Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.288
      1 /*	$NetBSD: kern_sig.c,v 1.288 2008/10/15 06:51:20 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.288 2008/10/15 06:51:20 wrstuden Exp $");
     70 
     71 #include "opt_ptrace.h"
     72 #include "opt_compat_sunos.h"
     73 #include "opt_compat_netbsd.h"
     74 #include "opt_compat_netbsd32.h"
     75 #include "opt_pax.h"
     76 #include "opt_sa.h"
     77 
     78 #define	SIGPROP		/* include signal properties table */
     79 #include <sys/param.h>
     80 #include <sys/signalvar.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/wait.h>
     84 #include <sys/ktrace.h>
     85 #include <sys/syslog.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/file.h>
     88 #include <sys/malloc.h>
     89 #include <sys/pool.h>
     90 #include <sys/ucontext.h>
     91 #include <sys/sa.h>
     92 #include <sys/savar.h>
     93 #include <sys/exec.h>
     94 #include <sys/kauth.h>
     95 #include <sys/acct.h>
     96 #include <sys/callout.h>
     97 #include <sys/atomic.h>
     98 #include <sys/cpu.h>
     99 
    100 #ifdef PAX_SEGVGUARD
    101 #include <sys/pax.h>
    102 #endif /* PAX_SEGVGUARD */
    103 
    104 #include <uvm/uvm.h>
    105 #include <uvm/uvm_extern.h>
    106 
    107 static void	ksiginfo_exechook(struct proc *, void *);
    108 static void	proc_stop_callout(void *);
    109 
    110 int	sigunwait(struct proc *, const ksiginfo_t *);
    111 void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    112 int	sigpost(struct lwp *, sig_t, int, int, int);
    113 int	sigchecktrace(sigpend_t **);
    114 void	sigswitch(bool, int, int);
    115 void	sigrealloc(ksiginfo_t *);
    116 
    117 sigset_t	contsigmask, stopsigmask, sigcantmask;
    118 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    119 static void	sigacts_poolpage_free(struct pool *, void *);
    120 static void	*sigacts_poolpage_alloc(struct pool *, int);
    121 static callout_t proc_stop_ch;
    122 static pool_cache_t siginfo_cache;
    123 static pool_cache_t ksiginfo_cache;
    124 
    125 static struct pool_allocator sigactspool_allocator = {
    126         .pa_alloc = sigacts_poolpage_alloc,
    127 	.pa_free = sigacts_poolpage_free,
    128 };
    129 
    130 #ifdef DEBUG
    131 int	kern_logsigexit = 1;
    132 #else
    133 int	kern_logsigexit = 0;
    134 #endif
    135 
    136 static	const char logcoredump[] =
    137     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    138 static	const char lognocoredump[] =
    139     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    140 
    141 /*
    142  * signal_init:
    143  *
    144  * 	Initialize global signal-related data structures.
    145  */
    146 void
    147 signal_init(void)
    148 {
    149 
    150 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    151 
    152 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    153 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    154 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    155 
    156 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
    157 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
    158 
    159 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    160 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    161 
    162 	exechook_establish(ksiginfo_exechook, NULL);
    163 
    164 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    165 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    166 }
    167 
    168 /*
    169  * sigacts_poolpage_alloc:
    170  *
    171  *	 Allocate a page for the sigacts memory pool.
    172  */
    173 static void *
    174 sigacts_poolpage_alloc(struct pool *pp, int flags)
    175 {
    176 
    177 	return (void *)uvm_km_alloc(kernel_map,
    178 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    179 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    180 	    | UVM_KMF_WIRED);
    181 }
    182 
    183 /*
    184  * sigacts_poolpage_free:
    185  *
    186  *	 Free a page on behalf of the sigacts memory pool.
    187  */
    188 static void
    189 sigacts_poolpage_free(struct pool *pp, void *v)
    190 {
    191 
    192         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    193 }
    194 
    195 /*
    196  * sigactsinit:
    197  *
    198  *	 Create an initial sigctx structure, using the same signal state as
    199  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    200  *	 copy it from parent.
    201  */
    202 struct sigacts *
    203 sigactsinit(struct proc *pp, int share)
    204 {
    205 	struct sigacts *ps, *ps2;
    206 
    207 	ps = pp->p_sigacts;
    208 
    209 	if (share) {
    210 		atomic_inc_uint(&ps->sa_refcnt);
    211 		ps2 = ps;
    212 	} else {
    213 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    214 		/* XXXAD get rid of this */
    215 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    216 		mutex_enter(&ps->sa_mutex);
    217 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    218 		    sizeof(ps2->sa_sigdesc));
    219 		mutex_exit(&ps->sa_mutex);
    220 		ps2->sa_refcnt = 1;
    221 	}
    222 
    223 	return ps2;
    224 }
    225 
    226 /*
    227  * sigactsunshare:
    228  *
    229  *	Make this process not share its sigctx, maintaining all
    230  *	signal state.
    231  */
    232 void
    233 sigactsunshare(struct proc *p)
    234 {
    235 	struct sigacts *ps, *oldps;
    236 
    237 	oldps = p->p_sigacts;
    238 	if (oldps->sa_refcnt == 1)
    239 		return;
    240 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    241 	/* XXXAD get rid of this */
    242 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    243 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    244 	p->p_sigacts = ps;
    245 	sigactsfree(oldps);
    246 }
    247 
    248 /*
    249  * sigactsfree;
    250  *
    251  *	Release a sigctx structure.
    252  */
    253 void
    254 sigactsfree(struct sigacts *ps)
    255 {
    256 
    257 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    258 		mutex_destroy(&ps->sa_mutex);
    259 		pool_cache_put(sigacts_cache, ps);
    260 	}
    261 }
    262 
    263 /*
    264  * siginit:
    265  *
    266  *	Initialize signal state for process 0; set to ignore signals that
    267  *	are ignored by default and disable the signal stack.  Locking not
    268  *	required as the system is still cold.
    269  */
    270 void
    271 siginit(struct proc *p)
    272 {
    273 	struct lwp *l;
    274 	struct sigacts *ps;
    275 	int signo, prop;
    276 
    277 	ps = p->p_sigacts;
    278 	sigemptyset(&contsigmask);
    279 	sigemptyset(&stopsigmask);
    280 	sigemptyset(&sigcantmask);
    281 	for (signo = 1; signo < NSIG; signo++) {
    282 		prop = sigprop[signo];
    283 		if (prop & SA_CONT)
    284 			sigaddset(&contsigmask, signo);
    285 		if (prop & SA_STOP)
    286 			sigaddset(&stopsigmask, signo);
    287 		if (prop & SA_CANTMASK)
    288 			sigaddset(&sigcantmask, signo);
    289 		if (prop & SA_IGNORE && signo != SIGCONT)
    290 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    291 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    292 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    293 	}
    294 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    295 	p->p_sflag &= ~PS_NOCLDSTOP;
    296 
    297 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    298 	sigemptyset(&p->p_sigpend.sp_set);
    299 
    300 	/*
    301 	 * Reset per LWP state.
    302 	 */
    303 	l = LIST_FIRST(&p->p_lwps);
    304 	l->l_sigwaited = NULL;
    305 	l->l_sigstk.ss_flags = SS_DISABLE;
    306 	l->l_sigstk.ss_size = 0;
    307 	l->l_sigstk.ss_sp = 0;
    308 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    309 	sigemptyset(&l->l_sigpend.sp_set);
    310 
    311 	/* One reference. */
    312 	ps->sa_refcnt = 1;
    313 }
    314 
    315 /*
    316  * execsigs:
    317  *
    318  *	Reset signals for an exec of the specified process.
    319  */
    320 void
    321 execsigs(struct proc *p)
    322 {
    323 	struct sigacts *ps;
    324 	struct lwp *l;
    325 	int signo, prop;
    326 	sigset_t tset;
    327 	ksiginfoq_t kq;
    328 
    329 	KASSERT(p->p_nlwps == 1);
    330 
    331 	sigactsunshare(p);
    332 	ps = p->p_sigacts;
    333 
    334 	/*
    335 	 * Reset caught signals.  Held signals remain held through
    336 	 * l->l_sigmask (unless they were caught, and are now ignored
    337 	 * by default).
    338 	 *
    339 	 * No need to lock yet, the process has only one LWP and
    340 	 * at this point the sigacts are private to the process.
    341 	 */
    342 	sigemptyset(&tset);
    343 	for (signo = 1; signo < NSIG; signo++) {
    344 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    345 			prop = sigprop[signo];
    346 			if (prop & SA_IGNORE) {
    347 				if ((prop & SA_CONT) == 0)
    348 					sigaddset(&p->p_sigctx.ps_sigignore,
    349 					    signo);
    350 				sigaddset(&tset, signo);
    351 			}
    352 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    353 		}
    354 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    355 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    356 	}
    357 	ksiginfo_queue_init(&kq);
    358 
    359 	mutex_enter(p->p_lock);
    360 	sigclearall(p, &tset, &kq);
    361 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    362 
    363 	/*
    364 	 * Reset no zombies if child dies flag as Solaris does.
    365 	 */
    366 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    367 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    368 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    369 
    370 	/*
    371 	 * Reset per-LWP state.
    372 	 */
    373 	l = LIST_FIRST(&p->p_lwps);
    374 	l->l_sigwaited = NULL;
    375 	l->l_sigstk.ss_flags = SS_DISABLE;
    376 	l->l_sigstk.ss_size = 0;
    377 	l->l_sigstk.ss_sp = 0;
    378 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    379 	sigemptyset(&l->l_sigpend.sp_set);
    380 	mutex_exit(p->p_lock);
    381 
    382 	ksiginfo_queue_drain(&kq);
    383 }
    384 
    385 /*
    386  * ksiginfo_exechook:
    387  *
    388  *	Free all pending ksiginfo entries from a process on exec.
    389  *	Additionally, drain any unused ksiginfo structures in the
    390  *	system back to the pool.
    391  *
    392  *	XXX This should not be a hook, every process has signals.
    393  */
    394 static void
    395 ksiginfo_exechook(struct proc *p, void *v)
    396 {
    397 	ksiginfoq_t kq;
    398 
    399 	ksiginfo_queue_init(&kq);
    400 
    401 	mutex_enter(p->p_lock);
    402 	sigclearall(p, NULL, &kq);
    403 	mutex_exit(p->p_lock);
    404 
    405 	ksiginfo_queue_drain(&kq);
    406 }
    407 
    408 /*
    409  * ksiginfo_alloc:
    410  *
    411  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    412  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    413  *	has not been queued somewhere, then just return it.  Additionally,
    414  *	if the existing ksiginfo_t does not contain any information beyond
    415  *	the signal number, then just return it.
    416  */
    417 ksiginfo_t *
    418 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    419 {
    420 	ksiginfo_t *kp;
    421 
    422 	if (ok != NULL) {
    423 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    424 		    KSI_FROMPOOL)
    425 		    	return ok;
    426 		if (KSI_EMPTY_P(ok))
    427 			return ok;
    428 	}
    429 
    430 	kp = pool_cache_get(ksiginfo_cache, flags);
    431 	if (kp == NULL) {
    432 #ifdef DIAGNOSTIC
    433 		printf("Out of memory allocating ksiginfo for pid %d\n",
    434 		    p->p_pid);
    435 #endif
    436 		return NULL;
    437 	}
    438 
    439 	if (ok != NULL) {
    440 		memcpy(kp, ok, sizeof(*kp));
    441 		kp->ksi_flags &= ~KSI_QUEUED;
    442 	} else
    443 		KSI_INIT_EMPTY(kp);
    444 
    445 	kp->ksi_flags |= KSI_FROMPOOL;
    446 
    447 	return kp;
    448 }
    449 
    450 /*
    451  * ksiginfo_free:
    452  *
    453  *	If the given ksiginfo_t is from the pool and has not been queued,
    454  *	then free it.
    455  */
    456 void
    457 ksiginfo_free(ksiginfo_t *kp)
    458 {
    459 
    460 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    461 		return;
    462 	pool_cache_put(ksiginfo_cache, kp);
    463 }
    464 
    465 /*
    466  * ksiginfo_queue_drain:
    467  *
    468  *	Drain a non-empty ksiginfo_t queue.
    469  */
    470 void
    471 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    472 {
    473 	ksiginfo_t *ksi;
    474 
    475 	KASSERT(!CIRCLEQ_EMPTY(kq));
    476 
    477 	while (!CIRCLEQ_EMPTY(kq)) {
    478 		ksi = CIRCLEQ_FIRST(kq);
    479 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    480 		pool_cache_put(ksiginfo_cache, ksi);
    481 	}
    482 }
    483 
    484 /*
    485  * sigget:
    486  *
    487  *	Fetch the first pending signal from a set.  Optionally, also fetch
    488  *	or manufacture a ksiginfo element.  Returns the number of the first
    489  *	pending signal, or zero.
    490  */
    491 int
    492 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    493 {
    494         ksiginfo_t *ksi;
    495 	sigset_t tset;
    496 
    497 	/* If there's no pending set, the signal is from the debugger. */
    498 	if (sp == NULL)
    499 		goto out;
    500 
    501 	/* Construct mask from signo, and 'mask'. */
    502 	if (signo == 0) {
    503 		if (mask != NULL) {
    504 			tset = *mask;
    505 			__sigandset(&sp->sp_set, &tset);
    506 		} else
    507 			tset = sp->sp_set;
    508 
    509 		/* If there are no signals pending, that's it. */
    510 		if ((signo = firstsig(&tset)) == 0)
    511 			goto out;
    512 	} else {
    513 		KASSERT(sigismember(&sp->sp_set, signo));
    514 	}
    515 
    516 	sigdelset(&sp->sp_set, signo);
    517 
    518 	/* Find siginfo and copy it out. */
    519 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    520 		if (ksi->ksi_signo == signo) {
    521 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    522 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    523 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    524 			ksi->ksi_flags &= ~KSI_QUEUED;
    525 			if (out != NULL) {
    526 				memcpy(out, ksi, sizeof(*out));
    527 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    528 			}
    529 			ksiginfo_free(ksi);
    530 			return signo;
    531 		}
    532 	}
    533 
    534 out:
    535 	/* If there's no siginfo, then manufacture it. */
    536 	if (out != NULL) {
    537 		KSI_INIT(out);
    538 		out->ksi_info._signo = signo;
    539 		out->ksi_info._code = SI_NOINFO;
    540 	}
    541 
    542 	return signo;
    543 }
    544 
    545 /*
    546  * sigput:
    547  *
    548  *	Append a new ksiginfo element to the list of pending ksiginfo's, if
    549  *	we need to (e.g. SA_SIGINFO was requested).
    550  */
    551 void
    552 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    553 {
    554 	ksiginfo_t *kp;
    555 	struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
    556 
    557 	KASSERT(mutex_owned(p->p_lock));
    558 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    559 
    560 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    561 
    562 	/*
    563 	 * If there is no siginfo, or is not required (and we don't add
    564 	 * it for the benefit of ktrace, we are done).
    565 	 */
    566 	if (KSI_EMPTY_P(ksi) ||
    567 	    (!KTRPOINT(p, KTR_PSIG) && (sa->sa_flags & SA_SIGINFO) == 0))
    568 		return;
    569 
    570 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    571 
    572 #ifdef notyet	/* XXX: QUEUING */
    573 	if (ksi->ksi_signo < SIGRTMIN)
    574 #endif
    575 	{
    576 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    577 			if (kp->ksi_signo == ksi->ksi_signo) {
    578 				KSI_COPY(ksi, kp);
    579 				kp->ksi_flags |= KSI_QUEUED;
    580 				return;
    581 			}
    582 		}
    583 	}
    584 
    585 	ksi->ksi_flags |= KSI_QUEUED;
    586 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    587 }
    588 
    589 /*
    590  * sigclear:
    591  *
    592  *	Clear all pending signals in the specified set.
    593  */
    594 void
    595 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    596 {
    597 	ksiginfo_t *ksi, *next;
    598 
    599 	if (mask == NULL)
    600 		sigemptyset(&sp->sp_set);
    601 	else
    602 		sigminusset(mask, &sp->sp_set);
    603 
    604 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    605 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    606 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    607 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    608 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    609 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    610 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    611 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    612 		}
    613 	}
    614 }
    615 
    616 /*
    617  * sigclearall:
    618  *
    619  *	Clear all pending signals in the specified set from a process and
    620  *	its LWPs.
    621  */
    622 void
    623 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    624 {
    625 	struct lwp *l;
    626 
    627 	KASSERT(mutex_owned(p->p_lock));
    628 
    629 	sigclear(&p->p_sigpend, mask, kq);
    630 
    631 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    632 		sigclear(&l->l_sigpend, mask, kq);
    633 	}
    634 }
    635 
    636 /*
    637  * sigispending:
    638  *
    639  *	Return true if there are pending signals for the current LWP.  May
    640  *	be called unlocked provided that LW_PENDSIG is set, and that the
    641  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    642  *	set.
    643  */
    644 int
    645 sigispending(struct lwp *l, int signo)
    646 {
    647 	struct proc *p = l->l_proc;
    648 	sigset_t tset;
    649 
    650 	membar_consumer();
    651 
    652 	tset = l->l_sigpend.sp_set;
    653 	sigplusset(&p->p_sigpend.sp_set, &tset);
    654 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    655 	sigminusset(&l->l_sigmask, &tset);
    656 
    657 	if (signo == 0) {
    658 		if (firstsig(&tset) != 0)
    659 			return EINTR;
    660 	} else if (sigismember(&tset, signo))
    661 		return EINTR;
    662 
    663 	return 0;
    664 }
    665 
    666 /*
    667  * siginfo_alloc:
    668  *
    669  *	 Allocate a new siginfo_t structure from the pool.
    670  */
    671 siginfo_t *
    672 siginfo_alloc(int flags)
    673 {
    674 
    675 	return pool_cache_get(siginfo_cache, flags);
    676 }
    677 
    678 /*
    679  * siginfo_free:
    680  *
    681  *	 Return a siginfo_t structure to the pool.
    682  */
    683 void
    684 siginfo_free(void *arg)
    685 {
    686 
    687 	pool_cache_put(siginfo_cache, arg);
    688 }
    689 
    690 void
    691 getucontext(struct lwp *l, ucontext_t *ucp)
    692 {
    693 	struct proc *p = l->l_proc;
    694 
    695 	KASSERT(mutex_owned(p->p_lock));
    696 
    697 	ucp->uc_flags = 0;
    698 	ucp->uc_link = l->l_ctxlink;
    699 
    700 #if KERN_SA
    701 	if (p->p_sa != NULL)
    702 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
    703 	else
    704 #endif /* KERN_SA */
    705 		ucp->uc_sigmask = l->l_sigmask;
    706 	ucp->uc_flags |= _UC_SIGMASK;
    707 
    708 	/*
    709 	 * The (unsupplied) definition of the `current execution stack'
    710 	 * in the System V Interface Definition appears to allow returning
    711 	 * the main context stack.
    712 	 */
    713 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    714 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    715 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    716 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    717 	} else {
    718 		/* Simply copy alternate signal execution stack. */
    719 		ucp->uc_stack = l->l_sigstk;
    720 	}
    721 	ucp->uc_flags |= _UC_STACK;
    722 	mutex_exit(p->p_lock);
    723 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    724 	mutex_enter(p->p_lock);
    725 }
    726 
    727 /*
    728  * getucontext_sa:
    729  *      Get a ucontext_t for use in SA upcall generation.
    730  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
    731  * fudge things with uc_link (which is usually NULL for libpthread
    732  * code), and 3) we report an empty signal mask.
    733  */
    734 void
    735 getucontext_sa(struct lwp *l, ucontext_t *ucp)
    736 {
    737 	ucp->uc_flags = 0;
    738 	ucp->uc_link = l->l_ctxlink;
    739 
    740 	sigemptyset(&ucp->uc_sigmask);
    741 	ucp->uc_flags |= _UC_SIGMASK;
    742 
    743 	/*
    744 	 * The (unsupplied) definition of the `current execution stack'
    745 	 * in the System V Interface Definition appears to allow returning
    746 	 * the main context stack.
    747 	 */
    748 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    749 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    750 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    751 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    752 	} else {
    753 		/* Simply copy alternate signal execution stack. */
    754 		ucp->uc_stack = l->l_sigstk;
    755 	}
    756 	ucp->uc_flags |= _UC_STACK;
    757 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    758 }
    759 
    760 int
    761 setucontext(struct lwp *l, const ucontext_t *ucp)
    762 {
    763 	struct proc *p = l->l_proc;
    764 	int error;
    765 
    766 	KASSERT(mutex_owned(p->p_lock));
    767 
    768 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    769 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    770 		if (error != 0)
    771 			return error;
    772 	}
    773 
    774 	mutex_exit(p->p_lock);
    775 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    776 	mutex_enter(p->p_lock);
    777 	if (error != 0)
    778 		return (error);
    779 
    780 	l->l_ctxlink = ucp->uc_link;
    781 
    782 	/*
    783 	 * If there was stack information, update whether or not we are
    784 	 * still running on an alternate signal stack.
    785 	 */
    786 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    787 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    788 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    789 		else
    790 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    791 	}
    792 
    793 	return 0;
    794 }
    795 
    796 /*
    797  * Common code for kill process group/broadcast kill.  cp is calling
    798  * process.
    799  */
    800 int
    801 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    802 {
    803 	struct proc	*p, *cp;
    804 	kauth_cred_t	pc;
    805 	struct pgrp	*pgrp;
    806 	int		nfound;
    807 	int		signo = ksi->ksi_signo;
    808 
    809 	cp = l->l_proc;
    810 	pc = l->l_cred;
    811 	nfound = 0;
    812 
    813 	mutex_enter(proc_lock);
    814 	if (all) {
    815 		/*
    816 		 * broadcast
    817 		 */
    818 		PROCLIST_FOREACH(p, &allproc) {
    819 			if (p->p_pid <= 1 || p == cp ||
    820 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
    821 				continue;
    822 			mutex_enter(p->p_lock);
    823 			if (kauth_authorize_process(pc,
    824 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    825 			    NULL) == 0) {
    826 				nfound++;
    827 				if (signo)
    828 					kpsignal2(p, ksi);
    829 			}
    830 			mutex_exit(p->p_lock);
    831 		}
    832 	} else {
    833 		if (pgid == 0)
    834 			/*
    835 			 * zero pgid means send to my process group.
    836 			 */
    837 			pgrp = cp->p_pgrp;
    838 		else {
    839 			pgrp = pg_find(pgid, PFIND_LOCKED);
    840 			if (pgrp == NULL)
    841 				goto out;
    842 		}
    843 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    844 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    845 				continue;
    846 			mutex_enter(p->p_lock);
    847 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    848 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    849 				nfound++;
    850 				if (signo && P_ZOMBIE(p) == 0)
    851 					kpsignal2(p, ksi);
    852 			}
    853 			mutex_exit(p->p_lock);
    854 		}
    855 	}
    856   out:
    857 	mutex_exit(proc_lock);
    858 	return (nfound ? 0 : ESRCH);
    859 }
    860 
    861 /*
    862  * Send a signal to a process group. If checktty is 1, limit to members
    863  * which have a controlling terminal.
    864  */
    865 void
    866 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    867 {
    868 	ksiginfo_t ksi;
    869 
    870 	KASSERT(!cpu_intr_p());
    871 	KASSERT(mutex_owned(proc_lock));
    872 
    873 	KSI_INIT_EMPTY(&ksi);
    874 	ksi.ksi_signo = sig;
    875 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    876 }
    877 
    878 void
    879 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    880 {
    881 	struct proc *p;
    882 
    883 	KASSERT(!cpu_intr_p());
    884 	KASSERT(mutex_owned(proc_lock));
    885 
    886 	if (pgrp)
    887 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    888 			if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    889 				kpsignal(p, ksi, data);
    890 }
    891 
    892 /*
    893  * Send a signal caused by a trap to the current LWP.  If it will be caught
    894  * immediately, deliver it with correct code.  Otherwise, post it normally.
    895  */
    896 void
    897 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    898 {
    899 	struct proc	*p;
    900 	struct sigacts	*ps;
    901 	int signo = ksi->ksi_signo;
    902 	sigset_t *mask;
    903 
    904 	KASSERT(KSI_TRAP_P(ksi));
    905 
    906 	ksi->ksi_lid = l->l_lid;
    907 	p = l->l_proc;
    908 
    909 	KASSERT(!cpu_intr_p());
    910 	mutex_enter(proc_lock);
    911 	mutex_enter(p->p_lock);
    912 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
    913 	ps = p->p_sigacts;
    914 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    915 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    916 	    !sigismember(mask, signo)) {
    917 		mutex_exit(proc_lock);
    918 		l->l_ru.ru_nsignals++;
    919 		kpsendsig(l, ksi, mask);
    920 		mutex_exit(p->p_lock);
    921 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    922 		    mask, ksi);
    923 	} else {
    924 		/* XXX for core dump/debugger */
    925 		p->p_sigctx.ps_lwp = l->l_lid;
    926 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    927 		p->p_sigctx.ps_code = ksi->ksi_trap;
    928 		kpsignal2(p, ksi);
    929 		mutex_exit(p->p_lock);
    930 		mutex_exit(proc_lock);
    931 	}
    932 }
    933 
    934 /*
    935  * Fill in signal information and signal the parent for a child status change.
    936  */
    937 void
    938 child_psignal(struct proc *p, int mask)
    939 {
    940 	ksiginfo_t ksi;
    941 	struct proc *q;
    942 	int xstat;
    943 
    944 	KASSERT(mutex_owned(proc_lock));
    945 	KASSERT(mutex_owned(p->p_lock));
    946 
    947 	xstat = p->p_xstat;
    948 
    949 	KSI_INIT(&ksi);
    950 	ksi.ksi_signo = SIGCHLD;
    951 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    952 	ksi.ksi_pid = p->p_pid;
    953 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    954 	ksi.ksi_status = xstat;
    955 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    956 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    957 
    958 	q = p->p_pptr;
    959 
    960 	mutex_exit(p->p_lock);
    961 	mutex_enter(q->p_lock);
    962 
    963 	if ((q->p_sflag & mask) == 0)
    964 		kpsignal2(q, &ksi);
    965 
    966 	mutex_exit(q->p_lock);
    967 	mutex_enter(p->p_lock);
    968 }
    969 
    970 void
    971 psignal(struct proc *p, int signo)
    972 {
    973 	ksiginfo_t ksi;
    974 
    975 	KASSERT(!cpu_intr_p());
    976 	KASSERT(mutex_owned(proc_lock));
    977 
    978 	KSI_INIT_EMPTY(&ksi);
    979 	ksi.ksi_signo = signo;
    980 	mutex_enter(p->p_lock);
    981 	kpsignal2(p, &ksi);
    982 	mutex_exit(p->p_lock);
    983 }
    984 
    985 void
    986 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    987 {
    988 	fdfile_t *ff;
    989 	file_t *fp;
    990 
    991 	KASSERT(!cpu_intr_p());
    992 	KASSERT(mutex_owned(proc_lock));
    993 
    994 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    995 		size_t fd;
    996 		filedesc_t *fdp = p->p_fd;
    997 
    998 		/* XXXSMP locking */
    999 		ksi->ksi_fd = -1;
   1000 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
   1001 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
   1002 				continue;
   1003 			if ((fp = ff->ff_file) == NULL)
   1004 				continue;
   1005 			if (fp->f_data == data) {
   1006 				ksi->ksi_fd = fd;
   1007 				break;
   1008 			}
   1009 		}
   1010 	}
   1011 	mutex_enter(p->p_lock);
   1012 	kpsignal2(p, ksi);
   1013 	mutex_exit(p->p_lock);
   1014 }
   1015 
   1016 /*
   1017  * sigismasked:
   1018  *
   1019  *	 Returns true if signal is ignored or masked for the specified LWP.
   1020  */
   1021 int
   1022 sigismasked(struct lwp *l, int sig)
   1023 {
   1024 	struct proc *p = l->l_proc;
   1025 
   1026 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1027 	    sigismember(&l->l_sigmask, sig)
   1028 #if KERN_SA
   1029 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
   1030 #endif /* KERN_SA */
   1031 	    );
   1032 }
   1033 
   1034 /*
   1035  * sigpost:
   1036  *
   1037  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP was
   1038  *	 able to take the signal.
   1039  */
   1040 int
   1041 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
   1042 {
   1043 	int rv, masked;
   1044 	struct proc *p = l->l_proc;
   1045 
   1046 	KASSERT(mutex_owned(p->p_lock));
   1047 
   1048 	/*
   1049 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1050 	 * pending signals.  Don't give it more.
   1051 	 */
   1052 	if (l->l_refcnt == 0)
   1053 		return 0;
   1054 
   1055 	lwp_lock(l);
   1056 
   1057 	/*
   1058 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1059 	 * is found to take the signal immediately, it should be taken soon.
   1060 	 */
   1061 	l->l_flag |= LW_PENDSIG;
   1062 
   1063 	/*
   1064 	 * When sending signals to SA processes, we first try to find an
   1065 	 * idle VP to take it.
   1066 	 */
   1067 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
   1068 		lwp_unlock(l);
   1069 		return 0;
   1070 	}
   1071 
   1072 	/*
   1073 	 * SIGCONT can be masked, but must always restart stopped LWPs.
   1074 	 */
   1075 #if KERN_SA
   1076 	if (p->p_sa != NULL)
   1077 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
   1078 	else
   1079 #endif /* KERN_SA */
   1080 		masked = sigismember(&l->l_sigmask, sig);
   1081 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1082 		lwp_unlock(l);
   1083 		return 0;
   1084 	}
   1085 
   1086 	/*
   1087 	 * If killing the process, make it run fast.
   1088 	 */
   1089 	if (__predict_false((prop & SA_KILL) != 0) &&
   1090 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1091 		KASSERT(l->l_class == SCHED_OTHER);
   1092 		lwp_changepri(l, MAXPRI_USER);
   1093 	}
   1094 
   1095 	/*
   1096 	 * If the LWP is running or on a run queue, then we win.  If it's
   1097 	 * sleeping interruptably, wake it and make it take the signal.  If
   1098 	 * the sleep isn't interruptable, then the chances are it will get
   1099 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1100 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1101 	 * for later; otherwise punt.
   1102 	 */
   1103 	rv = 0;
   1104 
   1105 	switch (l->l_stat) {
   1106 	case LSRUN:
   1107 	case LSONPROC:
   1108 		lwp_need_userret(l);
   1109 		rv = 1;
   1110 		break;
   1111 
   1112 	case LSSLEEP:
   1113 		if ((l->l_flag & LW_SINTR) != 0) {
   1114 			/* setrunnable() will release the lock. */
   1115 			setrunnable(l);
   1116 			return 1;
   1117 		}
   1118 		break;
   1119 
   1120 	case LSSUSPENDED:
   1121 		if ((prop & SA_KILL) != 0) {
   1122 			/* lwp_continue() will release the lock. */
   1123 			lwp_continue(l);
   1124 			return 1;
   1125 		}
   1126 		break;
   1127 
   1128 	case LSSTOP:
   1129 		if ((prop & SA_STOP) != 0)
   1130 			break;
   1131 
   1132 		/*
   1133 		 * If the LWP is stopped and we are sending a continue
   1134 		 * signal, then start it again.
   1135 		 */
   1136 		if ((prop & SA_CONT) != 0) {
   1137 			if (l->l_wchan != NULL) {
   1138 				l->l_stat = LSSLEEP;
   1139 				p->p_nrlwps++;
   1140 				rv = 1;
   1141 				break;
   1142 			}
   1143 			/* setrunnable() will release the lock. */
   1144 			setrunnable(l);
   1145 			return 1;
   1146 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1147 			/* setrunnable() will release the lock. */
   1148 			setrunnable(l);
   1149 			return 1;
   1150 		}
   1151 		break;
   1152 
   1153 	default:
   1154 		break;
   1155 	}
   1156 
   1157 	lwp_unlock(l);
   1158 	return rv;
   1159 }
   1160 
   1161 /*
   1162  * Notify an LWP that it has a pending signal.
   1163  */
   1164 void
   1165 signotify(struct lwp *l)
   1166 {
   1167 	KASSERT(lwp_locked(l, NULL));
   1168 
   1169 	l->l_flag |= LW_PENDSIG;
   1170 	lwp_need_userret(l);
   1171 }
   1172 
   1173 /*
   1174  * Find an LWP within process p that is waiting on signal ksi, and hand
   1175  * it on.
   1176  */
   1177 int
   1178 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1179 {
   1180 	struct lwp *l;
   1181 	int signo;
   1182 
   1183 	KASSERT(mutex_owned(p->p_lock));
   1184 
   1185 	signo = ksi->ksi_signo;
   1186 
   1187 	if (ksi->ksi_lid != 0) {
   1188 		/*
   1189 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1190 		 * it's interested.
   1191 		 */
   1192 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1193 			return 0;
   1194 		if (l->l_sigwaited == NULL ||
   1195 		    !sigismember(&l->l_sigwaitset, signo))
   1196 			return 0;
   1197 	} else {
   1198 		/*
   1199 		 * Look for any LWP that may be interested.
   1200 		 */
   1201 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1202 			KASSERT(l->l_sigwaited != NULL);
   1203 			if (sigismember(&l->l_sigwaitset, signo))
   1204 				break;
   1205 		}
   1206 	}
   1207 
   1208 	if (l != NULL) {
   1209 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1210 		l->l_sigwaited = NULL;
   1211 		LIST_REMOVE(l, l_sigwaiter);
   1212 		cv_signal(&l->l_sigcv);
   1213 		return 1;
   1214 	}
   1215 
   1216 	return 0;
   1217 }
   1218 
   1219 /*
   1220  * Send the signal to the process.  If the signal has an action, the action
   1221  * is usually performed by the target process rather than the caller; we add
   1222  * the signal to the set of pending signals for the process.
   1223  *
   1224  * Exceptions:
   1225  *   o When a stop signal is sent to a sleeping process that takes the
   1226  *     default action, the process is stopped without awakening it.
   1227  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1228  *     regardless of the signal action (eg, blocked or ignored).
   1229  *
   1230  * Other ignored signals are discarded immediately.
   1231  */
   1232 void
   1233 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1234 {
   1235 	int prop, lid, toall, signo = ksi->ksi_signo;
   1236 	struct sigacts *sa;
   1237 	struct lwp *l;
   1238 	ksiginfo_t *kp;
   1239 	ksiginfoq_t kq;
   1240 	sig_t action;
   1241 #ifdef KERN_SA
   1242 	struct sadata_vp *vp;
   1243 #endif
   1244 
   1245 	KASSERT(!cpu_intr_p());
   1246 	KASSERT(mutex_owned(proc_lock));
   1247 	KASSERT(mutex_owned(p->p_lock));
   1248 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1249 	KASSERT(signo > 0 && signo < NSIG);
   1250 
   1251 	/*
   1252 	 * If the process is being created by fork, is a zombie or is
   1253 	 * exiting, then just drop the signal here and bail out.
   1254 	 */
   1255 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1256 		return;
   1257 
   1258 	/*
   1259 	 * Notify any interested parties of the signal.
   1260 	 */
   1261 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1262 
   1263 	/*
   1264 	 * Some signals including SIGKILL must act on the entire process.
   1265 	 */
   1266 	kp = NULL;
   1267 	prop = sigprop[signo];
   1268 	toall = ((prop & SA_TOALL) != 0);
   1269 
   1270 	if (toall)
   1271 		lid = 0;
   1272 	else
   1273 		lid = ksi->ksi_lid;
   1274 
   1275 	/*
   1276 	 * If proc is traced, always give parent a chance.
   1277 	 */
   1278 	if (p->p_slflag & PSL_TRACED) {
   1279 		action = SIG_DFL;
   1280 
   1281 		if (lid == 0) {
   1282 			/*
   1283 			 * If the process is being traced and the signal
   1284 			 * is being caught, make sure to save any ksiginfo.
   1285 			 */
   1286 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1287 				return;
   1288 			sigput(&p->p_sigpend, p, kp);
   1289 		}
   1290 	} else {
   1291 		/*
   1292 		 * If the signal was the result of a trap and is not being
   1293 		 * caught, then reset it to default action so that the
   1294 		 * process dumps core immediately.
   1295 		 */
   1296 		if (KSI_TRAP_P(ksi)) {
   1297 			sa = p->p_sigacts;
   1298 			mutex_enter(&sa->sa_mutex);
   1299 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1300 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1301 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1302 			}
   1303 			mutex_exit(&sa->sa_mutex);
   1304 		}
   1305 
   1306 		/*
   1307 		 * If the signal is being ignored, then drop it.  Note: we
   1308 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1309 		 * SIG_IGN, action will be SIG_DFL here.
   1310 		 */
   1311 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1312 			return;
   1313 
   1314 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1315 			action = SIG_CATCH;
   1316 		else {
   1317 			action = SIG_DFL;
   1318 
   1319 			/*
   1320 			 * If sending a tty stop signal to a member of an
   1321 			 * orphaned process group, discard the signal here if
   1322 			 * the action is default; don't stop the process below
   1323 			 * if sleeping, and don't clear any pending SIGCONT.
   1324 			 */
   1325 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1326 				return;
   1327 
   1328 			if (prop & SA_KILL && p->p_nice > NZERO)
   1329 				p->p_nice = NZERO;
   1330 		}
   1331 	}
   1332 
   1333 	/*
   1334 	 * If stopping or continuing a process, discard any pending
   1335 	 * signals that would do the inverse.
   1336 	 */
   1337 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1338 		ksiginfo_queue_init(&kq);
   1339 		if ((prop & SA_CONT) != 0)
   1340 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1341 		if ((prop & SA_STOP) != 0)
   1342 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1343 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1344 	}
   1345 
   1346 	/*
   1347 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1348 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1349 	 * the signal info.  The signal won't be processed further here.
   1350 	 */
   1351 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1352 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1353 	    sigunwait(p, ksi))
   1354 		return;
   1355 
   1356 	/*
   1357 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1358 	 * here.
   1359 	 */
   1360 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1361 		return;
   1362 
   1363 	/*
   1364 	 * LWP private signals are easy - just find the LWP and post
   1365 	 * the signal to it.
   1366 	 */
   1367 	if (lid != 0) {
   1368 		l = lwp_find(p, lid);
   1369 		if (l != NULL) {
   1370 			sigput(&l->l_sigpend, p, kp);
   1371 			membar_producer();
   1372 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
   1373 		}
   1374 		goto out;
   1375 	}
   1376 
   1377 	/*
   1378 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1379 	 * or for an SA process.
   1380 	 */
   1381 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1382 		if ((p->p_slflag & PSL_TRACED) != 0)
   1383 			goto deliver;
   1384 
   1385 		/*
   1386 		 * If SIGCONT is default (or ignored) and process is
   1387 		 * asleep, we are finished; the process should not
   1388 		 * be awakened.
   1389 		 */
   1390 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1391 			goto out;
   1392 
   1393 		sigput(&p->p_sigpend, p, kp);
   1394 	} else {
   1395 		/*
   1396 		 * Process is stopped or stopping.  If traced, then no
   1397 		 * further action is necessary.
   1398 		 */
   1399 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1400 			goto out;
   1401 
   1402 		if ((prop & (SA_CONT | SA_KILL)) != 0) {
   1403 			/*
   1404 			 * Re-adjust p_nstopchild if the process wasn't
   1405 			 * collected by its parent.
   1406 			 */
   1407 			p->p_stat = SACTIVE;
   1408 			p->p_sflag &= ~PS_STOPPING;
   1409 			if (!p->p_waited)
   1410 				p->p_pptr->p_nstopchild--;
   1411 
   1412 			/*
   1413 			 * If SIGCONT is default (or ignored), we continue
   1414 			 * the process but don't leave the signal in
   1415 			 * ps_siglist, as it has no further action.  If
   1416 			 * SIGCONT is held, we continue the process and
   1417 			 * leave the signal in ps_siglist.  If the process
   1418 			 * catches SIGCONT, let it handle the signal itself.
   1419 			 * If it isn't waiting on an event, then it goes
   1420 			 * back to run state.  Otherwise, process goes back
   1421 			 * to sleep state.
   1422 			 */
   1423 			if ((prop & SA_CONT) == 0 || action != SIG_DFL)
   1424 				sigput(&p->p_sigpend, p, kp);
   1425 		} else if ((prop & SA_STOP) != 0) {
   1426 			/*
   1427 			 * Already stopped, don't need to stop again.
   1428 			 * (If we did the shell could get confused.)
   1429 			 */
   1430 			goto out;
   1431 		} else
   1432 			sigput(&p->p_sigpend, p, kp);
   1433 	}
   1434 
   1435  deliver:
   1436 	/*
   1437 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1438 	 * visible on the per process list (for sigispending()).  This
   1439 	 * is unlikely to be needed in practice, but...
   1440 	 */
   1441 	membar_producer();
   1442 
   1443 	/*
   1444 	 * Try to find an LWP that can take the signal.
   1445 	 */
   1446 #if KERN_SA
   1447 	if (p->p_sa != NULL) {
   1448 		/*
   1449 		 * In the SA case, we try to find an idle LWP that can take
   1450 		 * the signal.  If that fails, only then do we consider
   1451 		 * interrupting active LWPs.
   1452 		 */
   1453 		l = NULL;
   1454 		if (!toall) {
   1455 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1456 				l = vp->savp_lwp;
   1457 				if (sigpost(l, action, prop, kp->ksi_signo, 1))
   1458 					break;
   1459 			}
   1460 		}
   1461 
   1462 		if (l == NULL) {
   1463 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1464 				l = vp->savp_lwp;
   1465 				if (sigpost(l, action, prop, kp->ksi_signo, 0)
   1466 				    && !toall)
   1467 					break;
   1468 			}
   1469 		}
   1470 	} else	/* Catch the brace below if we're defined */
   1471 #endif /* KERN_SA */
   1472 	    {
   1473 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1474 			if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
   1475 				break;
   1476 	}
   1477 
   1478  out:
   1479  	/*
   1480  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1481  	 * with locks held.  The caller should take care of this.
   1482  	 */
   1483  	ksiginfo_free(kp);
   1484 }
   1485 
   1486 void
   1487 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1488 {
   1489 	struct proc *p = l->l_proc;
   1490 #ifdef KERN_SA
   1491 	struct lwp *le, *li;
   1492 	siginfo_t *si;
   1493 	int f;
   1494 #endif /* KERN_SA */
   1495 
   1496 	KASSERT(mutex_owned(p->p_lock));
   1497 
   1498 #ifdef KERN_SA
   1499 	if (p->p_sflag & PS_SA) {
   1500 		/* f indicates if we should clear LP_SA_NOBLOCK */
   1501 		f = ~l->l_pflag & LP_SA_NOBLOCK;
   1502 		l->l_pflag |= LP_SA_NOBLOCK;
   1503 
   1504 		mutex_exit(p->p_lock);
   1505 		/* XXXUPSXXX What if not on sa_vp? */
   1506 		/*
   1507 		 * WRS: I think it won't matter, beyond the
   1508 		 * question of what exactly we do with a signal
   1509 		 * to a blocked user thread. Also, we try hard to always
   1510 		 * send signals to blessed lwps, so we would only send
   1511 		 * to a non-blessed lwp under special circumstances.
   1512 		 */
   1513 		si = siginfo_alloc(PR_WAITOK);
   1514 
   1515 		si->_info = ksi->ksi_info;
   1516 
   1517 		/*
   1518 		 * Figure out if we're the innocent victim or the main
   1519 		 * perpitrator.
   1520 		 */
   1521 		le = li = NULL;
   1522 		if (KSI_TRAP_P(ksi))
   1523 			le = l;
   1524 		else
   1525 			li = l;
   1526 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1527 		    sizeof(*si), si, siginfo_free) != 0) {
   1528 			siginfo_free(si);
   1529 #if 0
   1530 			if (KSI_TRAP_P(ksi))
   1531 				/* XXX What dowe do here? The signal
   1532 				 * didn't make it
   1533 				 */;
   1534 #endif
   1535 		}
   1536 		l->l_pflag ^= f;
   1537 		mutex_enter(p->p_lock);
   1538 		return;
   1539 	}
   1540 #endif /* KERN_SA */
   1541 
   1542 	(*p->p_emul->e_sendsig)(ksi, mask);
   1543 }
   1544 
   1545 /*
   1546  * Stop any LWPs sleeping interruptably.
   1547  */
   1548 static void
   1549 proc_stop_lwps(struct proc *p)
   1550 {
   1551 	struct lwp *l;
   1552 
   1553 	KASSERT(mutex_owned(p->p_lock));
   1554 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1555 
   1556 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1557 		lwp_lock(l);
   1558 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1559 			l->l_stat = LSSTOP;
   1560 			p->p_nrlwps--;
   1561 		}
   1562 		lwp_unlock(l);
   1563 	}
   1564 }
   1565 
   1566 /*
   1567  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1568  *
   1569  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1570  */
   1571 static void
   1572 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1573 {
   1574 
   1575 	KASSERT(mutex_owned(proc_lock));
   1576 	KASSERT(mutex_owned(p->p_lock));
   1577 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1578 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1579 
   1580 	p->p_sflag &= ~PS_STOPPING;
   1581 	p->p_stat = SSTOP;
   1582 	p->p_waited = 0;
   1583 	p->p_pptr->p_nstopchild++;
   1584 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1585 		if (ppsig) {
   1586 			/* child_psignal drops p_lock briefly. */
   1587 			child_psignal(p, ppmask);
   1588 		}
   1589 		cv_broadcast(&p->p_pptr->p_waitcv);
   1590 	}
   1591 }
   1592 
   1593 /*
   1594  * Stop the current process and switch away when being stopped or traced.
   1595  */
   1596 void
   1597 sigswitch(bool ppsig, int ppmask, int signo)
   1598 {
   1599 	struct lwp *l = curlwp;
   1600 	struct proc *p = l->l_proc;
   1601 	int biglocks;
   1602 
   1603 	KASSERT(mutex_owned(p->p_lock));
   1604 	KASSERT(l->l_stat == LSONPROC);
   1605 	KASSERT(p->p_nrlwps > 0);
   1606 
   1607 	/*
   1608 	 * On entry we know that the process needs to stop.  If it's
   1609 	 * the result of a 'sideways' stop signal that has been sourced
   1610 	 * through issignal(), then stop other LWPs in the process too.
   1611 	 */
   1612 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1613 		KASSERT(signo != 0);
   1614 		proc_stop(p, 1, signo);
   1615 		KASSERT(p->p_nrlwps > 0);
   1616 	}
   1617 
   1618 	/*
   1619 	 * If we are the last live LWP, and the stop was a result of
   1620 	 * a new signal, then signal the parent.
   1621 	 */
   1622 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1623 		if (!mutex_tryenter(proc_lock)) {
   1624 			mutex_exit(p->p_lock);
   1625 			mutex_enter(proc_lock);
   1626 			mutex_enter(p->p_lock);
   1627 		}
   1628 
   1629 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1630 			/*
   1631 			 * Note that proc_stop_done() can drop
   1632 			 * p->p_lock briefly.
   1633 			 */
   1634 			proc_stop_done(p, ppsig, ppmask);
   1635 		}
   1636 
   1637 		mutex_exit(proc_lock);
   1638 	}
   1639 
   1640 	/*
   1641 	 * Unlock and switch away.
   1642 	 */
   1643 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1644 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1645 		p->p_nrlwps--;
   1646 		lwp_lock(l);
   1647 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1648 		l->l_stat = LSSTOP;
   1649 		lwp_unlock(l);
   1650 	}
   1651 
   1652 	mutex_exit(p->p_lock);
   1653 	lwp_lock(l);
   1654 	mi_switch(l);
   1655 	KERNEL_LOCK(biglocks, l);
   1656 	mutex_enter(p->p_lock);
   1657 }
   1658 
   1659 /*
   1660  * Check for a signal from the debugger.
   1661  */
   1662 int
   1663 sigchecktrace(sigpend_t **spp)
   1664 {
   1665 	struct lwp *l = curlwp;
   1666 	struct proc *p = l->l_proc;
   1667 	sigset_t *mask;
   1668 	int signo;
   1669 
   1670 	KASSERT(mutex_owned(p->p_lock));
   1671 
   1672 	/*
   1673 	 * If we are no longer being traced, or the parent didn't
   1674 	 * give us a signal, look for more signals.
   1675 	 */
   1676 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1677 		return 0;
   1678 
   1679 	/* If there's a pending SIGKILL, process it immediately. */
   1680 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1681 		return 0;
   1682 
   1683 	/*
   1684 	 * If the new signal is being masked, look for other signals.
   1685 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1686 	 */
   1687 	signo = p->p_xstat;
   1688 	p->p_xstat = 0;
   1689 	if ((sigprop[signo] & SA_TOLWP) != 0)
   1690 		*spp = &l->l_sigpend;
   1691 	else
   1692 		*spp = &p->p_sigpend;
   1693 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   1694 	if (sigismember(mask, signo))
   1695 		signo = 0;
   1696 
   1697 	return signo;
   1698 }
   1699 
   1700 /*
   1701  * If the current process has received a signal (should be caught or cause
   1702  * termination, should interrupt current syscall), return the signal number.
   1703  *
   1704  * Stop signals with default action are processed immediately, then cleared;
   1705  * they aren't returned.  This is checked after each entry to the system for
   1706  * a syscall or trap.
   1707  *
   1708  * We will also return -1 if the process is exiting and the current LWP must
   1709  * follow suit.
   1710  *
   1711  * Note that we may be called while on a sleep queue, so MUST NOT sleep.  We
   1712  * can switch away, though.
   1713  */
   1714 int
   1715 issignal(struct lwp *l)
   1716 {
   1717 	struct proc *p = l->l_proc;
   1718 	int signo = 0, prop;
   1719 	sigpend_t *sp = NULL;
   1720 	sigset_t ss;
   1721 
   1722 	KASSERT(mutex_owned(p->p_lock));
   1723 
   1724 	for (;;) {
   1725 		/* Discard any signals that we have decided not to take. */
   1726 		if (signo != 0)
   1727 			(void)sigget(sp, NULL, signo, NULL);
   1728 
   1729 		/* Bail out if we do not own the virtual processor */
   1730 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
   1731 			break;
   1732 
   1733 		/*
   1734 		 * If the process is stopped/stopping, then stop ourselves
   1735 		 * now that we're on the kernel/userspace boundary.  When
   1736 		 * we awaken, check for a signal from the debugger.
   1737 		 */
   1738 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1739 			sigswitch(true, PS_NOCLDSTOP, 0);
   1740 			signo = sigchecktrace(&sp);
   1741 		} else
   1742 			signo = 0;
   1743 
   1744 		/*
   1745 		 * If the debugger didn't provide a signal, find a pending
   1746 		 * signal from our set.  Check per-LWP signals first, and
   1747 		 * then per-process.
   1748 		 */
   1749 		if (signo == 0) {
   1750 			sp = &l->l_sigpend;
   1751 			ss = sp->sp_set;
   1752 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1753 				sigminusset(&stopsigmask, &ss);
   1754 			sigminusset(&l->l_sigmask, &ss);
   1755 
   1756 			if ((signo = firstsig(&ss)) == 0) {
   1757 				sp = &p->p_sigpend;
   1758 				ss = sp->sp_set;
   1759 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1760 					sigminusset(&stopsigmask, &ss);
   1761 				sigminusset(&l->l_sigmask, &ss);
   1762 
   1763 				if ((signo = firstsig(&ss)) == 0) {
   1764 					/*
   1765 					 * No signal pending - clear the
   1766 					 * indicator and bail out.
   1767 					 */
   1768 					lwp_lock(l);
   1769 					l->l_flag &= ~LW_PENDSIG;
   1770 					lwp_unlock(l);
   1771 					sp = NULL;
   1772 					break;
   1773 				}
   1774 			}
   1775 		}
   1776 
   1777 		/*
   1778 		 * We should see pending but ignored signals only if
   1779 		 * we are being traced.
   1780 		 */
   1781 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1782 		    (p->p_slflag & PSL_TRACED) == 0) {
   1783 			/* Discard the signal. */
   1784 			continue;
   1785 		}
   1786 
   1787 		/*
   1788 		 * If traced, always stop, and stay stopped until released
   1789 		 * by the debugger.  If the our parent process is waiting
   1790 		 * for us, don't hang as we could deadlock.
   1791 		 */
   1792 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1793 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1794 			/* Take the signal. */
   1795 			(void)sigget(sp, NULL, signo, NULL);
   1796 			p->p_xstat = signo;
   1797 
   1798 			/* Emulation-specific handling of signal trace */
   1799 			if (p->p_emul->e_tracesig == NULL ||
   1800 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1801 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1802 				    signo);
   1803 
   1804 			/* Check for a signal from the debugger. */
   1805 			if ((signo = sigchecktrace(&sp)) == 0)
   1806 				continue;
   1807 		}
   1808 
   1809 		prop = sigprop[signo];
   1810 
   1811 		/*
   1812 		 * Decide whether the signal should be returned.
   1813 		 */
   1814 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1815 		case (long)SIG_DFL:
   1816 			/*
   1817 			 * Don't take default actions on system processes.
   1818 			 */
   1819 			if (p->p_pid <= 1) {
   1820 #ifdef DIAGNOSTIC
   1821 				/*
   1822 				 * Are you sure you want to ignore SIGSEGV
   1823 				 * in init? XXX
   1824 				 */
   1825 				printf_nolog("Process (pid %d) got sig %d\n",
   1826 				    p->p_pid, signo);
   1827 #endif
   1828 				continue;
   1829 			}
   1830 
   1831 			/*
   1832 			 * If there is a pending stop signal to process with
   1833 			 * default action, stop here, then clear the signal.
   1834 			 * However, if process is member of an orphaned
   1835 			 * process group, ignore tty stop signals.
   1836 			 */
   1837 			if (prop & SA_STOP) {
   1838 				/*
   1839 				 * XXX Don't hold proc_lock for p_lflag,
   1840 				 * but it's not a big deal.
   1841 				 */
   1842 				if (p->p_slflag & PSL_TRACED ||
   1843 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1844 				    prop & SA_TTYSTOP)) {
   1845 				    	/* Ignore the signal. */
   1846 					continue;
   1847 				}
   1848 				/* Take the signal. */
   1849 				(void)sigget(sp, NULL, signo, NULL);
   1850 				p->p_xstat = signo;
   1851 				signo = 0;
   1852 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1853 			} else if (prop & SA_IGNORE) {
   1854 				/*
   1855 				 * Except for SIGCONT, shouldn't get here.
   1856 				 * Default action is to ignore; drop it.
   1857 				 */
   1858 				continue;
   1859 			}
   1860 			break;
   1861 
   1862 		case (long)SIG_IGN:
   1863 #ifdef DEBUG_ISSIGNAL
   1864 			/*
   1865 			 * Masking above should prevent us ever trying
   1866 			 * to take action on an ignored signal other
   1867 			 * than SIGCONT, unless process is traced.
   1868 			 */
   1869 			if ((prop & SA_CONT) == 0 &&
   1870 			    (p->p_slflag & PSL_TRACED) == 0)
   1871 				printf_nolog("issignal\n");
   1872 #endif
   1873 			continue;
   1874 
   1875 		default:
   1876 			/*
   1877 			 * This signal has an action, let postsig() process
   1878 			 * it.
   1879 			 */
   1880 			break;
   1881 		}
   1882 
   1883 		break;
   1884 	}
   1885 
   1886 	l->l_sigpendset = sp;
   1887 	return signo;
   1888 }
   1889 
   1890 /*
   1891  * Take the action for the specified signal
   1892  * from the current set of pending signals.
   1893  */
   1894 void
   1895 postsig(int signo)
   1896 {
   1897 	struct lwp	*l;
   1898 	struct proc	*p;
   1899 	struct sigacts	*ps;
   1900 	sig_t		action;
   1901 	sigset_t	*returnmask;
   1902 	ksiginfo_t	ksi;
   1903 
   1904 	l = curlwp;
   1905 	p = l->l_proc;
   1906 	ps = p->p_sigacts;
   1907 
   1908 	KASSERT(mutex_owned(p->p_lock));
   1909 	KASSERT(signo > 0);
   1910 
   1911 	/*
   1912 	 * Set the new mask value and also defer further occurrences of this
   1913 	 * signal.
   1914 	 *
   1915 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1916 	 * not of interest, but rather the mask from before the sigsuspen is
   1917 	 * what we want restored after the signal processing is completed.
   1918 	 */
   1919 	if (l->l_sigrestore) {
   1920 		returnmask = &l->l_sigoldmask;
   1921 		l->l_sigrestore = 0;
   1922 	} else
   1923 		returnmask = &l->l_sigmask;
   1924 
   1925 	/*
   1926 	 * Commit to taking the signal before releasing the mutex.
   1927 	 */
   1928 	action = SIGACTION_PS(ps, signo).sa_handler;
   1929 	l->l_ru.ru_nsignals++;
   1930 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1931 
   1932 	if (ktrpoint(KTR_PSIG)) {
   1933 		mutex_exit(p->p_lock);
   1934 		ktrpsig(signo, action, returnmask, &ksi);
   1935 		mutex_enter(p->p_lock);
   1936 	}
   1937 
   1938 	if (action == SIG_DFL) {
   1939 		/*
   1940 		 * Default action, where the default is to kill
   1941 		 * the process.  (Other cases were ignored above.)
   1942 		 */
   1943 		sigexit(l, signo);
   1944 		return;
   1945 	}
   1946 
   1947 	/*
   1948 	 * If we get here, the signal must be caught.
   1949 	 */
   1950 #ifdef DIAGNOSTIC
   1951 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1952 		panic("postsig action");
   1953 #endif
   1954 
   1955 	kpsendsig(l, &ksi, returnmask);
   1956 }
   1957 
   1958 /*
   1959  * sendsig_reset:
   1960  *
   1961  *	Reset the signal action.  Called from emulation specific sendsig()
   1962  *	before unlocking to deliver the signal.
   1963  */
   1964 void
   1965 sendsig_reset(struct lwp *l, int signo)
   1966 {
   1967 	struct proc *p = l->l_proc;
   1968 	struct sigacts *ps = p->p_sigacts;
   1969 	sigset_t *mask;
   1970 
   1971 	KASSERT(mutex_owned(p->p_lock));
   1972 
   1973 	p->p_sigctx.ps_lwp = 0;
   1974 	p->p_sigctx.ps_code = 0;
   1975 	p->p_sigctx.ps_signo = 0;
   1976 
   1977 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   1978 
   1979 	mutex_enter(&ps->sa_mutex);
   1980 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
   1981 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1982 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1983 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1984 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1985 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1986 	}
   1987 	mutex_exit(&ps->sa_mutex);
   1988 }
   1989 
   1990 /*
   1991  * Kill the current process for stated reason.
   1992  */
   1993 void
   1994 killproc(struct proc *p, const char *why)
   1995 {
   1996 
   1997 	KASSERT(mutex_owned(proc_lock));
   1998 
   1999 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2000 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2001 	psignal(p, SIGKILL);
   2002 }
   2003 
   2004 /*
   2005  * Force the current process to exit with the specified signal, dumping core
   2006  * if appropriate.  We bypass the normal tests for masked and caught
   2007  * signals, allowing unrecoverable failures to terminate the process without
   2008  * changing signal state.  Mark the accounting record with the signal
   2009  * termination.  If dumping core, save the signal number for the debugger.
   2010  * Calls exit and does not return.
   2011  */
   2012 void
   2013 sigexit(struct lwp *l, int signo)
   2014 {
   2015 	int exitsig, error, docore;
   2016 	struct proc *p;
   2017 	struct lwp *t;
   2018 
   2019 	p = l->l_proc;
   2020 
   2021 	KASSERT(mutex_owned(p->p_lock));
   2022 	KERNEL_UNLOCK_ALL(l, NULL);
   2023 
   2024 	/*
   2025 	 * Don't permit coredump() multiple times in the same process.
   2026 	 * Call back into sigexit, where we will be suspended until
   2027 	 * the deed is done.  Note that this is a recursive call, but
   2028 	 * LW_WCORE will prevent us from coming back this way.
   2029 	 */
   2030 	if ((p->p_sflag & PS_WCORE) != 0) {
   2031 		lwp_lock(l);
   2032 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2033 		lwp_unlock(l);
   2034 		mutex_exit(p->p_lock);
   2035 		lwp_userret(l);
   2036 		panic("sigexit 1");
   2037 		/* NOTREACHED */
   2038 	}
   2039 
   2040 	/* If process is already on the way out, then bail now. */
   2041 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2042 		mutex_exit(p->p_lock);
   2043 		lwp_exit(l);
   2044 		panic("sigexit 2");
   2045 		/* NOTREACHED */
   2046 	}
   2047 
   2048 	/*
   2049 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2050 	 * so that their registers are available long enough to be dumped.
   2051  	 */
   2052 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2053 		p->p_sflag |= PS_WCORE;
   2054 		for (;;) {
   2055 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2056 				lwp_lock(t);
   2057 				if (t == l) {
   2058 					t->l_flag &= ~LW_WSUSPEND;
   2059 					lwp_unlock(t);
   2060 					continue;
   2061 				}
   2062 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2063 				lwp_suspend(l, t);
   2064 			}
   2065 
   2066 			if (p->p_nrlwps == 1)
   2067 				break;
   2068 
   2069 			/*
   2070 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2071 			 * for everyone else to stop before proceeding.
   2072 			 */
   2073 			p->p_nlwpwait++;
   2074 			cv_broadcast(&p->p_lwpcv);
   2075 			cv_wait(&p->p_lwpcv, p->p_lock);
   2076 			p->p_nlwpwait--;
   2077 		}
   2078 	}
   2079 
   2080 	exitsig = signo;
   2081 	p->p_acflag |= AXSIG;
   2082 	p->p_sigctx.ps_signo = signo;
   2083 
   2084 	if (docore) {
   2085 		mutex_exit(p->p_lock);
   2086 		if ((error = coredump(l, NULL)) == 0)
   2087 			exitsig |= WCOREFLAG;
   2088 
   2089 		if (kern_logsigexit) {
   2090 			int uid = l->l_cred ?
   2091 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2092 
   2093 			if (error)
   2094 				log(LOG_INFO, lognocoredump, p->p_pid,
   2095 				    p->p_comm, uid, signo, error);
   2096 			else
   2097 				log(LOG_INFO, logcoredump, p->p_pid,
   2098 				    p->p_comm, uid, signo);
   2099 		}
   2100 
   2101 #ifdef PAX_SEGVGUARD
   2102 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2103 #endif /* PAX_SEGVGUARD */
   2104 		/* Acquire the sched state mutex.  exit1() will release it. */
   2105 		mutex_enter(p->p_lock);
   2106 	}
   2107 
   2108 	/* No longer dumping core. */
   2109 	p->p_sflag &= ~PS_WCORE;
   2110 
   2111 	exit1(l, W_EXITCODE(0, exitsig));
   2112 	/* NOTREACHED */
   2113 }
   2114 
   2115 /*
   2116  * Put process 'p' into the stopped state and optionally, notify the parent.
   2117  */
   2118 void
   2119 proc_stop(struct proc *p, int notify, int signo)
   2120 {
   2121 	struct lwp *l;
   2122 
   2123 	KASSERT(mutex_owned(p->p_lock));
   2124 
   2125 	/*
   2126 	 * First off, set the stopping indicator and bring all sleeping
   2127 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2128 	 * unlock between here and the p->p_nrlwps check below.
   2129 	 */
   2130 	p->p_sflag |= PS_STOPPING;
   2131 	if (notify)
   2132 		p->p_sflag |= PS_NOTIFYSTOP;
   2133 	else
   2134 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2135 	membar_producer();
   2136 
   2137 	proc_stop_lwps(p);
   2138 
   2139 	/*
   2140 	 * If there are no LWPs available to take the signal, then we
   2141 	 * signal the parent process immediately.  Otherwise, the last
   2142 	 * LWP to stop will take care of it.
   2143 	 */
   2144 
   2145 	if (p->p_nrlwps == 0) {
   2146 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2147 	} else {
   2148 		/*
   2149 		 * Have the remaining LWPs come to a halt, and trigger
   2150 		 * proc_stop_callout() to ensure that they do.
   2151 		 */
   2152 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2153 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
   2154 		callout_schedule(&proc_stop_ch, 1);
   2155 	}
   2156 }
   2157 
   2158 /*
   2159  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2160  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2161  * to allow LWPs to release any locks that they may hold before stopping.
   2162  *
   2163  * Non-interruptable sleeps can be long, and there is the potential for an
   2164  * LWP to begin sleeping interruptably soon after the process has been set
   2165  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2166  * stopping, and so complete halt of the process and the return of status
   2167  * information to the parent could be delayed indefinitely.
   2168  *
   2169  * To handle this race, proc_stop_callout() runs once per tick while there
   2170  * are stopping processes in the system.  It sets LWPs that are sleeping
   2171  * interruptably into the LSSTOP state.
   2172  *
   2173  * Note that we are not concerned about keeping all LWPs stopped while the
   2174  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2175  * What we do need to ensure is that all LWPs in a stopping process have
   2176  * stopped at least once, so that notification can be sent to the parent
   2177  * process.
   2178  */
   2179 static void
   2180 proc_stop_callout(void *cookie)
   2181 {
   2182 	bool more, restart;
   2183 	struct proc *p;
   2184 
   2185 	(void)cookie;
   2186 
   2187 	do {
   2188 		restart = false;
   2189 		more = false;
   2190 
   2191 		mutex_enter(proc_lock);
   2192 		PROCLIST_FOREACH(p, &allproc) {
   2193 			if ((p->p_flag & PK_MARKER) != 0)
   2194 				continue;
   2195 			mutex_enter(p->p_lock);
   2196 
   2197 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2198 				mutex_exit(p->p_lock);
   2199 				continue;
   2200 			}
   2201 
   2202 			/* Stop any LWPs sleeping interruptably. */
   2203 			proc_stop_lwps(p);
   2204 			if (p->p_nrlwps == 0) {
   2205 				/*
   2206 				 * We brought the process to a halt.
   2207 				 * Mark it as stopped and notify the
   2208 				 * parent.
   2209 				 */
   2210 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2211 					/*
   2212 					 * Note that proc_stop_done() will
   2213 					 * drop p->p_lock briefly.
   2214 					 * Arrange to restart and check
   2215 					 * all processes again.
   2216 					 */
   2217 					restart = true;
   2218 				}
   2219 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2220 			} else
   2221 				more = true;
   2222 
   2223 			mutex_exit(p->p_lock);
   2224 			if (restart)
   2225 				break;
   2226 		}
   2227 		mutex_exit(proc_lock);
   2228 	} while (restart);
   2229 
   2230 	/*
   2231 	 * If we noted processes that are stopping but still have
   2232 	 * running LWPs, then arrange to check again in 1 tick.
   2233 	 */
   2234 	if (more)
   2235 		callout_schedule(&proc_stop_ch, 1);
   2236 }
   2237 
   2238 /*
   2239  * Given a process in state SSTOP, set the state back to SACTIVE and
   2240  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2241  */
   2242 void
   2243 proc_unstop(struct proc *p)
   2244 {
   2245 	struct lwp *l;
   2246 	int sig;
   2247 
   2248 	KASSERT(mutex_owned(proc_lock));
   2249 	KASSERT(mutex_owned(p->p_lock));
   2250 
   2251 	p->p_stat = SACTIVE;
   2252 	p->p_sflag &= ~PS_STOPPING;
   2253 	sig = p->p_xstat;
   2254 
   2255 	if (!p->p_waited)
   2256 		p->p_pptr->p_nstopchild--;
   2257 
   2258 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2259 		lwp_lock(l);
   2260 		if (l->l_stat != LSSTOP) {
   2261 			lwp_unlock(l);
   2262 			continue;
   2263 		}
   2264 		if (l->l_wchan == NULL) {
   2265 			setrunnable(l);
   2266 			continue;
   2267 		}
   2268 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2269 		        setrunnable(l);
   2270 		        sig = 0;
   2271 		} else {
   2272 			l->l_stat = LSSLEEP;
   2273 			p->p_nrlwps++;
   2274 			lwp_unlock(l);
   2275 		}
   2276 	}
   2277 }
   2278 
   2279 static int
   2280 filt_sigattach(struct knote *kn)
   2281 {
   2282 	struct proc *p = curproc;
   2283 
   2284 	kn->kn_obj = p;
   2285 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2286 
   2287 	mutex_enter(p->p_lock);
   2288 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2289 	mutex_exit(p->p_lock);
   2290 
   2291 	return (0);
   2292 }
   2293 
   2294 static void
   2295 filt_sigdetach(struct knote *kn)
   2296 {
   2297 	struct proc *p = kn->kn_obj;
   2298 
   2299 	mutex_enter(p->p_lock);
   2300 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2301 	mutex_exit(p->p_lock);
   2302 }
   2303 
   2304 /*
   2305  * signal knotes are shared with proc knotes, so we apply a mask to
   2306  * the hint in order to differentiate them from process hints.  This
   2307  * could be avoided by using a signal-specific knote list, but probably
   2308  * isn't worth the trouble.
   2309  */
   2310 static int
   2311 filt_signal(struct knote *kn, long hint)
   2312 {
   2313 
   2314 	if (hint & NOTE_SIGNAL) {
   2315 		hint &= ~NOTE_SIGNAL;
   2316 
   2317 		if (kn->kn_id == hint)
   2318 			kn->kn_data++;
   2319 	}
   2320 	return (kn->kn_data != 0);
   2321 }
   2322 
   2323 const struct filterops sig_filtops = {
   2324 	0, filt_sigattach, filt_sigdetach, filt_signal
   2325 };
   2326