kern_sig.c revision 1.286 1 /* $NetBSD: kern_sig.c,v 1.286 2008/06/25 11:05:46 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.286 2008/06/25 11:05:46 ad Exp $");
70
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76
77 #define SIGPROP /* include signal properties table */
78 #include <sys/param.h>
79 #include <sys/signalvar.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/wait.h>
83 #include <sys/ktrace.h>
84 #include <sys/syslog.h>
85 #include <sys/filedesc.h>
86 #include <sys/file.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/exec.h>
91 #include <sys/kauth.h>
92 #include <sys/acct.h>
93 #include <sys/callout.h>
94 #include <sys/atomic.h>
95 #include <sys/cpu.h>
96
97 #ifdef PAX_SEGVGUARD
98 #include <sys/pax.h>
99 #endif /* PAX_SEGVGUARD */
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103
104 static void ksiginfo_exechook(struct proc *, void *);
105 static void proc_stop_callout(void *);
106
107 int sigunwait(struct proc *, const ksiginfo_t *);
108 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
109 int sigpost(struct lwp *, sig_t, int, int);
110 int sigchecktrace(sigpend_t **);
111 void sigswitch(bool, int, int);
112 void sigrealloc(ksiginfo_t *);
113
114 sigset_t contsigmask, stopsigmask, sigcantmask;
115 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
116 static void sigacts_poolpage_free(struct pool *, void *);
117 static void *sigacts_poolpage_alloc(struct pool *, int);
118 static callout_t proc_stop_ch;
119 static pool_cache_t siginfo_cache;
120 static pool_cache_t ksiginfo_cache;
121
122 static struct pool_allocator sigactspool_allocator = {
123 .pa_alloc = sigacts_poolpage_alloc,
124 .pa_free = sigacts_poolpage_free,
125 };
126
127 #ifdef DEBUG
128 int kern_logsigexit = 1;
129 #else
130 int kern_logsigexit = 0;
131 #endif
132
133 static const char logcoredump[] =
134 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
135 static const char lognocoredump[] =
136 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
137
138 /*
139 * signal_init:
140 *
141 * Initialize global signal-related data structures.
142 */
143 void
144 signal_init(void)
145 {
146
147 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
148
149 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
150 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
151 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
152
153 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
154 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
155
156 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
157 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
158
159 exechook_establish(ksiginfo_exechook, NULL);
160
161 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
162 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
163 }
164
165 /*
166 * sigacts_poolpage_alloc:
167 *
168 * Allocate a page for the sigacts memory pool.
169 */
170 static void *
171 sigacts_poolpage_alloc(struct pool *pp, int flags)
172 {
173
174 return (void *)uvm_km_alloc(kernel_map,
175 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
176 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
177 | UVM_KMF_WIRED);
178 }
179
180 /*
181 * sigacts_poolpage_free:
182 *
183 * Free a page on behalf of the sigacts memory pool.
184 */
185 static void
186 sigacts_poolpage_free(struct pool *pp, void *v)
187 {
188
189 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
190 }
191
192 /*
193 * sigactsinit:
194 *
195 * Create an initial sigctx structure, using the same signal state as
196 * p. If 'share' is set, share the sigctx_proc part, otherwise just
197 * copy it from parent.
198 */
199 struct sigacts *
200 sigactsinit(struct proc *pp, int share)
201 {
202 struct sigacts *ps, *ps2;
203
204 ps = pp->p_sigacts;
205
206 if (share) {
207 atomic_inc_uint(&ps->sa_refcnt);
208 ps2 = ps;
209 } else {
210 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
211 /* XXXAD get rid of this */
212 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
213 mutex_enter(&ps->sa_mutex);
214 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
215 sizeof(ps2->sa_sigdesc));
216 mutex_exit(&ps->sa_mutex);
217 ps2->sa_refcnt = 1;
218 }
219
220 return ps2;
221 }
222
223 /*
224 * sigactsunshare:
225 *
226 * Make this process not share its sigctx, maintaining all
227 * signal state.
228 */
229 void
230 sigactsunshare(struct proc *p)
231 {
232 struct sigacts *ps, *oldps;
233
234 oldps = p->p_sigacts;
235 if (oldps->sa_refcnt == 1)
236 return;
237 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
238 /* XXXAD get rid of this */
239 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
240 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
241 p->p_sigacts = ps;
242 sigactsfree(oldps);
243 }
244
245 /*
246 * sigactsfree;
247 *
248 * Release a sigctx structure.
249 */
250 void
251 sigactsfree(struct sigacts *ps)
252 {
253
254 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
255 mutex_destroy(&ps->sa_mutex);
256 pool_cache_put(sigacts_cache, ps);
257 }
258 }
259
260 /*
261 * siginit:
262 *
263 * Initialize signal state for process 0; set to ignore signals that
264 * are ignored by default and disable the signal stack. Locking not
265 * required as the system is still cold.
266 */
267 void
268 siginit(struct proc *p)
269 {
270 struct lwp *l;
271 struct sigacts *ps;
272 int signo, prop;
273
274 ps = p->p_sigacts;
275 sigemptyset(&contsigmask);
276 sigemptyset(&stopsigmask);
277 sigemptyset(&sigcantmask);
278 for (signo = 1; signo < NSIG; signo++) {
279 prop = sigprop[signo];
280 if (prop & SA_CONT)
281 sigaddset(&contsigmask, signo);
282 if (prop & SA_STOP)
283 sigaddset(&stopsigmask, signo);
284 if (prop & SA_CANTMASK)
285 sigaddset(&sigcantmask, signo);
286 if (prop & SA_IGNORE && signo != SIGCONT)
287 sigaddset(&p->p_sigctx.ps_sigignore, signo);
288 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
289 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
290 }
291 sigemptyset(&p->p_sigctx.ps_sigcatch);
292 p->p_sflag &= ~PS_NOCLDSTOP;
293
294 ksiginfo_queue_init(&p->p_sigpend.sp_info);
295 sigemptyset(&p->p_sigpend.sp_set);
296
297 /*
298 * Reset per LWP state.
299 */
300 l = LIST_FIRST(&p->p_lwps);
301 l->l_sigwaited = NULL;
302 l->l_sigstk.ss_flags = SS_DISABLE;
303 l->l_sigstk.ss_size = 0;
304 l->l_sigstk.ss_sp = 0;
305 ksiginfo_queue_init(&l->l_sigpend.sp_info);
306 sigemptyset(&l->l_sigpend.sp_set);
307
308 /* One reference. */
309 ps->sa_refcnt = 1;
310 }
311
312 /*
313 * execsigs:
314 *
315 * Reset signals for an exec of the specified process.
316 */
317 void
318 execsigs(struct proc *p)
319 {
320 struct sigacts *ps;
321 struct lwp *l;
322 int signo, prop;
323 sigset_t tset;
324 ksiginfoq_t kq;
325
326 KASSERT(p->p_nlwps == 1);
327
328 sigactsunshare(p);
329 ps = p->p_sigacts;
330
331 /*
332 * Reset caught signals. Held signals remain held through
333 * l->l_sigmask (unless they were caught, and are now ignored
334 * by default).
335 *
336 * No need to lock yet, the process has only one LWP and
337 * at this point the sigacts are private to the process.
338 */
339 sigemptyset(&tset);
340 for (signo = 1; signo < NSIG; signo++) {
341 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
342 prop = sigprop[signo];
343 if (prop & SA_IGNORE) {
344 if ((prop & SA_CONT) == 0)
345 sigaddset(&p->p_sigctx.ps_sigignore,
346 signo);
347 sigaddset(&tset, signo);
348 }
349 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
350 }
351 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
352 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
353 }
354 ksiginfo_queue_init(&kq);
355
356 mutex_enter(p->p_lock);
357 sigclearall(p, &tset, &kq);
358 sigemptyset(&p->p_sigctx.ps_sigcatch);
359
360 /*
361 * Reset no zombies if child dies flag as Solaris does.
362 */
363 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
364 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
365 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
366
367 /*
368 * Reset per-LWP state.
369 */
370 l = LIST_FIRST(&p->p_lwps);
371 l->l_sigwaited = NULL;
372 l->l_sigstk.ss_flags = SS_DISABLE;
373 l->l_sigstk.ss_size = 0;
374 l->l_sigstk.ss_sp = 0;
375 ksiginfo_queue_init(&l->l_sigpend.sp_info);
376 sigemptyset(&l->l_sigpend.sp_set);
377 mutex_exit(p->p_lock);
378
379 ksiginfo_queue_drain(&kq);
380 }
381
382 /*
383 * ksiginfo_exechook:
384 *
385 * Free all pending ksiginfo entries from a process on exec.
386 * Additionally, drain any unused ksiginfo structures in the
387 * system back to the pool.
388 *
389 * XXX This should not be a hook, every process has signals.
390 */
391 static void
392 ksiginfo_exechook(struct proc *p, void *v)
393 {
394 ksiginfoq_t kq;
395
396 ksiginfo_queue_init(&kq);
397
398 mutex_enter(p->p_lock);
399 sigclearall(p, NULL, &kq);
400 mutex_exit(p->p_lock);
401
402 ksiginfo_queue_drain(&kq);
403 }
404
405 /*
406 * ksiginfo_alloc:
407 *
408 * Allocate a new ksiginfo structure from the pool, and optionally copy
409 * an existing one. If the existing ksiginfo_t is from the pool, and
410 * has not been queued somewhere, then just return it. Additionally,
411 * if the existing ksiginfo_t does not contain any information beyond
412 * the signal number, then just return it.
413 */
414 ksiginfo_t *
415 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
416 {
417 ksiginfo_t *kp;
418
419 if (ok != NULL) {
420 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
421 KSI_FROMPOOL)
422 return ok;
423 if (KSI_EMPTY_P(ok))
424 return ok;
425 }
426
427 kp = pool_cache_get(ksiginfo_cache, flags);
428 if (kp == NULL) {
429 #ifdef DIAGNOSTIC
430 printf("Out of memory allocating ksiginfo for pid %d\n",
431 p->p_pid);
432 #endif
433 return NULL;
434 }
435
436 if (ok != NULL) {
437 memcpy(kp, ok, sizeof(*kp));
438 kp->ksi_flags &= ~KSI_QUEUED;
439 } else
440 KSI_INIT_EMPTY(kp);
441
442 kp->ksi_flags |= KSI_FROMPOOL;
443
444 return kp;
445 }
446
447 /*
448 * ksiginfo_free:
449 *
450 * If the given ksiginfo_t is from the pool and has not been queued,
451 * then free it.
452 */
453 void
454 ksiginfo_free(ksiginfo_t *kp)
455 {
456
457 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
458 return;
459 pool_cache_put(ksiginfo_cache, kp);
460 }
461
462 /*
463 * ksiginfo_queue_drain:
464 *
465 * Drain a non-empty ksiginfo_t queue.
466 */
467 void
468 ksiginfo_queue_drain0(ksiginfoq_t *kq)
469 {
470 ksiginfo_t *ksi;
471
472 KASSERT(!CIRCLEQ_EMPTY(kq));
473
474 while (!CIRCLEQ_EMPTY(kq)) {
475 ksi = CIRCLEQ_FIRST(kq);
476 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
477 pool_cache_put(ksiginfo_cache, ksi);
478 }
479 }
480
481 /*
482 * sigget:
483 *
484 * Fetch the first pending signal from a set. Optionally, also fetch
485 * or manufacture a ksiginfo element. Returns the number of the first
486 * pending signal, or zero.
487 */
488 int
489 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
490 {
491 ksiginfo_t *ksi;
492 sigset_t tset;
493
494 /* If there's no pending set, the signal is from the debugger. */
495 if (sp == NULL) {
496 if (out != NULL) {
497 KSI_INIT(out);
498 out->ksi_info._signo = signo;
499 out->ksi_info._code = SI_USER;
500 }
501 return signo;
502 }
503
504 /* Construct mask from signo, and 'mask'. */
505 if (signo == 0) {
506 if (mask != NULL) {
507 tset = *mask;
508 __sigandset(&sp->sp_set, &tset);
509 } else
510 tset = sp->sp_set;
511
512 /* If there are no signals pending, that's it. */
513 if ((signo = firstsig(&tset)) == 0)
514 return 0;
515 } else {
516 KASSERT(sigismember(&sp->sp_set, signo));
517 }
518
519 sigdelset(&sp->sp_set, signo);
520
521 /* Find siginfo and copy it out. */
522 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
523 if (ksi->ksi_signo == signo) {
524 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
525 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
526 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
527 ksi->ksi_flags &= ~KSI_QUEUED;
528 if (out != NULL) {
529 memcpy(out, ksi, sizeof(*out));
530 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
531 }
532 ksiginfo_free(ksi);
533 return signo;
534 }
535 }
536
537 /* If there's no siginfo, then manufacture it. */
538 if (out != NULL) {
539 KSI_INIT(out);
540 out->ksi_info._signo = signo;
541 out->ksi_info._code = SI_USER;
542 }
543
544 return signo;
545 }
546
547 /*
548 * sigput:
549 *
550 * Append a new ksiginfo element to the list of pending ksiginfo's, if
551 * we need to (e.g. SA_SIGINFO was requested).
552 */
553 void
554 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
555 {
556 ksiginfo_t *kp;
557 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
558
559 KASSERT(mutex_owned(p->p_lock));
560 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
561
562 sigaddset(&sp->sp_set, ksi->ksi_signo);
563
564 /*
565 * If siginfo is not required, or there is none, then just mark the
566 * signal as pending.
567 */
568 if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
569 return;
570
571 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
572
573 #ifdef notyet /* XXX: QUEUING */
574 if (ksi->ksi_signo < SIGRTMIN)
575 #endif
576 {
577 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
578 if (kp->ksi_signo == ksi->ksi_signo) {
579 KSI_COPY(ksi, kp);
580 kp->ksi_flags |= KSI_QUEUED;
581 return;
582 }
583 }
584 }
585
586 ksi->ksi_flags |= KSI_QUEUED;
587 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
588 }
589
590 /*
591 * sigclear:
592 *
593 * Clear all pending signals in the specified set.
594 */
595 void
596 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
597 {
598 ksiginfo_t *ksi, *next;
599
600 if (mask == NULL)
601 sigemptyset(&sp->sp_set);
602 else
603 sigminusset(mask, &sp->sp_set);
604
605 ksi = CIRCLEQ_FIRST(&sp->sp_info);
606 for (; ksi != (void *)&sp->sp_info; ksi = next) {
607 next = CIRCLEQ_NEXT(ksi, ksi_list);
608 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
609 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
610 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
611 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
612 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
613 }
614 }
615 }
616
617 /*
618 * sigclearall:
619 *
620 * Clear all pending signals in the specified set from a process and
621 * its LWPs.
622 */
623 void
624 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
625 {
626 struct lwp *l;
627
628 KASSERT(mutex_owned(p->p_lock));
629
630 sigclear(&p->p_sigpend, mask, kq);
631
632 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
633 sigclear(&l->l_sigpend, mask, kq);
634 }
635 }
636
637 /*
638 * sigispending:
639 *
640 * Return true if there are pending signals for the current LWP. May
641 * be called unlocked provided that LW_PENDSIG is set, and that the
642 * signal has been posted to the appopriate queue before LW_PENDSIG is
643 * set.
644 */
645 int
646 sigispending(struct lwp *l, int signo)
647 {
648 struct proc *p = l->l_proc;
649 sigset_t tset;
650
651 membar_consumer();
652
653 tset = l->l_sigpend.sp_set;
654 sigplusset(&p->p_sigpend.sp_set, &tset);
655 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
656 sigminusset(&l->l_sigmask, &tset);
657
658 if (signo == 0) {
659 if (firstsig(&tset) != 0)
660 return EINTR;
661 } else if (sigismember(&tset, signo))
662 return EINTR;
663
664 return 0;
665 }
666
667 /*
668 * siginfo_alloc:
669 *
670 * Allocate a new siginfo_t structure from the pool.
671 */
672 siginfo_t *
673 siginfo_alloc(int flags)
674 {
675
676 return pool_cache_get(siginfo_cache, flags);
677 }
678
679 /*
680 * siginfo_free:
681 *
682 * Return a siginfo_t structure to the pool.
683 */
684 void
685 siginfo_free(void *arg)
686 {
687
688 pool_cache_put(siginfo_cache, arg);
689 }
690
691 void
692 getucontext(struct lwp *l, ucontext_t *ucp)
693 {
694 struct proc *p = l->l_proc;
695
696 KASSERT(mutex_owned(p->p_lock));
697
698 ucp->uc_flags = 0;
699 ucp->uc_link = l->l_ctxlink;
700
701 ucp->uc_sigmask = l->l_sigmask;
702 ucp->uc_flags |= _UC_SIGMASK;
703
704 /*
705 * The (unsupplied) definition of the `current execution stack'
706 * in the System V Interface Definition appears to allow returning
707 * the main context stack.
708 */
709 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
710 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
711 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
712 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
713 } else {
714 /* Simply copy alternate signal execution stack. */
715 ucp->uc_stack = l->l_sigstk;
716 }
717 ucp->uc_flags |= _UC_STACK;
718 mutex_exit(p->p_lock);
719 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
720 mutex_enter(p->p_lock);
721 }
722
723 int
724 setucontext(struct lwp *l, const ucontext_t *ucp)
725 {
726 struct proc *p = l->l_proc;
727 int error;
728
729 KASSERT(mutex_owned(p->p_lock));
730
731 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
732 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
733 if (error != 0)
734 return error;
735 }
736
737 mutex_exit(p->p_lock);
738 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
739 mutex_enter(p->p_lock);
740 if (error != 0)
741 return (error);
742
743 l->l_ctxlink = ucp->uc_link;
744
745 /*
746 * If there was stack information, update whether or not we are
747 * still running on an alternate signal stack.
748 */
749 if ((ucp->uc_flags & _UC_STACK) != 0) {
750 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
751 l->l_sigstk.ss_flags |= SS_ONSTACK;
752 else
753 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
754 }
755
756 return 0;
757 }
758
759 /*
760 * Common code for kill process group/broadcast kill. cp is calling
761 * process.
762 */
763 int
764 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
765 {
766 struct proc *p, *cp;
767 kauth_cred_t pc;
768 struct pgrp *pgrp;
769 int nfound;
770 int signo = ksi->ksi_signo;
771
772 cp = l->l_proc;
773 pc = l->l_cred;
774 nfound = 0;
775
776 mutex_enter(proc_lock);
777 if (all) {
778 /*
779 * broadcast
780 */
781 PROCLIST_FOREACH(p, &allproc) {
782 if (p->p_pid <= 1 || p == cp ||
783 p->p_flag & (PK_SYSTEM|PK_MARKER))
784 continue;
785 mutex_enter(p->p_lock);
786 if (kauth_authorize_process(pc,
787 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
788 NULL) == 0) {
789 nfound++;
790 if (signo)
791 kpsignal2(p, ksi);
792 }
793 mutex_exit(p->p_lock);
794 }
795 } else {
796 if (pgid == 0)
797 /*
798 * zero pgid means send to my process group.
799 */
800 pgrp = cp->p_pgrp;
801 else {
802 pgrp = pg_find(pgid, PFIND_LOCKED);
803 if (pgrp == NULL)
804 goto out;
805 }
806 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
807 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
808 continue;
809 mutex_enter(p->p_lock);
810 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
811 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
812 nfound++;
813 if (signo && P_ZOMBIE(p) == 0)
814 kpsignal2(p, ksi);
815 }
816 mutex_exit(p->p_lock);
817 }
818 }
819 out:
820 mutex_exit(proc_lock);
821 return (nfound ? 0 : ESRCH);
822 }
823
824 /*
825 * Send a signal to a process group. If checktty is 1, limit to members
826 * which have a controlling terminal.
827 */
828 void
829 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
830 {
831 ksiginfo_t ksi;
832
833 KASSERT(!cpu_intr_p());
834 KASSERT(mutex_owned(proc_lock));
835
836 KSI_INIT_EMPTY(&ksi);
837 ksi.ksi_signo = sig;
838 kpgsignal(pgrp, &ksi, NULL, checkctty);
839 }
840
841 void
842 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
843 {
844 struct proc *p;
845
846 KASSERT(!cpu_intr_p());
847 KASSERT(mutex_owned(proc_lock));
848
849 if (pgrp)
850 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
851 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
852 kpsignal(p, ksi, data);
853 }
854
855 /*
856 * Send a signal caused by a trap to the current LWP. If it will be caught
857 * immediately, deliver it with correct code. Otherwise, post it normally.
858 */
859 void
860 trapsignal(struct lwp *l, ksiginfo_t *ksi)
861 {
862 struct proc *p;
863 struct sigacts *ps;
864 int signo = ksi->ksi_signo;
865
866 KASSERT(KSI_TRAP_P(ksi));
867
868 ksi->ksi_lid = l->l_lid;
869 p = l->l_proc;
870
871 KASSERT(!cpu_intr_p());
872 mutex_enter(proc_lock);
873 mutex_enter(p->p_lock);
874 ps = p->p_sigacts;
875 if ((p->p_slflag & PSL_TRACED) == 0 &&
876 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
877 !sigismember(&l->l_sigmask, signo)) {
878 mutex_exit(proc_lock);
879 l->l_ru.ru_nsignals++;
880 kpsendsig(l, ksi, &l->l_sigmask);
881 mutex_exit(p->p_lock);
882 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
883 &l->l_sigmask, ksi);
884 } else {
885 /* XXX for core dump/debugger */
886 p->p_sigctx.ps_lwp = l->l_lid;
887 p->p_sigctx.ps_signo = ksi->ksi_signo;
888 p->p_sigctx.ps_code = ksi->ksi_trap;
889 kpsignal2(p, ksi);
890 mutex_exit(p->p_lock);
891 mutex_exit(proc_lock);
892 }
893 }
894
895 /*
896 * Fill in signal information and signal the parent for a child status change.
897 */
898 void
899 child_psignal(struct proc *p, int mask)
900 {
901 ksiginfo_t ksi;
902 struct proc *q;
903 int xstat;
904
905 KASSERT(mutex_owned(proc_lock));
906 KASSERT(mutex_owned(p->p_lock));
907
908 xstat = p->p_xstat;
909
910 KSI_INIT(&ksi);
911 ksi.ksi_signo = SIGCHLD;
912 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
913 ksi.ksi_pid = p->p_pid;
914 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
915 ksi.ksi_status = xstat;
916 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
917 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
918
919 q = p->p_pptr;
920
921 mutex_exit(p->p_lock);
922 mutex_enter(q->p_lock);
923
924 if ((q->p_sflag & mask) == 0)
925 kpsignal2(q, &ksi);
926
927 mutex_exit(q->p_lock);
928 mutex_enter(p->p_lock);
929 }
930
931 void
932 psignal(struct proc *p, int signo)
933 {
934 ksiginfo_t ksi;
935
936 KASSERT(!cpu_intr_p());
937 KASSERT(mutex_owned(proc_lock));
938
939 KSI_INIT_EMPTY(&ksi);
940 ksi.ksi_signo = signo;
941 mutex_enter(p->p_lock);
942 kpsignal2(p, &ksi);
943 mutex_exit(p->p_lock);
944 }
945
946 void
947 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
948 {
949 fdfile_t *ff;
950 file_t *fp;
951
952 KASSERT(!cpu_intr_p());
953 KASSERT(mutex_owned(proc_lock));
954
955 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
956 size_t fd;
957 filedesc_t *fdp = p->p_fd;
958
959 /* XXXSMP locking */
960 ksi->ksi_fd = -1;
961 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
962 if ((ff = fdp->fd_ofiles[fd]) == NULL)
963 continue;
964 if ((fp = ff->ff_file) == NULL)
965 continue;
966 if (fp->f_data == data) {
967 ksi->ksi_fd = fd;
968 break;
969 }
970 }
971 }
972 mutex_enter(p->p_lock);
973 kpsignal2(p, ksi);
974 mutex_exit(p->p_lock);
975 }
976
977 /*
978 * sigismasked:
979 *
980 * Returns true if signal is ignored or masked for the specified LWP.
981 */
982 int
983 sigismasked(struct lwp *l, int sig)
984 {
985 struct proc *p = l->l_proc;
986
987 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
988 sigismember(&l->l_sigmask, sig));
989 }
990
991 /*
992 * sigpost:
993 *
994 * Post a pending signal to an LWP. Returns non-zero if the LWP was
995 * able to take the signal.
996 */
997 int
998 sigpost(struct lwp *l, sig_t action, int prop, int sig)
999 {
1000 int rv, masked;
1001
1002 KASSERT(mutex_owned(l->l_proc->p_lock));
1003
1004 /*
1005 * If the LWP is on the way out, sigclear() will be busy draining all
1006 * pending signals. Don't give it more.
1007 */
1008 if (l->l_refcnt == 0)
1009 return 0;
1010
1011 lwp_lock(l);
1012
1013 /*
1014 * Have the LWP check for signals. This ensures that even if no LWP
1015 * is found to take the signal immediately, it should be taken soon.
1016 */
1017 l->l_flag |= LW_PENDSIG;
1018
1019 /*
1020 * SIGCONT can be masked, but must always restart stopped LWPs.
1021 */
1022 masked = sigismember(&l->l_sigmask, sig);
1023 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1024 lwp_unlock(l);
1025 return 0;
1026 }
1027
1028 /*
1029 * If killing the process, make it run fast.
1030 */
1031 if (__predict_false((prop & SA_KILL) != 0) &&
1032 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1033 KASSERT(l->l_class == SCHED_OTHER);
1034 lwp_changepri(l, MAXPRI_USER);
1035 }
1036
1037 /*
1038 * If the LWP is running or on a run queue, then we win. If it's
1039 * sleeping interruptably, wake it and make it take the signal. If
1040 * the sleep isn't interruptable, then the chances are it will get
1041 * to see the signal soon anyhow. If suspended, it can't take the
1042 * signal right now. If it's LWP private or for all LWPs, save it
1043 * for later; otherwise punt.
1044 */
1045 rv = 0;
1046
1047 switch (l->l_stat) {
1048 case LSRUN:
1049 case LSONPROC:
1050 lwp_need_userret(l);
1051 rv = 1;
1052 break;
1053
1054 case LSSLEEP:
1055 if ((l->l_flag & LW_SINTR) != 0) {
1056 /* setrunnable() will release the lock. */
1057 setrunnable(l);
1058 return 1;
1059 }
1060 break;
1061
1062 case LSSUSPENDED:
1063 if ((prop & SA_KILL) != 0) {
1064 /* lwp_continue() will release the lock. */
1065 lwp_continue(l);
1066 return 1;
1067 }
1068 break;
1069
1070 case LSSTOP:
1071 if ((prop & SA_STOP) != 0)
1072 break;
1073
1074 /*
1075 * If the LWP is stopped and we are sending a continue
1076 * signal, then start it again.
1077 */
1078 if ((prop & SA_CONT) != 0) {
1079 if (l->l_wchan != NULL) {
1080 l->l_stat = LSSLEEP;
1081 l->l_proc->p_nrlwps++;
1082 rv = 1;
1083 break;
1084 }
1085 /* setrunnable() will release the lock. */
1086 setrunnable(l);
1087 return 1;
1088 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1089 /* setrunnable() will release the lock. */
1090 setrunnable(l);
1091 return 1;
1092 }
1093 break;
1094
1095 default:
1096 break;
1097 }
1098
1099 lwp_unlock(l);
1100 return rv;
1101 }
1102
1103 /*
1104 * Notify an LWP that it has a pending signal.
1105 */
1106 void
1107 signotify(struct lwp *l)
1108 {
1109 KASSERT(lwp_locked(l, NULL));
1110
1111 l->l_flag |= LW_PENDSIG;
1112 lwp_need_userret(l);
1113 }
1114
1115 /*
1116 * Find an LWP within process p that is waiting on signal ksi, and hand
1117 * it on.
1118 */
1119 int
1120 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1121 {
1122 struct lwp *l;
1123 int signo;
1124
1125 KASSERT(mutex_owned(p->p_lock));
1126
1127 signo = ksi->ksi_signo;
1128
1129 if (ksi->ksi_lid != 0) {
1130 /*
1131 * Signal came via _lwp_kill(). Find the LWP and see if
1132 * it's interested.
1133 */
1134 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1135 return 0;
1136 if (l->l_sigwaited == NULL ||
1137 !sigismember(&l->l_sigwaitset, signo))
1138 return 0;
1139 } else {
1140 /*
1141 * Look for any LWP that may be interested.
1142 */
1143 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1144 KASSERT(l->l_sigwaited != NULL);
1145 if (sigismember(&l->l_sigwaitset, signo))
1146 break;
1147 }
1148 }
1149
1150 if (l != NULL) {
1151 l->l_sigwaited->ksi_info = ksi->ksi_info;
1152 l->l_sigwaited = NULL;
1153 LIST_REMOVE(l, l_sigwaiter);
1154 cv_signal(&l->l_sigcv);
1155 return 1;
1156 }
1157
1158 return 0;
1159 }
1160
1161 /*
1162 * Send the signal to the process. If the signal has an action, the action
1163 * is usually performed by the target process rather than the caller; we add
1164 * the signal to the set of pending signals for the process.
1165 *
1166 * Exceptions:
1167 * o When a stop signal is sent to a sleeping process that takes the
1168 * default action, the process is stopped without awakening it.
1169 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1170 * regardless of the signal action (eg, blocked or ignored).
1171 *
1172 * Other ignored signals are discarded immediately.
1173 */
1174 void
1175 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1176 {
1177 int prop, lid, toall, signo = ksi->ksi_signo;
1178 struct sigacts *sa;
1179 struct lwp *l;
1180 ksiginfo_t *kp;
1181 ksiginfoq_t kq;
1182 sig_t action;
1183
1184 KASSERT(!cpu_intr_p());
1185 KASSERT(mutex_owned(proc_lock));
1186 KASSERT(mutex_owned(p->p_lock));
1187 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1188 KASSERT(signo > 0 && signo < NSIG);
1189
1190 /*
1191 * If the process is being created by fork, is a zombie or is
1192 * exiting, then just drop the signal here and bail out.
1193 */
1194 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1195 return;
1196
1197 /*
1198 * Notify any interested parties of the signal.
1199 */
1200 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1201
1202 /*
1203 * Some signals including SIGKILL must act on the entire process.
1204 */
1205 kp = NULL;
1206 prop = sigprop[signo];
1207 toall = ((prop & SA_TOALL) != 0);
1208
1209 if (toall)
1210 lid = 0;
1211 else
1212 lid = ksi->ksi_lid;
1213
1214 /*
1215 * If proc is traced, always give parent a chance.
1216 */
1217 if (p->p_slflag & PSL_TRACED) {
1218 action = SIG_DFL;
1219
1220 if (lid == 0) {
1221 /*
1222 * If the process is being traced and the signal
1223 * is being caught, make sure to save any ksiginfo.
1224 */
1225 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1226 return;
1227 sigput(&p->p_sigpend, p, kp);
1228 }
1229 } else {
1230 /*
1231 * If the signal was the result of a trap and is not being
1232 * caught, then reset it to default action so that the
1233 * process dumps core immediately.
1234 */
1235 if (KSI_TRAP_P(ksi)) {
1236 sa = p->p_sigacts;
1237 mutex_enter(&sa->sa_mutex);
1238 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1239 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1240 SIGACTION(p, signo).sa_handler = SIG_DFL;
1241 }
1242 mutex_exit(&sa->sa_mutex);
1243 }
1244
1245 /*
1246 * If the signal is being ignored, then drop it. Note: we
1247 * don't set SIGCONT in ps_sigignore, and if it is set to
1248 * SIG_IGN, action will be SIG_DFL here.
1249 */
1250 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1251 return;
1252
1253 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1254 action = SIG_CATCH;
1255 else {
1256 action = SIG_DFL;
1257
1258 /*
1259 * If sending a tty stop signal to a member of an
1260 * orphaned process group, discard the signal here if
1261 * the action is default; don't stop the process below
1262 * if sleeping, and don't clear any pending SIGCONT.
1263 */
1264 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1265 return;
1266
1267 if (prop & SA_KILL && p->p_nice > NZERO)
1268 p->p_nice = NZERO;
1269 }
1270 }
1271
1272 /*
1273 * If stopping or continuing a process, discard any pending
1274 * signals that would do the inverse.
1275 */
1276 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1277 ksiginfo_queue_init(&kq);
1278 if ((prop & SA_CONT) != 0)
1279 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1280 if ((prop & SA_STOP) != 0)
1281 sigclear(&p->p_sigpend, &contsigmask, &kq);
1282 ksiginfo_queue_drain(&kq); /* XXXSMP */
1283 }
1284
1285 /*
1286 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1287 * please!), check if any LWPs are waiting on it. If yes, pass on
1288 * the signal info. The signal won't be processed further here.
1289 */
1290 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1291 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1292 sigunwait(p, ksi))
1293 return;
1294
1295 /*
1296 * XXXSMP Should be allocated by the caller, we're holding locks
1297 * here.
1298 */
1299 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1300 return;
1301
1302 /*
1303 * LWP private signals are easy - just find the LWP and post
1304 * the signal to it.
1305 */
1306 if (lid != 0) {
1307 l = lwp_find(p, lid);
1308 if (l != NULL) {
1309 sigput(&l->l_sigpend, p, kp);
1310 membar_producer();
1311 (void)sigpost(l, action, prop, kp->ksi_signo);
1312 }
1313 goto out;
1314 }
1315
1316 /*
1317 * Some signals go to all LWPs, even if posted with _lwp_kill().
1318 */
1319 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1320 if ((p->p_slflag & PSL_TRACED) != 0)
1321 goto deliver;
1322
1323 /*
1324 * If SIGCONT is default (or ignored) and process is
1325 * asleep, we are finished; the process should not
1326 * be awakened.
1327 */
1328 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1329 goto out;
1330
1331 sigput(&p->p_sigpend, p, kp);
1332 } else {
1333 /*
1334 * Process is stopped or stopping. If traced, then no
1335 * further action is necessary.
1336 */
1337 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1338 goto out;
1339
1340 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1341 /*
1342 * Re-adjust p_nstopchild if the process wasn't
1343 * collected by its parent.
1344 */
1345 p->p_stat = SACTIVE;
1346 p->p_sflag &= ~PS_STOPPING;
1347 if (!p->p_waited)
1348 p->p_pptr->p_nstopchild--;
1349
1350 /*
1351 * If SIGCONT is default (or ignored), we continue
1352 * the process but don't leave the signal in
1353 * ps_siglist, as it has no further action. If
1354 * SIGCONT is held, we continue the process and
1355 * leave the signal in ps_siglist. If the process
1356 * catches SIGCONT, let it handle the signal itself.
1357 * If it isn't waiting on an event, then it goes
1358 * back to run state. Otherwise, process goes back
1359 * to sleep state.
1360 */
1361 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1362 sigput(&p->p_sigpend, p, kp);
1363 } else if ((prop & SA_STOP) != 0) {
1364 /*
1365 * Already stopped, don't need to stop again.
1366 * (If we did the shell could get confused.)
1367 */
1368 goto out;
1369 } else
1370 sigput(&p->p_sigpend, p, kp);
1371 }
1372
1373 deliver:
1374 /*
1375 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1376 * visible on the per process list (for sigispending()). This
1377 * is unlikely to be needed in practice, but...
1378 */
1379 membar_producer();
1380
1381 /*
1382 * Try to find an LWP that can take the signal.
1383 */
1384 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1385 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1386 break;
1387
1388 out:
1389 /*
1390 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1391 * with locks held. The caller should take care of this.
1392 */
1393 ksiginfo_free(kp);
1394 }
1395
1396 void
1397 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1398 {
1399 struct proc *p = l->l_proc;
1400
1401 KASSERT(mutex_owned(p->p_lock));
1402
1403 (*p->p_emul->e_sendsig)(ksi, mask);
1404 }
1405
1406 /*
1407 * Stop any LWPs sleeping interruptably.
1408 */
1409 static void
1410 proc_stop_lwps(struct proc *p)
1411 {
1412 struct lwp *l;
1413
1414 KASSERT(mutex_owned(p->p_lock));
1415 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1416
1417 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1418 lwp_lock(l);
1419 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1420 l->l_stat = LSSTOP;
1421 p->p_nrlwps--;
1422 }
1423 lwp_unlock(l);
1424 }
1425 }
1426
1427 /*
1428 * Finish stopping of a process. Mark it stopped and notify the parent.
1429 *
1430 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1431 */
1432 static void
1433 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1434 {
1435
1436 KASSERT(mutex_owned(proc_lock));
1437 KASSERT(mutex_owned(p->p_lock));
1438 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1439 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1440
1441 p->p_sflag &= ~PS_STOPPING;
1442 p->p_stat = SSTOP;
1443 p->p_waited = 0;
1444 p->p_pptr->p_nstopchild++;
1445 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1446 if (ppsig) {
1447 /* child_psignal drops p_lock briefly. */
1448 child_psignal(p, ppmask);
1449 }
1450 cv_broadcast(&p->p_pptr->p_waitcv);
1451 }
1452 }
1453
1454 /*
1455 * Stop the current process and switch away when being stopped or traced.
1456 */
1457 void
1458 sigswitch(bool ppsig, int ppmask, int signo)
1459 {
1460 struct lwp *l = curlwp;
1461 struct proc *p = l->l_proc;
1462 int biglocks;
1463
1464 KASSERT(mutex_owned(p->p_lock));
1465 KASSERT(l->l_stat == LSONPROC);
1466 KASSERT(p->p_nrlwps > 0);
1467
1468 /*
1469 * On entry we know that the process needs to stop. If it's
1470 * the result of a 'sideways' stop signal that has been sourced
1471 * through issignal(), then stop other LWPs in the process too.
1472 */
1473 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1474 KASSERT(signo != 0);
1475 proc_stop(p, 1, signo);
1476 KASSERT(p->p_nrlwps > 0);
1477 }
1478
1479 /*
1480 * If we are the last live LWP, and the stop was a result of
1481 * a new signal, then signal the parent.
1482 */
1483 if ((p->p_sflag & PS_STOPPING) != 0) {
1484 if (!mutex_tryenter(proc_lock)) {
1485 mutex_exit(p->p_lock);
1486 mutex_enter(proc_lock);
1487 mutex_enter(p->p_lock);
1488 }
1489
1490 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1491 /*
1492 * Note that proc_stop_done() can drop
1493 * p->p_lock briefly.
1494 */
1495 proc_stop_done(p, ppsig, ppmask);
1496 }
1497
1498 mutex_exit(proc_lock);
1499 }
1500
1501 /*
1502 * Unlock and switch away.
1503 */
1504 KERNEL_UNLOCK_ALL(l, &biglocks);
1505 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1506 p->p_nrlwps--;
1507 lwp_lock(l);
1508 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1509 l->l_stat = LSSTOP;
1510 lwp_unlock(l);
1511 }
1512
1513 mutex_exit(p->p_lock);
1514 lwp_lock(l);
1515 mi_switch(l);
1516 KERNEL_LOCK(biglocks, l);
1517 mutex_enter(p->p_lock);
1518 }
1519
1520 /*
1521 * Check for a signal from the debugger.
1522 */
1523 int
1524 sigchecktrace(sigpend_t **spp)
1525 {
1526 struct lwp *l = curlwp;
1527 struct proc *p = l->l_proc;
1528 int signo;
1529
1530 KASSERT(mutex_owned(p->p_lock));
1531
1532 /*
1533 * If we are no longer being traced, or the parent didn't
1534 * give us a signal, look for more signals.
1535 */
1536 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1537 return 0;
1538
1539 /* If there's a pending SIGKILL, process it immediately. */
1540 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1541 return 0;
1542
1543 /*
1544 * If the new signal is being masked, look for other signals.
1545 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1546 */
1547 signo = p->p_xstat;
1548 p->p_xstat = 0;
1549 if ((sigprop[signo] & SA_TOLWP) != 0)
1550 *spp = &l->l_sigpend;
1551 else
1552 *spp = &p->p_sigpend;
1553 if (sigismember(&l->l_sigmask, signo))
1554 signo = 0;
1555
1556 return signo;
1557 }
1558
1559 /*
1560 * If the current process has received a signal (should be caught or cause
1561 * termination, should interrupt current syscall), return the signal number.
1562 *
1563 * Stop signals with default action are processed immediately, then cleared;
1564 * they aren't returned. This is checked after each entry to the system for
1565 * a syscall or trap.
1566 *
1567 * We will also return -1 if the process is exiting and the current LWP must
1568 * follow suit.
1569 *
1570 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1571 * can switch away, though.
1572 */
1573 int
1574 issignal(struct lwp *l)
1575 {
1576 struct proc *p = l->l_proc;
1577 int signo = 0, prop;
1578 sigpend_t *sp = NULL;
1579 sigset_t ss;
1580
1581 KASSERT(mutex_owned(p->p_lock));
1582
1583 for (;;) {
1584 /* Discard any signals that we have decided not to take. */
1585 if (signo != 0)
1586 (void)sigget(sp, NULL, signo, NULL);
1587
1588 /*
1589 * If the process is stopped/stopping, then stop ourselves
1590 * now that we're on the kernel/userspace boundary. When
1591 * we awaken, check for a signal from the debugger.
1592 */
1593 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1594 sigswitch(true, PS_NOCLDSTOP, 0);
1595 signo = sigchecktrace(&sp);
1596 } else
1597 signo = 0;
1598
1599 /*
1600 * If the debugger didn't provide a signal, find a pending
1601 * signal from our set. Check per-LWP signals first, and
1602 * then per-process.
1603 */
1604 if (signo == 0) {
1605 sp = &l->l_sigpend;
1606 ss = sp->sp_set;
1607 if ((p->p_lflag & PL_PPWAIT) != 0)
1608 sigminusset(&stopsigmask, &ss);
1609 sigminusset(&l->l_sigmask, &ss);
1610
1611 if ((signo = firstsig(&ss)) == 0) {
1612 sp = &p->p_sigpend;
1613 ss = sp->sp_set;
1614 if ((p->p_lflag & PL_PPWAIT) != 0)
1615 sigminusset(&stopsigmask, &ss);
1616 sigminusset(&l->l_sigmask, &ss);
1617
1618 if ((signo = firstsig(&ss)) == 0) {
1619 /*
1620 * No signal pending - clear the
1621 * indicator and bail out.
1622 */
1623 lwp_lock(l);
1624 l->l_flag &= ~LW_PENDSIG;
1625 lwp_unlock(l);
1626 sp = NULL;
1627 break;
1628 }
1629 }
1630 }
1631
1632 /*
1633 * We should see pending but ignored signals only if
1634 * we are being traced.
1635 */
1636 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1637 (p->p_slflag & PSL_TRACED) == 0) {
1638 /* Discard the signal. */
1639 continue;
1640 }
1641
1642 /*
1643 * If traced, always stop, and stay stopped until released
1644 * by the debugger. If the our parent process is waiting
1645 * for us, don't hang as we could deadlock.
1646 */
1647 if ((p->p_slflag & PSL_TRACED) != 0 &&
1648 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1649 /* Take the signal. */
1650 (void)sigget(sp, NULL, signo, NULL);
1651 p->p_xstat = signo;
1652
1653 /* Emulation-specific handling of signal trace */
1654 if (p->p_emul->e_tracesig == NULL ||
1655 (*p->p_emul->e_tracesig)(p, signo) == 0)
1656 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1657 signo);
1658
1659 /* Check for a signal from the debugger. */
1660 if ((signo = sigchecktrace(&sp)) == 0)
1661 continue;
1662 }
1663
1664 prop = sigprop[signo];
1665
1666 /*
1667 * Decide whether the signal should be returned.
1668 */
1669 switch ((long)SIGACTION(p, signo).sa_handler) {
1670 case (long)SIG_DFL:
1671 /*
1672 * Don't take default actions on system processes.
1673 */
1674 if (p->p_pid <= 1) {
1675 #ifdef DIAGNOSTIC
1676 /*
1677 * Are you sure you want to ignore SIGSEGV
1678 * in init? XXX
1679 */
1680 printf_nolog("Process (pid %d) got sig %d\n",
1681 p->p_pid, signo);
1682 #endif
1683 continue;
1684 }
1685
1686 /*
1687 * If there is a pending stop signal to process with
1688 * default action, stop here, then clear the signal.
1689 * However, if process is member of an orphaned
1690 * process group, ignore tty stop signals.
1691 */
1692 if (prop & SA_STOP) {
1693 /*
1694 * XXX Don't hold proc_lock for p_lflag,
1695 * but it's not a big deal.
1696 */
1697 if (p->p_slflag & PSL_TRACED ||
1698 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1699 prop & SA_TTYSTOP)) {
1700 /* Ignore the signal. */
1701 continue;
1702 }
1703 /* Take the signal. */
1704 (void)sigget(sp, NULL, signo, NULL);
1705 p->p_xstat = signo;
1706 signo = 0;
1707 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1708 } else if (prop & SA_IGNORE) {
1709 /*
1710 * Except for SIGCONT, shouldn't get here.
1711 * Default action is to ignore; drop it.
1712 */
1713 continue;
1714 }
1715 break;
1716
1717 case (long)SIG_IGN:
1718 #ifdef DEBUG_ISSIGNAL
1719 /*
1720 * Masking above should prevent us ever trying
1721 * to take action on an ignored signal other
1722 * than SIGCONT, unless process is traced.
1723 */
1724 if ((prop & SA_CONT) == 0 &&
1725 (p->p_slflag & PSL_TRACED) == 0)
1726 printf_nolog("issignal\n");
1727 #endif
1728 continue;
1729
1730 default:
1731 /*
1732 * This signal has an action, let postsig() process
1733 * it.
1734 */
1735 break;
1736 }
1737
1738 break;
1739 }
1740
1741 l->l_sigpendset = sp;
1742 return signo;
1743 }
1744
1745 /*
1746 * Take the action for the specified signal
1747 * from the current set of pending signals.
1748 */
1749 void
1750 postsig(int signo)
1751 {
1752 struct lwp *l;
1753 struct proc *p;
1754 struct sigacts *ps;
1755 sig_t action;
1756 sigset_t *returnmask;
1757 ksiginfo_t ksi;
1758
1759 l = curlwp;
1760 p = l->l_proc;
1761 ps = p->p_sigacts;
1762
1763 KASSERT(mutex_owned(p->p_lock));
1764 KASSERT(signo > 0);
1765
1766 /*
1767 * Set the new mask value and also defer further occurrences of this
1768 * signal.
1769 *
1770 * Special case: user has done a sigsuspend. Here the current mask is
1771 * not of interest, but rather the mask from before the sigsuspen is
1772 * what we want restored after the signal processing is completed.
1773 */
1774 if (l->l_sigrestore) {
1775 returnmask = &l->l_sigoldmask;
1776 l->l_sigrestore = 0;
1777 } else
1778 returnmask = &l->l_sigmask;
1779
1780 /*
1781 * Commit to taking the signal before releasing the mutex.
1782 */
1783 action = SIGACTION_PS(ps, signo).sa_handler;
1784 l->l_ru.ru_nsignals++;
1785 sigget(l->l_sigpendset, &ksi, signo, NULL);
1786
1787 if (ktrpoint(KTR_PSIG)) {
1788 mutex_exit(p->p_lock);
1789 ktrpsig(signo, action, returnmask, NULL);
1790 mutex_enter(p->p_lock);
1791 }
1792
1793 if (action == SIG_DFL) {
1794 /*
1795 * Default action, where the default is to kill
1796 * the process. (Other cases were ignored above.)
1797 */
1798 sigexit(l, signo);
1799 return;
1800 }
1801
1802 /*
1803 * If we get here, the signal must be caught.
1804 */
1805 #ifdef DIAGNOSTIC
1806 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1807 panic("postsig action");
1808 #endif
1809
1810 kpsendsig(l, &ksi, returnmask);
1811 }
1812
1813 /*
1814 * sendsig_reset:
1815 *
1816 * Reset the signal action. Called from emulation specific sendsig()
1817 * before unlocking to deliver the signal.
1818 */
1819 void
1820 sendsig_reset(struct lwp *l, int signo)
1821 {
1822 struct proc *p = l->l_proc;
1823 struct sigacts *ps = p->p_sigacts;
1824
1825 KASSERT(mutex_owned(p->p_lock));
1826
1827 p->p_sigctx.ps_lwp = 0;
1828 p->p_sigctx.ps_code = 0;
1829 p->p_sigctx.ps_signo = 0;
1830
1831 mutex_enter(&ps->sa_mutex);
1832 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1833 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1834 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1835 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1836 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1837 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1838 }
1839 mutex_exit(&ps->sa_mutex);
1840 }
1841
1842 /*
1843 * Kill the current process for stated reason.
1844 */
1845 void
1846 killproc(struct proc *p, const char *why)
1847 {
1848
1849 KASSERT(mutex_owned(proc_lock));
1850
1851 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1852 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1853 psignal(p, SIGKILL);
1854 }
1855
1856 /*
1857 * Force the current process to exit with the specified signal, dumping core
1858 * if appropriate. We bypass the normal tests for masked and caught
1859 * signals, allowing unrecoverable failures to terminate the process without
1860 * changing signal state. Mark the accounting record with the signal
1861 * termination. If dumping core, save the signal number for the debugger.
1862 * Calls exit and does not return.
1863 */
1864 void
1865 sigexit(struct lwp *l, int signo)
1866 {
1867 int exitsig, error, docore;
1868 struct proc *p;
1869 struct lwp *t;
1870
1871 p = l->l_proc;
1872
1873 KASSERT(mutex_owned(p->p_lock));
1874 KERNEL_UNLOCK_ALL(l, NULL);
1875
1876 /*
1877 * Don't permit coredump() multiple times in the same process.
1878 * Call back into sigexit, where we will be suspended until
1879 * the deed is done. Note that this is a recursive call, but
1880 * LW_WCORE will prevent us from coming back this way.
1881 */
1882 if ((p->p_sflag & PS_WCORE) != 0) {
1883 lwp_lock(l);
1884 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1885 lwp_unlock(l);
1886 mutex_exit(p->p_lock);
1887 lwp_userret(l);
1888 panic("sigexit 1");
1889 /* NOTREACHED */
1890 }
1891
1892 /* If process is already on the way out, then bail now. */
1893 if ((p->p_sflag & PS_WEXIT) != 0) {
1894 mutex_exit(p->p_lock);
1895 lwp_exit(l);
1896 panic("sigexit 2");
1897 /* NOTREACHED */
1898 }
1899
1900 /*
1901 * Prepare all other LWPs for exit. If dumping core, suspend them
1902 * so that their registers are available long enough to be dumped.
1903 */
1904 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1905 p->p_sflag |= PS_WCORE;
1906 for (;;) {
1907 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1908 lwp_lock(t);
1909 if (t == l) {
1910 t->l_flag &= ~LW_WSUSPEND;
1911 lwp_unlock(t);
1912 continue;
1913 }
1914 t->l_flag |= (LW_WCORE | LW_WEXIT);
1915 lwp_suspend(l, t);
1916 }
1917
1918 if (p->p_nrlwps == 1)
1919 break;
1920
1921 /*
1922 * Kick any LWPs sitting in lwp_wait1(), and wait
1923 * for everyone else to stop before proceeding.
1924 */
1925 p->p_nlwpwait++;
1926 cv_broadcast(&p->p_lwpcv);
1927 cv_wait(&p->p_lwpcv, p->p_lock);
1928 p->p_nlwpwait--;
1929 }
1930 }
1931
1932 exitsig = signo;
1933 p->p_acflag |= AXSIG;
1934 p->p_sigctx.ps_signo = signo;
1935
1936 if (docore) {
1937 mutex_exit(p->p_lock);
1938 if ((error = coredump(l, NULL)) == 0)
1939 exitsig |= WCOREFLAG;
1940
1941 if (kern_logsigexit) {
1942 int uid = l->l_cred ?
1943 (int)kauth_cred_geteuid(l->l_cred) : -1;
1944
1945 if (error)
1946 log(LOG_INFO, lognocoredump, p->p_pid,
1947 p->p_comm, uid, signo, error);
1948 else
1949 log(LOG_INFO, logcoredump, p->p_pid,
1950 p->p_comm, uid, signo);
1951 }
1952
1953 #ifdef PAX_SEGVGUARD
1954 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1955 #endif /* PAX_SEGVGUARD */
1956 /* Acquire the sched state mutex. exit1() will release it. */
1957 mutex_enter(p->p_lock);
1958 }
1959
1960 /* No longer dumping core. */
1961 p->p_sflag &= ~PS_WCORE;
1962
1963 exit1(l, W_EXITCODE(0, exitsig));
1964 /* NOTREACHED */
1965 }
1966
1967 /*
1968 * Put process 'p' into the stopped state and optionally, notify the parent.
1969 */
1970 void
1971 proc_stop(struct proc *p, int notify, int signo)
1972 {
1973 struct lwp *l;
1974
1975 KASSERT(mutex_owned(p->p_lock));
1976
1977 /*
1978 * First off, set the stopping indicator and bring all sleeping
1979 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
1980 * unlock between here and the p->p_nrlwps check below.
1981 */
1982 p->p_sflag |= PS_STOPPING;
1983 if (notify)
1984 p->p_sflag |= PS_NOTIFYSTOP;
1985 else
1986 p->p_sflag &= ~PS_NOTIFYSTOP;
1987 membar_producer();
1988
1989 proc_stop_lwps(p);
1990
1991 /*
1992 * If there are no LWPs available to take the signal, then we
1993 * signal the parent process immediately. Otherwise, the last
1994 * LWP to stop will take care of it.
1995 */
1996
1997 if (p->p_nrlwps == 0) {
1998 proc_stop_done(p, true, PS_NOCLDSTOP);
1999 } else {
2000 /*
2001 * Have the remaining LWPs come to a halt, and trigger
2002 * proc_stop_callout() to ensure that they do.
2003 */
2004 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2005 sigpost(l, SIG_DFL, SA_STOP, signo);
2006 callout_schedule(&proc_stop_ch, 1);
2007 }
2008 }
2009
2010 /*
2011 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2012 * but wait for them to come to a halt at the kernel-user boundary. This is
2013 * to allow LWPs to release any locks that they may hold before stopping.
2014 *
2015 * Non-interruptable sleeps can be long, and there is the potential for an
2016 * LWP to begin sleeping interruptably soon after the process has been set
2017 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2018 * stopping, and so complete halt of the process and the return of status
2019 * information to the parent could be delayed indefinitely.
2020 *
2021 * To handle this race, proc_stop_callout() runs once per tick while there
2022 * are stopping processes in the system. It sets LWPs that are sleeping
2023 * interruptably into the LSSTOP state.
2024 *
2025 * Note that we are not concerned about keeping all LWPs stopped while the
2026 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2027 * What we do need to ensure is that all LWPs in a stopping process have
2028 * stopped at least once, so that notification can be sent to the parent
2029 * process.
2030 */
2031 static void
2032 proc_stop_callout(void *cookie)
2033 {
2034 bool more, restart;
2035 struct proc *p;
2036
2037 (void)cookie;
2038
2039 do {
2040 restart = false;
2041 more = false;
2042
2043 mutex_enter(proc_lock);
2044 PROCLIST_FOREACH(p, &allproc) {
2045 if ((p->p_flag & PK_MARKER) != 0)
2046 continue;
2047 mutex_enter(p->p_lock);
2048
2049 if ((p->p_sflag & PS_STOPPING) == 0) {
2050 mutex_exit(p->p_lock);
2051 continue;
2052 }
2053
2054 /* Stop any LWPs sleeping interruptably. */
2055 proc_stop_lwps(p);
2056 if (p->p_nrlwps == 0) {
2057 /*
2058 * We brought the process to a halt.
2059 * Mark it as stopped and notify the
2060 * parent.
2061 */
2062 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2063 /*
2064 * Note that proc_stop_done() will
2065 * drop p->p_lock briefly.
2066 * Arrange to restart and check
2067 * all processes again.
2068 */
2069 restart = true;
2070 }
2071 proc_stop_done(p, true, PS_NOCLDSTOP);
2072 } else
2073 more = true;
2074
2075 mutex_exit(p->p_lock);
2076 if (restart)
2077 break;
2078 }
2079 mutex_exit(proc_lock);
2080 } while (restart);
2081
2082 /*
2083 * If we noted processes that are stopping but still have
2084 * running LWPs, then arrange to check again in 1 tick.
2085 */
2086 if (more)
2087 callout_schedule(&proc_stop_ch, 1);
2088 }
2089
2090 /*
2091 * Given a process in state SSTOP, set the state back to SACTIVE and
2092 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2093 */
2094 void
2095 proc_unstop(struct proc *p)
2096 {
2097 struct lwp *l;
2098 int sig;
2099
2100 KASSERT(mutex_owned(proc_lock));
2101 KASSERT(mutex_owned(p->p_lock));
2102
2103 p->p_stat = SACTIVE;
2104 p->p_sflag &= ~PS_STOPPING;
2105 sig = p->p_xstat;
2106
2107 if (!p->p_waited)
2108 p->p_pptr->p_nstopchild--;
2109
2110 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2111 lwp_lock(l);
2112 if (l->l_stat != LSSTOP) {
2113 lwp_unlock(l);
2114 continue;
2115 }
2116 if (l->l_wchan == NULL) {
2117 setrunnable(l);
2118 continue;
2119 }
2120 if (sig && (l->l_flag & LW_SINTR) != 0) {
2121 setrunnable(l);
2122 sig = 0;
2123 } else {
2124 l->l_stat = LSSLEEP;
2125 p->p_nrlwps++;
2126 lwp_unlock(l);
2127 }
2128 }
2129 }
2130
2131 static int
2132 filt_sigattach(struct knote *kn)
2133 {
2134 struct proc *p = curproc;
2135
2136 kn->kn_obj = p;
2137 kn->kn_flags |= EV_CLEAR; /* automatically set */
2138
2139 mutex_enter(p->p_lock);
2140 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2141 mutex_exit(p->p_lock);
2142
2143 return (0);
2144 }
2145
2146 static void
2147 filt_sigdetach(struct knote *kn)
2148 {
2149 struct proc *p = kn->kn_obj;
2150
2151 mutex_enter(p->p_lock);
2152 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2153 mutex_exit(p->p_lock);
2154 }
2155
2156 /*
2157 * signal knotes are shared with proc knotes, so we apply a mask to
2158 * the hint in order to differentiate them from process hints. This
2159 * could be avoided by using a signal-specific knote list, but probably
2160 * isn't worth the trouble.
2161 */
2162 static int
2163 filt_signal(struct knote *kn, long hint)
2164 {
2165
2166 if (hint & NOTE_SIGNAL) {
2167 hint &= ~NOTE_SIGNAL;
2168
2169 if (kn->kn_id == hint)
2170 kn->kn_data++;
2171 }
2172 return (kn->kn_data != 0);
2173 }
2174
2175 const struct filterops sig_filtops = {
2176 0, filt_sigattach, filt_sigdetach, filt_signal
2177 };
2178