kern_sig.c revision 1.288 1 /* $NetBSD: kern_sig.c,v 1.288 2008/10/15 06:51:20 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.288 2008/10/15 06:51:20 wrstuden Exp $");
70
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
77
78 #define SIGPROP /* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/ucontext.h>
91 #include <sys/sa.h>
92 #include <sys/savar.h>
93 #include <sys/exec.h>
94 #include <sys/kauth.h>
95 #include <sys/acct.h>
96 #include <sys/callout.h>
97 #include <sys/atomic.h>
98 #include <sys/cpu.h>
99
100 #ifdef PAX_SEGVGUARD
101 #include <sys/pax.h>
102 #endif /* PAX_SEGVGUARD */
103
104 #include <uvm/uvm.h>
105 #include <uvm/uvm_extern.h>
106
107 static void ksiginfo_exechook(struct proc *, void *);
108 static void proc_stop_callout(void *);
109
110 int sigunwait(struct proc *, const ksiginfo_t *);
111 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
112 int sigpost(struct lwp *, sig_t, int, int, int);
113 int sigchecktrace(sigpend_t **);
114 void sigswitch(bool, int, int);
115 void sigrealloc(ksiginfo_t *);
116
117 sigset_t contsigmask, stopsigmask, sigcantmask;
118 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
119 static void sigacts_poolpage_free(struct pool *, void *);
120 static void *sigacts_poolpage_alloc(struct pool *, int);
121 static callout_t proc_stop_ch;
122 static pool_cache_t siginfo_cache;
123 static pool_cache_t ksiginfo_cache;
124
125 static struct pool_allocator sigactspool_allocator = {
126 .pa_alloc = sigacts_poolpage_alloc,
127 .pa_free = sigacts_poolpage_free,
128 };
129
130 #ifdef DEBUG
131 int kern_logsigexit = 1;
132 #else
133 int kern_logsigexit = 0;
134 #endif
135
136 static const char logcoredump[] =
137 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
138 static const char lognocoredump[] =
139 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
140
141 /*
142 * signal_init:
143 *
144 * Initialize global signal-related data structures.
145 */
146 void
147 signal_init(void)
148 {
149
150 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
151
152 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
153 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
154 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
155
156 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
157 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
158
159 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
160 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
161
162 exechook_establish(ksiginfo_exechook, NULL);
163
164 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
165 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
166 }
167
168 /*
169 * sigacts_poolpage_alloc:
170 *
171 * Allocate a page for the sigacts memory pool.
172 */
173 static void *
174 sigacts_poolpage_alloc(struct pool *pp, int flags)
175 {
176
177 return (void *)uvm_km_alloc(kernel_map,
178 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
179 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
180 | UVM_KMF_WIRED);
181 }
182
183 /*
184 * sigacts_poolpage_free:
185 *
186 * Free a page on behalf of the sigacts memory pool.
187 */
188 static void
189 sigacts_poolpage_free(struct pool *pp, void *v)
190 {
191
192 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
193 }
194
195 /*
196 * sigactsinit:
197 *
198 * Create an initial sigctx structure, using the same signal state as
199 * p. If 'share' is set, share the sigctx_proc part, otherwise just
200 * copy it from parent.
201 */
202 struct sigacts *
203 sigactsinit(struct proc *pp, int share)
204 {
205 struct sigacts *ps, *ps2;
206
207 ps = pp->p_sigacts;
208
209 if (share) {
210 atomic_inc_uint(&ps->sa_refcnt);
211 ps2 = ps;
212 } else {
213 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
214 /* XXXAD get rid of this */
215 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
216 mutex_enter(&ps->sa_mutex);
217 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
218 sizeof(ps2->sa_sigdesc));
219 mutex_exit(&ps->sa_mutex);
220 ps2->sa_refcnt = 1;
221 }
222
223 return ps2;
224 }
225
226 /*
227 * sigactsunshare:
228 *
229 * Make this process not share its sigctx, maintaining all
230 * signal state.
231 */
232 void
233 sigactsunshare(struct proc *p)
234 {
235 struct sigacts *ps, *oldps;
236
237 oldps = p->p_sigacts;
238 if (oldps->sa_refcnt == 1)
239 return;
240 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
241 /* XXXAD get rid of this */
242 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
243 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
244 p->p_sigacts = ps;
245 sigactsfree(oldps);
246 }
247
248 /*
249 * sigactsfree;
250 *
251 * Release a sigctx structure.
252 */
253 void
254 sigactsfree(struct sigacts *ps)
255 {
256
257 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
258 mutex_destroy(&ps->sa_mutex);
259 pool_cache_put(sigacts_cache, ps);
260 }
261 }
262
263 /*
264 * siginit:
265 *
266 * Initialize signal state for process 0; set to ignore signals that
267 * are ignored by default and disable the signal stack. Locking not
268 * required as the system is still cold.
269 */
270 void
271 siginit(struct proc *p)
272 {
273 struct lwp *l;
274 struct sigacts *ps;
275 int signo, prop;
276
277 ps = p->p_sigacts;
278 sigemptyset(&contsigmask);
279 sigemptyset(&stopsigmask);
280 sigemptyset(&sigcantmask);
281 for (signo = 1; signo < NSIG; signo++) {
282 prop = sigprop[signo];
283 if (prop & SA_CONT)
284 sigaddset(&contsigmask, signo);
285 if (prop & SA_STOP)
286 sigaddset(&stopsigmask, signo);
287 if (prop & SA_CANTMASK)
288 sigaddset(&sigcantmask, signo);
289 if (prop & SA_IGNORE && signo != SIGCONT)
290 sigaddset(&p->p_sigctx.ps_sigignore, signo);
291 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
292 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
293 }
294 sigemptyset(&p->p_sigctx.ps_sigcatch);
295 p->p_sflag &= ~PS_NOCLDSTOP;
296
297 ksiginfo_queue_init(&p->p_sigpend.sp_info);
298 sigemptyset(&p->p_sigpend.sp_set);
299
300 /*
301 * Reset per LWP state.
302 */
303 l = LIST_FIRST(&p->p_lwps);
304 l->l_sigwaited = NULL;
305 l->l_sigstk.ss_flags = SS_DISABLE;
306 l->l_sigstk.ss_size = 0;
307 l->l_sigstk.ss_sp = 0;
308 ksiginfo_queue_init(&l->l_sigpend.sp_info);
309 sigemptyset(&l->l_sigpend.sp_set);
310
311 /* One reference. */
312 ps->sa_refcnt = 1;
313 }
314
315 /*
316 * execsigs:
317 *
318 * Reset signals for an exec of the specified process.
319 */
320 void
321 execsigs(struct proc *p)
322 {
323 struct sigacts *ps;
324 struct lwp *l;
325 int signo, prop;
326 sigset_t tset;
327 ksiginfoq_t kq;
328
329 KASSERT(p->p_nlwps == 1);
330
331 sigactsunshare(p);
332 ps = p->p_sigacts;
333
334 /*
335 * Reset caught signals. Held signals remain held through
336 * l->l_sigmask (unless they were caught, and are now ignored
337 * by default).
338 *
339 * No need to lock yet, the process has only one LWP and
340 * at this point the sigacts are private to the process.
341 */
342 sigemptyset(&tset);
343 for (signo = 1; signo < NSIG; signo++) {
344 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
345 prop = sigprop[signo];
346 if (prop & SA_IGNORE) {
347 if ((prop & SA_CONT) == 0)
348 sigaddset(&p->p_sigctx.ps_sigignore,
349 signo);
350 sigaddset(&tset, signo);
351 }
352 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
353 }
354 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
355 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
356 }
357 ksiginfo_queue_init(&kq);
358
359 mutex_enter(p->p_lock);
360 sigclearall(p, &tset, &kq);
361 sigemptyset(&p->p_sigctx.ps_sigcatch);
362
363 /*
364 * Reset no zombies if child dies flag as Solaris does.
365 */
366 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
367 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
368 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
369
370 /*
371 * Reset per-LWP state.
372 */
373 l = LIST_FIRST(&p->p_lwps);
374 l->l_sigwaited = NULL;
375 l->l_sigstk.ss_flags = SS_DISABLE;
376 l->l_sigstk.ss_size = 0;
377 l->l_sigstk.ss_sp = 0;
378 ksiginfo_queue_init(&l->l_sigpend.sp_info);
379 sigemptyset(&l->l_sigpend.sp_set);
380 mutex_exit(p->p_lock);
381
382 ksiginfo_queue_drain(&kq);
383 }
384
385 /*
386 * ksiginfo_exechook:
387 *
388 * Free all pending ksiginfo entries from a process on exec.
389 * Additionally, drain any unused ksiginfo structures in the
390 * system back to the pool.
391 *
392 * XXX This should not be a hook, every process has signals.
393 */
394 static void
395 ksiginfo_exechook(struct proc *p, void *v)
396 {
397 ksiginfoq_t kq;
398
399 ksiginfo_queue_init(&kq);
400
401 mutex_enter(p->p_lock);
402 sigclearall(p, NULL, &kq);
403 mutex_exit(p->p_lock);
404
405 ksiginfo_queue_drain(&kq);
406 }
407
408 /*
409 * ksiginfo_alloc:
410 *
411 * Allocate a new ksiginfo structure from the pool, and optionally copy
412 * an existing one. If the existing ksiginfo_t is from the pool, and
413 * has not been queued somewhere, then just return it. Additionally,
414 * if the existing ksiginfo_t does not contain any information beyond
415 * the signal number, then just return it.
416 */
417 ksiginfo_t *
418 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
419 {
420 ksiginfo_t *kp;
421
422 if (ok != NULL) {
423 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
424 KSI_FROMPOOL)
425 return ok;
426 if (KSI_EMPTY_P(ok))
427 return ok;
428 }
429
430 kp = pool_cache_get(ksiginfo_cache, flags);
431 if (kp == NULL) {
432 #ifdef DIAGNOSTIC
433 printf("Out of memory allocating ksiginfo for pid %d\n",
434 p->p_pid);
435 #endif
436 return NULL;
437 }
438
439 if (ok != NULL) {
440 memcpy(kp, ok, sizeof(*kp));
441 kp->ksi_flags &= ~KSI_QUEUED;
442 } else
443 KSI_INIT_EMPTY(kp);
444
445 kp->ksi_flags |= KSI_FROMPOOL;
446
447 return kp;
448 }
449
450 /*
451 * ksiginfo_free:
452 *
453 * If the given ksiginfo_t is from the pool and has not been queued,
454 * then free it.
455 */
456 void
457 ksiginfo_free(ksiginfo_t *kp)
458 {
459
460 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
461 return;
462 pool_cache_put(ksiginfo_cache, kp);
463 }
464
465 /*
466 * ksiginfo_queue_drain:
467 *
468 * Drain a non-empty ksiginfo_t queue.
469 */
470 void
471 ksiginfo_queue_drain0(ksiginfoq_t *kq)
472 {
473 ksiginfo_t *ksi;
474
475 KASSERT(!CIRCLEQ_EMPTY(kq));
476
477 while (!CIRCLEQ_EMPTY(kq)) {
478 ksi = CIRCLEQ_FIRST(kq);
479 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
480 pool_cache_put(ksiginfo_cache, ksi);
481 }
482 }
483
484 /*
485 * sigget:
486 *
487 * Fetch the first pending signal from a set. Optionally, also fetch
488 * or manufacture a ksiginfo element. Returns the number of the first
489 * pending signal, or zero.
490 */
491 int
492 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
493 {
494 ksiginfo_t *ksi;
495 sigset_t tset;
496
497 /* If there's no pending set, the signal is from the debugger. */
498 if (sp == NULL)
499 goto out;
500
501 /* Construct mask from signo, and 'mask'. */
502 if (signo == 0) {
503 if (mask != NULL) {
504 tset = *mask;
505 __sigandset(&sp->sp_set, &tset);
506 } else
507 tset = sp->sp_set;
508
509 /* If there are no signals pending, that's it. */
510 if ((signo = firstsig(&tset)) == 0)
511 goto out;
512 } else {
513 KASSERT(sigismember(&sp->sp_set, signo));
514 }
515
516 sigdelset(&sp->sp_set, signo);
517
518 /* Find siginfo and copy it out. */
519 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
520 if (ksi->ksi_signo == signo) {
521 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
522 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
523 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
524 ksi->ksi_flags &= ~KSI_QUEUED;
525 if (out != NULL) {
526 memcpy(out, ksi, sizeof(*out));
527 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
528 }
529 ksiginfo_free(ksi);
530 return signo;
531 }
532 }
533
534 out:
535 /* If there's no siginfo, then manufacture it. */
536 if (out != NULL) {
537 KSI_INIT(out);
538 out->ksi_info._signo = signo;
539 out->ksi_info._code = SI_NOINFO;
540 }
541
542 return signo;
543 }
544
545 /*
546 * sigput:
547 *
548 * Append a new ksiginfo element to the list of pending ksiginfo's, if
549 * we need to (e.g. SA_SIGINFO was requested).
550 */
551 void
552 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
553 {
554 ksiginfo_t *kp;
555 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
556
557 KASSERT(mutex_owned(p->p_lock));
558 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
559
560 sigaddset(&sp->sp_set, ksi->ksi_signo);
561
562 /*
563 * If there is no siginfo, or is not required (and we don't add
564 * it for the benefit of ktrace, we are done).
565 */
566 if (KSI_EMPTY_P(ksi) ||
567 (!KTRPOINT(p, KTR_PSIG) && (sa->sa_flags & SA_SIGINFO) == 0))
568 return;
569
570 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
571
572 #ifdef notyet /* XXX: QUEUING */
573 if (ksi->ksi_signo < SIGRTMIN)
574 #endif
575 {
576 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
577 if (kp->ksi_signo == ksi->ksi_signo) {
578 KSI_COPY(ksi, kp);
579 kp->ksi_flags |= KSI_QUEUED;
580 return;
581 }
582 }
583 }
584
585 ksi->ksi_flags |= KSI_QUEUED;
586 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
587 }
588
589 /*
590 * sigclear:
591 *
592 * Clear all pending signals in the specified set.
593 */
594 void
595 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
596 {
597 ksiginfo_t *ksi, *next;
598
599 if (mask == NULL)
600 sigemptyset(&sp->sp_set);
601 else
602 sigminusset(mask, &sp->sp_set);
603
604 ksi = CIRCLEQ_FIRST(&sp->sp_info);
605 for (; ksi != (void *)&sp->sp_info; ksi = next) {
606 next = CIRCLEQ_NEXT(ksi, ksi_list);
607 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
608 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
609 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
610 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
611 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
612 }
613 }
614 }
615
616 /*
617 * sigclearall:
618 *
619 * Clear all pending signals in the specified set from a process and
620 * its LWPs.
621 */
622 void
623 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
624 {
625 struct lwp *l;
626
627 KASSERT(mutex_owned(p->p_lock));
628
629 sigclear(&p->p_sigpend, mask, kq);
630
631 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
632 sigclear(&l->l_sigpend, mask, kq);
633 }
634 }
635
636 /*
637 * sigispending:
638 *
639 * Return true if there are pending signals for the current LWP. May
640 * be called unlocked provided that LW_PENDSIG is set, and that the
641 * signal has been posted to the appopriate queue before LW_PENDSIG is
642 * set.
643 */
644 int
645 sigispending(struct lwp *l, int signo)
646 {
647 struct proc *p = l->l_proc;
648 sigset_t tset;
649
650 membar_consumer();
651
652 tset = l->l_sigpend.sp_set;
653 sigplusset(&p->p_sigpend.sp_set, &tset);
654 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
655 sigminusset(&l->l_sigmask, &tset);
656
657 if (signo == 0) {
658 if (firstsig(&tset) != 0)
659 return EINTR;
660 } else if (sigismember(&tset, signo))
661 return EINTR;
662
663 return 0;
664 }
665
666 /*
667 * siginfo_alloc:
668 *
669 * Allocate a new siginfo_t structure from the pool.
670 */
671 siginfo_t *
672 siginfo_alloc(int flags)
673 {
674
675 return pool_cache_get(siginfo_cache, flags);
676 }
677
678 /*
679 * siginfo_free:
680 *
681 * Return a siginfo_t structure to the pool.
682 */
683 void
684 siginfo_free(void *arg)
685 {
686
687 pool_cache_put(siginfo_cache, arg);
688 }
689
690 void
691 getucontext(struct lwp *l, ucontext_t *ucp)
692 {
693 struct proc *p = l->l_proc;
694
695 KASSERT(mutex_owned(p->p_lock));
696
697 ucp->uc_flags = 0;
698 ucp->uc_link = l->l_ctxlink;
699
700 #if KERN_SA
701 if (p->p_sa != NULL)
702 ucp->uc_sigmask = p->p_sa->sa_sigmask;
703 else
704 #endif /* KERN_SA */
705 ucp->uc_sigmask = l->l_sigmask;
706 ucp->uc_flags |= _UC_SIGMASK;
707
708 /*
709 * The (unsupplied) definition of the `current execution stack'
710 * in the System V Interface Definition appears to allow returning
711 * the main context stack.
712 */
713 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
714 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
715 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
716 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
717 } else {
718 /* Simply copy alternate signal execution stack. */
719 ucp->uc_stack = l->l_sigstk;
720 }
721 ucp->uc_flags |= _UC_STACK;
722 mutex_exit(p->p_lock);
723 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
724 mutex_enter(p->p_lock);
725 }
726
727 /*
728 * getucontext_sa:
729 * Get a ucontext_t for use in SA upcall generation.
730 * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
731 * fudge things with uc_link (which is usually NULL for libpthread
732 * code), and 3) we report an empty signal mask.
733 */
734 void
735 getucontext_sa(struct lwp *l, ucontext_t *ucp)
736 {
737 ucp->uc_flags = 0;
738 ucp->uc_link = l->l_ctxlink;
739
740 sigemptyset(&ucp->uc_sigmask);
741 ucp->uc_flags |= _UC_SIGMASK;
742
743 /*
744 * The (unsupplied) definition of the `current execution stack'
745 * in the System V Interface Definition appears to allow returning
746 * the main context stack.
747 */
748 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
749 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
750 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
751 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
752 } else {
753 /* Simply copy alternate signal execution stack. */
754 ucp->uc_stack = l->l_sigstk;
755 }
756 ucp->uc_flags |= _UC_STACK;
757 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
758 }
759
760 int
761 setucontext(struct lwp *l, const ucontext_t *ucp)
762 {
763 struct proc *p = l->l_proc;
764 int error;
765
766 KASSERT(mutex_owned(p->p_lock));
767
768 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
769 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
770 if (error != 0)
771 return error;
772 }
773
774 mutex_exit(p->p_lock);
775 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
776 mutex_enter(p->p_lock);
777 if (error != 0)
778 return (error);
779
780 l->l_ctxlink = ucp->uc_link;
781
782 /*
783 * If there was stack information, update whether or not we are
784 * still running on an alternate signal stack.
785 */
786 if ((ucp->uc_flags & _UC_STACK) != 0) {
787 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
788 l->l_sigstk.ss_flags |= SS_ONSTACK;
789 else
790 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
791 }
792
793 return 0;
794 }
795
796 /*
797 * Common code for kill process group/broadcast kill. cp is calling
798 * process.
799 */
800 int
801 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
802 {
803 struct proc *p, *cp;
804 kauth_cred_t pc;
805 struct pgrp *pgrp;
806 int nfound;
807 int signo = ksi->ksi_signo;
808
809 cp = l->l_proc;
810 pc = l->l_cred;
811 nfound = 0;
812
813 mutex_enter(proc_lock);
814 if (all) {
815 /*
816 * broadcast
817 */
818 PROCLIST_FOREACH(p, &allproc) {
819 if (p->p_pid <= 1 || p == cp ||
820 p->p_flag & (PK_SYSTEM|PK_MARKER))
821 continue;
822 mutex_enter(p->p_lock);
823 if (kauth_authorize_process(pc,
824 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
825 NULL) == 0) {
826 nfound++;
827 if (signo)
828 kpsignal2(p, ksi);
829 }
830 mutex_exit(p->p_lock);
831 }
832 } else {
833 if (pgid == 0)
834 /*
835 * zero pgid means send to my process group.
836 */
837 pgrp = cp->p_pgrp;
838 else {
839 pgrp = pg_find(pgid, PFIND_LOCKED);
840 if (pgrp == NULL)
841 goto out;
842 }
843 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
844 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
845 continue;
846 mutex_enter(p->p_lock);
847 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
848 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
849 nfound++;
850 if (signo && P_ZOMBIE(p) == 0)
851 kpsignal2(p, ksi);
852 }
853 mutex_exit(p->p_lock);
854 }
855 }
856 out:
857 mutex_exit(proc_lock);
858 return (nfound ? 0 : ESRCH);
859 }
860
861 /*
862 * Send a signal to a process group. If checktty is 1, limit to members
863 * which have a controlling terminal.
864 */
865 void
866 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
867 {
868 ksiginfo_t ksi;
869
870 KASSERT(!cpu_intr_p());
871 KASSERT(mutex_owned(proc_lock));
872
873 KSI_INIT_EMPTY(&ksi);
874 ksi.ksi_signo = sig;
875 kpgsignal(pgrp, &ksi, NULL, checkctty);
876 }
877
878 void
879 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
880 {
881 struct proc *p;
882
883 KASSERT(!cpu_intr_p());
884 KASSERT(mutex_owned(proc_lock));
885
886 if (pgrp)
887 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
888 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
889 kpsignal(p, ksi, data);
890 }
891
892 /*
893 * Send a signal caused by a trap to the current LWP. If it will be caught
894 * immediately, deliver it with correct code. Otherwise, post it normally.
895 */
896 void
897 trapsignal(struct lwp *l, ksiginfo_t *ksi)
898 {
899 struct proc *p;
900 struct sigacts *ps;
901 int signo = ksi->ksi_signo;
902 sigset_t *mask;
903
904 KASSERT(KSI_TRAP_P(ksi));
905
906 ksi->ksi_lid = l->l_lid;
907 p = l->l_proc;
908
909 KASSERT(!cpu_intr_p());
910 mutex_enter(proc_lock);
911 mutex_enter(p->p_lock);
912 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
913 ps = p->p_sigacts;
914 if ((p->p_slflag & PSL_TRACED) == 0 &&
915 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
916 !sigismember(mask, signo)) {
917 mutex_exit(proc_lock);
918 l->l_ru.ru_nsignals++;
919 kpsendsig(l, ksi, mask);
920 mutex_exit(p->p_lock);
921 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
922 mask, ksi);
923 } else {
924 /* XXX for core dump/debugger */
925 p->p_sigctx.ps_lwp = l->l_lid;
926 p->p_sigctx.ps_signo = ksi->ksi_signo;
927 p->p_sigctx.ps_code = ksi->ksi_trap;
928 kpsignal2(p, ksi);
929 mutex_exit(p->p_lock);
930 mutex_exit(proc_lock);
931 }
932 }
933
934 /*
935 * Fill in signal information and signal the parent for a child status change.
936 */
937 void
938 child_psignal(struct proc *p, int mask)
939 {
940 ksiginfo_t ksi;
941 struct proc *q;
942 int xstat;
943
944 KASSERT(mutex_owned(proc_lock));
945 KASSERT(mutex_owned(p->p_lock));
946
947 xstat = p->p_xstat;
948
949 KSI_INIT(&ksi);
950 ksi.ksi_signo = SIGCHLD;
951 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
952 ksi.ksi_pid = p->p_pid;
953 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
954 ksi.ksi_status = xstat;
955 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
956 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
957
958 q = p->p_pptr;
959
960 mutex_exit(p->p_lock);
961 mutex_enter(q->p_lock);
962
963 if ((q->p_sflag & mask) == 0)
964 kpsignal2(q, &ksi);
965
966 mutex_exit(q->p_lock);
967 mutex_enter(p->p_lock);
968 }
969
970 void
971 psignal(struct proc *p, int signo)
972 {
973 ksiginfo_t ksi;
974
975 KASSERT(!cpu_intr_p());
976 KASSERT(mutex_owned(proc_lock));
977
978 KSI_INIT_EMPTY(&ksi);
979 ksi.ksi_signo = signo;
980 mutex_enter(p->p_lock);
981 kpsignal2(p, &ksi);
982 mutex_exit(p->p_lock);
983 }
984
985 void
986 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
987 {
988 fdfile_t *ff;
989 file_t *fp;
990
991 KASSERT(!cpu_intr_p());
992 KASSERT(mutex_owned(proc_lock));
993
994 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
995 size_t fd;
996 filedesc_t *fdp = p->p_fd;
997
998 /* XXXSMP locking */
999 ksi->ksi_fd = -1;
1000 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1001 if ((ff = fdp->fd_ofiles[fd]) == NULL)
1002 continue;
1003 if ((fp = ff->ff_file) == NULL)
1004 continue;
1005 if (fp->f_data == data) {
1006 ksi->ksi_fd = fd;
1007 break;
1008 }
1009 }
1010 }
1011 mutex_enter(p->p_lock);
1012 kpsignal2(p, ksi);
1013 mutex_exit(p->p_lock);
1014 }
1015
1016 /*
1017 * sigismasked:
1018 *
1019 * Returns true if signal is ignored or masked for the specified LWP.
1020 */
1021 int
1022 sigismasked(struct lwp *l, int sig)
1023 {
1024 struct proc *p = l->l_proc;
1025
1026 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1027 sigismember(&l->l_sigmask, sig)
1028 #if KERN_SA
1029 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1030 #endif /* KERN_SA */
1031 );
1032 }
1033
1034 /*
1035 * sigpost:
1036 *
1037 * Post a pending signal to an LWP. Returns non-zero if the LWP was
1038 * able to take the signal.
1039 */
1040 int
1041 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1042 {
1043 int rv, masked;
1044 struct proc *p = l->l_proc;
1045
1046 KASSERT(mutex_owned(p->p_lock));
1047
1048 /*
1049 * If the LWP is on the way out, sigclear() will be busy draining all
1050 * pending signals. Don't give it more.
1051 */
1052 if (l->l_refcnt == 0)
1053 return 0;
1054
1055 lwp_lock(l);
1056
1057 /*
1058 * Have the LWP check for signals. This ensures that even if no LWP
1059 * is found to take the signal immediately, it should be taken soon.
1060 */
1061 l->l_flag |= LW_PENDSIG;
1062
1063 /*
1064 * When sending signals to SA processes, we first try to find an
1065 * idle VP to take it.
1066 */
1067 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1068 lwp_unlock(l);
1069 return 0;
1070 }
1071
1072 /*
1073 * SIGCONT can be masked, but must always restart stopped LWPs.
1074 */
1075 #if KERN_SA
1076 if (p->p_sa != NULL)
1077 masked = sigismember(&p->p_sa->sa_sigmask, sig);
1078 else
1079 #endif /* KERN_SA */
1080 masked = sigismember(&l->l_sigmask, sig);
1081 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1082 lwp_unlock(l);
1083 return 0;
1084 }
1085
1086 /*
1087 * If killing the process, make it run fast.
1088 */
1089 if (__predict_false((prop & SA_KILL) != 0) &&
1090 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1091 KASSERT(l->l_class == SCHED_OTHER);
1092 lwp_changepri(l, MAXPRI_USER);
1093 }
1094
1095 /*
1096 * If the LWP is running or on a run queue, then we win. If it's
1097 * sleeping interruptably, wake it and make it take the signal. If
1098 * the sleep isn't interruptable, then the chances are it will get
1099 * to see the signal soon anyhow. If suspended, it can't take the
1100 * signal right now. If it's LWP private or for all LWPs, save it
1101 * for later; otherwise punt.
1102 */
1103 rv = 0;
1104
1105 switch (l->l_stat) {
1106 case LSRUN:
1107 case LSONPROC:
1108 lwp_need_userret(l);
1109 rv = 1;
1110 break;
1111
1112 case LSSLEEP:
1113 if ((l->l_flag & LW_SINTR) != 0) {
1114 /* setrunnable() will release the lock. */
1115 setrunnable(l);
1116 return 1;
1117 }
1118 break;
1119
1120 case LSSUSPENDED:
1121 if ((prop & SA_KILL) != 0) {
1122 /* lwp_continue() will release the lock. */
1123 lwp_continue(l);
1124 return 1;
1125 }
1126 break;
1127
1128 case LSSTOP:
1129 if ((prop & SA_STOP) != 0)
1130 break;
1131
1132 /*
1133 * If the LWP is stopped and we are sending a continue
1134 * signal, then start it again.
1135 */
1136 if ((prop & SA_CONT) != 0) {
1137 if (l->l_wchan != NULL) {
1138 l->l_stat = LSSLEEP;
1139 p->p_nrlwps++;
1140 rv = 1;
1141 break;
1142 }
1143 /* setrunnable() will release the lock. */
1144 setrunnable(l);
1145 return 1;
1146 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1147 /* setrunnable() will release the lock. */
1148 setrunnable(l);
1149 return 1;
1150 }
1151 break;
1152
1153 default:
1154 break;
1155 }
1156
1157 lwp_unlock(l);
1158 return rv;
1159 }
1160
1161 /*
1162 * Notify an LWP that it has a pending signal.
1163 */
1164 void
1165 signotify(struct lwp *l)
1166 {
1167 KASSERT(lwp_locked(l, NULL));
1168
1169 l->l_flag |= LW_PENDSIG;
1170 lwp_need_userret(l);
1171 }
1172
1173 /*
1174 * Find an LWP within process p that is waiting on signal ksi, and hand
1175 * it on.
1176 */
1177 int
1178 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1179 {
1180 struct lwp *l;
1181 int signo;
1182
1183 KASSERT(mutex_owned(p->p_lock));
1184
1185 signo = ksi->ksi_signo;
1186
1187 if (ksi->ksi_lid != 0) {
1188 /*
1189 * Signal came via _lwp_kill(). Find the LWP and see if
1190 * it's interested.
1191 */
1192 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1193 return 0;
1194 if (l->l_sigwaited == NULL ||
1195 !sigismember(&l->l_sigwaitset, signo))
1196 return 0;
1197 } else {
1198 /*
1199 * Look for any LWP that may be interested.
1200 */
1201 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1202 KASSERT(l->l_sigwaited != NULL);
1203 if (sigismember(&l->l_sigwaitset, signo))
1204 break;
1205 }
1206 }
1207
1208 if (l != NULL) {
1209 l->l_sigwaited->ksi_info = ksi->ksi_info;
1210 l->l_sigwaited = NULL;
1211 LIST_REMOVE(l, l_sigwaiter);
1212 cv_signal(&l->l_sigcv);
1213 return 1;
1214 }
1215
1216 return 0;
1217 }
1218
1219 /*
1220 * Send the signal to the process. If the signal has an action, the action
1221 * is usually performed by the target process rather than the caller; we add
1222 * the signal to the set of pending signals for the process.
1223 *
1224 * Exceptions:
1225 * o When a stop signal is sent to a sleeping process that takes the
1226 * default action, the process is stopped without awakening it.
1227 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1228 * regardless of the signal action (eg, blocked or ignored).
1229 *
1230 * Other ignored signals are discarded immediately.
1231 */
1232 void
1233 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1234 {
1235 int prop, lid, toall, signo = ksi->ksi_signo;
1236 struct sigacts *sa;
1237 struct lwp *l;
1238 ksiginfo_t *kp;
1239 ksiginfoq_t kq;
1240 sig_t action;
1241 #ifdef KERN_SA
1242 struct sadata_vp *vp;
1243 #endif
1244
1245 KASSERT(!cpu_intr_p());
1246 KASSERT(mutex_owned(proc_lock));
1247 KASSERT(mutex_owned(p->p_lock));
1248 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1249 KASSERT(signo > 0 && signo < NSIG);
1250
1251 /*
1252 * If the process is being created by fork, is a zombie or is
1253 * exiting, then just drop the signal here and bail out.
1254 */
1255 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1256 return;
1257
1258 /*
1259 * Notify any interested parties of the signal.
1260 */
1261 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1262
1263 /*
1264 * Some signals including SIGKILL must act on the entire process.
1265 */
1266 kp = NULL;
1267 prop = sigprop[signo];
1268 toall = ((prop & SA_TOALL) != 0);
1269
1270 if (toall)
1271 lid = 0;
1272 else
1273 lid = ksi->ksi_lid;
1274
1275 /*
1276 * If proc is traced, always give parent a chance.
1277 */
1278 if (p->p_slflag & PSL_TRACED) {
1279 action = SIG_DFL;
1280
1281 if (lid == 0) {
1282 /*
1283 * If the process is being traced and the signal
1284 * is being caught, make sure to save any ksiginfo.
1285 */
1286 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1287 return;
1288 sigput(&p->p_sigpend, p, kp);
1289 }
1290 } else {
1291 /*
1292 * If the signal was the result of a trap and is not being
1293 * caught, then reset it to default action so that the
1294 * process dumps core immediately.
1295 */
1296 if (KSI_TRAP_P(ksi)) {
1297 sa = p->p_sigacts;
1298 mutex_enter(&sa->sa_mutex);
1299 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1300 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1301 SIGACTION(p, signo).sa_handler = SIG_DFL;
1302 }
1303 mutex_exit(&sa->sa_mutex);
1304 }
1305
1306 /*
1307 * If the signal is being ignored, then drop it. Note: we
1308 * don't set SIGCONT in ps_sigignore, and if it is set to
1309 * SIG_IGN, action will be SIG_DFL here.
1310 */
1311 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1312 return;
1313
1314 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1315 action = SIG_CATCH;
1316 else {
1317 action = SIG_DFL;
1318
1319 /*
1320 * If sending a tty stop signal to a member of an
1321 * orphaned process group, discard the signal here if
1322 * the action is default; don't stop the process below
1323 * if sleeping, and don't clear any pending SIGCONT.
1324 */
1325 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1326 return;
1327
1328 if (prop & SA_KILL && p->p_nice > NZERO)
1329 p->p_nice = NZERO;
1330 }
1331 }
1332
1333 /*
1334 * If stopping or continuing a process, discard any pending
1335 * signals that would do the inverse.
1336 */
1337 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1338 ksiginfo_queue_init(&kq);
1339 if ((prop & SA_CONT) != 0)
1340 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1341 if ((prop & SA_STOP) != 0)
1342 sigclear(&p->p_sigpend, &contsigmask, &kq);
1343 ksiginfo_queue_drain(&kq); /* XXXSMP */
1344 }
1345
1346 /*
1347 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1348 * please!), check if any LWPs are waiting on it. If yes, pass on
1349 * the signal info. The signal won't be processed further here.
1350 */
1351 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1352 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1353 sigunwait(p, ksi))
1354 return;
1355
1356 /*
1357 * XXXSMP Should be allocated by the caller, we're holding locks
1358 * here.
1359 */
1360 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1361 return;
1362
1363 /*
1364 * LWP private signals are easy - just find the LWP and post
1365 * the signal to it.
1366 */
1367 if (lid != 0) {
1368 l = lwp_find(p, lid);
1369 if (l != NULL) {
1370 sigput(&l->l_sigpend, p, kp);
1371 membar_producer();
1372 (void)sigpost(l, action, prop, kp->ksi_signo, 0);
1373 }
1374 goto out;
1375 }
1376
1377 /*
1378 * Some signals go to all LWPs, even if posted with _lwp_kill()
1379 * or for an SA process.
1380 */
1381 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1382 if ((p->p_slflag & PSL_TRACED) != 0)
1383 goto deliver;
1384
1385 /*
1386 * If SIGCONT is default (or ignored) and process is
1387 * asleep, we are finished; the process should not
1388 * be awakened.
1389 */
1390 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1391 goto out;
1392
1393 sigput(&p->p_sigpend, p, kp);
1394 } else {
1395 /*
1396 * Process is stopped or stopping. If traced, then no
1397 * further action is necessary.
1398 */
1399 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1400 goto out;
1401
1402 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1403 /*
1404 * Re-adjust p_nstopchild if the process wasn't
1405 * collected by its parent.
1406 */
1407 p->p_stat = SACTIVE;
1408 p->p_sflag &= ~PS_STOPPING;
1409 if (!p->p_waited)
1410 p->p_pptr->p_nstopchild--;
1411
1412 /*
1413 * If SIGCONT is default (or ignored), we continue
1414 * the process but don't leave the signal in
1415 * ps_siglist, as it has no further action. If
1416 * SIGCONT is held, we continue the process and
1417 * leave the signal in ps_siglist. If the process
1418 * catches SIGCONT, let it handle the signal itself.
1419 * If it isn't waiting on an event, then it goes
1420 * back to run state. Otherwise, process goes back
1421 * to sleep state.
1422 */
1423 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1424 sigput(&p->p_sigpend, p, kp);
1425 } else if ((prop & SA_STOP) != 0) {
1426 /*
1427 * Already stopped, don't need to stop again.
1428 * (If we did the shell could get confused.)
1429 */
1430 goto out;
1431 } else
1432 sigput(&p->p_sigpend, p, kp);
1433 }
1434
1435 deliver:
1436 /*
1437 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1438 * visible on the per process list (for sigispending()). This
1439 * is unlikely to be needed in practice, but...
1440 */
1441 membar_producer();
1442
1443 /*
1444 * Try to find an LWP that can take the signal.
1445 */
1446 #if KERN_SA
1447 if (p->p_sa != NULL) {
1448 /*
1449 * In the SA case, we try to find an idle LWP that can take
1450 * the signal. If that fails, only then do we consider
1451 * interrupting active LWPs.
1452 */
1453 l = NULL;
1454 if (!toall) {
1455 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1456 l = vp->savp_lwp;
1457 if (sigpost(l, action, prop, kp->ksi_signo, 1))
1458 break;
1459 }
1460 }
1461
1462 if (l == NULL) {
1463 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1464 l = vp->savp_lwp;
1465 if (sigpost(l, action, prop, kp->ksi_signo, 0)
1466 && !toall)
1467 break;
1468 }
1469 }
1470 } else /* Catch the brace below if we're defined */
1471 #endif /* KERN_SA */
1472 {
1473 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1474 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1475 break;
1476 }
1477
1478 out:
1479 /*
1480 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1481 * with locks held. The caller should take care of this.
1482 */
1483 ksiginfo_free(kp);
1484 }
1485
1486 void
1487 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1488 {
1489 struct proc *p = l->l_proc;
1490 #ifdef KERN_SA
1491 struct lwp *le, *li;
1492 siginfo_t *si;
1493 int f;
1494 #endif /* KERN_SA */
1495
1496 KASSERT(mutex_owned(p->p_lock));
1497
1498 #ifdef KERN_SA
1499 if (p->p_sflag & PS_SA) {
1500 /* f indicates if we should clear LP_SA_NOBLOCK */
1501 f = ~l->l_pflag & LP_SA_NOBLOCK;
1502 l->l_pflag |= LP_SA_NOBLOCK;
1503
1504 mutex_exit(p->p_lock);
1505 /* XXXUPSXXX What if not on sa_vp? */
1506 /*
1507 * WRS: I think it won't matter, beyond the
1508 * question of what exactly we do with a signal
1509 * to a blocked user thread. Also, we try hard to always
1510 * send signals to blessed lwps, so we would only send
1511 * to a non-blessed lwp under special circumstances.
1512 */
1513 si = siginfo_alloc(PR_WAITOK);
1514
1515 si->_info = ksi->ksi_info;
1516
1517 /*
1518 * Figure out if we're the innocent victim or the main
1519 * perpitrator.
1520 */
1521 le = li = NULL;
1522 if (KSI_TRAP_P(ksi))
1523 le = l;
1524 else
1525 li = l;
1526 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1527 sizeof(*si), si, siginfo_free) != 0) {
1528 siginfo_free(si);
1529 #if 0
1530 if (KSI_TRAP_P(ksi))
1531 /* XXX What dowe do here? The signal
1532 * didn't make it
1533 */;
1534 #endif
1535 }
1536 l->l_pflag ^= f;
1537 mutex_enter(p->p_lock);
1538 return;
1539 }
1540 #endif /* KERN_SA */
1541
1542 (*p->p_emul->e_sendsig)(ksi, mask);
1543 }
1544
1545 /*
1546 * Stop any LWPs sleeping interruptably.
1547 */
1548 static void
1549 proc_stop_lwps(struct proc *p)
1550 {
1551 struct lwp *l;
1552
1553 KASSERT(mutex_owned(p->p_lock));
1554 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1555
1556 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1557 lwp_lock(l);
1558 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1559 l->l_stat = LSSTOP;
1560 p->p_nrlwps--;
1561 }
1562 lwp_unlock(l);
1563 }
1564 }
1565
1566 /*
1567 * Finish stopping of a process. Mark it stopped and notify the parent.
1568 *
1569 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1570 */
1571 static void
1572 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1573 {
1574
1575 KASSERT(mutex_owned(proc_lock));
1576 KASSERT(mutex_owned(p->p_lock));
1577 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1578 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1579
1580 p->p_sflag &= ~PS_STOPPING;
1581 p->p_stat = SSTOP;
1582 p->p_waited = 0;
1583 p->p_pptr->p_nstopchild++;
1584 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1585 if (ppsig) {
1586 /* child_psignal drops p_lock briefly. */
1587 child_psignal(p, ppmask);
1588 }
1589 cv_broadcast(&p->p_pptr->p_waitcv);
1590 }
1591 }
1592
1593 /*
1594 * Stop the current process and switch away when being stopped or traced.
1595 */
1596 void
1597 sigswitch(bool ppsig, int ppmask, int signo)
1598 {
1599 struct lwp *l = curlwp;
1600 struct proc *p = l->l_proc;
1601 int biglocks;
1602
1603 KASSERT(mutex_owned(p->p_lock));
1604 KASSERT(l->l_stat == LSONPROC);
1605 KASSERT(p->p_nrlwps > 0);
1606
1607 /*
1608 * On entry we know that the process needs to stop. If it's
1609 * the result of a 'sideways' stop signal that has been sourced
1610 * through issignal(), then stop other LWPs in the process too.
1611 */
1612 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1613 KASSERT(signo != 0);
1614 proc_stop(p, 1, signo);
1615 KASSERT(p->p_nrlwps > 0);
1616 }
1617
1618 /*
1619 * If we are the last live LWP, and the stop was a result of
1620 * a new signal, then signal the parent.
1621 */
1622 if ((p->p_sflag & PS_STOPPING) != 0) {
1623 if (!mutex_tryenter(proc_lock)) {
1624 mutex_exit(p->p_lock);
1625 mutex_enter(proc_lock);
1626 mutex_enter(p->p_lock);
1627 }
1628
1629 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1630 /*
1631 * Note that proc_stop_done() can drop
1632 * p->p_lock briefly.
1633 */
1634 proc_stop_done(p, ppsig, ppmask);
1635 }
1636
1637 mutex_exit(proc_lock);
1638 }
1639
1640 /*
1641 * Unlock and switch away.
1642 */
1643 KERNEL_UNLOCK_ALL(l, &biglocks);
1644 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1645 p->p_nrlwps--;
1646 lwp_lock(l);
1647 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1648 l->l_stat = LSSTOP;
1649 lwp_unlock(l);
1650 }
1651
1652 mutex_exit(p->p_lock);
1653 lwp_lock(l);
1654 mi_switch(l);
1655 KERNEL_LOCK(biglocks, l);
1656 mutex_enter(p->p_lock);
1657 }
1658
1659 /*
1660 * Check for a signal from the debugger.
1661 */
1662 int
1663 sigchecktrace(sigpend_t **spp)
1664 {
1665 struct lwp *l = curlwp;
1666 struct proc *p = l->l_proc;
1667 sigset_t *mask;
1668 int signo;
1669
1670 KASSERT(mutex_owned(p->p_lock));
1671
1672 /*
1673 * If we are no longer being traced, or the parent didn't
1674 * give us a signal, look for more signals.
1675 */
1676 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1677 return 0;
1678
1679 /* If there's a pending SIGKILL, process it immediately. */
1680 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1681 return 0;
1682
1683 /*
1684 * If the new signal is being masked, look for other signals.
1685 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1686 */
1687 signo = p->p_xstat;
1688 p->p_xstat = 0;
1689 if ((sigprop[signo] & SA_TOLWP) != 0)
1690 *spp = &l->l_sigpend;
1691 else
1692 *spp = &p->p_sigpend;
1693 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1694 if (sigismember(mask, signo))
1695 signo = 0;
1696
1697 return signo;
1698 }
1699
1700 /*
1701 * If the current process has received a signal (should be caught or cause
1702 * termination, should interrupt current syscall), return the signal number.
1703 *
1704 * Stop signals with default action are processed immediately, then cleared;
1705 * they aren't returned. This is checked after each entry to the system for
1706 * a syscall or trap.
1707 *
1708 * We will also return -1 if the process is exiting and the current LWP must
1709 * follow suit.
1710 *
1711 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1712 * can switch away, though.
1713 */
1714 int
1715 issignal(struct lwp *l)
1716 {
1717 struct proc *p = l->l_proc;
1718 int signo = 0, prop;
1719 sigpend_t *sp = NULL;
1720 sigset_t ss;
1721
1722 KASSERT(mutex_owned(p->p_lock));
1723
1724 for (;;) {
1725 /* Discard any signals that we have decided not to take. */
1726 if (signo != 0)
1727 (void)sigget(sp, NULL, signo, NULL);
1728
1729 /* Bail out if we do not own the virtual processor */
1730 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1731 break;
1732
1733 /*
1734 * If the process is stopped/stopping, then stop ourselves
1735 * now that we're on the kernel/userspace boundary. When
1736 * we awaken, check for a signal from the debugger.
1737 */
1738 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1739 sigswitch(true, PS_NOCLDSTOP, 0);
1740 signo = sigchecktrace(&sp);
1741 } else
1742 signo = 0;
1743
1744 /*
1745 * If the debugger didn't provide a signal, find a pending
1746 * signal from our set. Check per-LWP signals first, and
1747 * then per-process.
1748 */
1749 if (signo == 0) {
1750 sp = &l->l_sigpend;
1751 ss = sp->sp_set;
1752 if ((p->p_lflag & PL_PPWAIT) != 0)
1753 sigminusset(&stopsigmask, &ss);
1754 sigminusset(&l->l_sigmask, &ss);
1755
1756 if ((signo = firstsig(&ss)) == 0) {
1757 sp = &p->p_sigpend;
1758 ss = sp->sp_set;
1759 if ((p->p_lflag & PL_PPWAIT) != 0)
1760 sigminusset(&stopsigmask, &ss);
1761 sigminusset(&l->l_sigmask, &ss);
1762
1763 if ((signo = firstsig(&ss)) == 0) {
1764 /*
1765 * No signal pending - clear the
1766 * indicator and bail out.
1767 */
1768 lwp_lock(l);
1769 l->l_flag &= ~LW_PENDSIG;
1770 lwp_unlock(l);
1771 sp = NULL;
1772 break;
1773 }
1774 }
1775 }
1776
1777 /*
1778 * We should see pending but ignored signals only if
1779 * we are being traced.
1780 */
1781 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1782 (p->p_slflag & PSL_TRACED) == 0) {
1783 /* Discard the signal. */
1784 continue;
1785 }
1786
1787 /*
1788 * If traced, always stop, and stay stopped until released
1789 * by the debugger. If the our parent process is waiting
1790 * for us, don't hang as we could deadlock.
1791 */
1792 if ((p->p_slflag & PSL_TRACED) != 0 &&
1793 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1794 /* Take the signal. */
1795 (void)sigget(sp, NULL, signo, NULL);
1796 p->p_xstat = signo;
1797
1798 /* Emulation-specific handling of signal trace */
1799 if (p->p_emul->e_tracesig == NULL ||
1800 (*p->p_emul->e_tracesig)(p, signo) == 0)
1801 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1802 signo);
1803
1804 /* Check for a signal from the debugger. */
1805 if ((signo = sigchecktrace(&sp)) == 0)
1806 continue;
1807 }
1808
1809 prop = sigprop[signo];
1810
1811 /*
1812 * Decide whether the signal should be returned.
1813 */
1814 switch ((long)SIGACTION(p, signo).sa_handler) {
1815 case (long)SIG_DFL:
1816 /*
1817 * Don't take default actions on system processes.
1818 */
1819 if (p->p_pid <= 1) {
1820 #ifdef DIAGNOSTIC
1821 /*
1822 * Are you sure you want to ignore SIGSEGV
1823 * in init? XXX
1824 */
1825 printf_nolog("Process (pid %d) got sig %d\n",
1826 p->p_pid, signo);
1827 #endif
1828 continue;
1829 }
1830
1831 /*
1832 * If there is a pending stop signal to process with
1833 * default action, stop here, then clear the signal.
1834 * However, if process is member of an orphaned
1835 * process group, ignore tty stop signals.
1836 */
1837 if (prop & SA_STOP) {
1838 /*
1839 * XXX Don't hold proc_lock for p_lflag,
1840 * but it's not a big deal.
1841 */
1842 if (p->p_slflag & PSL_TRACED ||
1843 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1844 prop & SA_TTYSTOP)) {
1845 /* Ignore the signal. */
1846 continue;
1847 }
1848 /* Take the signal. */
1849 (void)sigget(sp, NULL, signo, NULL);
1850 p->p_xstat = signo;
1851 signo = 0;
1852 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1853 } else if (prop & SA_IGNORE) {
1854 /*
1855 * Except for SIGCONT, shouldn't get here.
1856 * Default action is to ignore; drop it.
1857 */
1858 continue;
1859 }
1860 break;
1861
1862 case (long)SIG_IGN:
1863 #ifdef DEBUG_ISSIGNAL
1864 /*
1865 * Masking above should prevent us ever trying
1866 * to take action on an ignored signal other
1867 * than SIGCONT, unless process is traced.
1868 */
1869 if ((prop & SA_CONT) == 0 &&
1870 (p->p_slflag & PSL_TRACED) == 0)
1871 printf_nolog("issignal\n");
1872 #endif
1873 continue;
1874
1875 default:
1876 /*
1877 * This signal has an action, let postsig() process
1878 * it.
1879 */
1880 break;
1881 }
1882
1883 break;
1884 }
1885
1886 l->l_sigpendset = sp;
1887 return signo;
1888 }
1889
1890 /*
1891 * Take the action for the specified signal
1892 * from the current set of pending signals.
1893 */
1894 void
1895 postsig(int signo)
1896 {
1897 struct lwp *l;
1898 struct proc *p;
1899 struct sigacts *ps;
1900 sig_t action;
1901 sigset_t *returnmask;
1902 ksiginfo_t ksi;
1903
1904 l = curlwp;
1905 p = l->l_proc;
1906 ps = p->p_sigacts;
1907
1908 KASSERT(mutex_owned(p->p_lock));
1909 KASSERT(signo > 0);
1910
1911 /*
1912 * Set the new mask value and also defer further occurrences of this
1913 * signal.
1914 *
1915 * Special case: user has done a sigsuspend. Here the current mask is
1916 * not of interest, but rather the mask from before the sigsuspen is
1917 * what we want restored after the signal processing is completed.
1918 */
1919 if (l->l_sigrestore) {
1920 returnmask = &l->l_sigoldmask;
1921 l->l_sigrestore = 0;
1922 } else
1923 returnmask = &l->l_sigmask;
1924
1925 /*
1926 * Commit to taking the signal before releasing the mutex.
1927 */
1928 action = SIGACTION_PS(ps, signo).sa_handler;
1929 l->l_ru.ru_nsignals++;
1930 sigget(l->l_sigpendset, &ksi, signo, NULL);
1931
1932 if (ktrpoint(KTR_PSIG)) {
1933 mutex_exit(p->p_lock);
1934 ktrpsig(signo, action, returnmask, &ksi);
1935 mutex_enter(p->p_lock);
1936 }
1937
1938 if (action == SIG_DFL) {
1939 /*
1940 * Default action, where the default is to kill
1941 * the process. (Other cases were ignored above.)
1942 */
1943 sigexit(l, signo);
1944 return;
1945 }
1946
1947 /*
1948 * If we get here, the signal must be caught.
1949 */
1950 #ifdef DIAGNOSTIC
1951 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1952 panic("postsig action");
1953 #endif
1954
1955 kpsendsig(l, &ksi, returnmask);
1956 }
1957
1958 /*
1959 * sendsig_reset:
1960 *
1961 * Reset the signal action. Called from emulation specific sendsig()
1962 * before unlocking to deliver the signal.
1963 */
1964 void
1965 sendsig_reset(struct lwp *l, int signo)
1966 {
1967 struct proc *p = l->l_proc;
1968 struct sigacts *ps = p->p_sigacts;
1969 sigset_t *mask;
1970
1971 KASSERT(mutex_owned(p->p_lock));
1972
1973 p->p_sigctx.ps_lwp = 0;
1974 p->p_sigctx.ps_code = 0;
1975 p->p_sigctx.ps_signo = 0;
1976
1977 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1978
1979 mutex_enter(&ps->sa_mutex);
1980 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
1981 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1982 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1983 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1984 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1985 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1986 }
1987 mutex_exit(&ps->sa_mutex);
1988 }
1989
1990 /*
1991 * Kill the current process for stated reason.
1992 */
1993 void
1994 killproc(struct proc *p, const char *why)
1995 {
1996
1997 KASSERT(mutex_owned(proc_lock));
1998
1999 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2000 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2001 psignal(p, SIGKILL);
2002 }
2003
2004 /*
2005 * Force the current process to exit with the specified signal, dumping core
2006 * if appropriate. We bypass the normal tests for masked and caught
2007 * signals, allowing unrecoverable failures to terminate the process without
2008 * changing signal state. Mark the accounting record with the signal
2009 * termination. If dumping core, save the signal number for the debugger.
2010 * Calls exit and does not return.
2011 */
2012 void
2013 sigexit(struct lwp *l, int signo)
2014 {
2015 int exitsig, error, docore;
2016 struct proc *p;
2017 struct lwp *t;
2018
2019 p = l->l_proc;
2020
2021 KASSERT(mutex_owned(p->p_lock));
2022 KERNEL_UNLOCK_ALL(l, NULL);
2023
2024 /*
2025 * Don't permit coredump() multiple times in the same process.
2026 * Call back into sigexit, where we will be suspended until
2027 * the deed is done. Note that this is a recursive call, but
2028 * LW_WCORE will prevent us from coming back this way.
2029 */
2030 if ((p->p_sflag & PS_WCORE) != 0) {
2031 lwp_lock(l);
2032 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2033 lwp_unlock(l);
2034 mutex_exit(p->p_lock);
2035 lwp_userret(l);
2036 panic("sigexit 1");
2037 /* NOTREACHED */
2038 }
2039
2040 /* If process is already on the way out, then bail now. */
2041 if ((p->p_sflag & PS_WEXIT) != 0) {
2042 mutex_exit(p->p_lock);
2043 lwp_exit(l);
2044 panic("sigexit 2");
2045 /* NOTREACHED */
2046 }
2047
2048 /*
2049 * Prepare all other LWPs for exit. If dumping core, suspend them
2050 * so that their registers are available long enough to be dumped.
2051 */
2052 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2053 p->p_sflag |= PS_WCORE;
2054 for (;;) {
2055 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2056 lwp_lock(t);
2057 if (t == l) {
2058 t->l_flag &= ~LW_WSUSPEND;
2059 lwp_unlock(t);
2060 continue;
2061 }
2062 t->l_flag |= (LW_WCORE | LW_WEXIT);
2063 lwp_suspend(l, t);
2064 }
2065
2066 if (p->p_nrlwps == 1)
2067 break;
2068
2069 /*
2070 * Kick any LWPs sitting in lwp_wait1(), and wait
2071 * for everyone else to stop before proceeding.
2072 */
2073 p->p_nlwpwait++;
2074 cv_broadcast(&p->p_lwpcv);
2075 cv_wait(&p->p_lwpcv, p->p_lock);
2076 p->p_nlwpwait--;
2077 }
2078 }
2079
2080 exitsig = signo;
2081 p->p_acflag |= AXSIG;
2082 p->p_sigctx.ps_signo = signo;
2083
2084 if (docore) {
2085 mutex_exit(p->p_lock);
2086 if ((error = coredump(l, NULL)) == 0)
2087 exitsig |= WCOREFLAG;
2088
2089 if (kern_logsigexit) {
2090 int uid = l->l_cred ?
2091 (int)kauth_cred_geteuid(l->l_cred) : -1;
2092
2093 if (error)
2094 log(LOG_INFO, lognocoredump, p->p_pid,
2095 p->p_comm, uid, signo, error);
2096 else
2097 log(LOG_INFO, logcoredump, p->p_pid,
2098 p->p_comm, uid, signo);
2099 }
2100
2101 #ifdef PAX_SEGVGUARD
2102 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2103 #endif /* PAX_SEGVGUARD */
2104 /* Acquire the sched state mutex. exit1() will release it. */
2105 mutex_enter(p->p_lock);
2106 }
2107
2108 /* No longer dumping core. */
2109 p->p_sflag &= ~PS_WCORE;
2110
2111 exit1(l, W_EXITCODE(0, exitsig));
2112 /* NOTREACHED */
2113 }
2114
2115 /*
2116 * Put process 'p' into the stopped state and optionally, notify the parent.
2117 */
2118 void
2119 proc_stop(struct proc *p, int notify, int signo)
2120 {
2121 struct lwp *l;
2122
2123 KASSERT(mutex_owned(p->p_lock));
2124
2125 /*
2126 * First off, set the stopping indicator and bring all sleeping
2127 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2128 * unlock between here and the p->p_nrlwps check below.
2129 */
2130 p->p_sflag |= PS_STOPPING;
2131 if (notify)
2132 p->p_sflag |= PS_NOTIFYSTOP;
2133 else
2134 p->p_sflag &= ~PS_NOTIFYSTOP;
2135 membar_producer();
2136
2137 proc_stop_lwps(p);
2138
2139 /*
2140 * If there are no LWPs available to take the signal, then we
2141 * signal the parent process immediately. Otherwise, the last
2142 * LWP to stop will take care of it.
2143 */
2144
2145 if (p->p_nrlwps == 0) {
2146 proc_stop_done(p, true, PS_NOCLDSTOP);
2147 } else {
2148 /*
2149 * Have the remaining LWPs come to a halt, and trigger
2150 * proc_stop_callout() to ensure that they do.
2151 */
2152 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2153 sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2154 callout_schedule(&proc_stop_ch, 1);
2155 }
2156 }
2157
2158 /*
2159 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2160 * but wait for them to come to a halt at the kernel-user boundary. This is
2161 * to allow LWPs to release any locks that they may hold before stopping.
2162 *
2163 * Non-interruptable sleeps can be long, and there is the potential for an
2164 * LWP to begin sleeping interruptably soon after the process has been set
2165 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2166 * stopping, and so complete halt of the process and the return of status
2167 * information to the parent could be delayed indefinitely.
2168 *
2169 * To handle this race, proc_stop_callout() runs once per tick while there
2170 * are stopping processes in the system. It sets LWPs that are sleeping
2171 * interruptably into the LSSTOP state.
2172 *
2173 * Note that we are not concerned about keeping all LWPs stopped while the
2174 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2175 * What we do need to ensure is that all LWPs in a stopping process have
2176 * stopped at least once, so that notification can be sent to the parent
2177 * process.
2178 */
2179 static void
2180 proc_stop_callout(void *cookie)
2181 {
2182 bool more, restart;
2183 struct proc *p;
2184
2185 (void)cookie;
2186
2187 do {
2188 restart = false;
2189 more = false;
2190
2191 mutex_enter(proc_lock);
2192 PROCLIST_FOREACH(p, &allproc) {
2193 if ((p->p_flag & PK_MARKER) != 0)
2194 continue;
2195 mutex_enter(p->p_lock);
2196
2197 if ((p->p_sflag & PS_STOPPING) == 0) {
2198 mutex_exit(p->p_lock);
2199 continue;
2200 }
2201
2202 /* Stop any LWPs sleeping interruptably. */
2203 proc_stop_lwps(p);
2204 if (p->p_nrlwps == 0) {
2205 /*
2206 * We brought the process to a halt.
2207 * Mark it as stopped and notify the
2208 * parent.
2209 */
2210 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2211 /*
2212 * Note that proc_stop_done() will
2213 * drop p->p_lock briefly.
2214 * Arrange to restart and check
2215 * all processes again.
2216 */
2217 restart = true;
2218 }
2219 proc_stop_done(p, true, PS_NOCLDSTOP);
2220 } else
2221 more = true;
2222
2223 mutex_exit(p->p_lock);
2224 if (restart)
2225 break;
2226 }
2227 mutex_exit(proc_lock);
2228 } while (restart);
2229
2230 /*
2231 * If we noted processes that are stopping but still have
2232 * running LWPs, then arrange to check again in 1 tick.
2233 */
2234 if (more)
2235 callout_schedule(&proc_stop_ch, 1);
2236 }
2237
2238 /*
2239 * Given a process in state SSTOP, set the state back to SACTIVE and
2240 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2241 */
2242 void
2243 proc_unstop(struct proc *p)
2244 {
2245 struct lwp *l;
2246 int sig;
2247
2248 KASSERT(mutex_owned(proc_lock));
2249 KASSERT(mutex_owned(p->p_lock));
2250
2251 p->p_stat = SACTIVE;
2252 p->p_sflag &= ~PS_STOPPING;
2253 sig = p->p_xstat;
2254
2255 if (!p->p_waited)
2256 p->p_pptr->p_nstopchild--;
2257
2258 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2259 lwp_lock(l);
2260 if (l->l_stat != LSSTOP) {
2261 lwp_unlock(l);
2262 continue;
2263 }
2264 if (l->l_wchan == NULL) {
2265 setrunnable(l);
2266 continue;
2267 }
2268 if (sig && (l->l_flag & LW_SINTR) != 0) {
2269 setrunnable(l);
2270 sig = 0;
2271 } else {
2272 l->l_stat = LSSLEEP;
2273 p->p_nrlwps++;
2274 lwp_unlock(l);
2275 }
2276 }
2277 }
2278
2279 static int
2280 filt_sigattach(struct knote *kn)
2281 {
2282 struct proc *p = curproc;
2283
2284 kn->kn_obj = p;
2285 kn->kn_flags |= EV_CLEAR; /* automatically set */
2286
2287 mutex_enter(p->p_lock);
2288 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2289 mutex_exit(p->p_lock);
2290
2291 return (0);
2292 }
2293
2294 static void
2295 filt_sigdetach(struct knote *kn)
2296 {
2297 struct proc *p = kn->kn_obj;
2298
2299 mutex_enter(p->p_lock);
2300 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2301 mutex_exit(p->p_lock);
2302 }
2303
2304 /*
2305 * signal knotes are shared with proc knotes, so we apply a mask to
2306 * the hint in order to differentiate them from process hints. This
2307 * could be avoided by using a signal-specific knote list, but probably
2308 * isn't worth the trouble.
2309 */
2310 static int
2311 filt_signal(struct knote *kn, long hint)
2312 {
2313
2314 if (hint & NOTE_SIGNAL) {
2315 hint &= ~NOTE_SIGNAL;
2316
2317 if (kn->kn_id == hint)
2318 kn->kn_data++;
2319 }
2320 return (kn->kn_data != 0);
2321 }
2322
2323 const struct filterops sig_filtops = {
2324 0, filt_sigattach, filt_sigdetach, filt_signal
2325 };
2326