Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.285
      1 /*	$NetBSD: kern_sig.c,v 1.285 2008/06/16 09:51:14 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.285 2008/06/16 09:51:14 ad Exp $");
     70 
     71 #include "opt_ptrace.h"
     72 #include "opt_compat_sunos.h"
     73 #include "opt_compat_netbsd.h"
     74 #include "opt_compat_netbsd32.h"
     75 #include "opt_pax.h"
     76 
     77 #define	SIGPROP		/* include signal properties table */
     78 #include <sys/param.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/wait.h>
     83 #include <sys/ktrace.h>
     84 #include <sys/syslog.h>
     85 #include <sys/filedesc.h>
     86 #include <sys/file.h>
     87 #include <sys/malloc.h>
     88 #include <sys/pool.h>
     89 #include <sys/ucontext.h>
     90 #include <sys/exec.h>
     91 #include <sys/kauth.h>
     92 #include <sys/acct.h>
     93 #include <sys/callout.h>
     94 #include <sys/atomic.h>
     95 #include <sys/cpu.h>
     96 
     97 #ifdef PAX_SEGVGUARD
     98 #include <sys/pax.h>
     99 #endif /* PAX_SEGVGUARD */
    100 
    101 #include <uvm/uvm.h>
    102 #include <uvm/uvm_extern.h>
    103 
    104 static void	ksiginfo_exechook(struct proc *, void *);
    105 static void	proc_stop_callout(void *);
    106 
    107 int	sigunwait(struct proc *, const ksiginfo_t *);
    108 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    109 int	sigpost(struct lwp *, sig_t, int, int);
    110 int	sigchecktrace(sigpend_t **);
    111 void	sigswitch(bool, int, int);
    112 void	sigrealloc(ksiginfo_t *);
    113 
    114 sigset_t	contsigmask, stopsigmask, sigcantmask;
    115 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    116 static void	sigacts_poolpage_free(struct pool *, void *);
    117 static void	*sigacts_poolpage_alloc(struct pool *, int);
    118 static callout_t proc_stop_ch;
    119 
    120 static struct pool_allocator sigactspool_allocator = {
    121         .pa_alloc = sigacts_poolpage_alloc,
    122 	.pa_free = sigacts_poolpage_free,
    123 };
    124 
    125 #ifdef DEBUG
    126 int	kern_logsigexit = 1;
    127 #else
    128 int	kern_logsigexit = 0;
    129 #endif
    130 
    131 static	const char logcoredump[] =
    132     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    133 static	const char lognocoredump[] =
    134     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    135 
    136 POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
    137     &pool_allocator_nointr, IPL_NONE);
    138 POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
    139     NULL, IPL_VM);
    140 
    141 /*
    142  * signal_init:
    143  *
    144  * 	Initialize global signal-related data structures.
    145  */
    146 void
    147 signal_init(void)
    148 {
    149 
    150 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    151 
    152 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    153 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    154 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    155 
    156 	exechook_establish(ksiginfo_exechook, NULL);
    157 
    158 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    159 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    160 }
    161 
    162 /*
    163  * sigacts_poolpage_alloc:
    164  *
    165  *	 Allocate a page for the sigacts memory pool.
    166  */
    167 static void *
    168 sigacts_poolpage_alloc(struct pool *pp, int flags)
    169 {
    170 
    171 	return (void *)uvm_km_alloc(kernel_map,
    172 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    173 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    174 	    | UVM_KMF_WIRED);
    175 }
    176 
    177 /*
    178  * sigacts_poolpage_free:
    179  *
    180  *	 Free a page on behalf of the sigacts memory pool.
    181  */
    182 static void
    183 sigacts_poolpage_free(struct pool *pp, void *v)
    184 {
    185 
    186         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    187 }
    188 
    189 /*
    190  * sigactsinit:
    191  *
    192  *	 Create an initial sigctx structure, using the same signal state as
    193  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    194  *	 copy it from parent.
    195  */
    196 struct sigacts *
    197 sigactsinit(struct proc *pp, int share)
    198 {
    199 	struct sigacts *ps, *ps2;
    200 
    201 	ps = pp->p_sigacts;
    202 
    203 	if (share) {
    204 		atomic_inc_uint(&ps->sa_refcnt);
    205 		ps2 = ps;
    206 	} else {
    207 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    208 		/* XXXAD get rid of this */
    209 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    210 		mutex_enter(&ps->sa_mutex);
    211 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    212 		    sizeof(ps2->sa_sigdesc));
    213 		mutex_exit(&ps->sa_mutex);
    214 		ps2->sa_refcnt = 1;
    215 	}
    216 
    217 	return ps2;
    218 }
    219 
    220 /*
    221  * sigactsunshare:
    222  *
    223  *	Make this process not share its sigctx, maintaining all
    224  *	signal state.
    225  */
    226 void
    227 sigactsunshare(struct proc *p)
    228 {
    229 	struct sigacts *ps, *oldps;
    230 
    231 	oldps = p->p_sigacts;
    232 	if (oldps->sa_refcnt == 1)
    233 		return;
    234 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    235 	/* XXXAD get rid of this */
    236 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    237 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    238 	p->p_sigacts = ps;
    239 	sigactsfree(oldps);
    240 }
    241 
    242 /*
    243  * sigactsfree;
    244  *
    245  *	Release a sigctx structure.
    246  */
    247 void
    248 sigactsfree(struct sigacts *ps)
    249 {
    250 
    251 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    252 		mutex_destroy(&ps->sa_mutex);
    253 		pool_cache_put(sigacts_cache, ps);
    254 	}
    255 }
    256 
    257 /*
    258  * siginit:
    259  *
    260  *	Initialize signal state for process 0; set to ignore signals that
    261  *	are ignored by default and disable the signal stack.  Locking not
    262  *	required as the system is still cold.
    263  */
    264 void
    265 siginit(struct proc *p)
    266 {
    267 	struct lwp *l;
    268 	struct sigacts *ps;
    269 	int signo, prop;
    270 
    271 	ps = p->p_sigacts;
    272 	sigemptyset(&contsigmask);
    273 	sigemptyset(&stopsigmask);
    274 	sigemptyset(&sigcantmask);
    275 	for (signo = 1; signo < NSIG; signo++) {
    276 		prop = sigprop[signo];
    277 		if (prop & SA_CONT)
    278 			sigaddset(&contsigmask, signo);
    279 		if (prop & SA_STOP)
    280 			sigaddset(&stopsigmask, signo);
    281 		if (prop & SA_CANTMASK)
    282 			sigaddset(&sigcantmask, signo);
    283 		if (prop & SA_IGNORE && signo != SIGCONT)
    284 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    285 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    286 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    287 	}
    288 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    289 	p->p_sflag &= ~PS_NOCLDSTOP;
    290 
    291 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    292 	sigemptyset(&p->p_sigpend.sp_set);
    293 
    294 	/*
    295 	 * Reset per LWP state.
    296 	 */
    297 	l = LIST_FIRST(&p->p_lwps);
    298 	l->l_sigwaited = NULL;
    299 	l->l_sigstk.ss_flags = SS_DISABLE;
    300 	l->l_sigstk.ss_size = 0;
    301 	l->l_sigstk.ss_sp = 0;
    302 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    303 	sigemptyset(&l->l_sigpend.sp_set);
    304 
    305 	/* One reference. */
    306 	ps->sa_refcnt = 1;
    307 }
    308 
    309 /*
    310  * execsigs:
    311  *
    312  *	Reset signals for an exec of the specified process.
    313  */
    314 void
    315 execsigs(struct proc *p)
    316 {
    317 	struct sigacts *ps;
    318 	struct lwp *l;
    319 	int signo, prop;
    320 	sigset_t tset;
    321 	ksiginfoq_t kq;
    322 
    323 	KASSERT(p->p_nlwps == 1);
    324 
    325 	sigactsunshare(p);
    326 	ps = p->p_sigacts;
    327 
    328 	/*
    329 	 * Reset caught signals.  Held signals remain held through
    330 	 * l->l_sigmask (unless they were caught, and are now ignored
    331 	 * by default).
    332 	 *
    333 	 * No need to lock yet, the process has only one LWP and
    334 	 * at this point the sigacts are private to the process.
    335 	 */
    336 	sigemptyset(&tset);
    337 	for (signo = 1; signo < NSIG; signo++) {
    338 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    339 			prop = sigprop[signo];
    340 			if (prop & SA_IGNORE) {
    341 				if ((prop & SA_CONT) == 0)
    342 					sigaddset(&p->p_sigctx.ps_sigignore,
    343 					    signo);
    344 				sigaddset(&tset, signo);
    345 			}
    346 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    347 		}
    348 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    349 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    350 	}
    351 	ksiginfo_queue_init(&kq);
    352 
    353 	mutex_enter(p->p_lock);
    354 	sigclearall(p, &tset, &kq);
    355 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    356 
    357 	/*
    358 	 * Reset no zombies if child dies flag as Solaris does.
    359 	 */
    360 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    361 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    362 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    363 
    364 	/*
    365 	 * Reset per-LWP state.
    366 	 */
    367 	l = LIST_FIRST(&p->p_lwps);
    368 	l->l_sigwaited = NULL;
    369 	l->l_sigstk.ss_flags = SS_DISABLE;
    370 	l->l_sigstk.ss_size = 0;
    371 	l->l_sigstk.ss_sp = 0;
    372 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    373 	sigemptyset(&l->l_sigpend.sp_set);
    374 	mutex_exit(p->p_lock);
    375 
    376 	ksiginfo_queue_drain(&kq);
    377 }
    378 
    379 /*
    380  * ksiginfo_exechook:
    381  *
    382  *	Free all pending ksiginfo entries from a process on exec.
    383  *	Additionally, drain any unused ksiginfo structures in the
    384  *	system back to the pool.
    385  *
    386  *	XXX This should not be a hook, every process has signals.
    387  */
    388 static void
    389 ksiginfo_exechook(struct proc *p, void *v)
    390 {
    391 	ksiginfoq_t kq;
    392 
    393 	ksiginfo_queue_init(&kq);
    394 
    395 	mutex_enter(p->p_lock);
    396 	sigclearall(p, NULL, &kq);
    397 	mutex_exit(p->p_lock);
    398 
    399 	ksiginfo_queue_drain(&kq);
    400 }
    401 
    402 /*
    403  * ksiginfo_alloc:
    404  *
    405  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    406  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    407  *	has not been queued somewhere, then just return it.  Additionally,
    408  *	if the existing ksiginfo_t does not contain any information beyond
    409  *	the signal number, then just return it.
    410  */
    411 ksiginfo_t *
    412 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    413 {
    414 	ksiginfo_t *kp;
    415 
    416 	if (ok != NULL) {
    417 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    418 		    KSI_FROMPOOL)
    419 		    	return ok;
    420 		if (KSI_EMPTY_P(ok))
    421 			return ok;
    422 	}
    423 
    424 	kp = pool_get(&ksiginfo_pool, flags);
    425 	if (kp == NULL) {
    426 #ifdef DIAGNOSTIC
    427 		printf("Out of memory allocating ksiginfo for pid %d\n",
    428 		    p->p_pid);
    429 #endif
    430 		return NULL;
    431 	}
    432 
    433 	if (ok != NULL) {
    434 		memcpy(kp, ok, sizeof(*kp));
    435 		kp->ksi_flags &= ~KSI_QUEUED;
    436 	} else
    437 		KSI_INIT_EMPTY(kp);
    438 
    439 	kp->ksi_flags |= KSI_FROMPOOL;
    440 
    441 	return kp;
    442 }
    443 
    444 /*
    445  * ksiginfo_free:
    446  *
    447  *	If the given ksiginfo_t is from the pool and has not been queued,
    448  *	then free it.
    449  */
    450 void
    451 ksiginfo_free(ksiginfo_t *kp)
    452 {
    453 
    454 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    455 		return;
    456 	pool_put(&ksiginfo_pool, kp);
    457 }
    458 
    459 /*
    460  * ksiginfo_queue_drain:
    461  *
    462  *	Drain a non-empty ksiginfo_t queue.
    463  */
    464 void
    465 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    466 {
    467 	ksiginfo_t *ksi;
    468 
    469 	KASSERT(!CIRCLEQ_EMPTY(kq));
    470 
    471 	while (!CIRCLEQ_EMPTY(kq)) {
    472 		ksi = CIRCLEQ_FIRST(kq);
    473 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    474 		pool_put(&ksiginfo_pool, ksi);
    475 	}
    476 }
    477 
    478 /*
    479  * sigget:
    480  *
    481  *	Fetch the first pending signal from a set.  Optionally, also fetch
    482  *	or manufacture a ksiginfo element.  Returns the number of the first
    483  *	pending signal, or zero.
    484  */
    485 int
    486 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    487 {
    488         ksiginfo_t *ksi;
    489 	sigset_t tset;
    490 
    491 	/* If there's no pending set, the signal is from the debugger. */
    492 	if (sp == NULL) {
    493 		if (out != NULL) {
    494 			KSI_INIT(out);
    495 			out->ksi_info._signo = signo;
    496 			out->ksi_info._code = SI_USER;
    497 		}
    498 		return signo;
    499 	}
    500 
    501 	/* Construct mask from signo, and 'mask'. */
    502 	if (signo == 0) {
    503 		if (mask != NULL) {
    504 			tset = *mask;
    505 			__sigandset(&sp->sp_set, &tset);
    506 		} else
    507 			tset = sp->sp_set;
    508 
    509 		/* If there are no signals pending, that's it. */
    510 		if ((signo = firstsig(&tset)) == 0)
    511 			return 0;
    512 	} else {
    513 		KASSERT(sigismember(&sp->sp_set, signo));
    514 	}
    515 
    516 	sigdelset(&sp->sp_set, signo);
    517 
    518 	/* Find siginfo and copy it out. */
    519 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    520 		if (ksi->ksi_signo == signo) {
    521 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    522 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    523 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    524 			ksi->ksi_flags &= ~KSI_QUEUED;
    525 			if (out != NULL) {
    526 				memcpy(out, ksi, sizeof(*out));
    527 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    528 			}
    529 			ksiginfo_free(ksi);
    530 			return signo;
    531 		}
    532 	}
    533 
    534 	/* If there's no siginfo, then manufacture it. */
    535 	if (out != NULL) {
    536 		KSI_INIT(out);
    537 		out->ksi_info._signo = signo;
    538 		out->ksi_info._code = SI_USER;
    539 	}
    540 
    541 	return signo;
    542 }
    543 
    544 /*
    545  * sigput:
    546  *
    547  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    548  *	we need to (e.g. SA_SIGINFO was requested).
    549  */
    550 void
    551 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    552 {
    553 	ksiginfo_t *kp;
    554 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    555 
    556 	KASSERT(mutex_owned(p->p_lock));
    557 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    558 
    559 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    560 
    561 	/*
    562 	 * If siginfo is not required, or there is none, then just mark the
    563 	 * signal as pending.
    564 	 */
    565 	if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
    566 		return;
    567 
    568 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    569 
    570 #ifdef notyet	/* XXX: QUEUING */
    571 	if (ksi->ksi_signo < SIGRTMIN)
    572 #endif
    573 	{
    574 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    575 			if (kp->ksi_signo == ksi->ksi_signo) {
    576 				KSI_COPY(ksi, kp);
    577 				kp->ksi_flags |= KSI_QUEUED;
    578 				return;
    579 			}
    580 		}
    581 	}
    582 
    583 	ksi->ksi_flags |= KSI_QUEUED;
    584 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    585 }
    586 
    587 /*
    588  * sigclear:
    589  *
    590  *	Clear all pending signals in the specified set.
    591  */
    592 void
    593 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    594 {
    595 	ksiginfo_t *ksi, *next;
    596 
    597 	if (mask == NULL)
    598 		sigemptyset(&sp->sp_set);
    599 	else
    600 		sigminusset(mask, &sp->sp_set);
    601 
    602 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    603 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    604 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    605 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    606 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    607 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    608 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    609 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    610 		}
    611 	}
    612 }
    613 
    614 /*
    615  * sigclearall:
    616  *
    617  *	Clear all pending signals in the specified set from a process and
    618  *	its LWPs.
    619  */
    620 void
    621 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    622 {
    623 	struct lwp *l;
    624 
    625 	KASSERT(mutex_owned(p->p_lock));
    626 
    627 	sigclear(&p->p_sigpend, mask, kq);
    628 
    629 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    630 		sigclear(&l->l_sigpend, mask, kq);
    631 	}
    632 }
    633 
    634 /*
    635  * sigispending:
    636  *
    637  *	Return true if there are pending signals for the current LWP.  May
    638  *	be called unlocked provided that LW_PENDSIG is set, and that the
    639  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    640  *	set.
    641  */
    642 int
    643 sigispending(struct lwp *l, int signo)
    644 {
    645 	struct proc *p = l->l_proc;
    646 	sigset_t tset;
    647 
    648 	membar_consumer();
    649 
    650 	tset = l->l_sigpend.sp_set;
    651 	sigplusset(&p->p_sigpend.sp_set, &tset);
    652 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    653 	sigminusset(&l->l_sigmask, &tset);
    654 
    655 	if (signo == 0) {
    656 		if (firstsig(&tset) != 0)
    657 			return EINTR;
    658 	} else if (sigismember(&tset, signo))
    659 		return EINTR;
    660 
    661 	return 0;
    662 }
    663 
    664 /*
    665  * siginfo_alloc:
    666  *
    667  *	 Allocate a new siginfo_t structure from the pool.
    668  */
    669 siginfo_t *
    670 siginfo_alloc(int flags)
    671 {
    672 
    673 	return pool_get(&siginfo_pool, flags);
    674 }
    675 
    676 /*
    677  * siginfo_free:
    678  *
    679  *	 Return a siginfo_t structure to the pool.
    680  */
    681 void
    682 siginfo_free(void *arg)
    683 {
    684 
    685 	pool_put(&siginfo_pool, arg);
    686 }
    687 
    688 void
    689 getucontext(struct lwp *l, ucontext_t *ucp)
    690 {
    691 	struct proc *p = l->l_proc;
    692 
    693 	KASSERT(mutex_owned(p->p_lock));
    694 
    695 	ucp->uc_flags = 0;
    696 	ucp->uc_link = l->l_ctxlink;
    697 
    698 	ucp->uc_sigmask = l->l_sigmask;
    699 	ucp->uc_flags |= _UC_SIGMASK;
    700 
    701 	/*
    702 	 * The (unsupplied) definition of the `current execution stack'
    703 	 * in the System V Interface Definition appears to allow returning
    704 	 * the main context stack.
    705 	 */
    706 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    707 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    708 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    709 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    710 	} else {
    711 		/* Simply copy alternate signal execution stack. */
    712 		ucp->uc_stack = l->l_sigstk;
    713 	}
    714 	ucp->uc_flags |= _UC_STACK;
    715 	mutex_exit(p->p_lock);
    716 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    717 	mutex_enter(p->p_lock);
    718 }
    719 
    720 int
    721 setucontext(struct lwp *l, const ucontext_t *ucp)
    722 {
    723 	struct proc *p = l->l_proc;
    724 	int error;
    725 
    726 	KASSERT(mutex_owned(p->p_lock));
    727 
    728 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    729 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    730 		if (error != 0)
    731 			return error;
    732 	}
    733 
    734 	mutex_exit(p->p_lock);
    735 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    736 	mutex_enter(p->p_lock);
    737 	if (error != 0)
    738 		return (error);
    739 
    740 	l->l_ctxlink = ucp->uc_link;
    741 
    742 	/*
    743 	 * If there was stack information, update whether or not we are
    744 	 * still running on an alternate signal stack.
    745 	 */
    746 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    747 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    748 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    749 		else
    750 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    751 	}
    752 
    753 	return 0;
    754 }
    755 
    756 /*
    757  * Common code for kill process group/broadcast kill.  cp is calling
    758  * process.
    759  */
    760 int
    761 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    762 {
    763 	struct proc	*p, *cp;
    764 	kauth_cred_t	pc;
    765 	struct pgrp	*pgrp;
    766 	int		nfound;
    767 	int		signo = ksi->ksi_signo;
    768 
    769 	cp = l->l_proc;
    770 	pc = l->l_cred;
    771 	nfound = 0;
    772 
    773 	mutex_enter(proc_lock);
    774 	if (all) {
    775 		/*
    776 		 * broadcast
    777 		 */
    778 		PROCLIST_FOREACH(p, &allproc) {
    779 			if (p->p_pid <= 1 || p == cp ||
    780 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
    781 				continue;
    782 			mutex_enter(p->p_lock);
    783 			if (kauth_authorize_process(pc,
    784 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    785 			    NULL) == 0) {
    786 				nfound++;
    787 				if (signo)
    788 					kpsignal2(p, ksi);
    789 			}
    790 			mutex_exit(p->p_lock);
    791 		}
    792 	} else {
    793 		if (pgid == 0)
    794 			/*
    795 			 * zero pgid means send to my process group.
    796 			 */
    797 			pgrp = cp->p_pgrp;
    798 		else {
    799 			pgrp = pg_find(pgid, PFIND_LOCKED);
    800 			if (pgrp == NULL)
    801 				goto out;
    802 		}
    803 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    804 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    805 				continue;
    806 			mutex_enter(p->p_lock);
    807 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    808 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    809 				nfound++;
    810 				if (signo && P_ZOMBIE(p) == 0)
    811 					kpsignal2(p, ksi);
    812 			}
    813 			mutex_exit(p->p_lock);
    814 		}
    815 	}
    816   out:
    817 	mutex_exit(proc_lock);
    818 	return (nfound ? 0 : ESRCH);
    819 }
    820 
    821 /*
    822  * Send a signal to a process group. If checktty is 1, limit to members
    823  * which have a controlling terminal.
    824  */
    825 void
    826 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    827 {
    828 	ksiginfo_t ksi;
    829 
    830 	KASSERT(!cpu_intr_p());
    831 	KASSERT(mutex_owned(proc_lock));
    832 
    833 	KSI_INIT_EMPTY(&ksi);
    834 	ksi.ksi_signo = sig;
    835 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    836 }
    837 
    838 void
    839 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    840 {
    841 	struct proc *p;
    842 
    843 	KASSERT(!cpu_intr_p());
    844 	KASSERT(mutex_owned(proc_lock));
    845 
    846 	if (pgrp)
    847 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    848 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    849 				kpsignal(p, ksi, data);
    850 }
    851 
    852 /*
    853  * Send a signal caused by a trap to the current LWP.  If it will be caught
    854  * immediately, deliver it with correct code.  Otherwise, post it normally.
    855  */
    856 void
    857 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    858 {
    859 	struct proc	*p;
    860 	struct sigacts	*ps;
    861 	int signo = ksi->ksi_signo;
    862 
    863 	KASSERT(KSI_TRAP_P(ksi));
    864 
    865 	ksi->ksi_lid = l->l_lid;
    866 	p = l->l_proc;
    867 
    868 	KASSERT(!cpu_intr_p());
    869 	mutex_enter(proc_lock);
    870 	mutex_enter(p->p_lock);
    871 	ps = p->p_sigacts;
    872 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    873 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    874 	    !sigismember(&l->l_sigmask, signo)) {
    875 		mutex_exit(proc_lock);
    876 		l->l_ru.ru_nsignals++;
    877 		kpsendsig(l, ksi, &l->l_sigmask);
    878 		mutex_exit(p->p_lock);
    879 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    880 		    &l->l_sigmask, ksi);
    881 	} else {
    882 		/* XXX for core dump/debugger */
    883 		p->p_sigctx.ps_lwp = l->l_lid;
    884 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    885 		p->p_sigctx.ps_code = ksi->ksi_trap;
    886 		kpsignal2(p, ksi);
    887 		mutex_exit(p->p_lock);
    888 		mutex_exit(proc_lock);
    889 	}
    890 }
    891 
    892 /*
    893  * Fill in signal information and signal the parent for a child status change.
    894  */
    895 void
    896 child_psignal(struct proc *p, int mask)
    897 {
    898 	ksiginfo_t ksi;
    899 	struct proc *q;
    900 	int xstat;
    901 
    902 	KASSERT(mutex_owned(proc_lock));
    903 	KASSERT(mutex_owned(p->p_lock));
    904 
    905 	xstat = p->p_xstat;
    906 
    907 	KSI_INIT(&ksi);
    908 	ksi.ksi_signo = SIGCHLD;
    909 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    910 	ksi.ksi_pid = p->p_pid;
    911 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    912 	ksi.ksi_status = xstat;
    913 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    914 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    915 
    916 	q = p->p_pptr;
    917 
    918 	mutex_exit(p->p_lock);
    919 	mutex_enter(q->p_lock);
    920 
    921 	if ((q->p_sflag & mask) == 0)
    922 		kpsignal2(q, &ksi);
    923 
    924 	mutex_exit(q->p_lock);
    925 	mutex_enter(p->p_lock);
    926 }
    927 
    928 void
    929 psignal(struct proc *p, int signo)
    930 {
    931 	ksiginfo_t ksi;
    932 
    933 	KASSERT(!cpu_intr_p());
    934 	KASSERT(mutex_owned(proc_lock));
    935 
    936 	KSI_INIT_EMPTY(&ksi);
    937 	ksi.ksi_signo = signo;
    938 	mutex_enter(p->p_lock);
    939 	kpsignal2(p, &ksi);
    940 	mutex_exit(p->p_lock);
    941 }
    942 
    943 void
    944 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    945 {
    946 	fdfile_t *ff;
    947 	file_t *fp;
    948 
    949 	KASSERT(!cpu_intr_p());
    950 	KASSERT(mutex_owned(proc_lock));
    951 
    952 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    953 		size_t fd;
    954 		filedesc_t *fdp = p->p_fd;
    955 
    956 		/* XXXSMP locking */
    957 		ksi->ksi_fd = -1;
    958 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    959 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
    960 				continue;
    961 			if ((fp = ff->ff_file) == NULL)
    962 				continue;
    963 			if (fp->f_data == data) {
    964 				ksi->ksi_fd = fd;
    965 				break;
    966 			}
    967 		}
    968 	}
    969 	mutex_enter(p->p_lock);
    970 	kpsignal2(p, ksi);
    971 	mutex_exit(p->p_lock);
    972 }
    973 
    974 /*
    975  * sigismasked:
    976  *
    977  *	 Returns true if signal is ignored or masked for the specified LWP.
    978  */
    979 int
    980 sigismasked(struct lwp *l, int sig)
    981 {
    982 	struct proc *p = l->l_proc;
    983 
    984 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
    985 	    sigismember(&l->l_sigmask, sig));
    986 }
    987 
    988 /*
    989  * sigpost:
    990  *
    991  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
    992  *	 able to take the signal.
    993  */
    994 int
    995 sigpost(struct lwp *l, sig_t action, int prop, int sig)
    996 {
    997 	int rv, masked;
    998 
    999 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1000 
   1001 	/*
   1002 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1003 	 * pending signals.  Don't give it more.
   1004 	 */
   1005 	if (l->l_refcnt == 0)
   1006 		return 0;
   1007 
   1008 	lwp_lock(l);
   1009 
   1010 	/*
   1011 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1012 	 * is found to take the signal immediately, it should be taken soon.
   1013 	 */
   1014 	l->l_flag |= LW_PENDSIG;
   1015 
   1016 	/*
   1017 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1018 	 */
   1019 	masked = sigismember(&l->l_sigmask, sig);
   1020 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1021 		lwp_unlock(l);
   1022 		return 0;
   1023 	}
   1024 
   1025 	/*
   1026 	 * If killing the process, make it run fast.
   1027 	 */
   1028 	if (__predict_false((prop & SA_KILL) != 0) &&
   1029 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1030 		KASSERT(l->l_class == SCHED_OTHER);
   1031 		lwp_changepri(l, MAXPRI_USER);
   1032 	}
   1033 
   1034 	/*
   1035 	 * If the LWP is running or on a run queue, then we win.  If it's
   1036 	 * sleeping interruptably, wake it and make it take the signal.  If
   1037 	 * the sleep isn't interruptable, then the chances are it will get
   1038 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1039 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1040 	 * for later; otherwise punt.
   1041 	 */
   1042 	rv = 0;
   1043 
   1044 	switch (l->l_stat) {
   1045 	case LSRUN:
   1046 	case LSONPROC:
   1047 		lwp_need_userret(l);
   1048 		rv = 1;
   1049 		break;
   1050 
   1051 	case LSSLEEP:
   1052 		if ((l->l_flag & LW_SINTR) != 0) {
   1053 			/* setrunnable() will release the lock. */
   1054 			setrunnable(l);
   1055 			return 1;
   1056 		}
   1057 		break;
   1058 
   1059 	case LSSUSPENDED:
   1060 		if ((prop & SA_KILL) != 0) {
   1061 			/* lwp_continue() will release the lock. */
   1062 			lwp_continue(l);
   1063 			return 1;
   1064 		}
   1065 		break;
   1066 
   1067 	case LSSTOP:
   1068 		if ((prop & SA_STOP) != 0)
   1069 			break;
   1070 
   1071 		/*
   1072 		 * If the LWP is stopped and we are sending a continue
   1073 		 * signal, then start it again.
   1074 		 */
   1075 		if ((prop & SA_CONT) != 0) {
   1076 			if (l->l_wchan != NULL) {
   1077 				l->l_stat = LSSLEEP;
   1078 				l->l_proc->p_nrlwps++;
   1079 				rv = 1;
   1080 				break;
   1081 			}
   1082 			/* setrunnable() will release the lock. */
   1083 			setrunnable(l);
   1084 			return 1;
   1085 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1086 			/* setrunnable() will release the lock. */
   1087 			setrunnable(l);
   1088 			return 1;
   1089 		}
   1090 		break;
   1091 
   1092 	default:
   1093 		break;
   1094 	}
   1095 
   1096 	lwp_unlock(l);
   1097 	return rv;
   1098 }
   1099 
   1100 /*
   1101  * Notify an LWP that it has a pending signal.
   1102  */
   1103 void
   1104 signotify(struct lwp *l)
   1105 {
   1106 	KASSERT(lwp_locked(l, NULL));
   1107 
   1108 	l->l_flag |= LW_PENDSIG;
   1109 	lwp_need_userret(l);
   1110 }
   1111 
   1112 /*
   1113  * Find an LWP within process p that is waiting on signal ksi, and hand
   1114  * it on.
   1115  */
   1116 int
   1117 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1118 {
   1119 	struct lwp *l;
   1120 	int signo;
   1121 
   1122 	KASSERT(mutex_owned(p->p_lock));
   1123 
   1124 	signo = ksi->ksi_signo;
   1125 
   1126 	if (ksi->ksi_lid != 0) {
   1127 		/*
   1128 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1129 		 * it's interested.
   1130 		 */
   1131 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1132 			return 0;
   1133 		if (l->l_sigwaited == NULL ||
   1134 		    !sigismember(&l->l_sigwaitset, signo))
   1135 			return 0;
   1136 	} else {
   1137 		/*
   1138 		 * Look for any LWP that may be interested.
   1139 		 */
   1140 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1141 			KASSERT(l->l_sigwaited != NULL);
   1142 			if (sigismember(&l->l_sigwaitset, signo))
   1143 				break;
   1144 		}
   1145 	}
   1146 
   1147 	if (l != NULL) {
   1148 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1149 		l->l_sigwaited = NULL;
   1150 		LIST_REMOVE(l, l_sigwaiter);
   1151 		cv_signal(&l->l_sigcv);
   1152 		return 1;
   1153 	}
   1154 
   1155 	return 0;
   1156 }
   1157 
   1158 /*
   1159  * Send the signal to the process.  If the signal has an action, the action
   1160  * is usually performed by the target process rather than the caller; we add
   1161  * the signal to the set of pending signals for the process.
   1162  *
   1163  * Exceptions:
   1164  *   o When a stop signal is sent to a sleeping process that takes the
   1165  *     default action, the process is stopped without awakening it.
   1166  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1167  *     regardless of the signal action (eg, blocked or ignored).
   1168  *
   1169  * Other ignored signals are discarded immediately.
   1170  */
   1171 void
   1172 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1173 {
   1174 	int prop, lid, toall, signo = ksi->ksi_signo;
   1175 	struct sigacts *sa;
   1176 	struct lwp *l;
   1177 	ksiginfo_t *kp;
   1178 	ksiginfoq_t kq;
   1179 	sig_t action;
   1180 
   1181 	KASSERT(!cpu_intr_p());
   1182 	KASSERT(mutex_owned(proc_lock));
   1183 	KASSERT(mutex_owned(p->p_lock));
   1184 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1185 	KASSERT(signo > 0 && signo < NSIG);
   1186 
   1187 	/*
   1188 	 * If the process is being created by fork, is a zombie or is
   1189 	 * exiting, then just drop the signal here and bail out.
   1190 	 */
   1191 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1192 		return;
   1193 
   1194 	/*
   1195 	 * Notify any interested parties of the signal.
   1196 	 */
   1197 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1198 
   1199 	/*
   1200 	 * Some signals including SIGKILL must act on the entire process.
   1201 	 */
   1202 	kp = NULL;
   1203 	prop = sigprop[signo];
   1204 	toall = ((prop & SA_TOALL) != 0);
   1205 
   1206 	if (toall)
   1207 		lid = 0;
   1208 	else
   1209 		lid = ksi->ksi_lid;
   1210 
   1211 	/*
   1212 	 * If proc is traced, always give parent a chance.
   1213 	 */
   1214 	if (p->p_slflag & PSL_TRACED) {
   1215 		action = SIG_DFL;
   1216 
   1217 		if (lid == 0) {
   1218 			/*
   1219 			 * If the process is being traced and the signal
   1220 			 * is being caught, make sure to save any ksiginfo.
   1221 			 */
   1222 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1223 				return;
   1224 			sigput(&p->p_sigpend, p, kp);
   1225 		}
   1226 	} else {
   1227 		/*
   1228 		 * If the signal was the result of a trap and is not being
   1229 		 * caught, then reset it to default action so that the
   1230 		 * process dumps core immediately.
   1231 		 */
   1232 		if (KSI_TRAP_P(ksi)) {
   1233 			sa = p->p_sigacts;
   1234 			mutex_enter(&sa->sa_mutex);
   1235 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1236 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1237 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1238 			}
   1239 			mutex_exit(&sa->sa_mutex);
   1240 		}
   1241 
   1242 		/*
   1243 		 * If the signal is being ignored, then drop it.  Note: we
   1244 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1245 		 * SIG_IGN, action will be SIG_DFL here.
   1246 		 */
   1247 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1248 			return;
   1249 
   1250 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1251 			action = SIG_CATCH;
   1252 		else {
   1253 			action = SIG_DFL;
   1254 
   1255 			/*
   1256 			 * If sending a tty stop signal to a member of an
   1257 			 * orphaned process group, discard the signal here if
   1258 			 * the action is default; don't stop the process below
   1259 			 * if sleeping, and don't clear any pending SIGCONT.
   1260 			 */
   1261 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1262 				return;
   1263 
   1264 			if (prop & SA_KILL && p->p_nice > NZERO)
   1265 				p->p_nice = NZERO;
   1266 		}
   1267 	}
   1268 
   1269 	/*
   1270 	 * If stopping or continuing a process, discard any pending
   1271 	 * signals that would do the inverse.
   1272 	 */
   1273 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1274 		ksiginfo_queue_init(&kq);
   1275 		if ((prop & SA_CONT) != 0)
   1276 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1277 		if ((prop & SA_STOP) != 0)
   1278 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1279 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1280 	}
   1281 
   1282 	/*
   1283 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1284 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1285 	 * the signal info.  The signal won't be processed further here.
   1286 	 */
   1287 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1288 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1289 	    sigunwait(p, ksi))
   1290 		return;
   1291 
   1292 	/*
   1293 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1294 	 * here.
   1295 	 */
   1296 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1297 		return;
   1298 
   1299 	/*
   1300 	 * LWP private signals are easy - just find the LWP and post
   1301 	 * the signal to it.
   1302 	 */
   1303 	if (lid != 0) {
   1304 		l = lwp_find(p, lid);
   1305 		if (l != NULL) {
   1306 			sigput(&l->l_sigpend, p, kp);
   1307 			membar_producer();
   1308 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1309 		}
   1310 		goto out;
   1311 	}
   1312 
   1313 	/*
   1314 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
   1315 	 */
   1316 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1317 		if ((p->p_slflag & PSL_TRACED) != 0)
   1318 			goto deliver;
   1319 
   1320 		/*
   1321 		 * If SIGCONT is default (or ignored) and process is
   1322 		 * asleep, we are finished; the process should not
   1323 		 * be awakened.
   1324 		 */
   1325 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1326 			goto out;
   1327 
   1328 		sigput(&p->p_sigpend, p, kp);
   1329 	} else {
   1330 		/*
   1331 		 * Process is stopped or stopping.  If traced, then no
   1332 		 * further action is necessary.
   1333 		 */
   1334 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1335 			goto out;
   1336 
   1337 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1338 			/*
   1339 			 * Re-adjust p_nstopchild if the process wasn't
   1340 			 * collected by its parent.
   1341 			 */
   1342 			p->p_stat = SACTIVE;
   1343 			p->p_sflag &= ~PS_STOPPING;
   1344 			if (!p->p_waited)
   1345 				p->p_pptr->p_nstopchild--;
   1346 
   1347 			/*
   1348 			 * If SIGCONT is default (or ignored), we continue
   1349 			 * the process but don't leave the signal in
   1350 			 * ps_siglist, as it has no further action.  If
   1351 			 * SIGCONT is held, we continue the process and
   1352 			 * leave the signal in ps_siglist.  If the process
   1353 			 * catches SIGCONT, let it handle the signal itself.
   1354 			 * If it isn't waiting on an event, then it goes
   1355 			 * back to run state.  Otherwise, process goes back
   1356 			 * to sleep state.
   1357 			 */
   1358 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1359 				sigput(&p->p_sigpend, p, kp);
   1360 		} else if ((prop & SA_STOP) != 0) {
   1361 			/*
   1362 			 * Already stopped, don't need to stop again.
   1363 			 * (If we did the shell could get confused.)
   1364 			 */
   1365 			goto out;
   1366 		} else
   1367 			sigput(&p->p_sigpend, p, kp);
   1368 	}
   1369 
   1370  deliver:
   1371 	/*
   1372 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1373 	 * visible on the per process list (for sigispending()).  This
   1374 	 * is unlikely to be needed in practice, but...
   1375 	 */
   1376 	membar_producer();
   1377 
   1378 	/*
   1379 	 * Try to find an LWP that can take the signal.
   1380 	 */
   1381 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1382 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1383 			break;
   1384 
   1385  out:
   1386  	/*
   1387  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1388  	 * with locks held.  The caller should take care of this.
   1389  	 */
   1390  	ksiginfo_free(kp);
   1391 }
   1392 
   1393 void
   1394 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1395 {
   1396 	struct proc *p = l->l_proc;
   1397 
   1398 	KASSERT(mutex_owned(p->p_lock));
   1399 
   1400 	(*p->p_emul->e_sendsig)(ksi, mask);
   1401 }
   1402 
   1403 /*
   1404  * Stop any LWPs sleeping interruptably.
   1405  */
   1406 static void
   1407 proc_stop_lwps(struct proc *p)
   1408 {
   1409 	struct lwp *l;
   1410 
   1411 	KASSERT(mutex_owned(p->p_lock));
   1412 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1413 
   1414 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1415 		lwp_lock(l);
   1416 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1417 			l->l_stat = LSSTOP;
   1418 			p->p_nrlwps--;
   1419 		}
   1420 		lwp_unlock(l);
   1421 	}
   1422 }
   1423 
   1424 /*
   1425  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1426  *
   1427  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1428  */
   1429 static void
   1430 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1431 {
   1432 
   1433 	KASSERT(mutex_owned(proc_lock));
   1434 	KASSERT(mutex_owned(p->p_lock));
   1435 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1436 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1437 
   1438 	p->p_sflag &= ~PS_STOPPING;
   1439 	p->p_stat = SSTOP;
   1440 	p->p_waited = 0;
   1441 	p->p_pptr->p_nstopchild++;
   1442 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1443 		if (ppsig) {
   1444 			/* child_psignal drops p_lock briefly. */
   1445 			child_psignal(p, ppmask);
   1446 		}
   1447 		cv_broadcast(&p->p_pptr->p_waitcv);
   1448 	}
   1449 }
   1450 
   1451 /*
   1452  * Stop the current process and switch away when being stopped or traced.
   1453  */
   1454 void
   1455 sigswitch(bool ppsig, int ppmask, int signo)
   1456 {
   1457 	struct lwp *l = curlwp;
   1458 	struct proc *p = l->l_proc;
   1459 	int biglocks;
   1460 
   1461 	KASSERT(mutex_owned(p->p_lock));
   1462 	KASSERT(l->l_stat == LSONPROC);
   1463 	KASSERT(p->p_nrlwps > 0);
   1464 
   1465 	/*
   1466 	 * On entry we know that the process needs to stop.  If it's
   1467 	 * the result of a 'sideways' stop signal that has been sourced
   1468 	 * through issignal(), then stop other LWPs in the process too.
   1469 	 */
   1470 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1471 		KASSERT(signo != 0);
   1472 		proc_stop(p, 1, signo);
   1473 		KASSERT(p->p_nrlwps > 0);
   1474 	}
   1475 
   1476 	/*
   1477 	 * If we are the last live LWP, and the stop was a result of
   1478 	 * a new signal, then signal the parent.
   1479 	 */
   1480 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1481 		if (!mutex_tryenter(proc_lock)) {
   1482 			mutex_exit(p->p_lock);
   1483 			mutex_enter(proc_lock);
   1484 			mutex_enter(p->p_lock);
   1485 		}
   1486 
   1487 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1488 			/*
   1489 			 * Note that proc_stop_done() can drop
   1490 			 * p->p_lock briefly.
   1491 			 */
   1492 			proc_stop_done(p, ppsig, ppmask);
   1493 		}
   1494 
   1495 		mutex_exit(proc_lock);
   1496 	}
   1497 
   1498 	/*
   1499 	 * Unlock and switch away.
   1500 	 */
   1501 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1502 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1503 		p->p_nrlwps--;
   1504 		lwp_lock(l);
   1505 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1506 		l->l_stat = LSSTOP;
   1507 		lwp_unlock(l);
   1508 	}
   1509 
   1510 	mutex_exit(p->p_lock);
   1511 	lwp_lock(l);
   1512 	mi_switch(l);
   1513 	KERNEL_LOCK(biglocks, l);
   1514 	mutex_enter(p->p_lock);
   1515 }
   1516 
   1517 /*
   1518  * Check for a signal from the debugger.
   1519  */
   1520 int
   1521 sigchecktrace(sigpend_t **spp)
   1522 {
   1523 	struct lwp *l = curlwp;
   1524 	struct proc *p = l->l_proc;
   1525 	int signo;
   1526 
   1527 	KASSERT(mutex_owned(p->p_lock));
   1528 
   1529 	/*
   1530 	 * If we are no longer being traced, or the parent didn't
   1531 	 * give us a signal, look for more signals.
   1532 	 */
   1533 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1534 		return 0;
   1535 
   1536 	/* If there's a pending SIGKILL, process it immediately. */
   1537 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1538 		return 0;
   1539 
   1540 	/*
   1541 	 * If the new signal is being masked, look for other signals.
   1542 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1543 	 */
   1544 	signo = p->p_xstat;
   1545 	p->p_xstat = 0;
   1546 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1547 		*spp = &l->l_sigpend;
   1548 	else
   1549 		*spp = &p->p_sigpend;
   1550 	if (sigismember(&l->l_sigmask, signo))
   1551 		signo = 0;
   1552 
   1553 	return signo;
   1554 }
   1555 
   1556 /*
   1557  * If the current process has received a signal (should be caught or cause
   1558  * termination, should interrupt current syscall), return the signal number.
   1559  *
   1560  * Stop signals with default action are processed immediately, then cleared;
   1561  * they aren't returned.  This is checked after each entry to the system for
   1562  * a syscall or trap.
   1563  *
   1564  * We will also return -1 if the process is exiting and the current LWP must
   1565  * follow suit.
   1566  *
   1567  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1568  * can switch away, though.
   1569  */
   1570 int
   1571 issignal(struct lwp *l)
   1572 {
   1573 	struct proc *p = l->l_proc;
   1574 	int signo = 0, prop;
   1575 	sigpend_t *sp = NULL;
   1576 	sigset_t ss;
   1577 
   1578 	KASSERT(mutex_owned(p->p_lock));
   1579 
   1580 	for (;;) {
   1581 		/* Discard any signals that we have decided not to take. */
   1582 		if (signo != 0)
   1583 			(void)sigget(sp, NULL, signo, NULL);
   1584 
   1585 		/*
   1586 		 * If the process is stopped/stopping, then stop ourselves
   1587 		 * now that we're on the kernel/userspace boundary.  When
   1588 		 * we awaken, check for a signal from the debugger.
   1589 		 */
   1590 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1591 			sigswitch(true, PS_NOCLDSTOP, 0);
   1592 			signo = sigchecktrace(&sp);
   1593 		} else
   1594 			signo = 0;
   1595 
   1596 		/*
   1597 		 * If the debugger didn't provide a signal, find a pending
   1598 		 * signal from our set.  Check per-LWP signals first, and
   1599 		 * then per-process.
   1600 		 */
   1601 		if (signo == 0) {
   1602 			sp = &l->l_sigpend;
   1603 			ss = sp->sp_set;
   1604 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1605 				sigminusset(&stopsigmask, &ss);
   1606 			sigminusset(&l->l_sigmask, &ss);
   1607 
   1608 			if ((signo = firstsig(&ss)) == 0) {
   1609 				sp = &p->p_sigpend;
   1610 				ss = sp->sp_set;
   1611 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1612 					sigminusset(&stopsigmask, &ss);
   1613 				sigminusset(&l->l_sigmask, &ss);
   1614 
   1615 				if ((signo = firstsig(&ss)) == 0) {
   1616 					/*
   1617 					 * No signal pending - clear the
   1618 					 * indicator and bail out.
   1619 					 */
   1620 					lwp_lock(l);
   1621 					l->l_flag &= ~LW_PENDSIG;
   1622 					lwp_unlock(l);
   1623 					sp = NULL;
   1624 					break;
   1625 				}
   1626 			}
   1627 		}
   1628 
   1629 		/*
   1630 		 * We should see pending but ignored signals only if
   1631 		 * we are being traced.
   1632 		 */
   1633 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1634 		    (p->p_slflag & PSL_TRACED) == 0) {
   1635 			/* Discard the signal. */
   1636 			continue;
   1637 		}
   1638 
   1639 		/*
   1640 		 * If traced, always stop, and stay stopped until released
   1641 		 * by the debugger.  If the our parent process is waiting
   1642 		 * for us, don't hang as we could deadlock.
   1643 		 */
   1644 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1645 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1646 			/* Take the signal. */
   1647 			(void)sigget(sp, NULL, signo, NULL);
   1648 			p->p_xstat = signo;
   1649 
   1650 			/* Emulation-specific handling of signal trace */
   1651 			if (p->p_emul->e_tracesig == NULL ||
   1652 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1653 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1654 				    signo);
   1655 
   1656 			/* Check for a signal from the debugger. */
   1657 			if ((signo = sigchecktrace(&sp)) == 0)
   1658 				continue;
   1659 		}
   1660 
   1661 		prop = sigprop[signo];
   1662 
   1663 		/*
   1664 		 * Decide whether the signal should be returned.
   1665 		 */
   1666 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1667 		case (long)SIG_DFL:
   1668 			/*
   1669 			 * Don't take default actions on system processes.
   1670 			 */
   1671 			if (p->p_pid <= 1) {
   1672 #ifdef DIAGNOSTIC
   1673 				/*
   1674 				 * Are you sure you want to ignore SIGSEGV
   1675 				 * in init? XXX
   1676 				 */
   1677 				printf_nolog("Process (pid %d) got sig %d\n",
   1678 				    p->p_pid, signo);
   1679 #endif
   1680 				continue;
   1681 			}
   1682 
   1683 			/*
   1684 			 * If there is a pending stop signal to process with
   1685 			 * default action, stop here, then clear the signal.
   1686 			 * However, if process is member of an orphaned
   1687 			 * process group, ignore tty stop signals.
   1688 			 */
   1689 			if (prop & SA_STOP) {
   1690 				/*
   1691 				 * XXX Don't hold proc_lock for p_lflag,
   1692 				 * but it's not a big deal.
   1693 				 */
   1694 				if (p->p_slflag & PSL_TRACED ||
   1695 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1696 				    prop & SA_TTYSTOP)) {
   1697 				    	/* Ignore the signal. */
   1698 					continue;
   1699 				}
   1700 				/* Take the signal. */
   1701 				(void)sigget(sp, NULL, signo, NULL);
   1702 				p->p_xstat = signo;
   1703 				signo = 0;
   1704 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1705 			} else if (prop & SA_IGNORE) {
   1706 				/*
   1707 				 * Except for SIGCONT, shouldn't get here.
   1708 				 * Default action is to ignore; drop it.
   1709 				 */
   1710 				continue;
   1711 			}
   1712 			break;
   1713 
   1714 		case (long)SIG_IGN:
   1715 #ifdef DEBUG_ISSIGNAL
   1716 			/*
   1717 			 * Masking above should prevent us ever trying
   1718 			 * to take action on an ignored signal other
   1719 			 * than SIGCONT, unless process is traced.
   1720 			 */
   1721 			if ((prop & SA_CONT) == 0 &&
   1722 			    (p->p_slflag & PSL_TRACED) == 0)
   1723 				printf_nolog("issignal\n");
   1724 #endif
   1725 			continue;
   1726 
   1727 		default:
   1728 			/*
   1729 			 * This signal has an action, let postsig() process
   1730 			 * it.
   1731 			 */
   1732 			break;
   1733 		}
   1734 
   1735 		break;
   1736 	}
   1737 
   1738 	l->l_sigpendset = sp;
   1739 	return signo;
   1740 }
   1741 
   1742 /*
   1743  * Take the action for the specified signal
   1744  * from the current set of pending signals.
   1745  */
   1746 void
   1747 postsig(int signo)
   1748 {
   1749 	struct lwp	*l;
   1750 	struct proc	*p;
   1751 	struct sigacts	*ps;
   1752 	sig_t		action;
   1753 	sigset_t	*returnmask;
   1754 	ksiginfo_t	ksi;
   1755 
   1756 	l = curlwp;
   1757 	p = l->l_proc;
   1758 	ps = p->p_sigacts;
   1759 
   1760 	KASSERT(mutex_owned(p->p_lock));
   1761 	KASSERT(signo > 0);
   1762 
   1763 	/*
   1764 	 * Set the new mask value and also defer further occurrences of this
   1765 	 * signal.
   1766 	 *
   1767 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1768 	 * not of interest, but rather the mask from before the sigsuspen is
   1769 	 * what we want restored after the signal processing is completed.
   1770 	 */
   1771 	if (l->l_sigrestore) {
   1772 		returnmask = &l->l_sigoldmask;
   1773 		l->l_sigrestore = 0;
   1774 	} else
   1775 		returnmask = &l->l_sigmask;
   1776 
   1777 	/*
   1778 	 * Commit to taking the signal before releasing the mutex.
   1779 	 */
   1780 	action = SIGACTION_PS(ps, signo).sa_handler;
   1781 	l->l_ru.ru_nsignals++;
   1782 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1783 
   1784 	if (ktrpoint(KTR_PSIG)) {
   1785 		mutex_exit(p->p_lock);
   1786 		ktrpsig(signo, action, returnmask, NULL);
   1787 		mutex_enter(p->p_lock);
   1788 	}
   1789 
   1790 	if (action == SIG_DFL) {
   1791 		/*
   1792 		 * Default action, where the default is to kill
   1793 		 * the process.  (Other cases were ignored above.)
   1794 		 */
   1795 		sigexit(l, signo);
   1796 		return;
   1797 	}
   1798 
   1799 	/*
   1800 	 * If we get here, the signal must be caught.
   1801 	 */
   1802 #ifdef DIAGNOSTIC
   1803 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1804 		panic("postsig action");
   1805 #endif
   1806 
   1807 	kpsendsig(l, &ksi, returnmask);
   1808 }
   1809 
   1810 /*
   1811  * sendsig_reset:
   1812  *
   1813  *	Reset the signal action.  Called from emulation specific sendsig()
   1814  *	before unlocking to deliver the signal.
   1815  */
   1816 void
   1817 sendsig_reset(struct lwp *l, int signo)
   1818 {
   1819 	struct proc *p = l->l_proc;
   1820 	struct sigacts *ps = p->p_sigacts;
   1821 
   1822 	KASSERT(mutex_owned(p->p_lock));
   1823 
   1824 	p->p_sigctx.ps_lwp = 0;
   1825 	p->p_sigctx.ps_code = 0;
   1826 	p->p_sigctx.ps_signo = 0;
   1827 
   1828 	mutex_enter(&ps->sa_mutex);
   1829 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1830 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1831 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1832 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1833 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1834 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1835 	}
   1836 	mutex_exit(&ps->sa_mutex);
   1837 }
   1838 
   1839 /*
   1840  * Kill the current process for stated reason.
   1841  */
   1842 void
   1843 killproc(struct proc *p, const char *why)
   1844 {
   1845 
   1846 	KASSERT(mutex_owned(proc_lock));
   1847 
   1848 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1849 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1850 	psignal(p, SIGKILL);
   1851 }
   1852 
   1853 /*
   1854  * Force the current process to exit with the specified signal, dumping core
   1855  * if appropriate.  We bypass the normal tests for masked and caught
   1856  * signals, allowing unrecoverable failures to terminate the process without
   1857  * changing signal state.  Mark the accounting record with the signal
   1858  * termination.  If dumping core, save the signal number for the debugger.
   1859  * Calls exit and does not return.
   1860  */
   1861 void
   1862 sigexit(struct lwp *l, int signo)
   1863 {
   1864 	int exitsig, error, docore;
   1865 	struct proc *p;
   1866 	struct lwp *t;
   1867 
   1868 	p = l->l_proc;
   1869 
   1870 	KASSERT(mutex_owned(p->p_lock));
   1871 	KERNEL_UNLOCK_ALL(l, NULL);
   1872 
   1873 	/*
   1874 	 * Don't permit coredump() multiple times in the same process.
   1875 	 * Call back into sigexit, where we will be suspended until
   1876 	 * the deed is done.  Note that this is a recursive call, but
   1877 	 * LW_WCORE will prevent us from coming back this way.
   1878 	 */
   1879 	if ((p->p_sflag & PS_WCORE) != 0) {
   1880 		lwp_lock(l);
   1881 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1882 		lwp_unlock(l);
   1883 		mutex_exit(p->p_lock);
   1884 		lwp_userret(l);
   1885 		panic("sigexit 1");
   1886 		/* NOTREACHED */
   1887 	}
   1888 
   1889 	/* If process is already on the way out, then bail now. */
   1890 	if ((p->p_sflag & PS_WEXIT) != 0) {
   1891 		mutex_exit(p->p_lock);
   1892 		lwp_exit(l);
   1893 		panic("sigexit 2");
   1894 		/* NOTREACHED */
   1895 	}
   1896 
   1897 	/*
   1898 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1899 	 * so that their registers are available long enough to be dumped.
   1900  	 */
   1901 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1902 		p->p_sflag |= PS_WCORE;
   1903 		for (;;) {
   1904 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1905 				lwp_lock(t);
   1906 				if (t == l) {
   1907 					t->l_flag &= ~LW_WSUSPEND;
   1908 					lwp_unlock(t);
   1909 					continue;
   1910 				}
   1911 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1912 				lwp_suspend(l, t);
   1913 			}
   1914 
   1915 			if (p->p_nrlwps == 1)
   1916 				break;
   1917 
   1918 			/*
   1919 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   1920 			 * for everyone else to stop before proceeding.
   1921 			 */
   1922 			p->p_nlwpwait++;
   1923 			cv_broadcast(&p->p_lwpcv);
   1924 			cv_wait(&p->p_lwpcv, p->p_lock);
   1925 			p->p_nlwpwait--;
   1926 		}
   1927 	}
   1928 
   1929 	exitsig = signo;
   1930 	p->p_acflag |= AXSIG;
   1931 	p->p_sigctx.ps_signo = signo;
   1932 
   1933 	if (docore) {
   1934 		mutex_exit(p->p_lock);
   1935 		if ((error = coredump(l, NULL)) == 0)
   1936 			exitsig |= WCOREFLAG;
   1937 
   1938 		if (kern_logsigexit) {
   1939 			int uid = l->l_cred ?
   1940 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   1941 
   1942 			if (error)
   1943 				log(LOG_INFO, lognocoredump, p->p_pid,
   1944 				    p->p_comm, uid, signo, error);
   1945 			else
   1946 				log(LOG_INFO, logcoredump, p->p_pid,
   1947 				    p->p_comm, uid, signo);
   1948 		}
   1949 
   1950 #ifdef PAX_SEGVGUARD
   1951 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   1952 #endif /* PAX_SEGVGUARD */
   1953 		/* Acquire the sched state mutex.  exit1() will release it. */
   1954 		mutex_enter(p->p_lock);
   1955 	}
   1956 
   1957 	/* No longer dumping core. */
   1958 	p->p_sflag &= ~PS_WCORE;
   1959 
   1960 	exit1(l, W_EXITCODE(0, exitsig));
   1961 	/* NOTREACHED */
   1962 }
   1963 
   1964 /*
   1965  * Put process 'p' into the stopped state and optionally, notify the parent.
   1966  */
   1967 void
   1968 proc_stop(struct proc *p, int notify, int signo)
   1969 {
   1970 	struct lwp *l;
   1971 
   1972 	KASSERT(mutex_owned(p->p_lock));
   1973 
   1974 	/*
   1975 	 * First off, set the stopping indicator and bring all sleeping
   1976 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   1977 	 * unlock between here and the p->p_nrlwps check below.
   1978 	 */
   1979 	p->p_sflag |= PS_STOPPING;
   1980 	if (notify)
   1981 		p->p_sflag |= PS_NOTIFYSTOP;
   1982 	else
   1983 		p->p_sflag &= ~PS_NOTIFYSTOP;
   1984 	membar_producer();
   1985 
   1986 	proc_stop_lwps(p);
   1987 
   1988 	/*
   1989 	 * If there are no LWPs available to take the signal, then we
   1990 	 * signal the parent process immediately.  Otherwise, the last
   1991 	 * LWP to stop will take care of it.
   1992 	 */
   1993 
   1994 	if (p->p_nrlwps == 0) {
   1995 		proc_stop_done(p, true, PS_NOCLDSTOP);
   1996 	} else {
   1997 		/*
   1998 		 * Have the remaining LWPs come to a halt, and trigger
   1999 		 * proc_stop_callout() to ensure that they do.
   2000 		 */
   2001 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2002 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2003 		callout_schedule(&proc_stop_ch, 1);
   2004 	}
   2005 }
   2006 
   2007 /*
   2008  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2009  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2010  * to allow LWPs to release any locks that they may hold before stopping.
   2011  *
   2012  * Non-interruptable sleeps can be long, and there is the potential for an
   2013  * LWP to begin sleeping interruptably soon after the process has been set
   2014  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2015  * stopping, and so complete halt of the process and the return of status
   2016  * information to the parent could be delayed indefinitely.
   2017  *
   2018  * To handle this race, proc_stop_callout() runs once per tick while there
   2019  * are stopping processes in the system.  It sets LWPs that are sleeping
   2020  * interruptably into the LSSTOP state.
   2021  *
   2022  * Note that we are not concerned about keeping all LWPs stopped while the
   2023  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2024  * What we do need to ensure is that all LWPs in a stopping process have
   2025  * stopped at least once, so that notification can be sent to the parent
   2026  * process.
   2027  */
   2028 static void
   2029 proc_stop_callout(void *cookie)
   2030 {
   2031 	bool more, restart;
   2032 	struct proc *p;
   2033 
   2034 	(void)cookie;
   2035 
   2036 	do {
   2037 		restart = false;
   2038 		more = false;
   2039 
   2040 		mutex_enter(proc_lock);
   2041 		PROCLIST_FOREACH(p, &allproc) {
   2042 			if ((p->p_flag & PK_MARKER) != 0)
   2043 				continue;
   2044 			mutex_enter(p->p_lock);
   2045 
   2046 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2047 				mutex_exit(p->p_lock);
   2048 				continue;
   2049 			}
   2050 
   2051 			/* Stop any LWPs sleeping interruptably. */
   2052 			proc_stop_lwps(p);
   2053 			if (p->p_nrlwps == 0) {
   2054 				/*
   2055 				 * We brought the process to a halt.
   2056 				 * Mark it as stopped and notify the
   2057 				 * parent.
   2058 				 */
   2059 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2060 					/*
   2061 					 * Note that proc_stop_done() will
   2062 					 * drop p->p_lock briefly.
   2063 					 * Arrange to restart and check
   2064 					 * all processes again.
   2065 					 */
   2066 					restart = true;
   2067 				}
   2068 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2069 			} else
   2070 				more = true;
   2071 
   2072 			mutex_exit(p->p_lock);
   2073 			if (restart)
   2074 				break;
   2075 		}
   2076 		mutex_exit(proc_lock);
   2077 	} while (restart);
   2078 
   2079 	/*
   2080 	 * If we noted processes that are stopping but still have
   2081 	 * running LWPs, then arrange to check again in 1 tick.
   2082 	 */
   2083 	if (more)
   2084 		callout_schedule(&proc_stop_ch, 1);
   2085 }
   2086 
   2087 /*
   2088  * Given a process in state SSTOP, set the state back to SACTIVE and
   2089  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2090  */
   2091 void
   2092 proc_unstop(struct proc *p)
   2093 {
   2094 	struct lwp *l;
   2095 	int sig;
   2096 
   2097 	KASSERT(mutex_owned(proc_lock));
   2098 	KASSERT(mutex_owned(p->p_lock));
   2099 
   2100 	p->p_stat = SACTIVE;
   2101 	p->p_sflag &= ~PS_STOPPING;
   2102 	sig = p->p_xstat;
   2103 
   2104 	if (!p->p_waited)
   2105 		p->p_pptr->p_nstopchild--;
   2106 
   2107 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2108 		lwp_lock(l);
   2109 		if (l->l_stat != LSSTOP) {
   2110 			lwp_unlock(l);
   2111 			continue;
   2112 		}
   2113 		if (l->l_wchan == NULL) {
   2114 			setrunnable(l);
   2115 			continue;
   2116 		}
   2117 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2118 		        setrunnable(l);
   2119 		        sig = 0;
   2120 		} else {
   2121 			l->l_stat = LSSLEEP;
   2122 			p->p_nrlwps++;
   2123 			lwp_unlock(l);
   2124 		}
   2125 	}
   2126 }
   2127 
   2128 static int
   2129 filt_sigattach(struct knote *kn)
   2130 {
   2131 	struct proc *p = curproc;
   2132 
   2133 	kn->kn_obj = p;
   2134 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2135 
   2136 	mutex_enter(p->p_lock);
   2137 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2138 	mutex_exit(p->p_lock);
   2139 
   2140 	return (0);
   2141 }
   2142 
   2143 static void
   2144 filt_sigdetach(struct knote *kn)
   2145 {
   2146 	struct proc *p = kn->kn_obj;
   2147 
   2148 	mutex_enter(p->p_lock);
   2149 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2150 	mutex_exit(p->p_lock);
   2151 }
   2152 
   2153 /*
   2154  * signal knotes are shared with proc knotes, so we apply a mask to
   2155  * the hint in order to differentiate them from process hints.  This
   2156  * could be avoided by using a signal-specific knote list, but probably
   2157  * isn't worth the trouble.
   2158  */
   2159 static int
   2160 filt_signal(struct knote *kn, long hint)
   2161 {
   2162 
   2163 	if (hint & NOTE_SIGNAL) {
   2164 		hint &= ~NOTE_SIGNAL;
   2165 
   2166 		if (kn->kn_id == hint)
   2167 			kn->kn_data++;
   2168 	}
   2169 	return (kn->kn_data != 0);
   2170 }
   2171 
   2172 const struct filterops sig_filtops = {
   2173 	0, filt_sigattach, filt_sigdetach, filt_signal
   2174 };
   2175