kern_sig.c revision 1.287 1 /* $NetBSD: kern_sig.c,v 1.287 2008/09/12 21:33:39 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.287 2008/09/12 21:33:39 christos Exp $");
70
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76
77 #define SIGPROP /* include signal properties table */
78 #include <sys/param.h>
79 #include <sys/signalvar.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/wait.h>
83 #include <sys/ktrace.h>
84 #include <sys/syslog.h>
85 #include <sys/filedesc.h>
86 #include <sys/file.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/exec.h>
91 #include <sys/kauth.h>
92 #include <sys/acct.h>
93 #include <sys/callout.h>
94 #include <sys/atomic.h>
95 #include <sys/cpu.h>
96
97 #ifdef PAX_SEGVGUARD
98 #include <sys/pax.h>
99 #endif /* PAX_SEGVGUARD */
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_extern.h>
103
104 static void ksiginfo_exechook(struct proc *, void *);
105 static void proc_stop_callout(void *);
106
107 int sigunwait(struct proc *, const ksiginfo_t *);
108 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
109 int sigpost(struct lwp *, sig_t, int, int);
110 int sigchecktrace(sigpend_t **);
111 void sigswitch(bool, int, int);
112 void sigrealloc(ksiginfo_t *);
113
114 sigset_t contsigmask, stopsigmask, sigcantmask;
115 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
116 static void sigacts_poolpage_free(struct pool *, void *);
117 static void *sigacts_poolpage_alloc(struct pool *, int);
118 static callout_t proc_stop_ch;
119 static pool_cache_t siginfo_cache;
120 static pool_cache_t ksiginfo_cache;
121
122 static struct pool_allocator sigactspool_allocator = {
123 .pa_alloc = sigacts_poolpage_alloc,
124 .pa_free = sigacts_poolpage_free,
125 };
126
127 #ifdef DEBUG
128 int kern_logsigexit = 1;
129 #else
130 int kern_logsigexit = 0;
131 #endif
132
133 static const char logcoredump[] =
134 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
135 static const char lognocoredump[] =
136 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
137
138 /*
139 * signal_init:
140 *
141 * Initialize global signal-related data structures.
142 */
143 void
144 signal_init(void)
145 {
146
147 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
148
149 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
150 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
151 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
152
153 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
154 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
155
156 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
157 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
158
159 exechook_establish(ksiginfo_exechook, NULL);
160
161 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
162 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
163 }
164
165 /*
166 * sigacts_poolpage_alloc:
167 *
168 * Allocate a page for the sigacts memory pool.
169 */
170 static void *
171 sigacts_poolpage_alloc(struct pool *pp, int flags)
172 {
173
174 return (void *)uvm_km_alloc(kernel_map,
175 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
176 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
177 | UVM_KMF_WIRED);
178 }
179
180 /*
181 * sigacts_poolpage_free:
182 *
183 * Free a page on behalf of the sigacts memory pool.
184 */
185 static void
186 sigacts_poolpage_free(struct pool *pp, void *v)
187 {
188
189 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
190 }
191
192 /*
193 * sigactsinit:
194 *
195 * Create an initial sigctx structure, using the same signal state as
196 * p. If 'share' is set, share the sigctx_proc part, otherwise just
197 * copy it from parent.
198 */
199 struct sigacts *
200 sigactsinit(struct proc *pp, int share)
201 {
202 struct sigacts *ps, *ps2;
203
204 ps = pp->p_sigacts;
205
206 if (share) {
207 atomic_inc_uint(&ps->sa_refcnt);
208 ps2 = ps;
209 } else {
210 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
211 /* XXXAD get rid of this */
212 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
213 mutex_enter(&ps->sa_mutex);
214 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
215 sizeof(ps2->sa_sigdesc));
216 mutex_exit(&ps->sa_mutex);
217 ps2->sa_refcnt = 1;
218 }
219
220 return ps2;
221 }
222
223 /*
224 * sigactsunshare:
225 *
226 * Make this process not share its sigctx, maintaining all
227 * signal state.
228 */
229 void
230 sigactsunshare(struct proc *p)
231 {
232 struct sigacts *ps, *oldps;
233
234 oldps = p->p_sigacts;
235 if (oldps->sa_refcnt == 1)
236 return;
237 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
238 /* XXXAD get rid of this */
239 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
240 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
241 p->p_sigacts = ps;
242 sigactsfree(oldps);
243 }
244
245 /*
246 * sigactsfree;
247 *
248 * Release a sigctx structure.
249 */
250 void
251 sigactsfree(struct sigacts *ps)
252 {
253
254 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
255 mutex_destroy(&ps->sa_mutex);
256 pool_cache_put(sigacts_cache, ps);
257 }
258 }
259
260 /*
261 * siginit:
262 *
263 * Initialize signal state for process 0; set to ignore signals that
264 * are ignored by default and disable the signal stack. Locking not
265 * required as the system is still cold.
266 */
267 void
268 siginit(struct proc *p)
269 {
270 struct lwp *l;
271 struct sigacts *ps;
272 int signo, prop;
273
274 ps = p->p_sigacts;
275 sigemptyset(&contsigmask);
276 sigemptyset(&stopsigmask);
277 sigemptyset(&sigcantmask);
278 for (signo = 1; signo < NSIG; signo++) {
279 prop = sigprop[signo];
280 if (prop & SA_CONT)
281 sigaddset(&contsigmask, signo);
282 if (prop & SA_STOP)
283 sigaddset(&stopsigmask, signo);
284 if (prop & SA_CANTMASK)
285 sigaddset(&sigcantmask, signo);
286 if (prop & SA_IGNORE && signo != SIGCONT)
287 sigaddset(&p->p_sigctx.ps_sigignore, signo);
288 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
289 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
290 }
291 sigemptyset(&p->p_sigctx.ps_sigcatch);
292 p->p_sflag &= ~PS_NOCLDSTOP;
293
294 ksiginfo_queue_init(&p->p_sigpend.sp_info);
295 sigemptyset(&p->p_sigpend.sp_set);
296
297 /*
298 * Reset per LWP state.
299 */
300 l = LIST_FIRST(&p->p_lwps);
301 l->l_sigwaited = NULL;
302 l->l_sigstk.ss_flags = SS_DISABLE;
303 l->l_sigstk.ss_size = 0;
304 l->l_sigstk.ss_sp = 0;
305 ksiginfo_queue_init(&l->l_sigpend.sp_info);
306 sigemptyset(&l->l_sigpend.sp_set);
307
308 /* One reference. */
309 ps->sa_refcnt = 1;
310 }
311
312 /*
313 * execsigs:
314 *
315 * Reset signals for an exec of the specified process.
316 */
317 void
318 execsigs(struct proc *p)
319 {
320 struct sigacts *ps;
321 struct lwp *l;
322 int signo, prop;
323 sigset_t tset;
324 ksiginfoq_t kq;
325
326 KASSERT(p->p_nlwps == 1);
327
328 sigactsunshare(p);
329 ps = p->p_sigacts;
330
331 /*
332 * Reset caught signals. Held signals remain held through
333 * l->l_sigmask (unless they were caught, and are now ignored
334 * by default).
335 *
336 * No need to lock yet, the process has only one LWP and
337 * at this point the sigacts are private to the process.
338 */
339 sigemptyset(&tset);
340 for (signo = 1; signo < NSIG; signo++) {
341 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
342 prop = sigprop[signo];
343 if (prop & SA_IGNORE) {
344 if ((prop & SA_CONT) == 0)
345 sigaddset(&p->p_sigctx.ps_sigignore,
346 signo);
347 sigaddset(&tset, signo);
348 }
349 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
350 }
351 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
352 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
353 }
354 ksiginfo_queue_init(&kq);
355
356 mutex_enter(p->p_lock);
357 sigclearall(p, &tset, &kq);
358 sigemptyset(&p->p_sigctx.ps_sigcatch);
359
360 /*
361 * Reset no zombies if child dies flag as Solaris does.
362 */
363 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
364 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
365 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
366
367 /*
368 * Reset per-LWP state.
369 */
370 l = LIST_FIRST(&p->p_lwps);
371 l->l_sigwaited = NULL;
372 l->l_sigstk.ss_flags = SS_DISABLE;
373 l->l_sigstk.ss_size = 0;
374 l->l_sigstk.ss_sp = 0;
375 ksiginfo_queue_init(&l->l_sigpend.sp_info);
376 sigemptyset(&l->l_sigpend.sp_set);
377 mutex_exit(p->p_lock);
378
379 ksiginfo_queue_drain(&kq);
380 }
381
382 /*
383 * ksiginfo_exechook:
384 *
385 * Free all pending ksiginfo entries from a process on exec.
386 * Additionally, drain any unused ksiginfo structures in the
387 * system back to the pool.
388 *
389 * XXX This should not be a hook, every process has signals.
390 */
391 static void
392 ksiginfo_exechook(struct proc *p, void *v)
393 {
394 ksiginfoq_t kq;
395
396 ksiginfo_queue_init(&kq);
397
398 mutex_enter(p->p_lock);
399 sigclearall(p, NULL, &kq);
400 mutex_exit(p->p_lock);
401
402 ksiginfo_queue_drain(&kq);
403 }
404
405 /*
406 * ksiginfo_alloc:
407 *
408 * Allocate a new ksiginfo structure from the pool, and optionally copy
409 * an existing one. If the existing ksiginfo_t is from the pool, and
410 * has not been queued somewhere, then just return it. Additionally,
411 * if the existing ksiginfo_t does not contain any information beyond
412 * the signal number, then just return it.
413 */
414 ksiginfo_t *
415 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
416 {
417 ksiginfo_t *kp;
418
419 if (ok != NULL) {
420 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
421 KSI_FROMPOOL)
422 return ok;
423 if (KSI_EMPTY_P(ok))
424 return ok;
425 }
426
427 kp = pool_cache_get(ksiginfo_cache, flags);
428 if (kp == NULL) {
429 #ifdef DIAGNOSTIC
430 printf("Out of memory allocating ksiginfo for pid %d\n",
431 p->p_pid);
432 #endif
433 return NULL;
434 }
435
436 if (ok != NULL) {
437 memcpy(kp, ok, sizeof(*kp));
438 kp->ksi_flags &= ~KSI_QUEUED;
439 } else
440 KSI_INIT_EMPTY(kp);
441
442 kp->ksi_flags |= KSI_FROMPOOL;
443
444 return kp;
445 }
446
447 /*
448 * ksiginfo_free:
449 *
450 * If the given ksiginfo_t is from the pool and has not been queued,
451 * then free it.
452 */
453 void
454 ksiginfo_free(ksiginfo_t *kp)
455 {
456
457 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
458 return;
459 pool_cache_put(ksiginfo_cache, kp);
460 }
461
462 /*
463 * ksiginfo_queue_drain:
464 *
465 * Drain a non-empty ksiginfo_t queue.
466 */
467 void
468 ksiginfo_queue_drain0(ksiginfoq_t *kq)
469 {
470 ksiginfo_t *ksi;
471
472 KASSERT(!CIRCLEQ_EMPTY(kq));
473
474 while (!CIRCLEQ_EMPTY(kq)) {
475 ksi = CIRCLEQ_FIRST(kq);
476 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
477 pool_cache_put(ksiginfo_cache, ksi);
478 }
479 }
480
481 /*
482 * sigget:
483 *
484 * Fetch the first pending signal from a set. Optionally, also fetch
485 * or manufacture a ksiginfo element. Returns the number of the first
486 * pending signal, or zero.
487 */
488 int
489 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
490 {
491 ksiginfo_t *ksi;
492 sigset_t tset;
493
494 /* If there's no pending set, the signal is from the debugger. */
495 if (sp == NULL)
496 goto out;
497
498 /* Construct mask from signo, and 'mask'. */
499 if (signo == 0) {
500 if (mask != NULL) {
501 tset = *mask;
502 __sigandset(&sp->sp_set, &tset);
503 } else
504 tset = sp->sp_set;
505
506 /* If there are no signals pending, that's it. */
507 if ((signo = firstsig(&tset)) == 0)
508 goto out;
509 } else {
510 KASSERT(sigismember(&sp->sp_set, signo));
511 }
512
513 sigdelset(&sp->sp_set, signo);
514
515 /* Find siginfo and copy it out. */
516 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
517 if (ksi->ksi_signo == signo) {
518 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
519 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
520 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
521 ksi->ksi_flags &= ~KSI_QUEUED;
522 if (out != NULL) {
523 memcpy(out, ksi, sizeof(*out));
524 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
525 }
526 ksiginfo_free(ksi);
527 return signo;
528 }
529 }
530
531 out:
532 /* If there's no siginfo, then manufacture it. */
533 if (out != NULL) {
534 KSI_INIT(out);
535 out->ksi_info._signo = signo;
536 out->ksi_info._code = SI_NOINFO;
537 }
538
539 return signo;
540 }
541
542 /*
543 * sigput:
544 *
545 * Append a new ksiginfo element to the list of pending ksiginfo's, if
546 * we need to (e.g. SA_SIGINFO was requested).
547 */
548 void
549 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
550 {
551 ksiginfo_t *kp;
552 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
553
554 KASSERT(mutex_owned(p->p_lock));
555 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
556
557 sigaddset(&sp->sp_set, ksi->ksi_signo);
558
559 /*
560 * If there is no siginfo, or is not required (and we don't add
561 * it for the benefit of ktrace, we are done).
562 */
563 if (KSI_EMPTY_P(ksi) ||
564 (!KTRPOINT(p, KTR_PSIG) && (sa->sa_flags & SA_SIGINFO) == 0))
565 return;
566
567 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
568
569 #ifdef notyet /* XXX: QUEUING */
570 if (ksi->ksi_signo < SIGRTMIN)
571 #endif
572 {
573 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
574 if (kp->ksi_signo == ksi->ksi_signo) {
575 KSI_COPY(ksi, kp);
576 kp->ksi_flags |= KSI_QUEUED;
577 return;
578 }
579 }
580 }
581
582 ksi->ksi_flags |= KSI_QUEUED;
583 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
584 }
585
586 /*
587 * sigclear:
588 *
589 * Clear all pending signals in the specified set.
590 */
591 void
592 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
593 {
594 ksiginfo_t *ksi, *next;
595
596 if (mask == NULL)
597 sigemptyset(&sp->sp_set);
598 else
599 sigminusset(mask, &sp->sp_set);
600
601 ksi = CIRCLEQ_FIRST(&sp->sp_info);
602 for (; ksi != (void *)&sp->sp_info; ksi = next) {
603 next = CIRCLEQ_NEXT(ksi, ksi_list);
604 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
605 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
606 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
607 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
608 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
609 }
610 }
611 }
612
613 /*
614 * sigclearall:
615 *
616 * Clear all pending signals in the specified set from a process and
617 * its LWPs.
618 */
619 void
620 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
621 {
622 struct lwp *l;
623
624 KASSERT(mutex_owned(p->p_lock));
625
626 sigclear(&p->p_sigpend, mask, kq);
627
628 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
629 sigclear(&l->l_sigpend, mask, kq);
630 }
631 }
632
633 /*
634 * sigispending:
635 *
636 * Return true if there are pending signals for the current LWP. May
637 * be called unlocked provided that LW_PENDSIG is set, and that the
638 * signal has been posted to the appopriate queue before LW_PENDSIG is
639 * set.
640 */
641 int
642 sigispending(struct lwp *l, int signo)
643 {
644 struct proc *p = l->l_proc;
645 sigset_t tset;
646
647 membar_consumer();
648
649 tset = l->l_sigpend.sp_set;
650 sigplusset(&p->p_sigpend.sp_set, &tset);
651 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
652 sigminusset(&l->l_sigmask, &tset);
653
654 if (signo == 0) {
655 if (firstsig(&tset) != 0)
656 return EINTR;
657 } else if (sigismember(&tset, signo))
658 return EINTR;
659
660 return 0;
661 }
662
663 /*
664 * siginfo_alloc:
665 *
666 * Allocate a new siginfo_t structure from the pool.
667 */
668 siginfo_t *
669 siginfo_alloc(int flags)
670 {
671
672 return pool_cache_get(siginfo_cache, flags);
673 }
674
675 /*
676 * siginfo_free:
677 *
678 * Return a siginfo_t structure to the pool.
679 */
680 void
681 siginfo_free(void *arg)
682 {
683
684 pool_cache_put(siginfo_cache, arg);
685 }
686
687 void
688 getucontext(struct lwp *l, ucontext_t *ucp)
689 {
690 struct proc *p = l->l_proc;
691
692 KASSERT(mutex_owned(p->p_lock));
693
694 ucp->uc_flags = 0;
695 ucp->uc_link = l->l_ctxlink;
696
697 ucp->uc_sigmask = l->l_sigmask;
698 ucp->uc_flags |= _UC_SIGMASK;
699
700 /*
701 * The (unsupplied) definition of the `current execution stack'
702 * in the System V Interface Definition appears to allow returning
703 * the main context stack.
704 */
705 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
706 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
707 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
708 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
709 } else {
710 /* Simply copy alternate signal execution stack. */
711 ucp->uc_stack = l->l_sigstk;
712 }
713 ucp->uc_flags |= _UC_STACK;
714 mutex_exit(p->p_lock);
715 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
716 mutex_enter(p->p_lock);
717 }
718
719 int
720 setucontext(struct lwp *l, const ucontext_t *ucp)
721 {
722 struct proc *p = l->l_proc;
723 int error;
724
725 KASSERT(mutex_owned(p->p_lock));
726
727 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
728 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
729 if (error != 0)
730 return error;
731 }
732
733 mutex_exit(p->p_lock);
734 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
735 mutex_enter(p->p_lock);
736 if (error != 0)
737 return (error);
738
739 l->l_ctxlink = ucp->uc_link;
740
741 /*
742 * If there was stack information, update whether or not we are
743 * still running on an alternate signal stack.
744 */
745 if ((ucp->uc_flags & _UC_STACK) != 0) {
746 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
747 l->l_sigstk.ss_flags |= SS_ONSTACK;
748 else
749 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
750 }
751
752 return 0;
753 }
754
755 /*
756 * Common code for kill process group/broadcast kill. cp is calling
757 * process.
758 */
759 int
760 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
761 {
762 struct proc *p, *cp;
763 kauth_cred_t pc;
764 struct pgrp *pgrp;
765 int nfound;
766 int signo = ksi->ksi_signo;
767
768 cp = l->l_proc;
769 pc = l->l_cred;
770 nfound = 0;
771
772 mutex_enter(proc_lock);
773 if (all) {
774 /*
775 * broadcast
776 */
777 PROCLIST_FOREACH(p, &allproc) {
778 if (p->p_pid <= 1 || p == cp ||
779 p->p_flag & (PK_SYSTEM|PK_MARKER))
780 continue;
781 mutex_enter(p->p_lock);
782 if (kauth_authorize_process(pc,
783 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
784 NULL) == 0) {
785 nfound++;
786 if (signo)
787 kpsignal2(p, ksi);
788 }
789 mutex_exit(p->p_lock);
790 }
791 } else {
792 if (pgid == 0)
793 /*
794 * zero pgid means send to my process group.
795 */
796 pgrp = cp->p_pgrp;
797 else {
798 pgrp = pg_find(pgid, PFIND_LOCKED);
799 if (pgrp == NULL)
800 goto out;
801 }
802 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
803 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
804 continue;
805 mutex_enter(p->p_lock);
806 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
807 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
808 nfound++;
809 if (signo && P_ZOMBIE(p) == 0)
810 kpsignal2(p, ksi);
811 }
812 mutex_exit(p->p_lock);
813 }
814 }
815 out:
816 mutex_exit(proc_lock);
817 return (nfound ? 0 : ESRCH);
818 }
819
820 /*
821 * Send a signal to a process group. If checktty is 1, limit to members
822 * which have a controlling terminal.
823 */
824 void
825 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
826 {
827 ksiginfo_t ksi;
828
829 KASSERT(!cpu_intr_p());
830 KASSERT(mutex_owned(proc_lock));
831
832 KSI_INIT_EMPTY(&ksi);
833 ksi.ksi_signo = sig;
834 kpgsignal(pgrp, &ksi, NULL, checkctty);
835 }
836
837 void
838 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
839 {
840 struct proc *p;
841
842 KASSERT(!cpu_intr_p());
843 KASSERT(mutex_owned(proc_lock));
844
845 if (pgrp)
846 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
847 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
848 kpsignal(p, ksi, data);
849 }
850
851 /*
852 * Send a signal caused by a trap to the current LWP. If it will be caught
853 * immediately, deliver it with correct code. Otherwise, post it normally.
854 */
855 void
856 trapsignal(struct lwp *l, ksiginfo_t *ksi)
857 {
858 struct proc *p;
859 struct sigacts *ps;
860 int signo = ksi->ksi_signo;
861
862 KASSERT(KSI_TRAP_P(ksi));
863
864 ksi->ksi_lid = l->l_lid;
865 p = l->l_proc;
866
867 KASSERT(!cpu_intr_p());
868 mutex_enter(proc_lock);
869 mutex_enter(p->p_lock);
870 ps = p->p_sigacts;
871 if ((p->p_slflag & PSL_TRACED) == 0 &&
872 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
873 !sigismember(&l->l_sigmask, signo)) {
874 mutex_exit(proc_lock);
875 l->l_ru.ru_nsignals++;
876 kpsendsig(l, ksi, &l->l_sigmask);
877 mutex_exit(p->p_lock);
878 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
879 &l->l_sigmask, ksi);
880 } else {
881 /* XXX for core dump/debugger */
882 p->p_sigctx.ps_lwp = l->l_lid;
883 p->p_sigctx.ps_signo = ksi->ksi_signo;
884 p->p_sigctx.ps_code = ksi->ksi_trap;
885 kpsignal2(p, ksi);
886 mutex_exit(p->p_lock);
887 mutex_exit(proc_lock);
888 }
889 }
890
891 /*
892 * Fill in signal information and signal the parent for a child status change.
893 */
894 void
895 child_psignal(struct proc *p, int mask)
896 {
897 ksiginfo_t ksi;
898 struct proc *q;
899 int xstat;
900
901 KASSERT(mutex_owned(proc_lock));
902 KASSERT(mutex_owned(p->p_lock));
903
904 xstat = p->p_xstat;
905
906 KSI_INIT(&ksi);
907 ksi.ksi_signo = SIGCHLD;
908 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
909 ksi.ksi_pid = p->p_pid;
910 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
911 ksi.ksi_status = xstat;
912 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
913 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
914
915 q = p->p_pptr;
916
917 mutex_exit(p->p_lock);
918 mutex_enter(q->p_lock);
919
920 if ((q->p_sflag & mask) == 0)
921 kpsignal2(q, &ksi);
922
923 mutex_exit(q->p_lock);
924 mutex_enter(p->p_lock);
925 }
926
927 void
928 psignal(struct proc *p, int signo)
929 {
930 ksiginfo_t ksi;
931
932 KASSERT(!cpu_intr_p());
933 KASSERT(mutex_owned(proc_lock));
934
935 KSI_INIT_EMPTY(&ksi);
936 ksi.ksi_signo = signo;
937 mutex_enter(p->p_lock);
938 kpsignal2(p, &ksi);
939 mutex_exit(p->p_lock);
940 }
941
942 void
943 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
944 {
945 fdfile_t *ff;
946 file_t *fp;
947
948 KASSERT(!cpu_intr_p());
949 KASSERT(mutex_owned(proc_lock));
950
951 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
952 size_t fd;
953 filedesc_t *fdp = p->p_fd;
954
955 /* XXXSMP locking */
956 ksi->ksi_fd = -1;
957 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
958 if ((ff = fdp->fd_ofiles[fd]) == NULL)
959 continue;
960 if ((fp = ff->ff_file) == NULL)
961 continue;
962 if (fp->f_data == data) {
963 ksi->ksi_fd = fd;
964 break;
965 }
966 }
967 }
968 mutex_enter(p->p_lock);
969 kpsignal2(p, ksi);
970 mutex_exit(p->p_lock);
971 }
972
973 /*
974 * sigismasked:
975 *
976 * Returns true if signal is ignored or masked for the specified LWP.
977 */
978 int
979 sigismasked(struct lwp *l, int sig)
980 {
981 struct proc *p = l->l_proc;
982
983 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
984 sigismember(&l->l_sigmask, sig));
985 }
986
987 /*
988 * sigpost:
989 *
990 * Post a pending signal to an LWP. Returns non-zero if the LWP was
991 * able to take the signal.
992 */
993 int
994 sigpost(struct lwp *l, sig_t action, int prop, int sig)
995 {
996 int rv, masked;
997
998 KASSERT(mutex_owned(l->l_proc->p_lock));
999
1000 /*
1001 * If the LWP is on the way out, sigclear() will be busy draining all
1002 * pending signals. Don't give it more.
1003 */
1004 if (l->l_refcnt == 0)
1005 return 0;
1006
1007 lwp_lock(l);
1008
1009 /*
1010 * Have the LWP check for signals. This ensures that even if no LWP
1011 * is found to take the signal immediately, it should be taken soon.
1012 */
1013 l->l_flag |= LW_PENDSIG;
1014
1015 /*
1016 * SIGCONT can be masked, but must always restart stopped LWPs.
1017 */
1018 masked = sigismember(&l->l_sigmask, sig);
1019 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1020 lwp_unlock(l);
1021 return 0;
1022 }
1023
1024 /*
1025 * If killing the process, make it run fast.
1026 */
1027 if (__predict_false((prop & SA_KILL) != 0) &&
1028 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1029 KASSERT(l->l_class == SCHED_OTHER);
1030 lwp_changepri(l, MAXPRI_USER);
1031 }
1032
1033 /*
1034 * If the LWP is running or on a run queue, then we win. If it's
1035 * sleeping interruptably, wake it and make it take the signal. If
1036 * the sleep isn't interruptable, then the chances are it will get
1037 * to see the signal soon anyhow. If suspended, it can't take the
1038 * signal right now. If it's LWP private or for all LWPs, save it
1039 * for later; otherwise punt.
1040 */
1041 rv = 0;
1042
1043 switch (l->l_stat) {
1044 case LSRUN:
1045 case LSONPROC:
1046 lwp_need_userret(l);
1047 rv = 1;
1048 break;
1049
1050 case LSSLEEP:
1051 if ((l->l_flag & LW_SINTR) != 0) {
1052 /* setrunnable() will release the lock. */
1053 setrunnable(l);
1054 return 1;
1055 }
1056 break;
1057
1058 case LSSUSPENDED:
1059 if ((prop & SA_KILL) != 0) {
1060 /* lwp_continue() will release the lock. */
1061 lwp_continue(l);
1062 return 1;
1063 }
1064 break;
1065
1066 case LSSTOP:
1067 if ((prop & SA_STOP) != 0)
1068 break;
1069
1070 /*
1071 * If the LWP is stopped and we are sending a continue
1072 * signal, then start it again.
1073 */
1074 if ((prop & SA_CONT) != 0) {
1075 if (l->l_wchan != NULL) {
1076 l->l_stat = LSSLEEP;
1077 l->l_proc->p_nrlwps++;
1078 rv = 1;
1079 break;
1080 }
1081 /* setrunnable() will release the lock. */
1082 setrunnable(l);
1083 return 1;
1084 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1085 /* setrunnable() will release the lock. */
1086 setrunnable(l);
1087 return 1;
1088 }
1089 break;
1090
1091 default:
1092 break;
1093 }
1094
1095 lwp_unlock(l);
1096 return rv;
1097 }
1098
1099 /*
1100 * Notify an LWP that it has a pending signal.
1101 */
1102 void
1103 signotify(struct lwp *l)
1104 {
1105 KASSERT(lwp_locked(l, NULL));
1106
1107 l->l_flag |= LW_PENDSIG;
1108 lwp_need_userret(l);
1109 }
1110
1111 /*
1112 * Find an LWP within process p that is waiting on signal ksi, and hand
1113 * it on.
1114 */
1115 int
1116 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1117 {
1118 struct lwp *l;
1119 int signo;
1120
1121 KASSERT(mutex_owned(p->p_lock));
1122
1123 signo = ksi->ksi_signo;
1124
1125 if (ksi->ksi_lid != 0) {
1126 /*
1127 * Signal came via _lwp_kill(). Find the LWP and see if
1128 * it's interested.
1129 */
1130 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1131 return 0;
1132 if (l->l_sigwaited == NULL ||
1133 !sigismember(&l->l_sigwaitset, signo))
1134 return 0;
1135 } else {
1136 /*
1137 * Look for any LWP that may be interested.
1138 */
1139 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1140 KASSERT(l->l_sigwaited != NULL);
1141 if (sigismember(&l->l_sigwaitset, signo))
1142 break;
1143 }
1144 }
1145
1146 if (l != NULL) {
1147 l->l_sigwaited->ksi_info = ksi->ksi_info;
1148 l->l_sigwaited = NULL;
1149 LIST_REMOVE(l, l_sigwaiter);
1150 cv_signal(&l->l_sigcv);
1151 return 1;
1152 }
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * Send the signal to the process. If the signal has an action, the action
1159 * is usually performed by the target process rather than the caller; we add
1160 * the signal to the set of pending signals for the process.
1161 *
1162 * Exceptions:
1163 * o When a stop signal is sent to a sleeping process that takes the
1164 * default action, the process is stopped without awakening it.
1165 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1166 * regardless of the signal action (eg, blocked or ignored).
1167 *
1168 * Other ignored signals are discarded immediately.
1169 */
1170 void
1171 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1172 {
1173 int prop, lid, toall, signo = ksi->ksi_signo;
1174 struct sigacts *sa;
1175 struct lwp *l;
1176 ksiginfo_t *kp;
1177 ksiginfoq_t kq;
1178 sig_t action;
1179
1180 KASSERT(!cpu_intr_p());
1181 KASSERT(mutex_owned(proc_lock));
1182 KASSERT(mutex_owned(p->p_lock));
1183 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1184 KASSERT(signo > 0 && signo < NSIG);
1185
1186 /*
1187 * If the process is being created by fork, is a zombie or is
1188 * exiting, then just drop the signal here and bail out.
1189 */
1190 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1191 return;
1192
1193 /*
1194 * Notify any interested parties of the signal.
1195 */
1196 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1197
1198 /*
1199 * Some signals including SIGKILL must act on the entire process.
1200 */
1201 kp = NULL;
1202 prop = sigprop[signo];
1203 toall = ((prop & SA_TOALL) != 0);
1204
1205 if (toall)
1206 lid = 0;
1207 else
1208 lid = ksi->ksi_lid;
1209
1210 /*
1211 * If proc is traced, always give parent a chance.
1212 */
1213 if (p->p_slflag & PSL_TRACED) {
1214 action = SIG_DFL;
1215
1216 if (lid == 0) {
1217 /*
1218 * If the process is being traced and the signal
1219 * is being caught, make sure to save any ksiginfo.
1220 */
1221 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1222 return;
1223 sigput(&p->p_sigpend, p, kp);
1224 }
1225 } else {
1226 /*
1227 * If the signal was the result of a trap and is not being
1228 * caught, then reset it to default action so that the
1229 * process dumps core immediately.
1230 */
1231 if (KSI_TRAP_P(ksi)) {
1232 sa = p->p_sigacts;
1233 mutex_enter(&sa->sa_mutex);
1234 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1235 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1236 SIGACTION(p, signo).sa_handler = SIG_DFL;
1237 }
1238 mutex_exit(&sa->sa_mutex);
1239 }
1240
1241 /*
1242 * If the signal is being ignored, then drop it. Note: we
1243 * don't set SIGCONT in ps_sigignore, and if it is set to
1244 * SIG_IGN, action will be SIG_DFL here.
1245 */
1246 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1247 return;
1248
1249 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1250 action = SIG_CATCH;
1251 else {
1252 action = SIG_DFL;
1253
1254 /*
1255 * If sending a tty stop signal to a member of an
1256 * orphaned process group, discard the signal here if
1257 * the action is default; don't stop the process below
1258 * if sleeping, and don't clear any pending SIGCONT.
1259 */
1260 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1261 return;
1262
1263 if (prop & SA_KILL && p->p_nice > NZERO)
1264 p->p_nice = NZERO;
1265 }
1266 }
1267
1268 /*
1269 * If stopping or continuing a process, discard any pending
1270 * signals that would do the inverse.
1271 */
1272 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1273 ksiginfo_queue_init(&kq);
1274 if ((prop & SA_CONT) != 0)
1275 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1276 if ((prop & SA_STOP) != 0)
1277 sigclear(&p->p_sigpend, &contsigmask, &kq);
1278 ksiginfo_queue_drain(&kq); /* XXXSMP */
1279 }
1280
1281 /*
1282 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1283 * please!), check if any LWPs are waiting on it. If yes, pass on
1284 * the signal info. The signal won't be processed further here.
1285 */
1286 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1287 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1288 sigunwait(p, ksi))
1289 return;
1290
1291 /*
1292 * XXXSMP Should be allocated by the caller, we're holding locks
1293 * here.
1294 */
1295 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1296 return;
1297
1298 /*
1299 * LWP private signals are easy - just find the LWP and post
1300 * the signal to it.
1301 */
1302 if (lid != 0) {
1303 l = lwp_find(p, lid);
1304 if (l != NULL) {
1305 sigput(&l->l_sigpend, p, kp);
1306 membar_producer();
1307 (void)sigpost(l, action, prop, kp->ksi_signo);
1308 }
1309 goto out;
1310 }
1311
1312 /*
1313 * Some signals go to all LWPs, even if posted with _lwp_kill().
1314 */
1315 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1316 if ((p->p_slflag & PSL_TRACED) != 0)
1317 goto deliver;
1318
1319 /*
1320 * If SIGCONT is default (or ignored) and process is
1321 * asleep, we are finished; the process should not
1322 * be awakened.
1323 */
1324 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1325 goto out;
1326
1327 sigput(&p->p_sigpend, p, kp);
1328 } else {
1329 /*
1330 * Process is stopped or stopping. If traced, then no
1331 * further action is necessary.
1332 */
1333 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1334 goto out;
1335
1336 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1337 /*
1338 * Re-adjust p_nstopchild if the process wasn't
1339 * collected by its parent.
1340 */
1341 p->p_stat = SACTIVE;
1342 p->p_sflag &= ~PS_STOPPING;
1343 if (!p->p_waited)
1344 p->p_pptr->p_nstopchild--;
1345
1346 /*
1347 * If SIGCONT is default (or ignored), we continue
1348 * the process but don't leave the signal in
1349 * ps_siglist, as it has no further action. If
1350 * SIGCONT is held, we continue the process and
1351 * leave the signal in ps_siglist. If the process
1352 * catches SIGCONT, let it handle the signal itself.
1353 * If it isn't waiting on an event, then it goes
1354 * back to run state. Otherwise, process goes back
1355 * to sleep state.
1356 */
1357 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1358 sigput(&p->p_sigpend, p, kp);
1359 } else if ((prop & SA_STOP) != 0) {
1360 /*
1361 * Already stopped, don't need to stop again.
1362 * (If we did the shell could get confused.)
1363 */
1364 goto out;
1365 } else
1366 sigput(&p->p_sigpend, p, kp);
1367 }
1368
1369 deliver:
1370 /*
1371 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1372 * visible on the per process list (for sigispending()). This
1373 * is unlikely to be needed in practice, but...
1374 */
1375 membar_producer();
1376
1377 /*
1378 * Try to find an LWP that can take the signal.
1379 */
1380 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1381 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1382 break;
1383
1384 out:
1385 /*
1386 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1387 * with locks held. The caller should take care of this.
1388 */
1389 ksiginfo_free(kp);
1390 }
1391
1392 void
1393 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1394 {
1395 struct proc *p = l->l_proc;
1396
1397 KASSERT(mutex_owned(p->p_lock));
1398
1399 (*p->p_emul->e_sendsig)(ksi, mask);
1400 }
1401
1402 /*
1403 * Stop any LWPs sleeping interruptably.
1404 */
1405 static void
1406 proc_stop_lwps(struct proc *p)
1407 {
1408 struct lwp *l;
1409
1410 KASSERT(mutex_owned(p->p_lock));
1411 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1412
1413 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1414 lwp_lock(l);
1415 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1416 l->l_stat = LSSTOP;
1417 p->p_nrlwps--;
1418 }
1419 lwp_unlock(l);
1420 }
1421 }
1422
1423 /*
1424 * Finish stopping of a process. Mark it stopped and notify the parent.
1425 *
1426 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1427 */
1428 static void
1429 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1430 {
1431
1432 KASSERT(mutex_owned(proc_lock));
1433 KASSERT(mutex_owned(p->p_lock));
1434 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1435 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1436
1437 p->p_sflag &= ~PS_STOPPING;
1438 p->p_stat = SSTOP;
1439 p->p_waited = 0;
1440 p->p_pptr->p_nstopchild++;
1441 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1442 if (ppsig) {
1443 /* child_psignal drops p_lock briefly. */
1444 child_psignal(p, ppmask);
1445 }
1446 cv_broadcast(&p->p_pptr->p_waitcv);
1447 }
1448 }
1449
1450 /*
1451 * Stop the current process and switch away when being stopped or traced.
1452 */
1453 void
1454 sigswitch(bool ppsig, int ppmask, int signo)
1455 {
1456 struct lwp *l = curlwp;
1457 struct proc *p = l->l_proc;
1458 int biglocks;
1459
1460 KASSERT(mutex_owned(p->p_lock));
1461 KASSERT(l->l_stat == LSONPROC);
1462 KASSERT(p->p_nrlwps > 0);
1463
1464 /*
1465 * On entry we know that the process needs to stop. If it's
1466 * the result of a 'sideways' stop signal that has been sourced
1467 * through issignal(), then stop other LWPs in the process too.
1468 */
1469 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1470 KASSERT(signo != 0);
1471 proc_stop(p, 1, signo);
1472 KASSERT(p->p_nrlwps > 0);
1473 }
1474
1475 /*
1476 * If we are the last live LWP, and the stop was a result of
1477 * a new signal, then signal the parent.
1478 */
1479 if ((p->p_sflag & PS_STOPPING) != 0) {
1480 if (!mutex_tryenter(proc_lock)) {
1481 mutex_exit(p->p_lock);
1482 mutex_enter(proc_lock);
1483 mutex_enter(p->p_lock);
1484 }
1485
1486 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1487 /*
1488 * Note that proc_stop_done() can drop
1489 * p->p_lock briefly.
1490 */
1491 proc_stop_done(p, ppsig, ppmask);
1492 }
1493
1494 mutex_exit(proc_lock);
1495 }
1496
1497 /*
1498 * Unlock and switch away.
1499 */
1500 KERNEL_UNLOCK_ALL(l, &biglocks);
1501 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1502 p->p_nrlwps--;
1503 lwp_lock(l);
1504 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1505 l->l_stat = LSSTOP;
1506 lwp_unlock(l);
1507 }
1508
1509 mutex_exit(p->p_lock);
1510 lwp_lock(l);
1511 mi_switch(l);
1512 KERNEL_LOCK(biglocks, l);
1513 mutex_enter(p->p_lock);
1514 }
1515
1516 /*
1517 * Check for a signal from the debugger.
1518 */
1519 int
1520 sigchecktrace(sigpend_t **spp)
1521 {
1522 struct lwp *l = curlwp;
1523 struct proc *p = l->l_proc;
1524 int signo;
1525
1526 KASSERT(mutex_owned(p->p_lock));
1527
1528 /*
1529 * If we are no longer being traced, or the parent didn't
1530 * give us a signal, look for more signals.
1531 */
1532 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1533 return 0;
1534
1535 /* If there's a pending SIGKILL, process it immediately. */
1536 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1537 return 0;
1538
1539 /*
1540 * If the new signal is being masked, look for other signals.
1541 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1542 */
1543 signo = p->p_xstat;
1544 p->p_xstat = 0;
1545 if ((sigprop[signo] & SA_TOLWP) != 0)
1546 *spp = &l->l_sigpend;
1547 else
1548 *spp = &p->p_sigpend;
1549 if (sigismember(&l->l_sigmask, signo))
1550 signo = 0;
1551
1552 return signo;
1553 }
1554
1555 /*
1556 * If the current process has received a signal (should be caught or cause
1557 * termination, should interrupt current syscall), return the signal number.
1558 *
1559 * Stop signals with default action are processed immediately, then cleared;
1560 * they aren't returned. This is checked after each entry to the system for
1561 * a syscall or trap.
1562 *
1563 * We will also return -1 if the process is exiting and the current LWP must
1564 * follow suit.
1565 *
1566 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1567 * can switch away, though.
1568 */
1569 int
1570 issignal(struct lwp *l)
1571 {
1572 struct proc *p = l->l_proc;
1573 int signo = 0, prop;
1574 sigpend_t *sp = NULL;
1575 sigset_t ss;
1576
1577 KASSERT(mutex_owned(p->p_lock));
1578
1579 for (;;) {
1580 /* Discard any signals that we have decided not to take. */
1581 if (signo != 0)
1582 (void)sigget(sp, NULL, signo, NULL);
1583
1584 /*
1585 * If the process is stopped/stopping, then stop ourselves
1586 * now that we're on the kernel/userspace boundary. When
1587 * we awaken, check for a signal from the debugger.
1588 */
1589 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1590 sigswitch(true, PS_NOCLDSTOP, 0);
1591 signo = sigchecktrace(&sp);
1592 } else
1593 signo = 0;
1594
1595 /*
1596 * If the debugger didn't provide a signal, find a pending
1597 * signal from our set. Check per-LWP signals first, and
1598 * then per-process.
1599 */
1600 if (signo == 0) {
1601 sp = &l->l_sigpend;
1602 ss = sp->sp_set;
1603 if ((p->p_lflag & PL_PPWAIT) != 0)
1604 sigminusset(&stopsigmask, &ss);
1605 sigminusset(&l->l_sigmask, &ss);
1606
1607 if ((signo = firstsig(&ss)) == 0) {
1608 sp = &p->p_sigpend;
1609 ss = sp->sp_set;
1610 if ((p->p_lflag & PL_PPWAIT) != 0)
1611 sigminusset(&stopsigmask, &ss);
1612 sigminusset(&l->l_sigmask, &ss);
1613
1614 if ((signo = firstsig(&ss)) == 0) {
1615 /*
1616 * No signal pending - clear the
1617 * indicator and bail out.
1618 */
1619 lwp_lock(l);
1620 l->l_flag &= ~LW_PENDSIG;
1621 lwp_unlock(l);
1622 sp = NULL;
1623 break;
1624 }
1625 }
1626 }
1627
1628 /*
1629 * We should see pending but ignored signals only if
1630 * we are being traced.
1631 */
1632 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1633 (p->p_slflag & PSL_TRACED) == 0) {
1634 /* Discard the signal. */
1635 continue;
1636 }
1637
1638 /*
1639 * If traced, always stop, and stay stopped until released
1640 * by the debugger. If the our parent process is waiting
1641 * for us, don't hang as we could deadlock.
1642 */
1643 if ((p->p_slflag & PSL_TRACED) != 0 &&
1644 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1645 /* Take the signal. */
1646 (void)sigget(sp, NULL, signo, NULL);
1647 p->p_xstat = signo;
1648
1649 /* Emulation-specific handling of signal trace */
1650 if (p->p_emul->e_tracesig == NULL ||
1651 (*p->p_emul->e_tracesig)(p, signo) == 0)
1652 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1653 signo);
1654
1655 /* Check for a signal from the debugger. */
1656 if ((signo = sigchecktrace(&sp)) == 0)
1657 continue;
1658 }
1659
1660 prop = sigprop[signo];
1661
1662 /*
1663 * Decide whether the signal should be returned.
1664 */
1665 switch ((long)SIGACTION(p, signo).sa_handler) {
1666 case (long)SIG_DFL:
1667 /*
1668 * Don't take default actions on system processes.
1669 */
1670 if (p->p_pid <= 1) {
1671 #ifdef DIAGNOSTIC
1672 /*
1673 * Are you sure you want to ignore SIGSEGV
1674 * in init? XXX
1675 */
1676 printf_nolog("Process (pid %d) got sig %d\n",
1677 p->p_pid, signo);
1678 #endif
1679 continue;
1680 }
1681
1682 /*
1683 * If there is a pending stop signal to process with
1684 * default action, stop here, then clear the signal.
1685 * However, if process is member of an orphaned
1686 * process group, ignore tty stop signals.
1687 */
1688 if (prop & SA_STOP) {
1689 /*
1690 * XXX Don't hold proc_lock for p_lflag,
1691 * but it's not a big deal.
1692 */
1693 if (p->p_slflag & PSL_TRACED ||
1694 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1695 prop & SA_TTYSTOP)) {
1696 /* Ignore the signal. */
1697 continue;
1698 }
1699 /* Take the signal. */
1700 (void)sigget(sp, NULL, signo, NULL);
1701 p->p_xstat = signo;
1702 signo = 0;
1703 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1704 } else if (prop & SA_IGNORE) {
1705 /*
1706 * Except for SIGCONT, shouldn't get here.
1707 * Default action is to ignore; drop it.
1708 */
1709 continue;
1710 }
1711 break;
1712
1713 case (long)SIG_IGN:
1714 #ifdef DEBUG_ISSIGNAL
1715 /*
1716 * Masking above should prevent us ever trying
1717 * to take action on an ignored signal other
1718 * than SIGCONT, unless process is traced.
1719 */
1720 if ((prop & SA_CONT) == 0 &&
1721 (p->p_slflag & PSL_TRACED) == 0)
1722 printf_nolog("issignal\n");
1723 #endif
1724 continue;
1725
1726 default:
1727 /*
1728 * This signal has an action, let postsig() process
1729 * it.
1730 */
1731 break;
1732 }
1733
1734 break;
1735 }
1736
1737 l->l_sigpendset = sp;
1738 return signo;
1739 }
1740
1741 /*
1742 * Take the action for the specified signal
1743 * from the current set of pending signals.
1744 */
1745 void
1746 postsig(int signo)
1747 {
1748 struct lwp *l;
1749 struct proc *p;
1750 struct sigacts *ps;
1751 sig_t action;
1752 sigset_t *returnmask;
1753 ksiginfo_t ksi;
1754
1755 l = curlwp;
1756 p = l->l_proc;
1757 ps = p->p_sigacts;
1758
1759 KASSERT(mutex_owned(p->p_lock));
1760 KASSERT(signo > 0);
1761
1762 /*
1763 * Set the new mask value and also defer further occurrences of this
1764 * signal.
1765 *
1766 * Special case: user has done a sigsuspend. Here the current mask is
1767 * not of interest, but rather the mask from before the sigsuspen is
1768 * what we want restored after the signal processing is completed.
1769 */
1770 if (l->l_sigrestore) {
1771 returnmask = &l->l_sigoldmask;
1772 l->l_sigrestore = 0;
1773 } else
1774 returnmask = &l->l_sigmask;
1775
1776 /*
1777 * Commit to taking the signal before releasing the mutex.
1778 */
1779 action = SIGACTION_PS(ps, signo).sa_handler;
1780 l->l_ru.ru_nsignals++;
1781 sigget(l->l_sigpendset, &ksi, signo, NULL);
1782
1783 if (ktrpoint(KTR_PSIG)) {
1784 mutex_exit(p->p_lock);
1785 ktrpsig(signo, action, returnmask, &ksi);
1786 mutex_enter(p->p_lock);
1787 }
1788
1789 if (action == SIG_DFL) {
1790 /*
1791 * Default action, where the default is to kill
1792 * the process. (Other cases were ignored above.)
1793 */
1794 sigexit(l, signo);
1795 return;
1796 }
1797
1798 /*
1799 * If we get here, the signal must be caught.
1800 */
1801 #ifdef DIAGNOSTIC
1802 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1803 panic("postsig action");
1804 #endif
1805
1806 kpsendsig(l, &ksi, returnmask);
1807 }
1808
1809 /*
1810 * sendsig_reset:
1811 *
1812 * Reset the signal action. Called from emulation specific sendsig()
1813 * before unlocking to deliver the signal.
1814 */
1815 void
1816 sendsig_reset(struct lwp *l, int signo)
1817 {
1818 struct proc *p = l->l_proc;
1819 struct sigacts *ps = p->p_sigacts;
1820
1821 KASSERT(mutex_owned(p->p_lock));
1822
1823 p->p_sigctx.ps_lwp = 0;
1824 p->p_sigctx.ps_code = 0;
1825 p->p_sigctx.ps_signo = 0;
1826
1827 mutex_enter(&ps->sa_mutex);
1828 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1829 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1830 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1831 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1832 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1833 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1834 }
1835 mutex_exit(&ps->sa_mutex);
1836 }
1837
1838 /*
1839 * Kill the current process for stated reason.
1840 */
1841 void
1842 killproc(struct proc *p, const char *why)
1843 {
1844
1845 KASSERT(mutex_owned(proc_lock));
1846
1847 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1848 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1849 psignal(p, SIGKILL);
1850 }
1851
1852 /*
1853 * Force the current process to exit with the specified signal, dumping core
1854 * if appropriate. We bypass the normal tests for masked and caught
1855 * signals, allowing unrecoverable failures to terminate the process without
1856 * changing signal state. Mark the accounting record with the signal
1857 * termination. If dumping core, save the signal number for the debugger.
1858 * Calls exit and does not return.
1859 */
1860 void
1861 sigexit(struct lwp *l, int signo)
1862 {
1863 int exitsig, error, docore;
1864 struct proc *p;
1865 struct lwp *t;
1866
1867 p = l->l_proc;
1868
1869 KASSERT(mutex_owned(p->p_lock));
1870 KERNEL_UNLOCK_ALL(l, NULL);
1871
1872 /*
1873 * Don't permit coredump() multiple times in the same process.
1874 * Call back into sigexit, where we will be suspended until
1875 * the deed is done. Note that this is a recursive call, but
1876 * LW_WCORE will prevent us from coming back this way.
1877 */
1878 if ((p->p_sflag & PS_WCORE) != 0) {
1879 lwp_lock(l);
1880 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1881 lwp_unlock(l);
1882 mutex_exit(p->p_lock);
1883 lwp_userret(l);
1884 panic("sigexit 1");
1885 /* NOTREACHED */
1886 }
1887
1888 /* If process is already on the way out, then bail now. */
1889 if ((p->p_sflag & PS_WEXIT) != 0) {
1890 mutex_exit(p->p_lock);
1891 lwp_exit(l);
1892 panic("sigexit 2");
1893 /* NOTREACHED */
1894 }
1895
1896 /*
1897 * Prepare all other LWPs for exit. If dumping core, suspend them
1898 * so that their registers are available long enough to be dumped.
1899 */
1900 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1901 p->p_sflag |= PS_WCORE;
1902 for (;;) {
1903 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1904 lwp_lock(t);
1905 if (t == l) {
1906 t->l_flag &= ~LW_WSUSPEND;
1907 lwp_unlock(t);
1908 continue;
1909 }
1910 t->l_flag |= (LW_WCORE | LW_WEXIT);
1911 lwp_suspend(l, t);
1912 }
1913
1914 if (p->p_nrlwps == 1)
1915 break;
1916
1917 /*
1918 * Kick any LWPs sitting in lwp_wait1(), and wait
1919 * for everyone else to stop before proceeding.
1920 */
1921 p->p_nlwpwait++;
1922 cv_broadcast(&p->p_lwpcv);
1923 cv_wait(&p->p_lwpcv, p->p_lock);
1924 p->p_nlwpwait--;
1925 }
1926 }
1927
1928 exitsig = signo;
1929 p->p_acflag |= AXSIG;
1930 p->p_sigctx.ps_signo = signo;
1931
1932 if (docore) {
1933 mutex_exit(p->p_lock);
1934 if ((error = coredump(l, NULL)) == 0)
1935 exitsig |= WCOREFLAG;
1936
1937 if (kern_logsigexit) {
1938 int uid = l->l_cred ?
1939 (int)kauth_cred_geteuid(l->l_cred) : -1;
1940
1941 if (error)
1942 log(LOG_INFO, lognocoredump, p->p_pid,
1943 p->p_comm, uid, signo, error);
1944 else
1945 log(LOG_INFO, logcoredump, p->p_pid,
1946 p->p_comm, uid, signo);
1947 }
1948
1949 #ifdef PAX_SEGVGUARD
1950 pax_segvguard(l, p->p_textvp, p->p_comm, true);
1951 #endif /* PAX_SEGVGUARD */
1952 /* Acquire the sched state mutex. exit1() will release it. */
1953 mutex_enter(p->p_lock);
1954 }
1955
1956 /* No longer dumping core. */
1957 p->p_sflag &= ~PS_WCORE;
1958
1959 exit1(l, W_EXITCODE(0, exitsig));
1960 /* NOTREACHED */
1961 }
1962
1963 /*
1964 * Put process 'p' into the stopped state and optionally, notify the parent.
1965 */
1966 void
1967 proc_stop(struct proc *p, int notify, int signo)
1968 {
1969 struct lwp *l;
1970
1971 KASSERT(mutex_owned(p->p_lock));
1972
1973 /*
1974 * First off, set the stopping indicator and bring all sleeping
1975 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
1976 * unlock between here and the p->p_nrlwps check below.
1977 */
1978 p->p_sflag |= PS_STOPPING;
1979 if (notify)
1980 p->p_sflag |= PS_NOTIFYSTOP;
1981 else
1982 p->p_sflag &= ~PS_NOTIFYSTOP;
1983 membar_producer();
1984
1985 proc_stop_lwps(p);
1986
1987 /*
1988 * If there are no LWPs available to take the signal, then we
1989 * signal the parent process immediately. Otherwise, the last
1990 * LWP to stop will take care of it.
1991 */
1992
1993 if (p->p_nrlwps == 0) {
1994 proc_stop_done(p, true, PS_NOCLDSTOP);
1995 } else {
1996 /*
1997 * Have the remaining LWPs come to a halt, and trigger
1998 * proc_stop_callout() to ensure that they do.
1999 */
2000 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2001 sigpost(l, SIG_DFL, SA_STOP, signo);
2002 callout_schedule(&proc_stop_ch, 1);
2003 }
2004 }
2005
2006 /*
2007 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2008 * but wait for them to come to a halt at the kernel-user boundary. This is
2009 * to allow LWPs to release any locks that they may hold before stopping.
2010 *
2011 * Non-interruptable sleeps can be long, and there is the potential for an
2012 * LWP to begin sleeping interruptably soon after the process has been set
2013 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2014 * stopping, and so complete halt of the process and the return of status
2015 * information to the parent could be delayed indefinitely.
2016 *
2017 * To handle this race, proc_stop_callout() runs once per tick while there
2018 * are stopping processes in the system. It sets LWPs that are sleeping
2019 * interruptably into the LSSTOP state.
2020 *
2021 * Note that we are not concerned about keeping all LWPs stopped while the
2022 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2023 * What we do need to ensure is that all LWPs in a stopping process have
2024 * stopped at least once, so that notification can be sent to the parent
2025 * process.
2026 */
2027 static void
2028 proc_stop_callout(void *cookie)
2029 {
2030 bool more, restart;
2031 struct proc *p;
2032
2033 (void)cookie;
2034
2035 do {
2036 restart = false;
2037 more = false;
2038
2039 mutex_enter(proc_lock);
2040 PROCLIST_FOREACH(p, &allproc) {
2041 if ((p->p_flag & PK_MARKER) != 0)
2042 continue;
2043 mutex_enter(p->p_lock);
2044
2045 if ((p->p_sflag & PS_STOPPING) == 0) {
2046 mutex_exit(p->p_lock);
2047 continue;
2048 }
2049
2050 /* Stop any LWPs sleeping interruptably. */
2051 proc_stop_lwps(p);
2052 if (p->p_nrlwps == 0) {
2053 /*
2054 * We brought the process to a halt.
2055 * Mark it as stopped and notify the
2056 * parent.
2057 */
2058 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2059 /*
2060 * Note that proc_stop_done() will
2061 * drop p->p_lock briefly.
2062 * Arrange to restart and check
2063 * all processes again.
2064 */
2065 restart = true;
2066 }
2067 proc_stop_done(p, true, PS_NOCLDSTOP);
2068 } else
2069 more = true;
2070
2071 mutex_exit(p->p_lock);
2072 if (restart)
2073 break;
2074 }
2075 mutex_exit(proc_lock);
2076 } while (restart);
2077
2078 /*
2079 * If we noted processes that are stopping but still have
2080 * running LWPs, then arrange to check again in 1 tick.
2081 */
2082 if (more)
2083 callout_schedule(&proc_stop_ch, 1);
2084 }
2085
2086 /*
2087 * Given a process in state SSTOP, set the state back to SACTIVE and
2088 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2089 */
2090 void
2091 proc_unstop(struct proc *p)
2092 {
2093 struct lwp *l;
2094 int sig;
2095
2096 KASSERT(mutex_owned(proc_lock));
2097 KASSERT(mutex_owned(p->p_lock));
2098
2099 p->p_stat = SACTIVE;
2100 p->p_sflag &= ~PS_STOPPING;
2101 sig = p->p_xstat;
2102
2103 if (!p->p_waited)
2104 p->p_pptr->p_nstopchild--;
2105
2106 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2107 lwp_lock(l);
2108 if (l->l_stat != LSSTOP) {
2109 lwp_unlock(l);
2110 continue;
2111 }
2112 if (l->l_wchan == NULL) {
2113 setrunnable(l);
2114 continue;
2115 }
2116 if (sig && (l->l_flag & LW_SINTR) != 0) {
2117 setrunnable(l);
2118 sig = 0;
2119 } else {
2120 l->l_stat = LSSLEEP;
2121 p->p_nrlwps++;
2122 lwp_unlock(l);
2123 }
2124 }
2125 }
2126
2127 static int
2128 filt_sigattach(struct knote *kn)
2129 {
2130 struct proc *p = curproc;
2131
2132 kn->kn_obj = p;
2133 kn->kn_flags |= EV_CLEAR; /* automatically set */
2134
2135 mutex_enter(p->p_lock);
2136 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2137 mutex_exit(p->p_lock);
2138
2139 return (0);
2140 }
2141
2142 static void
2143 filt_sigdetach(struct knote *kn)
2144 {
2145 struct proc *p = kn->kn_obj;
2146
2147 mutex_enter(p->p_lock);
2148 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2149 mutex_exit(p->p_lock);
2150 }
2151
2152 /*
2153 * signal knotes are shared with proc knotes, so we apply a mask to
2154 * the hint in order to differentiate them from process hints. This
2155 * could be avoided by using a signal-specific knote list, but probably
2156 * isn't worth the trouble.
2157 */
2158 static int
2159 filt_signal(struct knote *kn, long hint)
2160 {
2161
2162 if (hint & NOTE_SIGNAL) {
2163 hint &= ~NOTE_SIGNAL;
2164
2165 if (kn->kn_id == hint)
2166 kn->kn_data++;
2167 }
2168 return (kn->kn_data != 0);
2169 }
2170
2171 const struct filterops sig_filtops = {
2172 0, filt_sigattach, filt_sigdetach, filt_signal
2173 };
2174