Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.287
      1 /*	$NetBSD: kern_sig.c,v 1.287 2008/09/12 21:33:39 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.287 2008/09/12 21:33:39 christos Exp $");
     70 
     71 #include "opt_ptrace.h"
     72 #include "opt_compat_sunos.h"
     73 #include "opt_compat_netbsd.h"
     74 #include "opt_compat_netbsd32.h"
     75 #include "opt_pax.h"
     76 
     77 #define	SIGPROP		/* include signal properties table */
     78 #include <sys/param.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/wait.h>
     83 #include <sys/ktrace.h>
     84 #include <sys/syslog.h>
     85 #include <sys/filedesc.h>
     86 #include <sys/file.h>
     87 #include <sys/malloc.h>
     88 #include <sys/pool.h>
     89 #include <sys/ucontext.h>
     90 #include <sys/exec.h>
     91 #include <sys/kauth.h>
     92 #include <sys/acct.h>
     93 #include <sys/callout.h>
     94 #include <sys/atomic.h>
     95 #include <sys/cpu.h>
     96 
     97 #ifdef PAX_SEGVGUARD
     98 #include <sys/pax.h>
     99 #endif /* PAX_SEGVGUARD */
    100 
    101 #include <uvm/uvm.h>
    102 #include <uvm/uvm_extern.h>
    103 
    104 static void	ksiginfo_exechook(struct proc *, void *);
    105 static void	proc_stop_callout(void *);
    106 
    107 int	sigunwait(struct proc *, const ksiginfo_t *);
    108 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    109 int	sigpost(struct lwp *, sig_t, int, int);
    110 int	sigchecktrace(sigpend_t **);
    111 void	sigswitch(bool, int, int);
    112 void	sigrealloc(ksiginfo_t *);
    113 
    114 sigset_t	contsigmask, stopsigmask, sigcantmask;
    115 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    116 static void	sigacts_poolpage_free(struct pool *, void *);
    117 static void	*sigacts_poolpage_alloc(struct pool *, int);
    118 static callout_t proc_stop_ch;
    119 static pool_cache_t siginfo_cache;
    120 static pool_cache_t ksiginfo_cache;
    121 
    122 static struct pool_allocator sigactspool_allocator = {
    123         .pa_alloc = sigacts_poolpage_alloc,
    124 	.pa_free = sigacts_poolpage_free,
    125 };
    126 
    127 #ifdef DEBUG
    128 int	kern_logsigexit = 1;
    129 #else
    130 int	kern_logsigexit = 0;
    131 #endif
    132 
    133 static	const char logcoredump[] =
    134     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    135 static	const char lognocoredump[] =
    136     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    137 
    138 /*
    139  * signal_init:
    140  *
    141  * 	Initialize global signal-related data structures.
    142  */
    143 void
    144 signal_init(void)
    145 {
    146 
    147 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    148 
    149 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    150 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    151 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    152 
    153 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
    154 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
    155 
    156 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    157 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    158 
    159 	exechook_establish(ksiginfo_exechook, NULL);
    160 
    161 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    162 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    163 }
    164 
    165 /*
    166  * sigacts_poolpage_alloc:
    167  *
    168  *	 Allocate a page for the sigacts memory pool.
    169  */
    170 static void *
    171 sigacts_poolpage_alloc(struct pool *pp, int flags)
    172 {
    173 
    174 	return (void *)uvm_km_alloc(kernel_map,
    175 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    176 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    177 	    | UVM_KMF_WIRED);
    178 }
    179 
    180 /*
    181  * sigacts_poolpage_free:
    182  *
    183  *	 Free a page on behalf of the sigacts memory pool.
    184  */
    185 static void
    186 sigacts_poolpage_free(struct pool *pp, void *v)
    187 {
    188 
    189         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    190 }
    191 
    192 /*
    193  * sigactsinit:
    194  *
    195  *	 Create an initial sigctx structure, using the same signal state as
    196  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    197  *	 copy it from parent.
    198  */
    199 struct sigacts *
    200 sigactsinit(struct proc *pp, int share)
    201 {
    202 	struct sigacts *ps, *ps2;
    203 
    204 	ps = pp->p_sigacts;
    205 
    206 	if (share) {
    207 		atomic_inc_uint(&ps->sa_refcnt);
    208 		ps2 = ps;
    209 	} else {
    210 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    211 		/* XXXAD get rid of this */
    212 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    213 		mutex_enter(&ps->sa_mutex);
    214 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    215 		    sizeof(ps2->sa_sigdesc));
    216 		mutex_exit(&ps->sa_mutex);
    217 		ps2->sa_refcnt = 1;
    218 	}
    219 
    220 	return ps2;
    221 }
    222 
    223 /*
    224  * sigactsunshare:
    225  *
    226  *	Make this process not share its sigctx, maintaining all
    227  *	signal state.
    228  */
    229 void
    230 sigactsunshare(struct proc *p)
    231 {
    232 	struct sigacts *ps, *oldps;
    233 
    234 	oldps = p->p_sigacts;
    235 	if (oldps->sa_refcnt == 1)
    236 		return;
    237 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    238 	/* XXXAD get rid of this */
    239 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    240 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    241 	p->p_sigacts = ps;
    242 	sigactsfree(oldps);
    243 }
    244 
    245 /*
    246  * sigactsfree;
    247  *
    248  *	Release a sigctx structure.
    249  */
    250 void
    251 sigactsfree(struct sigacts *ps)
    252 {
    253 
    254 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    255 		mutex_destroy(&ps->sa_mutex);
    256 		pool_cache_put(sigacts_cache, ps);
    257 	}
    258 }
    259 
    260 /*
    261  * siginit:
    262  *
    263  *	Initialize signal state for process 0; set to ignore signals that
    264  *	are ignored by default and disable the signal stack.  Locking not
    265  *	required as the system is still cold.
    266  */
    267 void
    268 siginit(struct proc *p)
    269 {
    270 	struct lwp *l;
    271 	struct sigacts *ps;
    272 	int signo, prop;
    273 
    274 	ps = p->p_sigacts;
    275 	sigemptyset(&contsigmask);
    276 	sigemptyset(&stopsigmask);
    277 	sigemptyset(&sigcantmask);
    278 	for (signo = 1; signo < NSIG; signo++) {
    279 		prop = sigprop[signo];
    280 		if (prop & SA_CONT)
    281 			sigaddset(&contsigmask, signo);
    282 		if (prop & SA_STOP)
    283 			sigaddset(&stopsigmask, signo);
    284 		if (prop & SA_CANTMASK)
    285 			sigaddset(&sigcantmask, signo);
    286 		if (prop & SA_IGNORE && signo != SIGCONT)
    287 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    288 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    289 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    290 	}
    291 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    292 	p->p_sflag &= ~PS_NOCLDSTOP;
    293 
    294 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    295 	sigemptyset(&p->p_sigpend.sp_set);
    296 
    297 	/*
    298 	 * Reset per LWP state.
    299 	 */
    300 	l = LIST_FIRST(&p->p_lwps);
    301 	l->l_sigwaited = NULL;
    302 	l->l_sigstk.ss_flags = SS_DISABLE;
    303 	l->l_sigstk.ss_size = 0;
    304 	l->l_sigstk.ss_sp = 0;
    305 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    306 	sigemptyset(&l->l_sigpend.sp_set);
    307 
    308 	/* One reference. */
    309 	ps->sa_refcnt = 1;
    310 }
    311 
    312 /*
    313  * execsigs:
    314  *
    315  *	Reset signals for an exec of the specified process.
    316  */
    317 void
    318 execsigs(struct proc *p)
    319 {
    320 	struct sigacts *ps;
    321 	struct lwp *l;
    322 	int signo, prop;
    323 	sigset_t tset;
    324 	ksiginfoq_t kq;
    325 
    326 	KASSERT(p->p_nlwps == 1);
    327 
    328 	sigactsunshare(p);
    329 	ps = p->p_sigacts;
    330 
    331 	/*
    332 	 * Reset caught signals.  Held signals remain held through
    333 	 * l->l_sigmask (unless they were caught, and are now ignored
    334 	 * by default).
    335 	 *
    336 	 * No need to lock yet, the process has only one LWP and
    337 	 * at this point the sigacts are private to the process.
    338 	 */
    339 	sigemptyset(&tset);
    340 	for (signo = 1; signo < NSIG; signo++) {
    341 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    342 			prop = sigprop[signo];
    343 			if (prop & SA_IGNORE) {
    344 				if ((prop & SA_CONT) == 0)
    345 					sigaddset(&p->p_sigctx.ps_sigignore,
    346 					    signo);
    347 				sigaddset(&tset, signo);
    348 			}
    349 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    350 		}
    351 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    352 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    353 	}
    354 	ksiginfo_queue_init(&kq);
    355 
    356 	mutex_enter(p->p_lock);
    357 	sigclearall(p, &tset, &kq);
    358 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    359 
    360 	/*
    361 	 * Reset no zombies if child dies flag as Solaris does.
    362 	 */
    363 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    364 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    365 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    366 
    367 	/*
    368 	 * Reset per-LWP state.
    369 	 */
    370 	l = LIST_FIRST(&p->p_lwps);
    371 	l->l_sigwaited = NULL;
    372 	l->l_sigstk.ss_flags = SS_DISABLE;
    373 	l->l_sigstk.ss_size = 0;
    374 	l->l_sigstk.ss_sp = 0;
    375 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    376 	sigemptyset(&l->l_sigpend.sp_set);
    377 	mutex_exit(p->p_lock);
    378 
    379 	ksiginfo_queue_drain(&kq);
    380 }
    381 
    382 /*
    383  * ksiginfo_exechook:
    384  *
    385  *	Free all pending ksiginfo entries from a process on exec.
    386  *	Additionally, drain any unused ksiginfo structures in the
    387  *	system back to the pool.
    388  *
    389  *	XXX This should not be a hook, every process has signals.
    390  */
    391 static void
    392 ksiginfo_exechook(struct proc *p, void *v)
    393 {
    394 	ksiginfoq_t kq;
    395 
    396 	ksiginfo_queue_init(&kq);
    397 
    398 	mutex_enter(p->p_lock);
    399 	sigclearall(p, NULL, &kq);
    400 	mutex_exit(p->p_lock);
    401 
    402 	ksiginfo_queue_drain(&kq);
    403 }
    404 
    405 /*
    406  * ksiginfo_alloc:
    407  *
    408  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    409  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    410  *	has not been queued somewhere, then just return it.  Additionally,
    411  *	if the existing ksiginfo_t does not contain any information beyond
    412  *	the signal number, then just return it.
    413  */
    414 ksiginfo_t *
    415 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    416 {
    417 	ksiginfo_t *kp;
    418 
    419 	if (ok != NULL) {
    420 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    421 		    KSI_FROMPOOL)
    422 		    	return ok;
    423 		if (KSI_EMPTY_P(ok))
    424 			return ok;
    425 	}
    426 
    427 	kp = pool_cache_get(ksiginfo_cache, flags);
    428 	if (kp == NULL) {
    429 #ifdef DIAGNOSTIC
    430 		printf("Out of memory allocating ksiginfo for pid %d\n",
    431 		    p->p_pid);
    432 #endif
    433 		return NULL;
    434 	}
    435 
    436 	if (ok != NULL) {
    437 		memcpy(kp, ok, sizeof(*kp));
    438 		kp->ksi_flags &= ~KSI_QUEUED;
    439 	} else
    440 		KSI_INIT_EMPTY(kp);
    441 
    442 	kp->ksi_flags |= KSI_FROMPOOL;
    443 
    444 	return kp;
    445 }
    446 
    447 /*
    448  * ksiginfo_free:
    449  *
    450  *	If the given ksiginfo_t is from the pool and has not been queued,
    451  *	then free it.
    452  */
    453 void
    454 ksiginfo_free(ksiginfo_t *kp)
    455 {
    456 
    457 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    458 		return;
    459 	pool_cache_put(ksiginfo_cache, kp);
    460 }
    461 
    462 /*
    463  * ksiginfo_queue_drain:
    464  *
    465  *	Drain a non-empty ksiginfo_t queue.
    466  */
    467 void
    468 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    469 {
    470 	ksiginfo_t *ksi;
    471 
    472 	KASSERT(!CIRCLEQ_EMPTY(kq));
    473 
    474 	while (!CIRCLEQ_EMPTY(kq)) {
    475 		ksi = CIRCLEQ_FIRST(kq);
    476 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    477 		pool_cache_put(ksiginfo_cache, ksi);
    478 	}
    479 }
    480 
    481 /*
    482  * sigget:
    483  *
    484  *	Fetch the first pending signal from a set.  Optionally, also fetch
    485  *	or manufacture a ksiginfo element.  Returns the number of the first
    486  *	pending signal, or zero.
    487  */
    488 int
    489 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    490 {
    491         ksiginfo_t *ksi;
    492 	sigset_t tset;
    493 
    494 	/* If there's no pending set, the signal is from the debugger. */
    495 	if (sp == NULL)
    496 		goto out;
    497 
    498 	/* Construct mask from signo, and 'mask'. */
    499 	if (signo == 0) {
    500 		if (mask != NULL) {
    501 			tset = *mask;
    502 			__sigandset(&sp->sp_set, &tset);
    503 		} else
    504 			tset = sp->sp_set;
    505 
    506 		/* If there are no signals pending, that's it. */
    507 		if ((signo = firstsig(&tset)) == 0)
    508 			goto out;
    509 	} else {
    510 		KASSERT(sigismember(&sp->sp_set, signo));
    511 	}
    512 
    513 	sigdelset(&sp->sp_set, signo);
    514 
    515 	/* Find siginfo and copy it out. */
    516 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    517 		if (ksi->ksi_signo == signo) {
    518 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    519 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    520 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    521 			ksi->ksi_flags &= ~KSI_QUEUED;
    522 			if (out != NULL) {
    523 				memcpy(out, ksi, sizeof(*out));
    524 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    525 			}
    526 			ksiginfo_free(ksi);
    527 			return signo;
    528 		}
    529 	}
    530 
    531 out:
    532 	/* If there's no siginfo, then manufacture it. */
    533 	if (out != NULL) {
    534 		KSI_INIT(out);
    535 		out->ksi_info._signo = signo;
    536 		out->ksi_info._code = SI_NOINFO;
    537 	}
    538 
    539 	return signo;
    540 }
    541 
    542 /*
    543  * sigput:
    544  *
    545  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    546  *	we need to (e.g. SA_SIGINFO was requested).
    547  */
    548 void
    549 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    550 {
    551 	ksiginfo_t *kp;
    552 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    553 
    554 	KASSERT(mutex_owned(p->p_lock));
    555 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    556 
    557 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    558 
    559 	/*
    560 	 * If there is no siginfo, or is not required (and we don't add
    561 	 * it for the benefit of ktrace, we are done).
    562 	 */
    563 	if (KSI_EMPTY_P(ksi) ||
    564 	    (!KTRPOINT(p, KTR_PSIG) && (sa->sa_flags & SA_SIGINFO) == 0))
    565 		return;
    566 
    567 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    568 
    569 #ifdef notyet	/* XXX: QUEUING */
    570 	if (ksi->ksi_signo < SIGRTMIN)
    571 #endif
    572 	{
    573 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    574 			if (kp->ksi_signo == ksi->ksi_signo) {
    575 				KSI_COPY(ksi, kp);
    576 				kp->ksi_flags |= KSI_QUEUED;
    577 				return;
    578 			}
    579 		}
    580 	}
    581 
    582 	ksi->ksi_flags |= KSI_QUEUED;
    583 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    584 }
    585 
    586 /*
    587  * sigclear:
    588  *
    589  *	Clear all pending signals in the specified set.
    590  */
    591 void
    592 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    593 {
    594 	ksiginfo_t *ksi, *next;
    595 
    596 	if (mask == NULL)
    597 		sigemptyset(&sp->sp_set);
    598 	else
    599 		sigminusset(mask, &sp->sp_set);
    600 
    601 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    602 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    603 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    604 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    605 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    606 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    607 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    608 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    609 		}
    610 	}
    611 }
    612 
    613 /*
    614  * sigclearall:
    615  *
    616  *	Clear all pending signals in the specified set from a process and
    617  *	its LWPs.
    618  */
    619 void
    620 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    621 {
    622 	struct lwp *l;
    623 
    624 	KASSERT(mutex_owned(p->p_lock));
    625 
    626 	sigclear(&p->p_sigpend, mask, kq);
    627 
    628 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    629 		sigclear(&l->l_sigpend, mask, kq);
    630 	}
    631 }
    632 
    633 /*
    634  * sigispending:
    635  *
    636  *	Return true if there are pending signals for the current LWP.  May
    637  *	be called unlocked provided that LW_PENDSIG is set, and that the
    638  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    639  *	set.
    640  */
    641 int
    642 sigispending(struct lwp *l, int signo)
    643 {
    644 	struct proc *p = l->l_proc;
    645 	sigset_t tset;
    646 
    647 	membar_consumer();
    648 
    649 	tset = l->l_sigpend.sp_set;
    650 	sigplusset(&p->p_sigpend.sp_set, &tset);
    651 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    652 	sigminusset(&l->l_sigmask, &tset);
    653 
    654 	if (signo == 0) {
    655 		if (firstsig(&tset) != 0)
    656 			return EINTR;
    657 	} else if (sigismember(&tset, signo))
    658 		return EINTR;
    659 
    660 	return 0;
    661 }
    662 
    663 /*
    664  * siginfo_alloc:
    665  *
    666  *	 Allocate a new siginfo_t structure from the pool.
    667  */
    668 siginfo_t *
    669 siginfo_alloc(int flags)
    670 {
    671 
    672 	return pool_cache_get(siginfo_cache, flags);
    673 }
    674 
    675 /*
    676  * siginfo_free:
    677  *
    678  *	 Return a siginfo_t structure to the pool.
    679  */
    680 void
    681 siginfo_free(void *arg)
    682 {
    683 
    684 	pool_cache_put(siginfo_cache, arg);
    685 }
    686 
    687 void
    688 getucontext(struct lwp *l, ucontext_t *ucp)
    689 {
    690 	struct proc *p = l->l_proc;
    691 
    692 	KASSERT(mutex_owned(p->p_lock));
    693 
    694 	ucp->uc_flags = 0;
    695 	ucp->uc_link = l->l_ctxlink;
    696 
    697 	ucp->uc_sigmask = l->l_sigmask;
    698 	ucp->uc_flags |= _UC_SIGMASK;
    699 
    700 	/*
    701 	 * The (unsupplied) definition of the `current execution stack'
    702 	 * in the System V Interface Definition appears to allow returning
    703 	 * the main context stack.
    704 	 */
    705 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    706 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    707 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    708 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    709 	} else {
    710 		/* Simply copy alternate signal execution stack. */
    711 		ucp->uc_stack = l->l_sigstk;
    712 	}
    713 	ucp->uc_flags |= _UC_STACK;
    714 	mutex_exit(p->p_lock);
    715 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    716 	mutex_enter(p->p_lock);
    717 }
    718 
    719 int
    720 setucontext(struct lwp *l, const ucontext_t *ucp)
    721 {
    722 	struct proc *p = l->l_proc;
    723 	int error;
    724 
    725 	KASSERT(mutex_owned(p->p_lock));
    726 
    727 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    728 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    729 		if (error != 0)
    730 			return error;
    731 	}
    732 
    733 	mutex_exit(p->p_lock);
    734 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    735 	mutex_enter(p->p_lock);
    736 	if (error != 0)
    737 		return (error);
    738 
    739 	l->l_ctxlink = ucp->uc_link;
    740 
    741 	/*
    742 	 * If there was stack information, update whether or not we are
    743 	 * still running on an alternate signal stack.
    744 	 */
    745 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    746 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    747 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    748 		else
    749 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    750 	}
    751 
    752 	return 0;
    753 }
    754 
    755 /*
    756  * Common code for kill process group/broadcast kill.  cp is calling
    757  * process.
    758  */
    759 int
    760 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    761 {
    762 	struct proc	*p, *cp;
    763 	kauth_cred_t	pc;
    764 	struct pgrp	*pgrp;
    765 	int		nfound;
    766 	int		signo = ksi->ksi_signo;
    767 
    768 	cp = l->l_proc;
    769 	pc = l->l_cred;
    770 	nfound = 0;
    771 
    772 	mutex_enter(proc_lock);
    773 	if (all) {
    774 		/*
    775 		 * broadcast
    776 		 */
    777 		PROCLIST_FOREACH(p, &allproc) {
    778 			if (p->p_pid <= 1 || p == cp ||
    779 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
    780 				continue;
    781 			mutex_enter(p->p_lock);
    782 			if (kauth_authorize_process(pc,
    783 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    784 			    NULL) == 0) {
    785 				nfound++;
    786 				if (signo)
    787 					kpsignal2(p, ksi);
    788 			}
    789 			mutex_exit(p->p_lock);
    790 		}
    791 	} else {
    792 		if (pgid == 0)
    793 			/*
    794 			 * zero pgid means send to my process group.
    795 			 */
    796 			pgrp = cp->p_pgrp;
    797 		else {
    798 			pgrp = pg_find(pgid, PFIND_LOCKED);
    799 			if (pgrp == NULL)
    800 				goto out;
    801 		}
    802 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    803 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    804 				continue;
    805 			mutex_enter(p->p_lock);
    806 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    807 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    808 				nfound++;
    809 				if (signo && P_ZOMBIE(p) == 0)
    810 					kpsignal2(p, ksi);
    811 			}
    812 			mutex_exit(p->p_lock);
    813 		}
    814 	}
    815   out:
    816 	mutex_exit(proc_lock);
    817 	return (nfound ? 0 : ESRCH);
    818 }
    819 
    820 /*
    821  * Send a signal to a process group. If checktty is 1, limit to members
    822  * which have a controlling terminal.
    823  */
    824 void
    825 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    826 {
    827 	ksiginfo_t ksi;
    828 
    829 	KASSERT(!cpu_intr_p());
    830 	KASSERT(mutex_owned(proc_lock));
    831 
    832 	KSI_INIT_EMPTY(&ksi);
    833 	ksi.ksi_signo = sig;
    834 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    835 }
    836 
    837 void
    838 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    839 {
    840 	struct proc *p;
    841 
    842 	KASSERT(!cpu_intr_p());
    843 	KASSERT(mutex_owned(proc_lock));
    844 
    845 	if (pgrp)
    846 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    847 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    848 				kpsignal(p, ksi, data);
    849 }
    850 
    851 /*
    852  * Send a signal caused by a trap to the current LWP.  If it will be caught
    853  * immediately, deliver it with correct code.  Otherwise, post it normally.
    854  */
    855 void
    856 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    857 {
    858 	struct proc	*p;
    859 	struct sigacts	*ps;
    860 	int signo = ksi->ksi_signo;
    861 
    862 	KASSERT(KSI_TRAP_P(ksi));
    863 
    864 	ksi->ksi_lid = l->l_lid;
    865 	p = l->l_proc;
    866 
    867 	KASSERT(!cpu_intr_p());
    868 	mutex_enter(proc_lock);
    869 	mutex_enter(p->p_lock);
    870 	ps = p->p_sigacts;
    871 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    872 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    873 	    !sigismember(&l->l_sigmask, signo)) {
    874 		mutex_exit(proc_lock);
    875 		l->l_ru.ru_nsignals++;
    876 		kpsendsig(l, ksi, &l->l_sigmask);
    877 		mutex_exit(p->p_lock);
    878 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    879 		    &l->l_sigmask, ksi);
    880 	} else {
    881 		/* XXX for core dump/debugger */
    882 		p->p_sigctx.ps_lwp = l->l_lid;
    883 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    884 		p->p_sigctx.ps_code = ksi->ksi_trap;
    885 		kpsignal2(p, ksi);
    886 		mutex_exit(p->p_lock);
    887 		mutex_exit(proc_lock);
    888 	}
    889 }
    890 
    891 /*
    892  * Fill in signal information and signal the parent for a child status change.
    893  */
    894 void
    895 child_psignal(struct proc *p, int mask)
    896 {
    897 	ksiginfo_t ksi;
    898 	struct proc *q;
    899 	int xstat;
    900 
    901 	KASSERT(mutex_owned(proc_lock));
    902 	KASSERT(mutex_owned(p->p_lock));
    903 
    904 	xstat = p->p_xstat;
    905 
    906 	KSI_INIT(&ksi);
    907 	ksi.ksi_signo = SIGCHLD;
    908 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    909 	ksi.ksi_pid = p->p_pid;
    910 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    911 	ksi.ksi_status = xstat;
    912 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    913 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    914 
    915 	q = p->p_pptr;
    916 
    917 	mutex_exit(p->p_lock);
    918 	mutex_enter(q->p_lock);
    919 
    920 	if ((q->p_sflag & mask) == 0)
    921 		kpsignal2(q, &ksi);
    922 
    923 	mutex_exit(q->p_lock);
    924 	mutex_enter(p->p_lock);
    925 }
    926 
    927 void
    928 psignal(struct proc *p, int signo)
    929 {
    930 	ksiginfo_t ksi;
    931 
    932 	KASSERT(!cpu_intr_p());
    933 	KASSERT(mutex_owned(proc_lock));
    934 
    935 	KSI_INIT_EMPTY(&ksi);
    936 	ksi.ksi_signo = signo;
    937 	mutex_enter(p->p_lock);
    938 	kpsignal2(p, &ksi);
    939 	mutex_exit(p->p_lock);
    940 }
    941 
    942 void
    943 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    944 {
    945 	fdfile_t *ff;
    946 	file_t *fp;
    947 
    948 	KASSERT(!cpu_intr_p());
    949 	KASSERT(mutex_owned(proc_lock));
    950 
    951 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    952 		size_t fd;
    953 		filedesc_t *fdp = p->p_fd;
    954 
    955 		/* XXXSMP locking */
    956 		ksi->ksi_fd = -1;
    957 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
    958 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
    959 				continue;
    960 			if ((fp = ff->ff_file) == NULL)
    961 				continue;
    962 			if (fp->f_data == data) {
    963 				ksi->ksi_fd = fd;
    964 				break;
    965 			}
    966 		}
    967 	}
    968 	mutex_enter(p->p_lock);
    969 	kpsignal2(p, ksi);
    970 	mutex_exit(p->p_lock);
    971 }
    972 
    973 /*
    974  * sigismasked:
    975  *
    976  *	 Returns true if signal is ignored or masked for the specified LWP.
    977  */
    978 int
    979 sigismasked(struct lwp *l, int sig)
    980 {
    981 	struct proc *p = l->l_proc;
    982 
    983 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
    984 	    sigismember(&l->l_sigmask, sig));
    985 }
    986 
    987 /*
    988  * sigpost:
    989  *
    990  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
    991  *	 able to take the signal.
    992  */
    993 int
    994 sigpost(struct lwp *l, sig_t action, int prop, int sig)
    995 {
    996 	int rv, masked;
    997 
    998 	KASSERT(mutex_owned(l->l_proc->p_lock));
    999 
   1000 	/*
   1001 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1002 	 * pending signals.  Don't give it more.
   1003 	 */
   1004 	if (l->l_refcnt == 0)
   1005 		return 0;
   1006 
   1007 	lwp_lock(l);
   1008 
   1009 	/*
   1010 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1011 	 * is found to take the signal immediately, it should be taken soon.
   1012 	 */
   1013 	l->l_flag |= LW_PENDSIG;
   1014 
   1015 	/*
   1016 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1017 	 */
   1018 	masked = sigismember(&l->l_sigmask, sig);
   1019 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1020 		lwp_unlock(l);
   1021 		return 0;
   1022 	}
   1023 
   1024 	/*
   1025 	 * If killing the process, make it run fast.
   1026 	 */
   1027 	if (__predict_false((prop & SA_KILL) != 0) &&
   1028 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1029 		KASSERT(l->l_class == SCHED_OTHER);
   1030 		lwp_changepri(l, MAXPRI_USER);
   1031 	}
   1032 
   1033 	/*
   1034 	 * If the LWP is running or on a run queue, then we win.  If it's
   1035 	 * sleeping interruptably, wake it and make it take the signal.  If
   1036 	 * the sleep isn't interruptable, then the chances are it will get
   1037 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1038 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1039 	 * for later; otherwise punt.
   1040 	 */
   1041 	rv = 0;
   1042 
   1043 	switch (l->l_stat) {
   1044 	case LSRUN:
   1045 	case LSONPROC:
   1046 		lwp_need_userret(l);
   1047 		rv = 1;
   1048 		break;
   1049 
   1050 	case LSSLEEP:
   1051 		if ((l->l_flag & LW_SINTR) != 0) {
   1052 			/* setrunnable() will release the lock. */
   1053 			setrunnable(l);
   1054 			return 1;
   1055 		}
   1056 		break;
   1057 
   1058 	case LSSUSPENDED:
   1059 		if ((prop & SA_KILL) != 0) {
   1060 			/* lwp_continue() will release the lock. */
   1061 			lwp_continue(l);
   1062 			return 1;
   1063 		}
   1064 		break;
   1065 
   1066 	case LSSTOP:
   1067 		if ((prop & SA_STOP) != 0)
   1068 			break;
   1069 
   1070 		/*
   1071 		 * If the LWP is stopped and we are sending a continue
   1072 		 * signal, then start it again.
   1073 		 */
   1074 		if ((prop & SA_CONT) != 0) {
   1075 			if (l->l_wchan != NULL) {
   1076 				l->l_stat = LSSLEEP;
   1077 				l->l_proc->p_nrlwps++;
   1078 				rv = 1;
   1079 				break;
   1080 			}
   1081 			/* setrunnable() will release the lock. */
   1082 			setrunnable(l);
   1083 			return 1;
   1084 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1085 			/* setrunnable() will release the lock. */
   1086 			setrunnable(l);
   1087 			return 1;
   1088 		}
   1089 		break;
   1090 
   1091 	default:
   1092 		break;
   1093 	}
   1094 
   1095 	lwp_unlock(l);
   1096 	return rv;
   1097 }
   1098 
   1099 /*
   1100  * Notify an LWP that it has a pending signal.
   1101  */
   1102 void
   1103 signotify(struct lwp *l)
   1104 {
   1105 	KASSERT(lwp_locked(l, NULL));
   1106 
   1107 	l->l_flag |= LW_PENDSIG;
   1108 	lwp_need_userret(l);
   1109 }
   1110 
   1111 /*
   1112  * Find an LWP within process p that is waiting on signal ksi, and hand
   1113  * it on.
   1114  */
   1115 int
   1116 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1117 {
   1118 	struct lwp *l;
   1119 	int signo;
   1120 
   1121 	KASSERT(mutex_owned(p->p_lock));
   1122 
   1123 	signo = ksi->ksi_signo;
   1124 
   1125 	if (ksi->ksi_lid != 0) {
   1126 		/*
   1127 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1128 		 * it's interested.
   1129 		 */
   1130 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1131 			return 0;
   1132 		if (l->l_sigwaited == NULL ||
   1133 		    !sigismember(&l->l_sigwaitset, signo))
   1134 			return 0;
   1135 	} else {
   1136 		/*
   1137 		 * Look for any LWP that may be interested.
   1138 		 */
   1139 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1140 			KASSERT(l->l_sigwaited != NULL);
   1141 			if (sigismember(&l->l_sigwaitset, signo))
   1142 				break;
   1143 		}
   1144 	}
   1145 
   1146 	if (l != NULL) {
   1147 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1148 		l->l_sigwaited = NULL;
   1149 		LIST_REMOVE(l, l_sigwaiter);
   1150 		cv_signal(&l->l_sigcv);
   1151 		return 1;
   1152 	}
   1153 
   1154 	return 0;
   1155 }
   1156 
   1157 /*
   1158  * Send the signal to the process.  If the signal has an action, the action
   1159  * is usually performed by the target process rather than the caller; we add
   1160  * the signal to the set of pending signals for the process.
   1161  *
   1162  * Exceptions:
   1163  *   o When a stop signal is sent to a sleeping process that takes the
   1164  *     default action, the process is stopped without awakening it.
   1165  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1166  *     regardless of the signal action (eg, blocked or ignored).
   1167  *
   1168  * Other ignored signals are discarded immediately.
   1169  */
   1170 void
   1171 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1172 {
   1173 	int prop, lid, toall, signo = ksi->ksi_signo;
   1174 	struct sigacts *sa;
   1175 	struct lwp *l;
   1176 	ksiginfo_t *kp;
   1177 	ksiginfoq_t kq;
   1178 	sig_t action;
   1179 
   1180 	KASSERT(!cpu_intr_p());
   1181 	KASSERT(mutex_owned(proc_lock));
   1182 	KASSERT(mutex_owned(p->p_lock));
   1183 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1184 	KASSERT(signo > 0 && signo < NSIG);
   1185 
   1186 	/*
   1187 	 * If the process is being created by fork, is a zombie or is
   1188 	 * exiting, then just drop the signal here and bail out.
   1189 	 */
   1190 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1191 		return;
   1192 
   1193 	/*
   1194 	 * Notify any interested parties of the signal.
   1195 	 */
   1196 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1197 
   1198 	/*
   1199 	 * Some signals including SIGKILL must act on the entire process.
   1200 	 */
   1201 	kp = NULL;
   1202 	prop = sigprop[signo];
   1203 	toall = ((prop & SA_TOALL) != 0);
   1204 
   1205 	if (toall)
   1206 		lid = 0;
   1207 	else
   1208 		lid = ksi->ksi_lid;
   1209 
   1210 	/*
   1211 	 * If proc is traced, always give parent a chance.
   1212 	 */
   1213 	if (p->p_slflag & PSL_TRACED) {
   1214 		action = SIG_DFL;
   1215 
   1216 		if (lid == 0) {
   1217 			/*
   1218 			 * If the process is being traced and the signal
   1219 			 * is being caught, make sure to save any ksiginfo.
   1220 			 */
   1221 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1222 				return;
   1223 			sigput(&p->p_sigpend, p, kp);
   1224 		}
   1225 	} else {
   1226 		/*
   1227 		 * If the signal was the result of a trap and is not being
   1228 		 * caught, then reset it to default action so that the
   1229 		 * process dumps core immediately.
   1230 		 */
   1231 		if (KSI_TRAP_P(ksi)) {
   1232 			sa = p->p_sigacts;
   1233 			mutex_enter(&sa->sa_mutex);
   1234 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1235 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1236 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1237 			}
   1238 			mutex_exit(&sa->sa_mutex);
   1239 		}
   1240 
   1241 		/*
   1242 		 * If the signal is being ignored, then drop it.  Note: we
   1243 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1244 		 * SIG_IGN, action will be SIG_DFL here.
   1245 		 */
   1246 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1247 			return;
   1248 
   1249 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1250 			action = SIG_CATCH;
   1251 		else {
   1252 			action = SIG_DFL;
   1253 
   1254 			/*
   1255 			 * If sending a tty stop signal to a member of an
   1256 			 * orphaned process group, discard the signal here if
   1257 			 * the action is default; don't stop the process below
   1258 			 * if sleeping, and don't clear any pending SIGCONT.
   1259 			 */
   1260 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1261 				return;
   1262 
   1263 			if (prop & SA_KILL && p->p_nice > NZERO)
   1264 				p->p_nice = NZERO;
   1265 		}
   1266 	}
   1267 
   1268 	/*
   1269 	 * If stopping or continuing a process, discard any pending
   1270 	 * signals that would do the inverse.
   1271 	 */
   1272 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1273 		ksiginfo_queue_init(&kq);
   1274 		if ((prop & SA_CONT) != 0)
   1275 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1276 		if ((prop & SA_STOP) != 0)
   1277 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1278 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1279 	}
   1280 
   1281 	/*
   1282 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1283 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1284 	 * the signal info.  The signal won't be processed further here.
   1285 	 */
   1286 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1287 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1288 	    sigunwait(p, ksi))
   1289 		return;
   1290 
   1291 	/*
   1292 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1293 	 * here.
   1294 	 */
   1295 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1296 		return;
   1297 
   1298 	/*
   1299 	 * LWP private signals are easy - just find the LWP and post
   1300 	 * the signal to it.
   1301 	 */
   1302 	if (lid != 0) {
   1303 		l = lwp_find(p, lid);
   1304 		if (l != NULL) {
   1305 			sigput(&l->l_sigpend, p, kp);
   1306 			membar_producer();
   1307 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1308 		}
   1309 		goto out;
   1310 	}
   1311 
   1312 	/*
   1313 	 * Some signals go to all LWPs, even if posted with _lwp_kill().
   1314 	 */
   1315 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1316 		if ((p->p_slflag & PSL_TRACED) != 0)
   1317 			goto deliver;
   1318 
   1319 		/*
   1320 		 * If SIGCONT is default (or ignored) and process is
   1321 		 * asleep, we are finished; the process should not
   1322 		 * be awakened.
   1323 		 */
   1324 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1325 			goto out;
   1326 
   1327 		sigput(&p->p_sigpend, p, kp);
   1328 	} else {
   1329 		/*
   1330 		 * Process is stopped or stopping.  If traced, then no
   1331 		 * further action is necessary.
   1332 		 */
   1333 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1334 			goto out;
   1335 
   1336 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1337 			/*
   1338 			 * Re-adjust p_nstopchild if the process wasn't
   1339 			 * collected by its parent.
   1340 			 */
   1341 			p->p_stat = SACTIVE;
   1342 			p->p_sflag &= ~PS_STOPPING;
   1343 			if (!p->p_waited)
   1344 				p->p_pptr->p_nstopchild--;
   1345 
   1346 			/*
   1347 			 * If SIGCONT is default (or ignored), we continue
   1348 			 * the process but don't leave the signal in
   1349 			 * ps_siglist, as it has no further action.  If
   1350 			 * SIGCONT is held, we continue the process and
   1351 			 * leave the signal in ps_siglist.  If the process
   1352 			 * catches SIGCONT, let it handle the signal itself.
   1353 			 * If it isn't waiting on an event, then it goes
   1354 			 * back to run state.  Otherwise, process goes back
   1355 			 * to sleep state.
   1356 			 */
   1357 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1358 				sigput(&p->p_sigpend, p, kp);
   1359 		} else if ((prop & SA_STOP) != 0) {
   1360 			/*
   1361 			 * Already stopped, don't need to stop again.
   1362 			 * (If we did the shell could get confused.)
   1363 			 */
   1364 			goto out;
   1365 		} else
   1366 			sigput(&p->p_sigpend, p, kp);
   1367 	}
   1368 
   1369  deliver:
   1370 	/*
   1371 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1372 	 * visible on the per process list (for sigispending()).  This
   1373 	 * is unlikely to be needed in practice, but...
   1374 	 */
   1375 	membar_producer();
   1376 
   1377 	/*
   1378 	 * Try to find an LWP that can take the signal.
   1379 	 */
   1380 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1381 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1382 			break;
   1383 
   1384  out:
   1385  	/*
   1386  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1387  	 * with locks held.  The caller should take care of this.
   1388  	 */
   1389  	ksiginfo_free(kp);
   1390 }
   1391 
   1392 void
   1393 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1394 {
   1395 	struct proc *p = l->l_proc;
   1396 
   1397 	KASSERT(mutex_owned(p->p_lock));
   1398 
   1399 	(*p->p_emul->e_sendsig)(ksi, mask);
   1400 }
   1401 
   1402 /*
   1403  * Stop any LWPs sleeping interruptably.
   1404  */
   1405 static void
   1406 proc_stop_lwps(struct proc *p)
   1407 {
   1408 	struct lwp *l;
   1409 
   1410 	KASSERT(mutex_owned(p->p_lock));
   1411 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1412 
   1413 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1414 		lwp_lock(l);
   1415 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1416 			l->l_stat = LSSTOP;
   1417 			p->p_nrlwps--;
   1418 		}
   1419 		lwp_unlock(l);
   1420 	}
   1421 }
   1422 
   1423 /*
   1424  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1425  *
   1426  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1427  */
   1428 static void
   1429 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1430 {
   1431 
   1432 	KASSERT(mutex_owned(proc_lock));
   1433 	KASSERT(mutex_owned(p->p_lock));
   1434 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1435 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1436 
   1437 	p->p_sflag &= ~PS_STOPPING;
   1438 	p->p_stat = SSTOP;
   1439 	p->p_waited = 0;
   1440 	p->p_pptr->p_nstopchild++;
   1441 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1442 		if (ppsig) {
   1443 			/* child_psignal drops p_lock briefly. */
   1444 			child_psignal(p, ppmask);
   1445 		}
   1446 		cv_broadcast(&p->p_pptr->p_waitcv);
   1447 	}
   1448 }
   1449 
   1450 /*
   1451  * Stop the current process and switch away when being stopped or traced.
   1452  */
   1453 void
   1454 sigswitch(bool ppsig, int ppmask, int signo)
   1455 {
   1456 	struct lwp *l = curlwp;
   1457 	struct proc *p = l->l_proc;
   1458 	int biglocks;
   1459 
   1460 	KASSERT(mutex_owned(p->p_lock));
   1461 	KASSERT(l->l_stat == LSONPROC);
   1462 	KASSERT(p->p_nrlwps > 0);
   1463 
   1464 	/*
   1465 	 * On entry we know that the process needs to stop.  If it's
   1466 	 * the result of a 'sideways' stop signal that has been sourced
   1467 	 * through issignal(), then stop other LWPs in the process too.
   1468 	 */
   1469 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1470 		KASSERT(signo != 0);
   1471 		proc_stop(p, 1, signo);
   1472 		KASSERT(p->p_nrlwps > 0);
   1473 	}
   1474 
   1475 	/*
   1476 	 * If we are the last live LWP, and the stop was a result of
   1477 	 * a new signal, then signal the parent.
   1478 	 */
   1479 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1480 		if (!mutex_tryenter(proc_lock)) {
   1481 			mutex_exit(p->p_lock);
   1482 			mutex_enter(proc_lock);
   1483 			mutex_enter(p->p_lock);
   1484 		}
   1485 
   1486 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1487 			/*
   1488 			 * Note that proc_stop_done() can drop
   1489 			 * p->p_lock briefly.
   1490 			 */
   1491 			proc_stop_done(p, ppsig, ppmask);
   1492 		}
   1493 
   1494 		mutex_exit(proc_lock);
   1495 	}
   1496 
   1497 	/*
   1498 	 * Unlock and switch away.
   1499 	 */
   1500 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1501 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1502 		p->p_nrlwps--;
   1503 		lwp_lock(l);
   1504 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1505 		l->l_stat = LSSTOP;
   1506 		lwp_unlock(l);
   1507 	}
   1508 
   1509 	mutex_exit(p->p_lock);
   1510 	lwp_lock(l);
   1511 	mi_switch(l);
   1512 	KERNEL_LOCK(biglocks, l);
   1513 	mutex_enter(p->p_lock);
   1514 }
   1515 
   1516 /*
   1517  * Check for a signal from the debugger.
   1518  */
   1519 int
   1520 sigchecktrace(sigpend_t **spp)
   1521 {
   1522 	struct lwp *l = curlwp;
   1523 	struct proc *p = l->l_proc;
   1524 	int signo;
   1525 
   1526 	KASSERT(mutex_owned(p->p_lock));
   1527 
   1528 	/*
   1529 	 * If we are no longer being traced, or the parent didn't
   1530 	 * give us a signal, look for more signals.
   1531 	 */
   1532 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1533 		return 0;
   1534 
   1535 	/* If there's a pending SIGKILL, process it immediately. */
   1536 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1537 		return 0;
   1538 
   1539 	/*
   1540 	 * If the new signal is being masked, look for other signals.
   1541 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1542 	 */
   1543 	signo = p->p_xstat;
   1544 	p->p_xstat = 0;
   1545 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1546 		*spp = &l->l_sigpend;
   1547 	else
   1548 		*spp = &p->p_sigpend;
   1549 	if (sigismember(&l->l_sigmask, signo))
   1550 		signo = 0;
   1551 
   1552 	return signo;
   1553 }
   1554 
   1555 /*
   1556  * If the current process has received a signal (should be caught or cause
   1557  * termination, should interrupt current syscall), return the signal number.
   1558  *
   1559  * Stop signals with default action are processed immediately, then cleared;
   1560  * they aren't returned.  This is checked after each entry to the system for
   1561  * a syscall or trap.
   1562  *
   1563  * We will also return -1 if the process is exiting and the current LWP must
   1564  * follow suit.
   1565  *
   1566  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1567  * can switch away, though.
   1568  */
   1569 int
   1570 issignal(struct lwp *l)
   1571 {
   1572 	struct proc *p = l->l_proc;
   1573 	int signo = 0, prop;
   1574 	sigpend_t *sp = NULL;
   1575 	sigset_t ss;
   1576 
   1577 	KASSERT(mutex_owned(p->p_lock));
   1578 
   1579 	for (;;) {
   1580 		/* Discard any signals that we have decided not to take. */
   1581 		if (signo != 0)
   1582 			(void)sigget(sp, NULL, signo, NULL);
   1583 
   1584 		/*
   1585 		 * If the process is stopped/stopping, then stop ourselves
   1586 		 * now that we're on the kernel/userspace boundary.  When
   1587 		 * we awaken, check for a signal from the debugger.
   1588 		 */
   1589 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1590 			sigswitch(true, PS_NOCLDSTOP, 0);
   1591 			signo = sigchecktrace(&sp);
   1592 		} else
   1593 			signo = 0;
   1594 
   1595 		/*
   1596 		 * If the debugger didn't provide a signal, find a pending
   1597 		 * signal from our set.  Check per-LWP signals first, and
   1598 		 * then per-process.
   1599 		 */
   1600 		if (signo == 0) {
   1601 			sp = &l->l_sigpend;
   1602 			ss = sp->sp_set;
   1603 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1604 				sigminusset(&stopsigmask, &ss);
   1605 			sigminusset(&l->l_sigmask, &ss);
   1606 
   1607 			if ((signo = firstsig(&ss)) == 0) {
   1608 				sp = &p->p_sigpend;
   1609 				ss = sp->sp_set;
   1610 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1611 					sigminusset(&stopsigmask, &ss);
   1612 				sigminusset(&l->l_sigmask, &ss);
   1613 
   1614 				if ((signo = firstsig(&ss)) == 0) {
   1615 					/*
   1616 					 * No signal pending - clear the
   1617 					 * indicator and bail out.
   1618 					 */
   1619 					lwp_lock(l);
   1620 					l->l_flag &= ~LW_PENDSIG;
   1621 					lwp_unlock(l);
   1622 					sp = NULL;
   1623 					break;
   1624 				}
   1625 			}
   1626 		}
   1627 
   1628 		/*
   1629 		 * We should see pending but ignored signals only if
   1630 		 * we are being traced.
   1631 		 */
   1632 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1633 		    (p->p_slflag & PSL_TRACED) == 0) {
   1634 			/* Discard the signal. */
   1635 			continue;
   1636 		}
   1637 
   1638 		/*
   1639 		 * If traced, always stop, and stay stopped until released
   1640 		 * by the debugger.  If the our parent process is waiting
   1641 		 * for us, don't hang as we could deadlock.
   1642 		 */
   1643 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1644 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1645 			/* Take the signal. */
   1646 			(void)sigget(sp, NULL, signo, NULL);
   1647 			p->p_xstat = signo;
   1648 
   1649 			/* Emulation-specific handling of signal trace */
   1650 			if (p->p_emul->e_tracesig == NULL ||
   1651 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1652 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1653 				    signo);
   1654 
   1655 			/* Check for a signal from the debugger. */
   1656 			if ((signo = sigchecktrace(&sp)) == 0)
   1657 				continue;
   1658 		}
   1659 
   1660 		prop = sigprop[signo];
   1661 
   1662 		/*
   1663 		 * Decide whether the signal should be returned.
   1664 		 */
   1665 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1666 		case (long)SIG_DFL:
   1667 			/*
   1668 			 * Don't take default actions on system processes.
   1669 			 */
   1670 			if (p->p_pid <= 1) {
   1671 #ifdef DIAGNOSTIC
   1672 				/*
   1673 				 * Are you sure you want to ignore SIGSEGV
   1674 				 * in init? XXX
   1675 				 */
   1676 				printf_nolog("Process (pid %d) got sig %d\n",
   1677 				    p->p_pid, signo);
   1678 #endif
   1679 				continue;
   1680 			}
   1681 
   1682 			/*
   1683 			 * If there is a pending stop signal to process with
   1684 			 * default action, stop here, then clear the signal.
   1685 			 * However, if process is member of an orphaned
   1686 			 * process group, ignore tty stop signals.
   1687 			 */
   1688 			if (prop & SA_STOP) {
   1689 				/*
   1690 				 * XXX Don't hold proc_lock for p_lflag,
   1691 				 * but it's not a big deal.
   1692 				 */
   1693 				if (p->p_slflag & PSL_TRACED ||
   1694 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1695 				    prop & SA_TTYSTOP)) {
   1696 				    	/* Ignore the signal. */
   1697 					continue;
   1698 				}
   1699 				/* Take the signal. */
   1700 				(void)sigget(sp, NULL, signo, NULL);
   1701 				p->p_xstat = signo;
   1702 				signo = 0;
   1703 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1704 			} else if (prop & SA_IGNORE) {
   1705 				/*
   1706 				 * Except for SIGCONT, shouldn't get here.
   1707 				 * Default action is to ignore; drop it.
   1708 				 */
   1709 				continue;
   1710 			}
   1711 			break;
   1712 
   1713 		case (long)SIG_IGN:
   1714 #ifdef DEBUG_ISSIGNAL
   1715 			/*
   1716 			 * Masking above should prevent us ever trying
   1717 			 * to take action on an ignored signal other
   1718 			 * than SIGCONT, unless process is traced.
   1719 			 */
   1720 			if ((prop & SA_CONT) == 0 &&
   1721 			    (p->p_slflag & PSL_TRACED) == 0)
   1722 				printf_nolog("issignal\n");
   1723 #endif
   1724 			continue;
   1725 
   1726 		default:
   1727 			/*
   1728 			 * This signal has an action, let postsig() process
   1729 			 * it.
   1730 			 */
   1731 			break;
   1732 		}
   1733 
   1734 		break;
   1735 	}
   1736 
   1737 	l->l_sigpendset = sp;
   1738 	return signo;
   1739 }
   1740 
   1741 /*
   1742  * Take the action for the specified signal
   1743  * from the current set of pending signals.
   1744  */
   1745 void
   1746 postsig(int signo)
   1747 {
   1748 	struct lwp	*l;
   1749 	struct proc	*p;
   1750 	struct sigacts	*ps;
   1751 	sig_t		action;
   1752 	sigset_t	*returnmask;
   1753 	ksiginfo_t	ksi;
   1754 
   1755 	l = curlwp;
   1756 	p = l->l_proc;
   1757 	ps = p->p_sigacts;
   1758 
   1759 	KASSERT(mutex_owned(p->p_lock));
   1760 	KASSERT(signo > 0);
   1761 
   1762 	/*
   1763 	 * Set the new mask value and also defer further occurrences of this
   1764 	 * signal.
   1765 	 *
   1766 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1767 	 * not of interest, but rather the mask from before the sigsuspen is
   1768 	 * what we want restored after the signal processing is completed.
   1769 	 */
   1770 	if (l->l_sigrestore) {
   1771 		returnmask = &l->l_sigoldmask;
   1772 		l->l_sigrestore = 0;
   1773 	} else
   1774 		returnmask = &l->l_sigmask;
   1775 
   1776 	/*
   1777 	 * Commit to taking the signal before releasing the mutex.
   1778 	 */
   1779 	action = SIGACTION_PS(ps, signo).sa_handler;
   1780 	l->l_ru.ru_nsignals++;
   1781 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1782 
   1783 	if (ktrpoint(KTR_PSIG)) {
   1784 		mutex_exit(p->p_lock);
   1785 		ktrpsig(signo, action, returnmask, &ksi);
   1786 		mutex_enter(p->p_lock);
   1787 	}
   1788 
   1789 	if (action == SIG_DFL) {
   1790 		/*
   1791 		 * Default action, where the default is to kill
   1792 		 * the process.  (Other cases were ignored above.)
   1793 		 */
   1794 		sigexit(l, signo);
   1795 		return;
   1796 	}
   1797 
   1798 	/*
   1799 	 * If we get here, the signal must be caught.
   1800 	 */
   1801 #ifdef DIAGNOSTIC
   1802 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1803 		panic("postsig action");
   1804 #endif
   1805 
   1806 	kpsendsig(l, &ksi, returnmask);
   1807 }
   1808 
   1809 /*
   1810  * sendsig_reset:
   1811  *
   1812  *	Reset the signal action.  Called from emulation specific sendsig()
   1813  *	before unlocking to deliver the signal.
   1814  */
   1815 void
   1816 sendsig_reset(struct lwp *l, int signo)
   1817 {
   1818 	struct proc *p = l->l_proc;
   1819 	struct sigacts *ps = p->p_sigacts;
   1820 
   1821 	KASSERT(mutex_owned(p->p_lock));
   1822 
   1823 	p->p_sigctx.ps_lwp = 0;
   1824 	p->p_sigctx.ps_code = 0;
   1825 	p->p_sigctx.ps_signo = 0;
   1826 
   1827 	mutex_enter(&ps->sa_mutex);
   1828 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1829 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1830 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1831 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1832 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1833 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1834 	}
   1835 	mutex_exit(&ps->sa_mutex);
   1836 }
   1837 
   1838 /*
   1839  * Kill the current process for stated reason.
   1840  */
   1841 void
   1842 killproc(struct proc *p, const char *why)
   1843 {
   1844 
   1845 	KASSERT(mutex_owned(proc_lock));
   1846 
   1847 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1848 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1849 	psignal(p, SIGKILL);
   1850 }
   1851 
   1852 /*
   1853  * Force the current process to exit with the specified signal, dumping core
   1854  * if appropriate.  We bypass the normal tests for masked and caught
   1855  * signals, allowing unrecoverable failures to terminate the process without
   1856  * changing signal state.  Mark the accounting record with the signal
   1857  * termination.  If dumping core, save the signal number for the debugger.
   1858  * Calls exit and does not return.
   1859  */
   1860 void
   1861 sigexit(struct lwp *l, int signo)
   1862 {
   1863 	int exitsig, error, docore;
   1864 	struct proc *p;
   1865 	struct lwp *t;
   1866 
   1867 	p = l->l_proc;
   1868 
   1869 	KASSERT(mutex_owned(p->p_lock));
   1870 	KERNEL_UNLOCK_ALL(l, NULL);
   1871 
   1872 	/*
   1873 	 * Don't permit coredump() multiple times in the same process.
   1874 	 * Call back into sigexit, where we will be suspended until
   1875 	 * the deed is done.  Note that this is a recursive call, but
   1876 	 * LW_WCORE will prevent us from coming back this way.
   1877 	 */
   1878 	if ((p->p_sflag & PS_WCORE) != 0) {
   1879 		lwp_lock(l);
   1880 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1881 		lwp_unlock(l);
   1882 		mutex_exit(p->p_lock);
   1883 		lwp_userret(l);
   1884 		panic("sigexit 1");
   1885 		/* NOTREACHED */
   1886 	}
   1887 
   1888 	/* If process is already on the way out, then bail now. */
   1889 	if ((p->p_sflag & PS_WEXIT) != 0) {
   1890 		mutex_exit(p->p_lock);
   1891 		lwp_exit(l);
   1892 		panic("sigexit 2");
   1893 		/* NOTREACHED */
   1894 	}
   1895 
   1896 	/*
   1897 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1898 	 * so that their registers are available long enough to be dumped.
   1899  	 */
   1900 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1901 		p->p_sflag |= PS_WCORE;
   1902 		for (;;) {
   1903 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1904 				lwp_lock(t);
   1905 				if (t == l) {
   1906 					t->l_flag &= ~LW_WSUSPEND;
   1907 					lwp_unlock(t);
   1908 					continue;
   1909 				}
   1910 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1911 				lwp_suspend(l, t);
   1912 			}
   1913 
   1914 			if (p->p_nrlwps == 1)
   1915 				break;
   1916 
   1917 			/*
   1918 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   1919 			 * for everyone else to stop before proceeding.
   1920 			 */
   1921 			p->p_nlwpwait++;
   1922 			cv_broadcast(&p->p_lwpcv);
   1923 			cv_wait(&p->p_lwpcv, p->p_lock);
   1924 			p->p_nlwpwait--;
   1925 		}
   1926 	}
   1927 
   1928 	exitsig = signo;
   1929 	p->p_acflag |= AXSIG;
   1930 	p->p_sigctx.ps_signo = signo;
   1931 
   1932 	if (docore) {
   1933 		mutex_exit(p->p_lock);
   1934 		if ((error = coredump(l, NULL)) == 0)
   1935 			exitsig |= WCOREFLAG;
   1936 
   1937 		if (kern_logsigexit) {
   1938 			int uid = l->l_cred ?
   1939 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   1940 
   1941 			if (error)
   1942 				log(LOG_INFO, lognocoredump, p->p_pid,
   1943 				    p->p_comm, uid, signo, error);
   1944 			else
   1945 				log(LOG_INFO, logcoredump, p->p_pid,
   1946 				    p->p_comm, uid, signo);
   1947 		}
   1948 
   1949 #ifdef PAX_SEGVGUARD
   1950 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   1951 #endif /* PAX_SEGVGUARD */
   1952 		/* Acquire the sched state mutex.  exit1() will release it. */
   1953 		mutex_enter(p->p_lock);
   1954 	}
   1955 
   1956 	/* No longer dumping core. */
   1957 	p->p_sflag &= ~PS_WCORE;
   1958 
   1959 	exit1(l, W_EXITCODE(0, exitsig));
   1960 	/* NOTREACHED */
   1961 }
   1962 
   1963 /*
   1964  * Put process 'p' into the stopped state and optionally, notify the parent.
   1965  */
   1966 void
   1967 proc_stop(struct proc *p, int notify, int signo)
   1968 {
   1969 	struct lwp *l;
   1970 
   1971 	KASSERT(mutex_owned(p->p_lock));
   1972 
   1973 	/*
   1974 	 * First off, set the stopping indicator and bring all sleeping
   1975 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   1976 	 * unlock between here and the p->p_nrlwps check below.
   1977 	 */
   1978 	p->p_sflag |= PS_STOPPING;
   1979 	if (notify)
   1980 		p->p_sflag |= PS_NOTIFYSTOP;
   1981 	else
   1982 		p->p_sflag &= ~PS_NOTIFYSTOP;
   1983 	membar_producer();
   1984 
   1985 	proc_stop_lwps(p);
   1986 
   1987 	/*
   1988 	 * If there are no LWPs available to take the signal, then we
   1989 	 * signal the parent process immediately.  Otherwise, the last
   1990 	 * LWP to stop will take care of it.
   1991 	 */
   1992 
   1993 	if (p->p_nrlwps == 0) {
   1994 		proc_stop_done(p, true, PS_NOCLDSTOP);
   1995 	} else {
   1996 		/*
   1997 		 * Have the remaining LWPs come to a halt, and trigger
   1998 		 * proc_stop_callout() to ensure that they do.
   1999 		 */
   2000 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2001 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2002 		callout_schedule(&proc_stop_ch, 1);
   2003 	}
   2004 }
   2005 
   2006 /*
   2007  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2008  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2009  * to allow LWPs to release any locks that they may hold before stopping.
   2010  *
   2011  * Non-interruptable sleeps can be long, and there is the potential for an
   2012  * LWP to begin sleeping interruptably soon after the process has been set
   2013  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2014  * stopping, and so complete halt of the process and the return of status
   2015  * information to the parent could be delayed indefinitely.
   2016  *
   2017  * To handle this race, proc_stop_callout() runs once per tick while there
   2018  * are stopping processes in the system.  It sets LWPs that are sleeping
   2019  * interruptably into the LSSTOP state.
   2020  *
   2021  * Note that we are not concerned about keeping all LWPs stopped while the
   2022  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2023  * What we do need to ensure is that all LWPs in a stopping process have
   2024  * stopped at least once, so that notification can be sent to the parent
   2025  * process.
   2026  */
   2027 static void
   2028 proc_stop_callout(void *cookie)
   2029 {
   2030 	bool more, restart;
   2031 	struct proc *p;
   2032 
   2033 	(void)cookie;
   2034 
   2035 	do {
   2036 		restart = false;
   2037 		more = false;
   2038 
   2039 		mutex_enter(proc_lock);
   2040 		PROCLIST_FOREACH(p, &allproc) {
   2041 			if ((p->p_flag & PK_MARKER) != 0)
   2042 				continue;
   2043 			mutex_enter(p->p_lock);
   2044 
   2045 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2046 				mutex_exit(p->p_lock);
   2047 				continue;
   2048 			}
   2049 
   2050 			/* Stop any LWPs sleeping interruptably. */
   2051 			proc_stop_lwps(p);
   2052 			if (p->p_nrlwps == 0) {
   2053 				/*
   2054 				 * We brought the process to a halt.
   2055 				 * Mark it as stopped and notify the
   2056 				 * parent.
   2057 				 */
   2058 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2059 					/*
   2060 					 * Note that proc_stop_done() will
   2061 					 * drop p->p_lock briefly.
   2062 					 * Arrange to restart and check
   2063 					 * all processes again.
   2064 					 */
   2065 					restart = true;
   2066 				}
   2067 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2068 			} else
   2069 				more = true;
   2070 
   2071 			mutex_exit(p->p_lock);
   2072 			if (restart)
   2073 				break;
   2074 		}
   2075 		mutex_exit(proc_lock);
   2076 	} while (restart);
   2077 
   2078 	/*
   2079 	 * If we noted processes that are stopping but still have
   2080 	 * running LWPs, then arrange to check again in 1 tick.
   2081 	 */
   2082 	if (more)
   2083 		callout_schedule(&proc_stop_ch, 1);
   2084 }
   2085 
   2086 /*
   2087  * Given a process in state SSTOP, set the state back to SACTIVE and
   2088  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2089  */
   2090 void
   2091 proc_unstop(struct proc *p)
   2092 {
   2093 	struct lwp *l;
   2094 	int sig;
   2095 
   2096 	KASSERT(mutex_owned(proc_lock));
   2097 	KASSERT(mutex_owned(p->p_lock));
   2098 
   2099 	p->p_stat = SACTIVE;
   2100 	p->p_sflag &= ~PS_STOPPING;
   2101 	sig = p->p_xstat;
   2102 
   2103 	if (!p->p_waited)
   2104 		p->p_pptr->p_nstopchild--;
   2105 
   2106 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2107 		lwp_lock(l);
   2108 		if (l->l_stat != LSSTOP) {
   2109 			lwp_unlock(l);
   2110 			continue;
   2111 		}
   2112 		if (l->l_wchan == NULL) {
   2113 			setrunnable(l);
   2114 			continue;
   2115 		}
   2116 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2117 		        setrunnable(l);
   2118 		        sig = 0;
   2119 		} else {
   2120 			l->l_stat = LSSLEEP;
   2121 			p->p_nrlwps++;
   2122 			lwp_unlock(l);
   2123 		}
   2124 	}
   2125 }
   2126 
   2127 static int
   2128 filt_sigattach(struct knote *kn)
   2129 {
   2130 	struct proc *p = curproc;
   2131 
   2132 	kn->kn_obj = p;
   2133 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2134 
   2135 	mutex_enter(p->p_lock);
   2136 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2137 	mutex_exit(p->p_lock);
   2138 
   2139 	return (0);
   2140 }
   2141 
   2142 static void
   2143 filt_sigdetach(struct knote *kn)
   2144 {
   2145 	struct proc *p = kn->kn_obj;
   2146 
   2147 	mutex_enter(p->p_lock);
   2148 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2149 	mutex_exit(p->p_lock);
   2150 }
   2151 
   2152 /*
   2153  * signal knotes are shared with proc knotes, so we apply a mask to
   2154  * the hint in order to differentiate them from process hints.  This
   2155  * could be avoided by using a signal-specific knote list, but probably
   2156  * isn't worth the trouble.
   2157  */
   2158 static int
   2159 filt_signal(struct knote *kn, long hint)
   2160 {
   2161 
   2162 	if (hint & NOTE_SIGNAL) {
   2163 		hint &= ~NOTE_SIGNAL;
   2164 
   2165 		if (kn->kn_id == hint)
   2166 			kn->kn_data++;
   2167 	}
   2168 	return (kn->kn_data != 0);
   2169 }
   2170 
   2171 const struct filterops sig_filtops = {
   2172 	0, filt_sigattach, filt_sigdetach, filt_signal
   2173 };
   2174