
    638  *	Return true if there are pending signals for the current LWP.  May
    639  *	be called unlocked provided that LW_PENDSIG is set, and that the
    640  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    641  *	set.
    642  */
    643 int
    644 sigispending(struct lwp *l, int signo)
    645 {
    646 	struct proc *p = l->l_proc;
    647 	sigset_t tset;
    648 
    649 	membar_consumer();
    650 
    651 	tset = l->l_sigpend.sp_set;
    652 	sigplusset(&p->p_sigpend.sp_set, &tset);
    653 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    654 	sigminusset(&l->l_sigmask, &tset);
    655 
    656 	if (signo == 0) {
    657 		if (firstsig(&tset) != 0)
    658 			return EINTR;
    659 	} else if (sigismember(&tset, signo))
    660 		return EINTR;
    661 
    662 	return 0;
    663 }
    664 
    665 /*
    666  * siginfo_alloc:
    667  *
    668  *	 Allocate a new siginfo_t structure from the pool.
    669  */
    670 siginfo_t *
    671 siginfo_alloc(int flags)
    672 {
    673 
    674 	return pool_get(&siginfo_pool, flags);
    675 }
    676 
    677 /*
    678  * siginfo_free:
    679  *
    680  *	 Return a siginfo_t structure to the pool.
    681  */
    682 void
    683 siginfo_free(void *arg)
    684 {
    685 
    686 	pool_put(&siginfo_pool, arg);
    687 }
    688 
    689 void
    690 getucontext(struct lwp *l, ucontext_t *ucp)
    691 {
    692 	struct proc *p = l->l_proc;
    693 
    694 	KASSERT(mutex_owned(p->p_lock));
    695 
    696 	ucp->uc_flags = 0;
    697 	ucp->uc_link = l->l_ctxlink;
    698 
    699 	ucp->uc_sigmask = l->l_sigmask;
    700 	ucp->uc_flags |= _UC_SIGMASK;
    701 
    702 	/*
    703 	 * The (unsupplied) definition of the `current execution stack'
    704 	 * in the System V Interface Definition appears to allow returning
    705 	 * the main context stack.
    706 	 */
    707 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    708 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    709 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    710 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    711 	} else {
    712 		/* Simply copy alternate signal execution stack. */
    713 		ucp->uc_stack = l->l_sigstk;
    714 	}
    715 	ucp->uc_flags |= _UC_STACK;
    716 	mutex_exit(p->p_lock);
    717 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    718 	mutex_enter(p->p_lock);
    719 }
    720 
    721 int
    722 setucontext(struct lwp *l, const ucontext_t *ucp)
    723 {
    724 	struct proc *p = l->l_proc;
    725 	int error;
    726 
    727 	KASSERT(mutex_owned(p->p_lock));
    728 
    729 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    730 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    731 		if (error != 0)
    732 			return error;
    733 	}
    734 
    735 	mutex_exit(p->p_lock);
    736 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    737 	mutex_enter(p->p_lock);
    738 	if (error != 0)
    739 		return (error);
    740 
    741 	l->l_ctxlink = ucp->uc_link;
    742 
    743 	/*
    744 	 * If there was stack information, update whether or not we are
    745 	 * still running on an alternate signal stack.
    746 	 */
    747 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    748 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    749 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    750 		else
    751 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    752 	}
    753 
    754 	return 0;
    755 }
    756 
    757 /*
    758  * Common code for kill process group/broadcast kill.  cp is calling
    759  * process.
    760  */
    761 int
    762 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    763 {
    764 	struct proc	*p, *cp;
    765 	kauth_cred_t	pc;
    766 	struct pgrp	*pgrp;
    767 	int		nfound;
    768 	int		signo = ksi->ksi_signo;
    769 
    770 	cp = l->l_proc;
    771 	pc = l->l_cred;
    772 	nfound = 0;
    773 
    774 	mutex_enter(proc_lock);
    775 	if (all) {
    776 		/*
    777 		 * broadcast
    778 		 */
    779 		PROCLIST_FOREACH(p, &allproc) {
    780 			if (p->p_pid <= 1 || p == cp ||
    781 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
    782 				continue;
    783 			mutex_enter(p->p_lock);
    784 			if (kauth_authorize_process(pc,
    785 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    786 			    NULL) == 0) {
    787 				nfound++;
    788 				if (signo)
    789 					kpsignal2(p, ksi);
    790 			}
    791 			mutex_exit(p->p_lock);
    792 		}
    793 	} else {
    794 		if (pgid == 0)
    795 			/*
    796 			 * zero pgid means send to my process group.
    797 			 */
    798 			pgrp = cp->p_pgrp;
    799 		else {
    800 			pgrp = pg_find(pgid, PFIND_LOCKED);
    801 			if (pgrp == NULL)
    802 				goto out;
    803 		}
    804 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    805 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    806 				continue;
    807 			mutex_enter(p->p_lock);
    808 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    809 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    810 				nfound++;
    811 				if (signo && P_ZOMBIE(p) == 0)
    812 					kpsignal2(p, ksi);
    813 			}
    814 			mutex_exit(p->p_lock);
    815 		}
    816 	}
    817   out:
    818 	mutex_exit(proc_lock);
    819 	return (nfound ? 0 : ESRCH);
    820 }
    821 
    822 /*
    823  * Send a signal to a process group. If checktty is 1, limit to members
    824  * which have a controlling terminal.
    825  */
    826 void
    827 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    828 {
    829 	ksiginfo_t ksi;
    830 
    831 	KASSERT(!cpu_intr_p());
    832 	KASSERT(mutex_owned(proc_lock));
    833 
    834 	KSI_INIT_EMPTY(&ksi);
    835 	ksi.ksi_signo = sig;
    836 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    837 }
    838 
    839 void
    840 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    841 {
    842 	struct proc *p;
    843 
    844 	KASSERT(!cpu_intr_p());
    845 	KASSERT(mutex_owned(proc_lock));
    846 
    847 	if (pgrp)
    848 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    849 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    850 				kpsignal(p, ksi, data);
    851 }
    852 
    853 /*
    854  * Send a signal caused by a trap to the current LWP.  If it will be caught
    855  * immediately, deliver it with correct code.  Otherwise, post it normally.
    856  */
    857 void
    858 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    859 {
    860 	struct proc	*p;
    861 	struct sigacts	*ps;
    862 	int signo = ksi->ksi_signo;
    863 
    864 	KASSERT(KSI_TRAP_P(ksi));
    865 
    866 	ksi->ksi_lid = l->l_lid;
    867 	p = l->l_proc;
    868 
    869 	KASSERT(!cpu_intr_p());
    870 	mutex_enter(proc_lock);
    871 	mutex_enter(p->p_lock);
    872 	ps = p->p_sigacts;
    873 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    874 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    875 	    !sigismember(&l->l_sigmask, signo)) {
    876 		mutex_exit(proc_lock);
    877 		l->l_ru.ru_nsignals++;
    878 		kpsendsig(l, ksi, &l->l_sigmask);
    879 		mutex_exit(p->p_lock);
    880 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    881 		    &l->l_sigmask, ksi);
    882 	} else {
    883 		/* XXX for core dump/debugger */
    884 		p->p_sigctx.ps_lwp = l->l_lid;
    885 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    886 		p->p_sigctx.ps_code = ksi->ksi_trap;
    887 		kpsignal2(p, ksi);
    888 		mutex_exit(p->p_lock);
    889 		mutex_exit(proc_lock);
    890 	}
    891 }
    892 
    893 /*
    894  * Fill in signal information and signal the parent for a child status change.
    895  */
    896 void
    897 child_psignal(struct proc *p, int mask)
    898 {
    899 	ksiginfo_t ksi;
    900 	struct proc *q;
    901 	int xstat;
    902 
    903 	KASSERT(mutex_owned(proc_lock));
    904 	KASSERT(mutex_owned(p->p_lock));
    905 
    906 	xstat = p->p_xstat;
    907 
    908 	KSI_INIT(&ksi);
    909 	ksi.ksi_signo = SIGCHLD;
    910 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    911 	ksi.ksi_pid = p->p_pid;
    912 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    913 	ksi.ksi_status = xstat;
    914 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    915 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    916 
    917 	q = p->p_pptr;
    918 
    919 	mutex_exit(p->p_lock);
    920 	mutex_enter(q->p_lock);
    921 
    922 	if ((q->p_sflag & mask) == 0)
    923 		kpsignal2(q, &ksi);
    924 
    925 	mutex_exit(q->p_lock);
    926 	mutex_enter(p->p_lock);
    927 }
    928 
    929 void
    930 psignal(struct proc *p, int signo)
    931 {
    932 	ksiginfo_t ksi;
    933 
    934 	KASSERT(!cpu_intr_p());
    935 	KASSERT(mutex_owned(proc_lock));
    936 
    937 	KSI_INIT_EMPTY(&ksi);
    938 	ksi.ksi_signo = signo;
    939 	mutex_enter(p->p_lock);
    940 	kpsignal2(p, &ksi);
    941 	mutex_exit(p->p_lock);
    942 }
    943 
    944 void
    945 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    946 {
    947 	fdfile_t *ff;
    948 	file_t *fp;
    949 
    950 	KASSERT(!cpu_intr_p());
    951 	KASSERT(mutex_owned(proc_lock));
    952 
    953 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    954 		size_t fd;
    955 		filedesc_t *fdp = p->p_fd;
    956 
    957 		/* XXXSMP locking */
    958 		ksi->ksi_fd = -1;
    959 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    960 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
    961 				continue;
    962 			if ((fp = ff->ff_file) == NULL)
    963 				continue;
    964 			if (fp->f_data == data) {
    965 				ksi->ksi_fd = fd;
    966 				break;
    967 			}
    968 		}
    969 	}
    970 	mutex_enter(p->p_lock);
    971 	kpsignal2(p, ksi);
    972 	mutex_exit(p->p_lock);
    973 }
    974 
    975 /*
    976  * sigismasked:
    977  *
    978  *	 Returns true if signal is ignored or masked for the specified LWP.
    979  */
    980 int
    981 sigismasked(struct lwp *l, int sig)
    982 {
    983 	struct proc *p = l->l_proc;
    984 
    985 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
    986 	    sigismember(&l->l_sigmask, sig));
    987 }
    988 
    989 /*
    990  * sigpost:
    991  *
    992  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
    993  *	 able to take the signal.
    994  */
    995 int
    996 sigpost(struct lwp *l, sig_t action, int prop, int sig)
    997 {
    998 	int rv, masked;
    999 
   1000 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1001 
   1002 	/*
   1003 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1004 	 * pending signals.  Don't give it more.
   1005 	 */
   1006 	if (l->l_refcnt == 0)
   1007 		return 0;
   1008 
   1009 	lwp_lock(l);
   1010 
   1011 	/*
   1012 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1013 	 * is found to take the signal immediately, it should be taken soon.
   1014 	 */
   1015 	l->l_flag |= LW_PENDSIG;
   1016 
   1017 	/*
   1018 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1019 	 */
   1020 	masked = sigismember(&l->l_sigmask, sig);
   1021 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1022 		lwp_unlock(l);
   1023 		return 0;
   1024 	}
   1025 
   1026 	/*
   1027 	 * If killing the process, make it run fast.
   1028 	 */
   1029 	if (__predict_false((prop & SA_KILL) != 0) &&
   1030 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1031 		KASSERT(l->l_class == SCHED_OTHER);
   1032 		lwp_changepri(l, MAXPRI_USER);
   1033 	}
   1034 
   1035 	/*
   1036 	 * If the LWP is running or on a run queue, then we win.  If it's
   1037 	 * sleeping interruptably, wake it and make it take the signal.  If
   1038 	 * the sleep isn't interruptable, then the chances are it will get
   1039 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1040 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1041 	 * for later; otherwise punt.
   1042 	 */
   1043 	rv = 0;
   1044 
   1045 	switch (l->l_stat) {
   1046 	case LSRUN:
   1047 	case LSONPROC:
   1048 		lwp_need_userret(l);
   1049 		rv = 1;
   1050 		break;
   1051 
   1052 	case LSSLEEP:
   1053 		if ((l->l_flag & LW_SINTR) != 0) {
   1054 			/* setrunnable() will release the lock. */
   1055 			setrunnable(l);
   1056 			return 1;
   1057 		}
   1058 		break;
   1059 
   1060 	case LSSUSPENDED:
   1061 		if ((prop & SA_KILL) != 0) {
   1062 			/* lwp_continue() will release the lock. */
   1063 			lwp_continue(l);
   1064 			return 1;
   1065 		}
   1066 		break;
   1067 
   1068 	case LSSTOP:
   1069 		if ((prop & SA_STOP) != 0)
   1070 			break;
   1071 
   1072 		/*
   1073 		 * If the LWP is stopped and we are sending a continue
   1074 		 * signal, then start it again.
   1075 		 */
   1076 		if ((prop & SA_CONT) != 0) {
   1077 			if (l->l_wchan != NULL) {
   1078 				l->l_stat = LSSLEEP;
   1079 				l->l_proc->p_nrlwps++;
   1080 				rv = 1;
   1081 				break;
   1082 			}
   1083 			/* setrunnable() will release the lock. */
   1084 			setrunnable(l);
   1085 			return 1;
   1086 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1087 			/* setrunnable() will release the lock. */
   1088 			setrunnable(l);
   1089 			return 1;
   1090 		}
   1091 		break;
   1092 
   1093 	default:
   1094 		break;
   1095 	}
   1096 
   1097 	lwp_unlock(l);
   1098 	return rv;
   1099 }
   1100 
   1101 /*
   1102  * Notify an LWP that it has a pending signal.
   1103  */
   1104 void
   1105 signotify(struct lwp *l)
   1106 {
   1107 	KASSERT(lwp_locked(l, NULL));
   1108 
   1109 	l->l_flag |= LW_PENDSIG;
   1110 	lwp_need_userret(l);
   1111 }
   1112 
   1113 /*
   1114  * Find an LWP within process p that is waiting on signal ksi, and hand
   1115  * it on.
   1116  */
   1117 int
   1118 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1119 {
   1120 	struct lwp *l;
   1121 	int signo;
   1122 
   1123 	KASSERT(mutex_owned(p->p_lock));
   1124 
   1125 	signo = ksi->ksi_signo;
   1126 
   1127 	if (ksi->ksi_lid != 0) {
   1128 		/*
   1129 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1130 		 * it's interested.
   1131 		 */
   1132 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1133 			return 0;
   1134 		if (l->l_sigwaited == NULL ||
   1135 		    !sigismember(&l->l_sigwaitset, signo))
   1136 			return 0;
   1137 	} else {
   1138 		/*
   1139 		 * Look for any LWP that may be interested.
   1140 		 */
   1141 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1142 			KASSERT(l->l_sigwaited != NULL);
   1143 			if (sigismember(&l->l_sigwaitset, signo))
   1144 				break;
   1145 		}
   1146 	}
   1147 
   1148 	if (l != NULL) {
   1149 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1150 		l->l_sigwaited = NULL;
   1151 		LIST_REMOVE(l, l_sigwaiter);
   1152 		cv_signal(&l->l_sigcv);
   1153 		return 1;
   1154 	}
   1155 
   1156 	return 0;
   1157 }
   1158 
   1159 /*
   1160  * Send the signal to the process.  If the signal has an action, the action
   1161  * is usually performed by the target process rather than the caller; we add
   1162  * the signal to the set of pending signals for the process.
   1163  *
   1164  * Exceptions:
   1165  *   o When a stop signal is sent to a sleeping process that takes the
   1166  *     default action, the process is stopped without awakening it.
   1167  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1168  *     regardless of the signal action (eg, blocked or ignored).
   1169  *
   1170  * Other ignored signals are discarded immediately.
   1171  */
   1172 void
   1173 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1174 {
   1175 	int prop, lid, toall, signo = ksi->ksi_signo;
   1176 	struct sigacts *sa;
   1177 	struct lwp *l;
   1178 	ksiginfo_t *kp;
   1179 	ksiginfoq_t kq;
   1180 	sig_t action;
   1181 
   1182 	KASSERT(!cpu_intr_p());
   1183 	KASSERT(mutex_owned(proc_lock));
   1184 	KASSERT(mutex_owned(p->p_lock));
   1185 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1186 	KASSERT(signo > 0 && signo < NSIG);
   1187 
   1188 	/*
   1189 	 * If the process is being created by fork, is a zombie or is
   1190 	 * exiting, then just drop the signal here and bail out.
   1191 	 */
   1192 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1193 		return;
   1194 
   1195 	/*
   1196 	 * Notify any interested parties of the signal.
   1197 	 */
   1198 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1199 
   1200 	/*
   1201 	 * Some signals including SIGKILL must act on the entire process.
   1202 	 */
   1203 	kp = NULL;
   1204 	prop = sigprop[signo];
   1205 	toall = ((prop & SA_TOALL) != 0);
   1206 
   1207 	if (toall)
   1208 		lid = 0;
   1209 	else
   1210 		lid = ksi->ksi_lid;
   1211 
   1212 	/*
   1213 	 * If proc is traced, always give parent a chance.
   1214 	 */
   1215 	if (p->p_slflag & PSL_TRACED) {
   1216 		action = SIG_DFL;
   1217 
   1218 		if (lid == 0) {
   1219 			/*
   1220 			 * If the process is being traced and the signal
   1221 			 * is being caught, make sure to save any ksiginfo.
   1222 			 */
   1223 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1224 				return;
   1225 			sigput(&p->p_sigpend, p, kp);
   1226 		}
   1227 	} else {
   1228 		/*
   1229 		 * If the signal was the result of a trap and is not being
   1230 		 * caught, then reset it to default action so that the
   1231 		 * process dumps core immediately.
   1232 		 */
   1233 		if (KSI_TRAP_P(ksi)) {
   1234 			sa = p->p_sigacts;
   1235 			mutex_enter(&sa->sa_mutex);
   1236 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1237 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1238 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1239 			}
   1240 			mutex_exit(&sa->sa_mutex);
   1241 		}
   1242 
   1243 		/*
   1244 		 * If the signal is being ignored, then drop it.  Note: we
   1245 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1246 		 * SIG_IGN, action will be SIG_DFL here.
   1247 		 */
   1248 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1249 			return;
   1250 
   1251 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1252 			action = SIG_CATCH;
   1253 		else {
   1254 			action = SIG_DFL;
   1255 
   1256 			/*
   1257 			 * If sending a tty stop signal to a member of an
   1258 			 * orphaned process group, discard the signal here if
   1259 			 * the action is default; don't stop the process below
   1260 			 * if sleeping, and don't clear any pending SIGCONT.
   1261 			 */
   1262 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1263 				return;
   1264 
   1265 			if (prop & SA_KILL && p->p_nice > NZERO)
   1266 				p->p_nice = NZERO;
   1267 		}
   1268 	}
   1269 
   1270 	/*
   1271 	 * If stopping or continuing a process, discard any pending
   1272 	 * signals that would do the inverse.
   1273 	 */
   1274 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1275 		ksiginfo_queue_init(&kq);
   1276 		if ((prop & SA_CONT) != 0)
   1277 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1278 		if ((prop & SA_STOP) != 0)
   1279 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1280 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1281 	}
   1282 
   1283 	/*
   1284 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1285 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1286 	 * the signal info.  The signal won't be processed further here.
   1287 	 */
   1288 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1289 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1290 	    sigunwait(p, ksi))
   1291 		return;
   1292 
   1293 	/*
   1294 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1295 	 * here.
   1296 	 */
   1297 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1298 		return;
   1299 
   1300 	/*
   1301 	 * LWP private signals are easy - just find the LWP and post
   1302 	 * the signal to it.
   1303 	 */
   1304 	if (lid != 0) {
   1305 		l = lwp_find(p, lid);
   1306 		if (l != NULL) {
   1307 			sigput(&l->l_sigpend, p, kp);
   1308 			membar_producer();
   1309 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1310 		}
   1311 		goto out;
   1312 	}
   1313 
   1314 	/*
   1315 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
   1316 	 */
   1317 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1318 		if ((p->p_slflag & PSL_TRACED) != 0)
   1319 			goto deliver;
   1320 
   1321 		/*
   1322 		 * If SIGCONT is default (or ignored) and process is
   1323 		 * asleep, we are finished; the process should not
   1324 		 * be awakened.
   1325 		 */
   1326 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1327 			goto out;
   1328 
   1329 		sigput(&p->p_sigpend, p, kp);
   1330 	} else {
   1331 		/*
   1332 		 * Process is stopped or stopping.  If traced, then no
   1333 		 * further action is necessary.
   1334 		 */
   1335 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1336 			goto out;
   1337 
   1338 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1339 			/*
   1340 			 * Re-adjust p_nstopchild if the process wasn't
   1341 			 * collected by its parent.
   1342 			 */
   1343 			p->p_stat = SACTIVE;
   1344 			p->p_sflag &= ~PS_STOPPING;
   1345 			if (!p->p_waited)
   1346 				p->p_pptr->p_nstopchild--;
   1347 
   1348 			/*
   1349 			 * If SIGCONT is default (or ignored), we continue
   1350 			 * the process but don't leave the signal in
   1351 			 * ps_siglist, as it has no further action.  If
   1352 			 * SIGCONT is held, we continue the process and
   1353 			 * leave the signal in ps_siglist.  If the process
   1354 			 * catches SIGCONT, let it handle the signal itself.
   1355 			 * If it isn't waiting on an event, then it goes
   1356 			 * back to run state.  Otherwise, process goes back
   1357 			 * to sleep state.
   1358 			 */
   1359 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1360 				sigput(&p->p_sigpend, p, kp);
   1361 		} else if ((prop & SA_STOP) != 0) {
   1362 			/*
   1363 			 * Already stopped, don't need to stop again.
   1364 			 * (If we did the shell could get confused.)
   1365 			 */
   1366 			goto out;
   1367 		} else
   1368 			sigput(&p->p_sigpend, p, kp);
   1369 	}
   1370 
   1371  deliver:
   1372 	/*
   1373 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1374 	 * visible on the per process list (for sigispending()).  This
   1375 	 * is unlikely to be needed in practice, but...
   1376 	 */
   1377 	membar_producer();
   1378 
   1379 	/*
   1380 	 * Try to find an LWP that can take the signal.
   1381 	 */
   1382 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1383 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1384 			break;
   1385 
   1386  out:
   1387  	/*
   1388  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1389  	 * with locks held.  The caller should take care of this.
   1390  	 */
   1391  	ksiginfo_free(kp);
   1392 }
   1393 
   1394 void
   1395 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1396 {
   1397 	struct proc *p = l->l_proc;
   1398 
   1399 	KASSERT(mutex_owned(p->p_lock));
   1400 
   1401 	(*p->p_emul->e_sendsig)(ksi, mask);
   1402 }
   1403 
   1404 /*
   1405  * Stop any LWPs sleeping interruptably.
   1406  */
   1407 static void
   1408 proc_stop_lwps(struct proc *p)
   1409 {
   1410 	struct lwp *l;
   1411 
   1412 	KASSERT(mutex_owned(p->p_lock));
   1413 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1414 
   1415 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1416 		lwp_lock(l);
   1417 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1418 			l->l_stat = LSSTOP;
   1419 			p->p_nrlwps--;
   1420 		}
   1421 		lwp_unlock(l);
   1422 	}
   1423 }
   1424 
   1425 /*
   1426  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1427  *
   1428  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1429  */
   1430 static void
   1431 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1432 {
   1433 
   1434 	KASSERT(mutex_owned(proc_lock));
   1435 	KASSERT(mutex_owned(p->p_lock));
   1436 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1437 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1438 
   1439 	p->p_sflag &= ~PS_STOPPING;
   1440 	p->p_stat = SSTOP;
   1441 	p->p_waited = 0;
   1442 	p->p_pptr->p_nstopchild++;
   1443 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1444 		if (ppsig) {
   1445 			/* child_psignal drops p_lock briefly. */
   1446 			child_psignal(p, ppmask);
   1447 		}
   1448 		cv_broadcast(&p->p_pptr->p_waitcv);
   1449 	}
   1450 }
   1451 
   1452 /*
   1453  * Stop the current process and switch away when being stopped or traced.
   1454  */
   1455 void
   1456 sigswitch(bool ppsig, int ppmask, int signo)
   1457 {
   1458 	struct lwp *l = curlwp;
   1459 	struct proc *p = l->l_proc;
   1460 #ifdef MULTIPROCESSOR
   1461 	int biglocks;
   1462 #endif
   1463 
   1464 	KASSERT(mutex_owned(p->p_lock));
   1465 	KASSERT(l->l_stat == LSONPROC);
   1466 	KASSERT(p->p_nrlwps > 0);
   1467 
   1468 	/*
   1469 	 * On entry we know that the process needs to stop.  If it's
   1470 	 * the result of a 'sideways' stop signal that has been sourced
   1471 	 * through issignal(), then stop other LWPs in the process too.
   1472 	 */
   1473 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1474 		KASSERT(signo != 0);
   1475 		proc_stop(p, 1, signo);
   1476 		KASSERT(p->p_nrlwps > 0);
   1477 	}
   1478 
   1479 	/*
   1480 	 * If we are the last live LWP, and the stop was a result of
   1481 	 * a new signal, then signal the parent.
   1482 	 */
   1483 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1484 		if (!mutex_tryenter(proc_lock)) {
   1485 			mutex_exit(p->p_lock);
   1486 			mutex_enter(proc_lock);
   1487 			mutex_enter(p->p_lock);
   1488 		}
   1489 
   1490 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1491 			/*
   1492 			 * Note that proc_stop_done() can drop
   1493 			 * p->p_lock briefly.
   1494 			 */
   1495 			proc_stop_done(p, ppsig, ppmask);
   1496 		}
   1497 
   1498 		mutex_exit(proc_lock);
   1499 	}
   1500 
   1501 	/*
   1502 	 * Unlock and switch away.
   1503 	 */
   1504 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1505 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1506 		p->p_nrlwps--;
   1507 		lwp_lock(l);
   1508 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1509 		l->l_stat = LSSTOP;
   1510 		lwp_unlock(l);
   1511 	}
   1512 
   1513 	mutex_exit(p->p_lock);
   1514 	lwp_lock(l);
   1515 	mi_switch(l);
   1516 	KERNEL_LOCK(biglocks, l);
   1517 	mutex_enter(p->p_lock);
   1518 }
   1519 
   1520 /*
   1521  * Check for a signal from the debugger.
   1522  */
   1523 int
   1524 sigchecktrace(sigpend_t **spp)
   1525 {
   1526 	struct lwp *l = curlwp;
   1527 	struct proc *p = l->l_proc;
   1528 	int signo;
   1529 
   1530 	KASSERT(mutex_owned(p->p_lock));
   1531 
   1532 	/*
   1533 	 * If we are no longer being traced, or the parent didn't
   1534 	 * give us a signal, look for more signals.
   1535 	 */
   1536 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1537 		return 0;
   1538 
   1539 	/* If there's a pending SIGKILL, process it immediately. */
   1540 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1541 		return 0;
   1542 
   1543 	/*
   1544 	 * If the new signal is being masked, look for other signals.
   1545 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1546 	 */
   1547 	signo = p->p_xstat;
   1548 	p->p_xstat = 0;
   1549 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1550 		*spp = &l->l_sigpend;
   1551 	else
   1552 		*spp = &p->p_sigpend;
   1553 	if (sigismember(&l->l_sigmask, signo))
   1554 		signo = 0;
   1555 
   1556 	return signo;
   1557 }
   1558 
   1559 /*
   1560  * If the current process has received a signal (should be caught or cause
   1561  * termination, should interrupt current syscall), return the signal number.
   1562  *
   1563  * Stop signals with default action are processed immediately, then cleared;
   1564  * they aren't returned.  This is checked after each entry to the system for
   1565  * a syscall or trap.
   1566  *
   1567  * We will also return -1 if the process is exiting and the current LWP must
   1568  * follow suit.
   1569  *
   1570  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1571  * can switch away, though.
   1572  */
   1573 int
   1574 issignal(struct lwp *l)
   1575 {
   1576 	struct proc *p = l->l_proc;
   1577 	int signo = 0, prop;
   1578 	sigpend_t *sp = NULL;
   1579 	sigset_t ss;
   1580 
   1581 	KASSERT(mutex_owned(p->p_lock));
   1582 
   1583 	for (;;) {
   1584 		/* Discard any signals that we have decided not to take. */
   1585 		if (signo != 0)
   1586 			(void)sigget(sp, NULL, signo, NULL);
   1587 
   1588 		/*
   1589 		 * If the process is stopped/stopping, then stop ourselves
   1590 		 * now that we're on the kernel/userspace boundary.  When
   1591 		 * we awaken, check for a signal from the debugger.
   1592 		 */
   1593 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1594 			sigswitch(true, PS_NOCLDSTOP, 0);
   1595 			signo = sigchecktrace(&sp);
   1596 		} else
   1597 			signo = 0;
   1598 
   1599 		/*
   1600 		 * If the debugger didn't provide a signal, find a pending
   1601 		 * signal from our set.  Check per-LWP signals first, and
   1602 		 * then per-process.
   1603 		 */
   1604 		if (signo == 0) {
   1605 			sp = &l->l_sigpend;
   1606 			ss = sp->sp_set;
   1607 			if ((p->p_sflag & PS_PPWAIT) != 0)
   1608 				sigminusset(&stopsigmask, &ss);
   1609 			sigminusset(&l->l_sigmask, &ss);
   1610 
   1611 			if ((signo = firstsig(&ss)) == 0) {
   1612 				sp = &p->p_sigpend;
   1613 				ss = sp->sp_set;
   1614 				if ((p->p_sflag & PS_PPWAIT) != 0)
   1615 					sigminusset(&stopsigmask, &ss);
   1616 				sigminusset(&l->l_sigmask, &ss);
   1617 
   1618 				if ((signo = firstsig(&ss)) == 0) {
   1619 					/*
   1620 					 * No signal pending - clear the
   1621 					 * indicator and bail out.
   1622 					 */
   1623 					lwp_lock(l);
   1624 					l->l_flag &= ~LW_PENDSIG;
   1625 					lwp_unlock(l);
   1626 					sp = NULL;
   1627 					break;
   1628 				}
   1629 			}
   1630 		}
   1631 
   1632 		/*
   1633 		 * We should see pending but ignored signals only if
   1634 		 * we are being traced.
   1635 		 */
   1636 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1637 		    (p->p_slflag & PSL_TRACED) == 0) {
   1638 			/* Discard the signal. */
   1639 			continue;
   1640 		}
   1641 
   1642 		/*
   1643 		 * If traced, always stop, and stay stopped until released
   1644 		 * by the debugger.  If the our parent process is waiting
   1645 		 * for us, don't hang as we could deadlock.
   1646 		 */
   1647 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1648 		    (p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
   1649 			/* Take the signal. */
   1650 			(void)sigget(sp, NULL, signo, NULL);
   1651 			p->p_xstat = signo;
   1652 
   1653 			/* Emulation-specific handling of signal trace */
   1654 			if (p->p_emul->e_tracesig == NULL ||
   1655 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1656 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1657 				    signo);
   1658 
   1659 			/* Check for a signal from the debugger. */
   1660 			if ((signo = sigchecktrace(&sp)) == 0)
   1661 				continue;
   1662 		}
   1663 
   1664 		prop = sigprop[signo];
   1665 
   1666 		/*
   1667 		 * Decide whether the signal should be returned.
   1668 		 */
   1669 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1670 		case (long)SIG_DFL:
   1671 			/*
   1672 			 * Don't take default actions on system processes.
   1673 			 */
   1674 			if (p->p_pid <= 1) {
   1675 #ifdef DIAGNOSTIC
   1676 				/*
   1677 				 * Are you sure you want to ignore SIGSEGV
   1678 				 * in init? XXX
   1679 				 */
   1680 				printf_nolog("Process (pid %d) got sig %d\n",
   1681 				    p->p_pid, signo);
   1682 #endif
   1683 				continue;
   1684 			}
   1685 
   1686 			/*
   1687 			 * If there is a pending stop signal to process with
   1688 			 * default action, stop here, then clear the signal.
   1689 			 * However, if process is member of an orphaned
   1690 			 * process group, ignore tty stop signals.
   1691 			 */
   1692 			if (prop & SA_STOP) {
   1693 				/*
   1694 				 * XXX Don't hold proc_lock for p_lflag,
   1695 				 * but it's not a big deal.
   1696 				 */
   1697 				if (p->p_slflag & PSL_TRACED ||
   1698 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1699 				    prop & SA_TTYSTOP)) {
   1700 				    	/* Ignore the signal. */
   1701 					continue;
   1702 				}
   1703 				/* Take the signal. */
   1704 				(void)sigget(sp, NULL, signo, NULL);
   1705 				p->p_xstat = signo;
   1706 				signo = 0;
   1707 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1708 			} else if (prop & SA_IGNORE) {
   1709 				/*
   1710 				 * Except for SIGCONT, shouldn't get here.
   1711 				 * Default action is to ignore; drop it.
   1712 				 */
   1713 				continue;
   1714 			}
   1715 			break;
   1716 
   1717 		case (long)SIG_IGN:
   1718 #ifdef DEBUG_ISSIGNAL
   1719 			/*
   1720 			 * Masking above should prevent us ever trying
   1721 			 * to take action on an ignored signal other
   1722 			 * than SIGCONT, unless process is traced.
   1723 			 */
   1724 			if ((prop & SA_CONT) == 0 &&
   1725 			    (p->p_slflag & PSL_TRACED) == 0)
   1726 				printf_nolog("issignal\n");
   1727 #endif
   1728 			continue;
   1729 
   1730 		default:
   1731 			/*
   1732 			 * This signal has an action, let postsig() process
   1733 			 * it.
   1734 			 */
   1735 			break;
   1736 		}
   1737 
   1738 		break;
   1739 	}
   1740 
   1741 	l->l_sigpendset = sp;
   1742 	return signo;
   1743 }
   1744 
   1745 /*
   1746  * Take the action for the specified signal
   1747  * from the current set of pending signals.
   1748  */
   1749 void
   1750 postsig(int signo)
   1751 {
   1752 	struct lwp	*l;
   1753 	struct proc	*p;
   1754 	struct sigacts	*ps;
   1755 	sig_t		action;
   1756 	sigset_t	*returnmask;
   1757 	ksiginfo_t	ksi;
   1758 
   1759 	l = curlwp;
   1760 	p = l->l_proc;
   1761 	ps = p->p_sigacts;
   1762 
   1763 	KASSERT(mutex_owned(p->p_lock));
   1764 	KASSERT(signo > 0);
   1765 
   1766 	/*
   1767 	 * Set the new mask value and also defer further occurrences of this
   1768 	 * signal.
   1769 	 *
   1770 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1771 	 * not of interest, but rather the mask from before the sigsuspen is
   1772 	 * what we want restored after the signal processing is completed.
   1773 	 */
   1774 	if (l->l_sigrestore) {
   1775 		returnmask = &l->l_sigoldmask;
   1776 		l->l_sigrestore = 0;
   1777 	} else
   1778 		returnmask = &l->l_sigmask;
   1779 
   1780 	/*
   1781 	 * Commit to taking the signal before releasing the mutex.
   1782 	 */
   1783 	action = SIGACTION_PS(ps, signo).sa_handler;
   1784 	l->l_ru.ru_nsignals++;
   1785 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1786 
   1787 	if (ktrpoint(KTR_PSIG)) {
   1788 		mutex_exit(p->p_lock);
   1789 		ktrpsig(signo, action, returnmask, NULL);
   1790 		mutex_enter(p->p_lock);
   1791 	}
   1792 
   1793 	if (action == SIG_DFL) {
   1794 		/*
   1795 		 * Default action, where the default is to kill
   1796 		 * the process.  (Other cases were ignored above.)
   1797 		 */
   1798 		sigexit(l, signo);
   1799 		return;
   1800 	}
   1801 
   1802 	/*
   1803 	 * If we get here, the signal must be caught.
   1804 	 */
   1805 #ifdef DIAGNOSTIC
   1806 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1807 		panic("postsig action");
   1808 #endif
   1809 
   1810 	kpsendsig(l, &ksi, returnmask);
   1811 }
   1812 
   1813 /*
   1814  * sendsig_reset:
   1815  *
   1816  *	Reset the signal action.  Called from emulation specific sendsig()
   1817  *	before unlocking to deliver the signal.
   1818  */
   1819 void
   1820 sendsig_reset(struct lwp *l, int signo)
   1821 {
   1822 	struct proc *p = l->l_proc;
   1823 	struct sigacts *ps = p->p_sigacts;
   1824 
   1825 	KASSERT(mutex_owned(p->p_lock));
   1826 
   1827 	p->p_sigctx.ps_lwp = 0;
   1828 	p->p_sigctx.ps_code = 0;
   1829 	p->p_sigctx.ps_signo = 0;
   1830 
   1831 	mutex_enter(&ps->sa_mutex);
   1832 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1833 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1834 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1835 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1836 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1837 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1838 	}
   1839 	mutex_exit(&ps->sa_mutex);
   1840 }
   1841 
   1842 /*
   1843  * Kill the current process for stated reason.
   1844  */
   1845 void
   1846 killproc(struct proc *p, const char *why)
   1847 {
   1848 
   1849 	KASSERT(mutex_owned(proc_lock));
   1850 
   1851 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1852 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1853 	psignal(p, SIGKILL);
   1854 }
   1855 
   1856 /*
   1857  * Force the current process to exit with the specified signal, dumping core
   1858  * if appropriate.  We bypass the normal tests for masked and caught
   1859  * signals, allowing unrecoverable failures to terminate the process without
   1860  * changing signal state.  Mark the accounting record with the signal
   1861  * termination.  If dumping core, save the signal number for the debugger.
   1862  * Calls exit and does not return.
   1863  */
   1864 void
   1865 sigexit(struct lwp *l, int signo)
   1866 {
   1867 	int exitsig, error, docore;
   1868 	struct proc *p;
   1869 	struct lwp *t;
   1870 
   1871 	p = l->l_proc;
   1872 
   1873 	KASSERT(mutex_owned(p->p_lock));
   1874 	KERNEL_UNLOCK_ALL(l, NULL);
   1875 
   1876 	/*
   1877 	 * Don't permit coredump() multiple times in the same process.
   1878 	 * Call back into sigexit, where we will be suspended until
   1879 	 * the deed is done.  Note that this is a recursive call, but
   1880 	 * LW_WCORE will prevent us from coming back this way.
   1881 	 */
   1882 	if ((p->p_sflag & PS_WCORE) != 0) {
   1883 		lwp_lock(l);
   1884 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1885 		lwp_unlock(l);
   1886 		mutex_exit(p->p_lock);
   1887 		lwp_userret(l);
   1888 		panic("sigexit 1");
   1889 		/* NOTREACHED */
   1890 	}
   1891 
   1892 	/* If process is already on the way out, then bail now. */
   1893 	if ((p->p_sflag & PS_WEXIT) != 0) {
   1894 		mutex_exit(p->p_lock);
   1895 		lwp_exit(l);
   1896 		panic("sigexit 2");
   1897 		/* NOTREACHED */
   1898 	}
   1899 
   1900 	/*
   1901 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1902 	 * so that their registers are available long enough to be dumped.
   1903  	 */
   1904 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1905 		p->p_sflag |= PS_WCORE;
   1906 		for (;;) {
   1907 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1908 				lwp_lock(t);
   1909 				if (t == l) {
   1910 					t->l_flag &= ~LW_WSUSPEND;
   1911 					lwp_unlock(t);
   1912 					continue;
   1913 				}
   1914 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1915 				lwp_suspend(l, t);
   1916 			}
   1917 
   1918 			if (p->p_nrlwps == 1)
   1919 				break;
   1920 
   1921 			/*
   1922 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   1923 			 * for everyone else to stop before proceeding.
   1924 			 */
   1925 			p->p_nlwpwait++;
   1926 			cv_broadcast(&p->p_lwpcv);
   1927 			cv_wait(&p->p_lwpcv, p->p_lock);
   1928 			p->p_nlwpwait--;
   1929 		}
   1930 	}
   1931 
   1932 	exitsig = signo;
   1933 	p->p_acflag |= AXSIG;
   1934 	p->p_sigctx.ps_signo = signo;
   1935 
   1936 	if (docore) {
   1937 		mutex_exit(p->p_lock);
   1938 		if ((error = coredump(l, NULL)) == 0)
   1939 			exitsig |= WCOREFLAG;
   1940 
   1941 		if (kern_logsigexit) {
   1942 			int uid = l->l_cred ?
   1943 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   1944 
   1945 			if (error)
   1946 				log(LOG_INFO, lognocoredump, p->p_pid,
   1947 				    p->p_comm, uid, signo, error);
   1948 			else
   1949 				log(LOG_INFO, logcoredump, p->p_pid,
   1950 				    p->p_comm, uid, signo);
   1951 		}
   1952 
   1953 #ifdef PAX_SEGVGUARD
   1954 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   1955 #endif /* PAX_SEGVGUARD */
   1956 		/* Acquire the sched state mutex.  exit1() will release it. */
   1957 		mutex_enter(p->p_lock);
   1958 	}
   1959 
   1960 	/* No longer dumping core. */
   1961 	p->p_sflag &= ~PS_WCORE;
   1962 
   1963 	exit1(l, W_EXITCODE(0, exitsig));
   1964 	/* NOTREACHED */
   1965 }
   1966 
   1967 /*
   1968  * Put process 'p' into the stopped state and optionally, notify the parent.
   1969  */
   1970 void
   1971 proc_stop(struct proc *p, int notify, int signo)
   1972 {
   1973 	struct lwp *l;
   1974 
   1975 	KASSERT(mutex_owned(p->p_lock));
   1976 
   1977 	/*
   1978 	 * First off, set the stopping indicator and bring all sleeping
   1979 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   1980 	 * unlock between here and the p->p_nrlwps check below.
   1981 	 */
   1982 	p->p_sflag |= PS_STOPPING;
   1983 	if (notify)
   1984 		p->p_sflag |= PS_NOTIFYSTOP;
   1985 	else
   1986 		p->p_sflag &= ~PS_NOTIFYSTOP;
   1987 	membar_producer();
   1988 
   1989 	proc_stop_lwps(p);
   1990 
   1991 	/*
   1992 	 * If there are no LWPs available to take the signal, then we
   1993 	 * signal the parent process immediately.  Otherwise, the last
   1994 	 * LWP to stop will take care of it.
   1995 	 */
   1996 
   1997 	if (p->p_nrlwps == 0) {
   1998 		proc_stop_done(p, true, PS_NOCLDSTOP);
   1999 	} else {
   2000 		/*
   2001 		 * Have the remaining LWPs come to a halt, and trigger
   2002 		 * proc_stop_callout() to ensure that they do.
   2003 		 */
   2004 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2005 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2006 		callout_schedule(&proc_stop_ch, 1);
   2007 	}
   2008 }
   2009 
   2010 /*
   2011  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2012  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2013  * to allow LWPs to release any locks that they may hold before stopping.
   2014  *
   2015  * Non-interruptable sleeps can be long, and there is the potential for an
   2016  * LWP to begin sleeping interruptably soon after the process has been set
   2017  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2018  * stopping, and so complete halt of the process and the return of status
   2019  * information to the parent could be delayed indefinitely.
   2020  *
   2021  * To handle this race, proc_stop_callout() runs once per tick while there
   2022  * are stopping processes in the system.  It sets LWPs that are sleeping
   2023  * interruptably into the LSSTOP state.
   2024  *
   2025  * Note that we are not concerned about keeping all LWPs stopped while the
   2026  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2027  * What we do need to ensure is that all LWPs in a stopping process have
   2028  * stopped at least once, so that notification can be sent to the parent
   2029  * process.
   2030  */
   2031 static void
   2032 proc_stop_callout(void *cookie)
   2033 {
   2034 	bool more, restart;
   2035 	struct proc *p;
   2036 
   2037 	(void)cookie;
   2038 
   2039 	do {
   2040 		restart = false;
   2041 		more = false;
   2042 
   2043 		mutex_enter(proc_lock);
   2044 		PROCLIST_FOREACH(p, &allproc) {
   2045 			if ((p->p_flag & PK_MARKER) != 0)
   2046 				continue;
   2047 			mutex_enter(p->p_lock);
   2048 
   2049 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2050 				mutex_exit(p->p_lock);
   2051 				continue;
   2052 			}
   2053 
   2054 			/* Stop any LWPs sleeping interruptably. */
   2055 			proc_stop_lwps(p);
   2056 			if (p->p_nrlwps == 0) {
   2057 				/*
   2058 				 * We brought the process to a halt.
   2059 				 * Mark it as stopped and notify the
   2060 				 * parent.
   2061 				 */
   2062 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2063 					/*
   2064 					 * Note that proc_stop_done() will
   2065 					 * drop p->p_lock briefly.
   2066 					 * Arrange to restart and check
   2067 					 * all processes again.
   2068 					 */
   2069 					restart = true;
   2070 				}
   2071 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2072 			} else
   2073 				more = true;
   2074 
   2075 			mutex_exit(p->p_lock);
   2076 			if (restart)
   2077 				break;
   2078 		}
   2079 		mutex_exit(proc_lock);
   2080 	} while (restart);
   2081 
   2082 	/*
   2083 	 * If we noted processes that are stopping but still have
   2084 	 * running LWPs, then arrange to check again in 1 tick.
   2085 	 */
   2086 	if (more)
   2087 		callout_schedule(&proc_stop_ch, 1);
   2088 }
   2089 
   2090 /*
   2091  * Given a process in state SSTOP, set the state back to SACTIVE and
   2092  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2093  */
   2094 void
   2095 proc_unstop(struct proc *p)
   2096 {
   2097 	struct lwp *l;
   2098 	int sig;
   2099 
   2100 	KASSERT(mutex_owned(proc_lock));
   2101 	KASSERT(mutex_owned(p->p_lock));
   2102 
   2103 	p->p_stat = SACTIVE;
   2104 	p->p_sflag &= ~PS_STOPPING;
   2105 	sig = p->p_xstat;
   2106 
   2107 	if (!p->p_waited)
   2108 		p->p_pptr->p_nstopchild--;
   2109 
   2110 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2111 		lwp_lock(l);
   2112 		if (l->l_stat != LSSTOP) {
   2113 			lwp_unlock(l);
   2114 			continue;
   2115 		}
   2116 		if (l->l_wchan == NULL) {
   2117 			setrunnable(l);
   2118 			continue;
   2119 		}
   2120 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2121 		        setrunnable(l);
   2122 		        sig = 0;
   2123 		} else {
   2124 			l->l_stat = LSSLEEP;
   2125 			p->p_nrlwps++;
   2126 			lwp_unlock(l);
   2127 		}
   2128 	}
   2129 }
   2130 
   2131 static int
   2132 filt_sigattach(struct knote *kn)
   2133 {
   2134 	struct proc *p = curproc;
   2135 
   2136 	kn->kn_obj = p;
   2137 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2138 
   2139 	mutex_enter(p->p_lock);
   2140 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2141 	mutex_exit(p->p_lock);
   2142 
   2143 	return (0);
   2144 }
   2145 
   2146 static void
   2147 filt_sigdetach(struct knote *kn)
   2148 {
   2149 	struct proc *p = kn->kn_obj;
   2150 
   2151 	mutex_enter(p->p_lock);
   2152 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2153 	mutex_exit(p->p_lock);
   2154 }
   2155 
   2156 /*
   2157  * signal knotes are shared with proc knotes, so we apply a mask to
   2158  * the hint in order to differentiate them from process hints.  This
   2159  * could be avoided by using a signal-specific knote list, but probably
   2160  * isn't worth the trouble.
   2161  */
   2162 static int
   2163 filt_signal(struct knote *kn, long hint)
   2164 {
   2165 
   2166 	if (hint & NOTE_SIGNAL) {
   2167 		hint &= ~NOTE_SIGNAL;
   2168 
   2169 		if (kn->kn_id == hint)
   2170 			kn->kn_data++;
   2171 	}
   2172 	return (kn->kn_data != 0);
   2173 }
   2174 
   2175 const struct filterops sig_filtops = {
   2176 	0, filt_sigattach, filt_sigdetach, filt_signal
   2177 };
   2178