kern_sig.c revision 1.285 1 /* $NetBSD: kern_sig.c,v 1.285 2008/06/16 09:51:14 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.285 2008/06/16 09:51:14 ad Exp $");
70
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76
77 #define SIGPROP /* include signal properties table */
78 #include <sys/param.h>
79 #include <sys/signalvar.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/wait.h>
83 #include <sys/ktrace.h>
84 #include <sys/syslog.h>
85 #include <sys/filedesc.h>
86 #include <sys/file.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/exec.h>
91 #include <sys/kauth.h>
92 #include <sys/acct.h>
93 #include <sys/callout.h>
94 #include <sys/atomic.h>
95 #include <sys/cpu.h>
96
97 #ifdef PAX_SEGVGUARD
98 #include <sys/pax.h>
99 #endif /* PAX_SEGVGUARD */
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103
104 static void ksiginfo_exechook(struct proc *, void *);
105 static void proc_stop_callout(void *);
106
107 int sigunwait(struct proc *, const ksiginfo_t *);
108 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
109 int sigpost(struct lwp *, sig_t, int, int);
110 int sigchecktrace(sigpend_t **);
111 void sigswitch(bool, int, int);
112 void sigrealloc(ksiginfo_t *);
113
114 sigset_t contsigmask, stopsigmask, sigcantmask;
115 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
116 static void sigacts_poolpage_free(struct pool *, void *);
117 static void *sigacts_poolpage_alloc(struct pool *, int);
118 static callout_t proc_stop_ch;
119
120 static struct pool_allocator sigactspool_allocator = {
121 .pa_alloc = sigacts_poolpage_alloc,
122 .pa_free = sigacts_poolpage_free,
123 };
124
125 #ifdef DEBUG
126 int kern_logsigexit = 1;
127 #else
128 int kern_logsigexit = 0;
129 #endif
130
131 static const char logcoredump[] =
132 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
133 static const char lognocoredump[] =
134 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
135
136 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
137 &pool_allocator_nointr, IPL_NONE);
138 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
139 NULL, IPL_VM);
140
141 /*
142 * signal_init:
143 *
144 * Initialize global signal-related data structures.
145 */
146 void
147 signal_init(void)
148 {
149
150 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
151
152 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
153 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
154 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
155
156 exechook_establish(ksiginfo_exechook, NULL);
157
158 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
159 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
160 }
161
162 /*
163 * sigacts_poolpage_alloc:
164 *
165 * Allocate a page for the sigacts memory pool.
166 */
167 static void *
168 sigacts_poolpage_alloc(struct pool *pp, int flags)
169 {
170
171 return (void *)uvm_km_alloc(kernel_map,
172 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
173 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
174 | UVM_KMF_WIRED);
175 }
176
177 /*
178 * sigacts_poolpage_free:
179 *
180 * Free a page on behalf of the sigacts memory pool.
181 */
182 static void
183 sigacts_poolpage_free(struct pool *pp, void *v)
184 {
185
186 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
187 }
188
189 /*
190 * sigactsinit:
191 *
192 * Create an initial sigctx structure, using the same signal state as
193 * p. If 'share' is set, share the sigctx_proc part, otherwise just
194 * copy it from parent.
195 */
196 struct sigacts *
197 sigactsinit(struct proc *pp, int share)
198 {
199 struct sigacts *ps, *ps2;
200
201 ps = pp->p_sigacts;
202
203 if (share) {
204 atomic_inc_uint(&ps->sa_refcnt);
205 ps2 = ps;
206 } else {
207 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
208 /* XXXAD get rid of this */
209 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
210 mutex_enter(&ps->sa_mutex);
211 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
212 sizeof(ps2->sa_sigdesc));
213 mutex_exit(&ps->sa_mutex);
214 ps2->sa_refcnt = 1;
215 }
216
217 return ps2;
218 }
219
220 /*
221 * sigactsunshare:
222 *
223 * Make this process not share its sigctx, maintaining all
224 * signal state.
225 */
226 void
227 sigactsunshare(struct proc *p)
228 {
229 struct sigacts *ps, *oldps;
230
231 oldps = p->p_sigacts;
232 if (oldps->sa_refcnt == 1)
233 return;
234 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
235 /* XXXAD get rid of this */
236 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
237 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
238 p->p_sigacts = ps;
239 sigactsfree(oldps);
240 }
241
242 /*
243 * sigactsfree;
244 *
245 * Release a sigctx structure.
246 */
247 void
248 sigactsfree(struct sigacts *ps)
249 {
250
251 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
252 mutex_destroy(&ps->sa_mutex);
253 pool_cache_put(sigacts_cache, ps);
254 }
255 }
256
257 /*
258 * siginit:
259 *
260 * Initialize signal state for process 0; set to ignore signals that
261 * are ignored by default and disable the signal stack. Locking not
262 * required as the system is still cold.
263 */
264 void
265 siginit(struct proc *p)
266 {
267 struct lwp *l;
268 struct sigacts *ps;
269 int signo, prop;
270
271 ps = p->p_sigacts;
272 sigemptyset(&contsigmask);
273 sigemptyset(&stopsigmask);
274 sigemptyset(&sigcantmask);
275 for (signo = 1; signo < NSIG; signo++) {
276 prop = sigprop[signo];
277 if (prop & SA_CONT)
278 sigaddset(&contsigmask, signo);
279 if (prop & SA_STOP)
280 sigaddset(&stopsigmask, signo);
281 if (prop & SA_CANTMASK)
282 sigaddset(&sigcantmask, signo);
283 if (prop & SA_IGNORE && signo != SIGCONT)
284 sigaddset(&p->p_sigctx.ps_sigignore, signo);
285 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
286 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
287 }
288 sigemptyset(&p->p_sigctx.ps_sigcatch);
289 p->p_sflag &= ~PS_NOCLDSTOP;
290
291 ksiginfo_queue_init(&p->p_sigpend.sp_info);
292 sigemptyset(&p->p_sigpend.sp_set);
293
294 /*
295 * Reset per LWP state.
296 */
297 l = LIST_FIRST(&p->p_lwps);
298 l->l_sigwaited = NULL;
299 l->l_sigstk.ss_flags = SS_DISABLE;
300 l->l_sigstk.ss_size = 0;
301 l->l_sigstk.ss_sp = 0;
302 ksiginfo_queue_init(&l->l_sigpend.sp_info);
303 sigemptyset(&l->l_sigpend.sp_set);
304
305 /* One reference. */
306 ps->sa_refcnt = 1;
307 }
308
309 /*
310 * execsigs:
311 *
312 * Reset signals for an exec of the specified process.
313 */
314 void
315 execsigs(struct proc *p)
316 {
317 struct sigacts *ps;
318 struct lwp *l;
319 int signo, prop;
320 sigset_t tset;
321 ksiginfoq_t kq;
322
323 KASSERT(p->p_nlwps == 1);
324
325 sigactsunshare(p);
326 ps = p->p_sigacts;
327
328 /*
329 * Reset caught signals. Held signals remain held through
330 * l->l_sigmask (unless they were caught, and are now ignored
331 * by default).
332 *
333 * No need to lock yet, the process has only one LWP and
334 * at this point the sigacts are private to the process.
335 */
336 sigemptyset(&tset);
337 for (signo = 1; signo < NSIG; signo++) {
338 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
339 prop = sigprop[signo];
340 if (prop & SA_IGNORE) {
341 if ((prop & SA_CONT) == 0)
342 sigaddset(&p->p_sigctx.ps_sigignore,
343 signo);
344 sigaddset(&tset, signo);
345 }
346 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
347 }
348 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
349 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
350 }
351 ksiginfo_queue_init(&kq);
352
353 mutex_enter(p->p_lock);
354 sigclearall(p, &tset, &kq);
355 sigemptyset(&p->p_sigctx.ps_sigcatch);
356
357 /*
358 * Reset no zombies if child dies flag as Solaris does.
359 */
360 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
361 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
362 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
363
364 /*
365 * Reset per-LWP state.
366 */
367 l = LIST_FIRST(&p->p_lwps);
368 l->l_sigwaited = NULL;
369 l->l_sigstk.ss_flags = SS_DISABLE;
370 l->l_sigstk.ss_size = 0;
371 l->l_sigstk.ss_sp = 0;
372 ksiginfo_queue_init(&l->l_sigpend.sp_info);
373 sigemptyset(&l->l_sigpend.sp_set);
374 mutex_exit(p->p_lock);
375
376 ksiginfo_queue_drain(&kq);
377 }
378
379 /*
380 * ksiginfo_exechook:
381 *
382 * Free all pending ksiginfo entries from a process on exec.
383 * Additionally, drain any unused ksiginfo structures in the
384 * system back to the pool.
385 *
386 * XXX This should not be a hook, every process has signals.
387 */
388 static void
389 ksiginfo_exechook(struct proc *p, void *v)
390 {
391 ksiginfoq_t kq;
392
393 ksiginfo_queue_init(&kq);
394
395 mutex_enter(p->p_lock);
396 sigclearall(p, NULL, &kq);
397 mutex_exit(p->p_lock);
398
399 ksiginfo_queue_drain(&kq);
400 }
401
402 /*
403 * ksiginfo_alloc:
404 *
405 * Allocate a new ksiginfo structure from the pool, and optionally copy
406 * an existing one. If the existing ksiginfo_t is from the pool, and
407 * has not been queued somewhere, then just return it. Additionally,
408 * if the existing ksiginfo_t does not contain any information beyond
409 * the signal number, then just return it.
410 */
411 ksiginfo_t *
412 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
413 {
414 ksiginfo_t *kp;
415
416 if (ok != NULL) {
417 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
418 KSI_FROMPOOL)
419 return ok;
420 if (KSI_EMPTY_P(ok))
421 return ok;
422 }
423
424 kp = pool_get(&ksiginfo_pool, flags);
425 if (kp == NULL) {
426 #ifdef DIAGNOSTIC
427 printf("Out of memory allocating ksiginfo for pid %d\n",
428 p->p_pid);
429 #endif
430 return NULL;
431 }
432
433 if (ok != NULL) {
434 memcpy(kp, ok, sizeof(*kp));
435 kp->ksi_flags &= ~KSI_QUEUED;
436 } else
437 KSI_INIT_EMPTY(kp);
438
439 kp->ksi_flags |= KSI_FROMPOOL;
440
441 return kp;
442 }
443
444 /*
445 * ksiginfo_free:
446 *
447 * If the given ksiginfo_t is from the pool and has not been queued,
448 * then free it.
449 */
450 void
451 ksiginfo_free(ksiginfo_t *kp)
452 {
453
454 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
455 return;
456 pool_put(&ksiginfo_pool, kp);
457 }
458
459 /*
460 * ksiginfo_queue_drain:
461 *
462 * Drain a non-empty ksiginfo_t queue.
463 */
464 void
465 ksiginfo_queue_drain0(ksiginfoq_t *kq)
466 {
467 ksiginfo_t *ksi;
468
469 KASSERT(!CIRCLEQ_EMPTY(kq));
470
471 while (!CIRCLEQ_EMPTY(kq)) {
472 ksi = CIRCLEQ_FIRST(kq);
473 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
474 pool_put(&ksiginfo_pool, ksi);
475 }
476 }
477
478 /*
479 * sigget:
480 *
481 * Fetch the first pending signal from a set. Optionally, also fetch
482 * or manufacture a ksiginfo element. Returns the number of the first
483 * pending signal, or zero.
484 */
485 int
486 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
487 {
488 ksiginfo_t *ksi;
489 sigset_t tset;
490
491 /* If there's no pending set, the signal is from the debugger. */
492 if (sp == NULL) {
493 if (out != NULL) {
494 KSI_INIT(out);
495 out->ksi_info._signo = signo;
496 out->ksi_info._code = SI_USER;
497 }
498 return signo;
499 }
500
501 /* Construct mask from signo, and 'mask'. */
502 if (signo == 0) {
503 if (mask != NULL) {
504 tset = *mask;
505 __sigandset(&sp->sp_set, &tset);
506 } else
507 tset = sp->sp_set;
508
509 /* If there are no signals pending, that's it. */
510 if ((signo = firstsig(&tset)) == 0)
511 return 0;
512 } else {
513 KASSERT(sigismember(&sp->sp_set, signo));
514 }
515
516 sigdelset(&sp->sp_set, signo);
517
518 /* Find siginfo and copy it out. */
519 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
520 if (ksi->ksi_signo == signo) {
521 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
522 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
523 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
524 ksi->ksi_flags &= ~KSI_QUEUED;
525 if (out != NULL) {
526 memcpy(out, ksi, sizeof(*out));
527 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
528 }
529 ksiginfo_free(ksi);
530 return signo;
531 }
532 }
533
534 /* If there's no siginfo, then manufacture it. */
535 if (out != NULL) {
536 KSI_INIT(out);
537 out->ksi_info._signo = signo;
538 out->ksi_info._code = SI_USER;
539 }
540
541 return signo;
542 }
543
544 /*
545 * sigput:
546 *
547 * Append a new ksiginfo element to the list of pending ksiginfo's, if
548 * we need to (e.g. SA_SIGINFO was requested).
549 */
550 void
551 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
552 {
553 ksiginfo_t *kp;
554 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
555
556 KASSERT(mutex_owned(p->p_lock));
557 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
558
559 sigaddset(&sp->sp_set, ksi->ksi_signo);
560
561 /*
562 * If siginfo is not required, or there is none, then just mark the
563 * signal as pending.
564 */
565 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
566 return;
567
568 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
569
570 #ifdef notyet /* XXX: QUEUING */
571 if (ksi->ksi_signo < SIGRTMIN)
572 #endif
573 {
574 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
575 if (kp->ksi_signo == ksi->ksi_signo) {
576 KSI_COPY(ksi, kp);
577 kp->ksi_flags |= KSI_QUEUED;
578 return;
579 }
580 }
581 }
582
583 ksi->ksi_flags |= KSI_QUEUED;
584 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
585 }
586
587 /*
588 * sigclear:
589 *
590 * Clear all pending signals in the specified set.
591 */
592 void
593 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
594 {
595 ksiginfo_t *ksi, *next;
596
597 if (mask == NULL)
598 sigemptyset(&sp->sp_set);
599 else
600 sigminusset(mask, &sp->sp_set);
601
602 ksi = CIRCLEQ_FIRST(&sp->sp_info);
603 for (; ksi != (void *)&sp->sp_info; ksi = next) {
604 next = CIRCLEQ_NEXT(ksi, ksi_list);
605 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
606 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
607 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
608 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
609 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
610 }
611 }
612 }
613
614 /*
615 * sigclearall:
616 *
617 * Clear all pending signals in the specified set from a process and
618 * its LWPs.
619 */
620 void
621 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
622 {
623 struct lwp *l;
624
625 KASSERT(mutex_owned(p->p_lock));
626
627 sigclear(&p->p_sigpend, mask, kq);
628
629 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
630 sigclear(&l->l_sigpend, mask, kq);
631 }
632 }
633
634 /*
635 * sigispending:
636 *
637 * Return true if there are pending signals for the current LWP. May
638 * be called unlocked provided that LW_PENDSIG is set, and that the
639 * signal has been posted to the appopriate queue before LW_PENDSIG is
640 * set.
641 */
642 int
643 sigispending(struct lwp *l, int signo)
644 {
645 struct proc *p = l->l_proc;
646 sigset_t tset;
647
648 membar_consumer();
649
650 tset = l->l_sigpend.sp_set;
651 sigplusset(&p->p_sigpend.sp_set, &tset);
652 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
653 sigminusset(&l->l_sigmask, &tset);
654
655 if (signo == 0) {
656 if (firstsig(&tset) != 0)
657 return EINTR;
658 } else if (sigismember(&tset, signo))
659 return EINTR;
660
661 return 0;
662 }
663
664 /*
665 * siginfo_alloc:
666 *
667 * Allocate a new siginfo_t structure from the pool.
668 */
669 siginfo_t *
670 siginfo_alloc(int flags)
671 {
672
673 return pool_get(&siginfo_pool, flags);
674 }
675
676 /*
677 * siginfo_free:
678 *
679 * Return a siginfo_t structure to the pool.
680 */
681 void
682 siginfo_free(void *arg)
683 {
684
685 pool_put(&siginfo_pool, arg);
686 }
687
688 void
689 getucontext(struct lwp *l, ucontext_t *ucp)
690 {
691 struct proc *p = l->l_proc;
692
693 KASSERT(mutex_owned(p->p_lock));
694
695 ucp->uc_flags = 0;
696 ucp->uc_link = l->l_ctxlink;
697
698 ucp->uc_sigmask = l->l_sigmask;
699 ucp->uc_flags |= _UC_SIGMASK;
700
701 /*
702 * The (unsupplied) definition of the `current execution stack'
703 * in the System V Interface Definition appears to allow returning
704 * the main context stack.
705 */
706 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
707 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
708 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
709 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
710 } else {
711 /* Simply copy alternate signal execution stack. */
712 ucp->uc_stack = l->l_sigstk;
713 }
714 ucp->uc_flags |= _UC_STACK;
715 mutex_exit(p->p_lock);
716 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
717 mutex_enter(p->p_lock);
718 }
719
720 int
721 setucontext(struct lwp *l, const ucontext_t *ucp)
722 {
723 struct proc *p = l->l_proc;
724 int error;
725
726 KASSERT(mutex_owned(p->p_lock));
727
728 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
729 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
730 if (error != 0)
731 return error;
732 }
733
734 mutex_exit(p->p_lock);
735 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
736 mutex_enter(p->p_lock);
737 if (error != 0)
738 return (error);
739
740 l->l_ctxlink = ucp->uc_link;
741
742 /*
743 * If there was stack information, update whether or not we are
744 * still running on an alternate signal stack.
745 */
746 if ((ucp->uc_flags & _UC_STACK) != 0) {
747 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
748 l->l_sigstk.ss_flags |= SS_ONSTACK;
749 else
750 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
751 }
752
753 return 0;
754 }
755
756 /*
757 * Common code for kill process group/broadcast kill. cp is calling
758 * process.
759 */
760 int
761 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
762 {
763 struct proc *p, *cp;
764 kauth_cred_t pc;
765 struct pgrp *pgrp;
766 int nfound;
767 int signo = ksi->ksi_signo;
768
769 cp = l->l_proc;
770 pc = l->l_cred;
771 nfound = 0;
772
773 mutex_enter(proc_lock);
774 if (all) {
775 /*
776 * broadcast
777 */
778 PROCLIST_FOREACH(p, &allproc) {
779 if (p->p_pid <= 1 || p == cp ||
780 p->p_flag & (PK_SYSTEM|PK_MARKER))
781 continue;
782 mutex_enter(p->p_lock);
783 if (kauth_authorize_process(pc,
784 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
785 NULL) == 0) {
786 nfound++;
787 if (signo)
788 kpsignal2(p, ksi);
789 }
790 mutex_exit(p->p_lock);
791 }
792 } else {
793 if (pgid == 0)
794 /*
795 * zero pgid means send to my process group.
796 */
797 pgrp = cp->p_pgrp;
798 else {
799 pgrp = pg_find(pgid, PFIND_LOCKED);
800 if (pgrp == NULL)
801 goto out;
802 }
803 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
804 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
805 continue;
806 mutex_enter(p->p_lock);
807 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
808 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
809 nfound++;
810 if (signo && P_ZOMBIE(p) == 0)
811 kpsignal2(p, ksi);
812 }
813 mutex_exit(p->p_lock);
814 }
815 }
816 out:
817 mutex_exit(proc_lock);
818 return (nfound ? 0 : ESRCH);
819 }
820
821 /*
822 * Send a signal to a process group. If checktty is 1, limit to members
823 * which have a controlling terminal.
824 */
825 void
826 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
827 {
828 ksiginfo_t ksi;
829
830 KASSERT(!cpu_intr_p());
831 KASSERT(mutex_owned(proc_lock));
832
833 KSI_INIT_EMPTY(&ksi);
834 ksi.ksi_signo = sig;
835 kpgsignal(pgrp, &ksi, NULL, checkctty);
836 }
837
838 void
839 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
840 {
841 struct proc *p;
842
843 KASSERT(!cpu_intr_p());
844 KASSERT(mutex_owned(proc_lock));
845
846 if (pgrp)
847 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
848 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
849 kpsignal(p, ksi, data);
850 }
851
852 /*
853 * Send a signal caused by a trap to the current LWP. If it will be caught
854 * immediately, deliver it with correct code. Otherwise, post it normally.
855 */
856 void
857 trapsignal(struct lwp *l, ksiginfo_t *ksi)
858 {
859 struct proc *p;
860 struct sigacts *ps;
861 int signo = ksi->ksi_signo;
862
863 KASSERT(KSI_TRAP_P(ksi));
864
865 ksi->ksi_lid = l->l_lid;
866 p = l->l_proc;
867
868 KASSERT(!cpu_intr_p());
869 mutex_enter(proc_lock);
870 mutex_enter(p->p_lock);
871 ps = p->p_sigacts;
872 if ((p->p_slflag & PSL_TRACED) == 0 &&
873 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
874 !sigismember(&l->l_sigmask, signo)) {
875 mutex_exit(proc_lock);
876 l->l_ru.ru_nsignals++;
877 kpsendsig(l, ksi, &l->l_sigmask);
878 mutex_exit(p->p_lock);
879 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
880 &l->l_sigmask, ksi);
881 } else {
882 /* XXX for core dump/debugger */
883 p->p_sigctx.ps_lwp = l->l_lid;
884 p->p_sigctx.ps_signo = ksi->ksi_signo;
885 p->p_sigctx.ps_code = ksi->ksi_trap;
886 kpsignal2(p, ksi);
887 mutex_exit(p->p_lock);
888 mutex_exit(proc_lock);
889 }
890 }
891
892 /*
893 * Fill in signal information and signal the parent for a child status change.
894 */
895 void
896 child_psignal(struct proc *p, int mask)
897 {
898 ksiginfo_t ksi;
899 struct proc *q;
900 int xstat;
901
902 KASSERT(mutex_owned(proc_lock));
903 KASSERT(mutex_owned(p->p_lock));
904
905 xstat = p->p_xstat;
906
907 KSI_INIT(&ksi);
908 ksi.ksi_signo = SIGCHLD;
909 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
910 ksi.ksi_pid = p->p_pid;
911 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
912 ksi.ksi_status = xstat;
913 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
914 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
915
916 q = p->p_pptr;
917
918 mutex_exit(p->p_lock);
919 mutex_enter(q->p_lock);
920
921 if ((q->p_sflag & mask) == 0)
922 kpsignal2(q, &ksi);
923
924 mutex_exit(q->p_lock);
925 mutex_enter(p->p_lock);
926 }
927
928 void
929 psignal(struct proc *p, int signo)
930 {
931 ksiginfo_t ksi;
932
933 KASSERT(!cpu_intr_p());
934 KASSERT(mutex_owned(proc_lock));
935
936 KSI_INIT_EMPTY(&ksi);
937 ksi.ksi_signo = signo;
938 mutex_enter(p->p_lock);
939 kpsignal2(p, &ksi);
940 mutex_exit(p->p_lock);
941 }
942
943 void
944 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
945 {
946 fdfile_t *ff;
947 file_t *fp;
948
949 KASSERT(!cpu_intr_p());
950 KASSERT(mutex_owned(proc_lock));
951
952 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
953 size_t fd;
954 filedesc_t *fdp = p->p_fd;
955
956 /* XXXSMP locking */
957 ksi->ksi_fd = -1;
958 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
959 if ((ff = fdp->fd_ofiles[fd]) == NULL)
960 continue;
961 if ((fp = ff->ff_file) == NULL)
962 continue;
963 if (fp->f_data == data) {
964 ksi->ksi_fd = fd;
965 break;
966 }
967 }
968 }
969 mutex_enter(p->p_lock);
970 kpsignal2(p, ksi);
971 mutex_exit(p->p_lock);
972 }
973
974 /*
975 * sigismasked:
976 *
977 * Returns true if signal is ignored or masked for the specified LWP.
978 */
979 int
980 sigismasked(struct lwp *l, int sig)
981 {
982 struct proc *p = l->l_proc;
983
984 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
985 sigismember(&l->l_sigmask, sig));
986 }
987
988 /*
989 * sigpost:
990 *
991 * Post a pending signal to an LWP. Returns non-zero if the LWP was
992 * able to take the signal.
993 */
994 int
995 sigpost(struct lwp *l, sig_t action, int prop, int sig)
996 {
997 int rv, masked;
998
999 KASSERT(mutex_owned(l->l_proc->p_lock));
1000
1001 /*
1002 * If the LWP is on the way out, sigclear() will be busy draining all
1003 * pending signals. Don't give it more.
1004 */
1005 if (l->l_refcnt == 0)
1006 return 0;
1007
1008 lwp_lock(l);
1009
1010 /*
1011 * Have the LWP check for signals. This ensures that even if no LWP
1012 * is found to take the signal immediately, it should be taken soon.
1013 */
1014 l->l_flag |= LW_PENDSIG;
1015
1016 /*
1017 * SIGCONT can be masked, but must always restart stopped LWPs.
1018 */
1019 masked = sigismember(&l->l_sigmask, sig);
1020 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1021 lwp_unlock(l);
1022 return 0;
1023 }
1024
1025 /*
1026 * If killing the process, make it run fast.
1027 */
1028 if (__predict_false((prop & SA_KILL) != 0) &&
1029 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1030 KASSERT(l->l_class == SCHED_OTHER);
1031 lwp_changepri(l, MAXPRI_USER);
1032 }
1033
1034 /*
1035 * If the LWP is running or on a run queue, then we win. If it's
1036 * sleeping interruptably, wake it and make it take the signal. If
1037 * the sleep isn't interruptable, then the chances are it will get
1038 * to see the signal soon anyhow. If suspended, it can't take the
1039 * signal right now. If it's LWP private or for all LWPs, save it
1040 * for later; otherwise punt.
1041 */
1042 rv = 0;
1043
1044 switch (l->l_stat) {
1045 case LSRUN:
1046 case LSONPROC:
1047 lwp_need_userret(l);
1048 rv = 1;
1049 break;
1050
1051 case LSSLEEP:
1052 if ((l->l_flag & LW_SINTR) != 0) {
1053 /* setrunnable() will release the lock. */
1054 setrunnable(l);
1055 return 1;
1056 }
1057 break;
1058
1059 case LSSUSPENDED:
1060 if ((prop & SA_KILL) != 0) {
1061 /* lwp_continue() will release the lock. */
1062 lwp_continue(l);
1063 return 1;
1064 }
1065 break;
1066
1067 case LSSTOP:
1068 if ((prop & SA_STOP) != 0)
1069 break;
1070
1071 /*
1072 * If the LWP is stopped and we are sending a continue
1073 * signal, then start it again.
1074 */
1075 if ((prop & SA_CONT) != 0) {
1076 if (l->l_wchan != NULL) {
1077 l->l_stat = LSSLEEP;
1078 l->l_proc->p_nrlwps++;
1079 rv = 1;
1080 break;
1081 }
1082 /* setrunnable() will release the lock. */
1083 setrunnable(l);
1084 return 1;
1085 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1086 /* setrunnable() will release the lock. */
1087 setrunnable(l);
1088 return 1;
1089 }
1090 break;
1091
1092 default:
1093 break;
1094 }
1095
1096 lwp_unlock(l);
1097 return rv;
1098 }
1099
1100 /*
1101 * Notify an LWP that it has a pending signal.
1102 */
1103 void
1104 signotify(struct lwp *l)
1105 {
1106 KASSERT(lwp_locked(l, NULL));
1107
1108 l->l_flag |= LW_PENDSIG;
1109 lwp_need_userret(l);
1110 }
1111
1112 /*
1113 * Find an LWP within process p that is waiting on signal ksi, and hand
1114 * it on.
1115 */
1116 int
1117 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1118 {
1119 struct lwp *l;
1120 int signo;
1121
1122 KASSERT(mutex_owned(p->p_lock));
1123
1124 signo = ksi->ksi_signo;
1125
1126 if (ksi->ksi_lid != 0) {
1127 /*
1128 * Signal came via _lwp_kill(). Find the LWP and see if
1129 * it's interested.
1130 */
1131 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1132 return 0;
1133 if (l->l_sigwaited == NULL ||
1134 !sigismember(&l->l_sigwaitset, signo))
1135 return 0;
1136 } else {
1137 /*
1138 * Look for any LWP that may be interested.
1139 */
1140 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1141 KASSERT(l->l_sigwaited != NULL);
1142 if (sigismember(&l->l_sigwaitset, signo))
1143 break;
1144 }
1145 }
1146
1147 if (l != NULL) {
1148 l->l_sigwaited->ksi_info = ksi->ksi_info;
1149 l->l_sigwaited = NULL;
1150 LIST_REMOVE(l, l_sigwaiter);
1151 cv_signal(&l->l_sigcv);
1152 return 1;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /*
1159 * Send the signal to the process. If the signal has an action, the action
1160 * is usually performed by the target process rather than the caller; we add
1161 * the signal to the set of pending signals for the process.
1162 *
1163 * Exceptions:
1164 * o When a stop signal is sent to a sleeping process that takes the
1165 * default action, the process is stopped without awakening it.
1166 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1167 * regardless of the signal action (eg, blocked or ignored).
1168 *
1169 * Other ignored signals are discarded immediately.
1170 */
1171 void
1172 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1173 {
1174 int prop, lid, toall, signo = ksi->ksi_signo;
1175 struct sigacts *sa;
1176 struct lwp *l;
1177 ksiginfo_t *kp;
1178 ksiginfoq_t kq;
1179 sig_t action;
1180
1181 KASSERT(!cpu_intr_p());
1182 KASSERT(mutex_owned(proc_lock));
1183 KASSERT(mutex_owned(p->p_lock));
1184 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1185 KASSERT(signo > 0 && signo < NSIG);
1186
1187 /*
1188 * If the process is being created by fork, is a zombie or is
1189 * exiting, then just drop the signal here and bail out.
1190 */
1191 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1192 return;
1193
1194 /*
1195 * Notify any interested parties of the signal.
1196 */
1197 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1198
1199 /*
1200 * Some signals including SIGKILL must act on the entire process.
1201 */
1202 kp = NULL;
1203 prop = sigprop[signo];
1204 toall = ((prop & SA_TOALL) != 0);
1205
1206 if (toall)
1207 lid = 0;
1208 else
1209 lid = ksi->ksi_lid;
1210
1211 /*
1212 * If proc is traced, always give parent a chance.
1213 */
1214 if (p->p_slflag & PSL_TRACED) {
1215 action = SIG_DFL;
1216
1217 if (lid == 0) {
1218 /*
1219 * If the process is being traced and the signal
1220 * is being caught, make sure to save any ksiginfo.
1221 */
1222 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1223 return;
1224 sigput(&p->p_sigpend, p, kp);
1225 }
1226 } else {
1227 /*
1228 * If the signal was the result of a trap and is not being
1229 * caught, then reset it to default action so that the
1230 * process dumps core immediately.
1231 */
1232 if (KSI_TRAP_P(ksi)) {
1233 sa = p->p_sigacts;
1234 mutex_enter(&sa->sa_mutex);
1235 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1236 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1237 SIGACTION(p, signo).sa_handler = SIG_DFL;
1238 }
1239 mutex_exit(&sa->sa_mutex);
1240 }
1241
1242 /*
1243 * If the signal is being ignored, then drop it. Note: we
1244 * don't set SIGCONT in ps_sigignore, and if it is set to
1245 * SIG_IGN, action will be SIG_DFL here.
1246 */
1247 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1248 return;
1249
1250 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1251 action = SIG_CATCH;
1252 else {
1253 action = SIG_DFL;
1254
1255 /*
1256 * If sending a tty stop signal to a member of an
1257 * orphaned process group, discard the signal here if
1258 * the action is default; don't stop the process below
1259 * if sleeping, and don't clear any pending SIGCONT.
1260 */
1261 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1262 return;
1263
1264 if (prop & SA_KILL && p->p_nice > NZERO)
1265 p->p_nice = NZERO;
1266 }
1267 }
1268
1269 /*
1270 * If stopping or continuing a process, discard any pending
1271 * signals that would do the inverse.
1272 */
1273 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1274 ksiginfo_queue_init(&kq);
1275 if ((prop & SA_CONT) != 0)
1276 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1277 if ((prop & SA_STOP) != 0)
1278 sigclear(&p->p_sigpend, &contsigmask, &kq);
1279 ksiginfo_queue_drain(&kq); /* XXXSMP */
1280 }
1281
1282 /*
1283 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1284 * please!), check if any LWPs are waiting on it. If yes, pass on
1285 * the signal info. The signal won't be processed further here.
1286 */
1287 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1288 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1289 sigunwait(p, ksi))
1290 return;
1291
1292 /*
1293 * XXXSMP Should be allocated by the caller, we're holding locks
1294 * here.
1295 */
1296 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1297 return;
1298
1299 /*
1300 * LWP private signals are easy - just find the LWP and post
1301 * the signal to it.
1302 */
1303 if (lid != 0) {
1304 l = lwp_find(p, lid);
1305 if (l != NULL) {
1306 sigput(&l->l_sigpend, p, kp);
1307 membar_producer();
1308 (void)sigpost(l, action, prop, kp->ksi_signo);
1309 }
1310 goto out;
1311 }
1312
1313 /*
1314 * Some signals go to all LWPs, even if posted with _lwp_kill().
1315 */
1316 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1317 if ((p->p_slflag & PSL_TRACED) != 0)
1318 goto deliver;
1319
1320 /*
1321 * If SIGCONT is default (or ignored) and process is
1322 * asleep, we are finished; the process should not
1323 * be awakened.
1324 */
1325 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1326 goto out;
1327
1328 sigput(&p->p_sigpend, p, kp);
1329 } else {
1330 /*
1331 * Process is stopped or stopping. If traced, then no
1332 * further action is necessary.
1333 */
1334 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1335 goto out;
1336
1337 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1338 /*
1339 * Re-adjust p_nstopchild if the process wasn't
1340 * collected by its parent.
1341 */
1342 p->p_stat = SACTIVE;
1343 p->p_sflag &= ~PS_STOPPING;
1344 if (!p->p_waited)
1345 p->p_pptr->p_nstopchild--;
1346
1347 /*
1348 * If SIGCONT is default (or ignored), we continue
1349 * the process but don't leave the signal in
1350 * ps_siglist, as it has no further action. If
1351 * SIGCONT is held, we continue the process and
1352 * leave the signal in ps_siglist. If the process
1353 * catches SIGCONT, let it handle the signal itself.
1354 * If it isn't waiting on an event, then it goes
1355 * back to run state. Otherwise, process goes back
1356 * to sleep state.
1357 */
1358 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1359 sigput(&p->p_sigpend, p, kp);
1360 } else if ((prop & SA_STOP) != 0) {
1361 /*
1362 * Already stopped, don't need to stop again.
1363 * (If we did the shell could get confused.)
1364 */
1365 goto out;
1366 } else
1367 sigput(&p->p_sigpend, p, kp);
1368 }
1369
1370 deliver:
1371 /*
1372 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1373 * visible on the per process list (for sigispending()). This
1374 * is unlikely to be needed in practice, but...
1375 */
1376 membar_producer();
1377
1378 /*
1379 * Try to find an LWP that can take the signal.
1380 */
1381 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1382 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1383 break;
1384
1385 out:
1386 /*
1387 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1388 * with locks held. The caller should take care of this.
1389 */
1390 ksiginfo_free(kp);
1391 }
1392
1393 void
1394 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1395 {
1396 struct proc *p = l->l_proc;
1397
1398 KASSERT(mutex_owned(p->p_lock));
1399
1400 (*p->p_emul->e_sendsig)(ksi, mask);
1401 }
1402
1403 /*
1404 * Stop any LWPs sleeping interruptably.
1405 */
1406 static void
1407 proc_stop_lwps(struct proc *p)
1408 {
1409 struct lwp *l;
1410
1411 KASSERT(mutex_owned(p->p_lock));
1412 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1413
1414 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1415 lwp_lock(l);
1416 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1417 l->l_stat = LSSTOP;
1418 p->p_nrlwps--;
1419 }
1420 lwp_unlock(l);
1421 }
1422 }
1423
1424 /*
1425 * Finish stopping of a process. Mark it stopped and notify the parent.
1426 *
1427 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1428 */
1429 static void
1430 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1431 {
1432
1433 KASSERT(mutex_owned(proc_lock));
1434 KASSERT(mutex_owned(p->p_lock));
1435 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1436 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1437
1438 p->p_sflag &= ~PS_STOPPING;
1439 p->p_stat = SSTOP;
1440 p->p_waited = 0;
1441 p->p_pptr->p_nstopchild++;
1442 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1443 if (ppsig) {
1444 /* child_psignal drops p_lock briefly. */
1445 child_psignal(p, ppmask);
1446 }
1447 cv_broadcast(&p->p_pptr->p_waitcv);
1448 }
1449 }
1450
1451 /*
1452 * Stop the current process and switch away when being stopped or traced.
1453 */
1454 void
1455 sigswitch(bool ppsig, int ppmask, int signo)
1456 {
1457 struct lwp *l = curlwp;
1458 struct proc *p = l->l_proc;
1459 int biglocks;
1460
1461 KASSERT(mutex_owned(p->p_lock));
1462 KASSERT(l->l_stat == LSONPROC);
1463 KASSERT(p->p_nrlwps > 0);
1464
1465 /*
1466 * On entry we know that the process needs to stop. If it's
1467 * the result of a 'sideways' stop signal that has been sourced
1468 * through issignal(), then stop other LWPs in the process too.
1469 */
1470 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1471 KASSERT(signo != 0);
1472 proc_stop(p, 1, signo);
1473 KASSERT(p->p_nrlwps > 0);
1474 }
1475
1476 /*
1477 * If we are the last live LWP, and the stop was a result of
1478 * a new signal, then signal the parent.
1479 */
1480 if ((p->p_sflag & PS_STOPPING) != 0) {
1481 if (!mutex_tryenter(proc_lock)) {
1482 mutex_exit(p->p_lock);
1483 mutex_enter(proc_lock);
1484 mutex_enter(p->p_lock);
1485 }
1486
1487 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1488 /*
1489 * Note that proc_stop_done() can drop
1490 * p->p_lock briefly.
1491 */
1492 proc_stop_done(p, ppsig, ppmask);
1493 }
1494
1495 mutex_exit(proc_lock);
1496 }
1497
1498 /*
1499 * Unlock and switch away.
1500 */
1501 KERNEL_UNLOCK_ALL(l, &biglocks);
1502 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1503 p->p_nrlwps--;
1504 lwp_lock(l);
1505 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1506 l->l_stat = LSSTOP;
1507 lwp_unlock(l);
1508 }
1509
1510 mutex_exit(p->p_lock);
1511 lwp_lock(l);
1512 mi_switch(l);
1513 KERNEL_LOCK(biglocks, l);
1514 mutex_enter(p->p_lock);
1515 }
1516
1517 /*
1518 * Check for a signal from the debugger.
1519 */
1520 int
1521 sigchecktrace(sigpend_t **spp)
1522 {
1523 struct lwp *l = curlwp;
1524 struct proc *p = l->l_proc;
1525 int signo;
1526
1527 KASSERT(mutex_owned(p->p_lock));
1528
1529 /*
1530 * If we are no longer being traced, or the parent didn't
1531 * give us a signal, look for more signals.
1532 */
1533 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1534 return 0;
1535
1536 /* If there's a pending SIGKILL, process it immediately. */
1537 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1538 return 0;
1539
1540 /*
1541 * If the new signal is being masked, look for other signals.
1542 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1543 */
1544 signo = p->p_xstat;
1545 p->p_xstat = 0;
1546 if ((sigprop[signo] & SA_TOLWP) != 0)
1547 *spp = &l->l_sigpend;
1548 else
1549 *spp = &p->p_sigpend;
1550 if (sigismember(&l->l_sigmask, signo))
1551 signo = 0;
1552
1553 return signo;
1554 }
1555
1556 /*
1557 * If the current process has received a signal (should be caught or cause
1558 * termination, should interrupt current syscall), return the signal number.
1559 *
1560 * Stop signals with default action are processed immediately, then cleared;
1561 * they aren't returned. This is checked after each entry to the system for
1562 * a syscall or trap.
1563 *
1564 * We will also return -1 if the process is exiting and the current LWP must
1565 * follow suit.
1566 *
1567 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1568 * can switch away, though.
1569 */
1570 int
1571 issignal(struct lwp *l)
1572 {
1573 struct proc *p = l->l_proc;
1574 int signo = 0, prop;
1575 sigpend_t *sp = NULL;
1576 sigset_t ss;
1577
1578 KASSERT(mutex_owned(p->p_lock));
1579
1580 for (;;) {
1581 /* Discard any signals that we have decided not to take. */
1582 if (signo != 0)
1583 (void)sigget(sp, NULL, signo, NULL);
1584
1585 /*
1586 * If the process is stopped/stopping, then stop ourselves
1587 * now that we're on the kernel/userspace boundary. When
1588 * we awaken, check for a signal from the debugger.
1589 */
1590 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1591 sigswitch(true, PS_NOCLDSTOP, 0);
1592 signo = sigchecktrace(&sp);
1593 } else
1594 signo = 0;
1595
1596 /*
1597 * If the debugger didn't provide a signal, find a pending
1598 * signal from our set. Check per-LWP signals first, and
1599 * then per-process.
1600 */
1601 if (signo == 0) {
1602 sp = &l->l_sigpend;
1603 ss = sp->sp_set;
1604 if ((p->p_lflag & PL_PPWAIT) != 0)
1605 sigminusset(&stopsigmask, &ss);
1606 sigminusset(&l->l_sigmask, &ss);
1607
1608 if ((signo = firstsig(&ss)) == 0) {
1609 sp = &p->p_sigpend;
1610 ss = sp->sp_set;
1611 if ((p->p_lflag & PL_PPWAIT) != 0)
1612 sigminusset(&stopsigmask, &ss);
1613 sigminusset(&l->l_sigmask, &ss);
1614
1615 if ((signo = firstsig(&ss)) == 0) {
1616 /*
1617 * No signal pending - clear the
1618 * indicator and bail out.
1619 */
1620 lwp_lock(l);
1621 l->l_flag &= ~LW_PENDSIG;
1622 lwp_unlock(l);
1623 sp = NULL;
1624 break;
1625 }
1626 }
1627 }
1628
1629 /*
1630 * We should see pending but ignored signals only if
1631 * we are being traced.
1632 */
1633 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1634 (p->p_slflag & PSL_TRACED) == 0) {
1635 /* Discard the signal. */
1636 continue;
1637 }
1638
1639 /*
1640 * If traced, always stop, and stay stopped until released
1641 * by the debugger. If the our parent process is waiting
1642 * for us, don't hang as we could deadlock.
1643 */
1644 if ((p->p_slflag & PSL_TRACED) != 0 &&
1645 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1646 /* Take the signal. */
1647 (void)sigget(sp, NULL, signo, NULL);
1648 p->p_xstat = signo;
1649
1650 /* Emulation-specific handling of signal trace */
1651 if (p->p_emul->e_tracesig == NULL ||
1652 (*p->p_emul->e_tracesig)(p, signo) == 0)
1653 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1654 signo);
1655
1656 /* Check for a signal from the debugger. */
1657 if ((signo = sigchecktrace(&sp)) == 0)
1658 continue;
1659 }
1660
1661 prop = sigprop[signo];
1662
1663 /*
1664 * Decide whether the signal should be returned.
1665 */
1666 switch ((long)SIGACTION(p, signo).sa_handler) {
1667 case (long)SIG_DFL:
1668 /*
1669 * Don't take default actions on system processes.
1670 */
1671 if (p->p_pid <= 1) {
1672 #ifdef DIAGNOSTIC
1673 /*
1674 * Are you sure you want to ignore SIGSEGV
1675 * in init? XXX
1676 */
1677 printf_nolog("Process (pid %d) got sig %d\n",
1678 p->p_pid, signo);
1679 #endif
1680 continue;
1681 }
1682
1683 /*
1684 * If there is a pending stop signal to process with
1685 * default action, stop here, then clear the signal.
1686 * However, if process is member of an orphaned
1687 * process group, ignore tty stop signals.
1688 */
1689 if (prop & SA_STOP) {
1690 /*
1691 * XXX Don't hold proc_lock for p_lflag,
1692 * but it's not a big deal.
1693 */
1694 if (p->p_slflag & PSL_TRACED ||
1695 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1696 prop & SA_TTYSTOP)) {
1697 /* Ignore the signal. */
1698 continue;
1699 }
1700 /* Take the signal. */
1701 (void)sigget(sp, NULL, signo, NULL);
1702 p->p_xstat = signo;
1703 signo = 0;
1704 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1705 } else if (prop & SA_IGNORE) {
1706 /*
1707 * Except for SIGCONT, shouldn't get here.
1708 * Default action is to ignore; drop it.
1709 */
1710 continue;
1711 }
1712 break;
1713
1714 case (long)SIG_IGN:
1715 #ifdef DEBUG_ISSIGNAL
1716 /*
1717 * Masking above should prevent us ever trying
1718 * to take action on an ignored signal other
1719 * than SIGCONT, unless process is traced.
1720 */
1721 if ((prop & SA_CONT) == 0 &&
1722 (p->p_slflag & PSL_TRACED) == 0)
1723 printf_nolog("issignal\n");
1724 #endif
1725 continue;
1726
1727 default:
1728 /*
1729 * This signal has an action, let postsig() process
1730 * it.
1731 */
1732 break;
1733 }
1734
1735 break;
1736 }
1737
1738 l->l_sigpendset = sp;
1739 return signo;
1740 }
1741
1742 /*
1743 * Take the action for the specified signal
1744 * from the current set of pending signals.
1745 */
1746 void
1747 postsig(int signo)
1748 {
1749 struct lwp *l;
1750 struct proc *p;
1751 struct sigacts *ps;
1752 sig_t action;
1753 sigset_t *returnmask;
1754 ksiginfo_t ksi;
1755
1756 l = curlwp;
1757 p = l->l_proc;
1758 ps = p->p_sigacts;
1759
1760 KASSERT(mutex_owned(p->p_lock));
1761 KASSERT(signo > 0);
1762
1763 /*
1764 * Set the new mask value and also defer further occurrences of this
1765 * signal.
1766 *
1767 * Special case: user has done a sigsuspend. Here the current mask is
1768 * not of interest, but rather the mask from before the sigsuspen is
1769 * what we want restored after the signal processing is completed.
1770 */
1771 if (l->l_sigrestore) {
1772 returnmask = &l->l_sigoldmask;
1773 l->l_sigrestore = 0;
1774 } else
1775 returnmask = &l->l_sigmask;
1776
1777 /*
1778 * Commit to taking the signal before releasing the mutex.
1779 */
1780 action = SIGACTION_PS(ps, signo).sa_handler;
1781 l->l_ru.ru_nsignals++;
1782 sigget(l->l_sigpendset, &ksi, signo, NULL);
1783
1784 if (ktrpoint(KTR_PSIG)) {
1785 mutex_exit(p->p_lock);
1786 ktrpsig(signo, action, returnmask, NULL);
1787 mutex_enter(p->p_lock);
1788 }
1789
1790 if (action == SIG_DFL) {
1791 /*
1792 * Default action, where the default is to kill
1793 * the process. (Other cases were ignored above.)
1794 */
1795 sigexit(l, signo);
1796 return;
1797 }
1798
1799 /*
1800 * If we get here, the signal must be caught.
1801 */
1802 #ifdef DIAGNOSTIC
1803 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1804 panic("postsig action");
1805 #endif
1806
1807 kpsendsig(l, &ksi, returnmask);
1808 }
1809
1810 /*
1811 * sendsig_reset:
1812 *
1813 * Reset the signal action. Called from emulation specific sendsig()
1814 * before unlocking to deliver the signal.
1815 */
1816 void
1817 sendsig_reset(struct lwp *l, int signo)
1818 {
1819 struct proc *p = l->l_proc;
1820 struct sigacts *ps = p->p_sigacts;
1821
1822 KASSERT(mutex_owned(p->p_lock));
1823
1824 p->p_sigctx.ps_lwp = 0;
1825 p->p_sigctx.ps_code = 0;
1826 p->p_sigctx.ps_signo = 0;
1827
1828 mutex_enter(&ps->sa_mutex);
1829 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1830 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1831 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1832 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1833 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1834 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1835 }
1836 mutex_exit(&ps->sa_mutex);
1837 }
1838
1839 /*
1840 * Kill the current process for stated reason.
1841 */
1842 void
1843 killproc(struct proc *p, const char *why)
1844 {
1845
1846 KASSERT(mutex_owned(proc_lock));
1847
1848 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1849 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1850 psignal(p, SIGKILL);
1851 }
1852
1853 /*
1854 * Force the current process to exit with the specified signal, dumping core
1855 * if appropriate. We bypass the normal tests for masked and caught
1856 * signals, allowing unrecoverable failures to terminate the process without
1857 * changing signal state. Mark the accounting record with the signal
1858 * termination. If dumping core, save the signal number for the debugger.
1859 * Calls exit and does not return.
1860 */
1861 void
1862 sigexit(struct lwp *l, int signo)
1863 {
1864 int exitsig, error, docore;
1865 struct proc *p;
1866 struct lwp *t;
1867
1868 p = l->l_proc;
1869
1870 KASSERT(mutex_owned(p->p_lock));
1871 KERNEL_UNLOCK_ALL(l, NULL);
1872
1873 /*
1874 * Don't permit coredump() multiple times in the same process.
1875 * Call back into sigexit, where we will be suspended until
1876 * the deed is done. Note that this is a recursive call, but
1877 * LW_WCORE will prevent us from coming back this way.
1878 */
1879 if ((p->p_sflag & PS_WCORE) != 0) {
1880 lwp_lock(l);
1881 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1882 lwp_unlock(l);
1883 mutex_exit(p->p_lock);
1884 lwp_userret(l);
1885 panic("sigexit 1");
1886 /* NOTREACHED */
1887 }
1888
1889 /* If process is already on the way out, then bail now. */
1890 if ((p->p_sflag & PS_WEXIT) != 0) {
1891 mutex_exit(p->p_lock);
1892 lwp_exit(l);
1893 panic("sigexit 2");
1894 /* NOTREACHED */
1895 }
1896
1897 /*
1898 * Prepare all other LWPs for exit. If dumping core, suspend them
1899 * so that their registers are available long enough to be dumped.
1900 */
1901 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1902 p->p_sflag |= PS_WCORE;
1903 for (;;) {
1904 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1905 lwp_lock(t);
1906 if (t == l) {
1907 t->l_flag &= ~LW_WSUSPEND;
1908 lwp_unlock(t);
1909 continue;
1910 }
1911 t->l_flag |= (LW_WCORE | LW_WEXIT);
1912 lwp_suspend(l, t);
1913 }
1914
1915 if (p->p_nrlwps == 1)
1916 break;
1917
1918 /*
1919 * Kick any LWPs sitting in lwp_wait1(), and wait
1920 * for everyone else to stop before proceeding.
1921 */
1922 p->p_nlwpwait++;
1923 cv_broadcast(&p->p_lwpcv);
1924 cv_wait(&p->p_lwpcv, p->p_lock);
1925 p->p_nlwpwait--;
1926 }
1927 }
1928
1929 exitsig = signo;
1930 p->p_acflag |= AXSIG;
1931 p->p_sigctx.ps_signo = signo;
1932
1933 if (docore) {
1934 mutex_exit(p->p_lock);
1935 if ((error = coredump(l, NULL)) == 0)
1936 exitsig |= WCOREFLAG;
1937
1938 if (kern_logsigexit) {
1939 int uid = l->l_cred ?
1940 (int)kauth_cred_geteuid(l->l_cred) : -1;
1941
1942 if (error)
1943 log(LOG_INFO, lognocoredump, p->p_pid,
1944 p->p_comm, uid, signo, error);
1945 else
1946 log(LOG_INFO, logcoredump, p->p_pid,
1947 p->p_comm, uid, signo);
1948 }
1949
1950 #ifdef PAX_SEGVGUARD
1951 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1952 #endif /* PAX_SEGVGUARD */
1953 /* Acquire the sched state mutex. exit1() will release it. */
1954 mutex_enter(p->p_lock);
1955 }
1956
1957 /* No longer dumping core. */
1958 p->p_sflag &= ~PS_WCORE;
1959
1960 exit1(l, W_EXITCODE(0, exitsig));
1961 /* NOTREACHED */
1962 }
1963
1964 /*
1965 * Put process 'p' into the stopped state and optionally, notify the parent.
1966 */
1967 void
1968 proc_stop(struct proc *p, int notify, int signo)
1969 {
1970 struct lwp *l;
1971
1972 KASSERT(mutex_owned(p->p_lock));
1973
1974 /*
1975 * First off, set the stopping indicator and bring all sleeping
1976 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
1977 * unlock between here and the p->p_nrlwps check below.
1978 */
1979 p->p_sflag |= PS_STOPPING;
1980 if (notify)
1981 p->p_sflag |= PS_NOTIFYSTOP;
1982 else
1983 p->p_sflag &= ~PS_NOTIFYSTOP;
1984 membar_producer();
1985
1986 proc_stop_lwps(p);
1987
1988 /*
1989 * If there are no LWPs available to take the signal, then we
1990 * signal the parent process immediately. Otherwise, the last
1991 * LWP to stop will take care of it.
1992 */
1993
1994 if (p->p_nrlwps == 0) {
1995 proc_stop_done(p, true, PS_NOCLDSTOP);
1996 } else {
1997 /*
1998 * Have the remaining LWPs come to a halt, and trigger
1999 * proc_stop_callout() to ensure that they do.
2000 */
2001 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2002 sigpost(l, SIG_DFL, SA_STOP, signo);
2003 callout_schedule(&proc_stop_ch, 1);
2004 }
2005 }
2006
2007 /*
2008 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2009 * but wait for them to come to a halt at the kernel-user boundary. This is
2010 * to allow LWPs to release any locks that they may hold before stopping.
2011 *
2012 * Non-interruptable sleeps can be long, and there is the potential for an
2013 * LWP to begin sleeping interruptably soon after the process has been set
2014 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2015 * stopping, and so complete halt of the process and the return of status
2016 * information to the parent could be delayed indefinitely.
2017 *
2018 * To handle this race, proc_stop_callout() runs once per tick while there
2019 * are stopping processes in the system. It sets LWPs that are sleeping
2020 * interruptably into the LSSTOP state.
2021 *
2022 * Note that we are not concerned about keeping all LWPs stopped while the
2023 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2024 * What we do need to ensure is that all LWPs in a stopping process have
2025 * stopped at least once, so that notification can be sent to the parent
2026 * process.
2027 */
2028 static void
2029 proc_stop_callout(void *cookie)
2030 {
2031 bool more, restart;
2032 struct proc *p;
2033
2034 (void)cookie;
2035
2036 do {
2037 restart = false;
2038 more = false;
2039
2040 mutex_enter(proc_lock);
2041 PROCLIST_FOREACH(p, &allproc) {
2042 if ((p->p_flag & PK_MARKER) != 0)
2043 continue;
2044 mutex_enter(p->p_lock);
2045
2046 if ((p->p_sflag & PS_STOPPING) == 0) {
2047 mutex_exit(p->p_lock);
2048 continue;
2049 }
2050
2051 /* Stop any LWPs sleeping interruptably. */
2052 proc_stop_lwps(p);
2053 if (p->p_nrlwps == 0) {
2054 /*
2055 * We brought the process to a halt.
2056 * Mark it as stopped and notify the
2057 * parent.
2058 */
2059 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2060 /*
2061 * Note that proc_stop_done() will
2062 * drop p->p_lock briefly.
2063 * Arrange to restart and check
2064 * all processes again.
2065 */
2066 restart = true;
2067 }
2068 proc_stop_done(p, true, PS_NOCLDSTOP);
2069 } else
2070 more = true;
2071
2072 mutex_exit(p->p_lock);
2073 if (restart)
2074 break;
2075 }
2076 mutex_exit(proc_lock);
2077 } while (restart);
2078
2079 /*
2080 * If we noted processes that are stopping but still have
2081 * running LWPs, then arrange to check again in 1 tick.
2082 */
2083 if (more)
2084 callout_schedule(&proc_stop_ch, 1);
2085 }
2086
2087 /*
2088 * Given a process in state SSTOP, set the state back to SACTIVE and
2089 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2090 */
2091 void
2092 proc_unstop(struct proc *p)
2093 {
2094 struct lwp *l;
2095 int sig;
2096
2097 KASSERT(mutex_owned(proc_lock));
2098 KASSERT(mutex_owned(p->p_lock));
2099
2100 p->p_stat = SACTIVE;
2101 p->p_sflag &= ~PS_STOPPING;
2102 sig = p->p_xstat;
2103
2104 if (!p->p_waited)
2105 p->p_pptr->p_nstopchild--;
2106
2107 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2108 lwp_lock(l);
2109 if (l->l_stat != LSSTOP) {
2110 lwp_unlock(l);
2111 continue;
2112 }
2113 if (l->l_wchan == NULL) {
2114 setrunnable(l);
2115 continue;
2116 }
2117 if (sig && (l->l_flag & LW_SINTR) != 0) {
2118 setrunnable(l);
2119 sig = 0;
2120 } else {
2121 l->l_stat = LSSLEEP;
2122 p->p_nrlwps++;
2123 lwp_unlock(l);
2124 }
2125 }
2126 }
2127
2128 static int
2129 filt_sigattach(struct knote *kn)
2130 {
2131 struct proc *p = curproc;
2132
2133 kn->kn_obj = p;
2134 kn->kn_flags |= EV_CLEAR; /* automatically set */
2135
2136 mutex_enter(p->p_lock);
2137 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2138 mutex_exit(p->p_lock);
2139
2140 return (0);
2141 }
2142
2143 static void
2144 filt_sigdetach(struct knote *kn)
2145 {
2146 struct proc *p = kn->kn_obj;
2147
2148 mutex_enter(p->p_lock);
2149 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2150 mutex_exit(p->p_lock);
2151 }
2152
2153 /*
2154 * signal knotes are shared with proc knotes, so we apply a mask to
2155 * the hint in order to differentiate them from process hints. This
2156 * could be avoided by using a signal-specific knote list, but probably
2157 * isn't worth the trouble.
2158 */
2159 static int
2160 filt_signal(struct knote *kn, long hint)
2161 {
2162
2163 if (hint & NOTE_SIGNAL) {
2164 hint &= ~NOTE_SIGNAL;
2165
2166 if (kn->kn_id == hint)
2167 kn->kn_data++;
2168 }
2169 return (kn->kn_data != 0);
2170 }
2171
2172 const struct filterops sig_filtops = {
2173 0, filt_sigattach, filt_sigdetach, filt_signal
2174 };
2175