kern_sig.c revision 1.290 1 /* $NetBSD: kern_sig.c,v 1.290 2008/11/19 18:36:07 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.290 2008/11/19 18:36:07 ad Exp $");
70
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
77
78 #define SIGPROP /* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/ucontext.h>
91 #include <sys/sa.h>
92 #include <sys/savar.h>
93 #include <sys/exec.h>
94 #include <sys/kauth.h>
95 #include <sys/acct.h>
96 #include <sys/callout.h>
97 #include <sys/atomic.h>
98 #include <sys/cpu.h>
99 #include <sys/module.h>
100
101 #ifdef PAX_SEGVGUARD
102 #include <sys/pax.h>
103 #endif /* PAX_SEGVGUARD */
104
105 #include <uvm/uvm.h>
106 #include <uvm/uvm_extern.h>
107
108 static void ksiginfo_exechook(struct proc *, void *);
109 static void proc_stop_callout(void *);
110
111 int sigunwait(struct proc *, const ksiginfo_t *);
112 void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
113 int sigpost(struct lwp *, sig_t, int, int, int);
114 int sigchecktrace(sigpend_t **);
115 void sigswitch(bool, int, int);
116 void sigrealloc(ksiginfo_t *);
117
118 sigset_t contsigmask, stopsigmask, sigcantmask;
119 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
120 static void sigacts_poolpage_free(struct pool *, void *);
121 static void *sigacts_poolpage_alloc(struct pool *, int);
122 static callout_t proc_stop_ch;
123 static pool_cache_t siginfo_cache;
124 static pool_cache_t ksiginfo_cache;
125
126 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
127 int (*coredump_vec)(struct lwp *, const char *) =
128 (int (*)(struct lwp *, const char *))enosys;
129
130 static struct pool_allocator sigactspool_allocator = {
131 .pa_alloc = sigacts_poolpage_alloc,
132 .pa_free = sigacts_poolpage_free,
133 };
134
135 #ifdef DEBUG
136 int kern_logsigexit = 1;
137 #else
138 int kern_logsigexit = 0;
139 #endif
140
141 static const char logcoredump[] =
142 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
143 static const char lognocoredump[] =
144 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
145
146 /*
147 * signal_init:
148 *
149 * Initialize global signal-related data structures.
150 */
151 void
152 signal_init(void)
153 {
154
155 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
156
157 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
158 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
159 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
160
161 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
162 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
163
164 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
165 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
166
167 exechook_establish(ksiginfo_exechook, NULL);
168
169 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
170 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
171 }
172
173 /*
174 * sigacts_poolpage_alloc:
175 *
176 * Allocate a page for the sigacts memory pool.
177 */
178 static void *
179 sigacts_poolpage_alloc(struct pool *pp, int flags)
180 {
181
182 return (void *)uvm_km_alloc(kernel_map,
183 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
184 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
185 | UVM_KMF_WIRED);
186 }
187
188 /*
189 * sigacts_poolpage_free:
190 *
191 * Free a page on behalf of the sigacts memory pool.
192 */
193 static void
194 sigacts_poolpage_free(struct pool *pp, void *v)
195 {
196
197 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
198 }
199
200 /*
201 * sigactsinit:
202 *
203 * Create an initial sigctx structure, using the same signal state as
204 * p. If 'share' is set, share the sigctx_proc part, otherwise just
205 * copy it from parent.
206 */
207 struct sigacts *
208 sigactsinit(struct proc *pp, int share)
209 {
210 struct sigacts *ps, *ps2;
211
212 ps = pp->p_sigacts;
213
214 if (share) {
215 atomic_inc_uint(&ps->sa_refcnt);
216 ps2 = ps;
217 } else {
218 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
219 /* XXXAD get rid of this */
220 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
221 mutex_enter(&ps->sa_mutex);
222 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
223 sizeof(ps2->sa_sigdesc));
224 mutex_exit(&ps->sa_mutex);
225 ps2->sa_refcnt = 1;
226 }
227
228 return ps2;
229 }
230
231 /*
232 * sigactsunshare:
233 *
234 * Make this process not share its sigctx, maintaining all
235 * signal state.
236 */
237 void
238 sigactsunshare(struct proc *p)
239 {
240 struct sigacts *ps, *oldps;
241
242 oldps = p->p_sigacts;
243 if (oldps->sa_refcnt == 1)
244 return;
245 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
246 /* XXXAD get rid of this */
247 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
248 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
249 p->p_sigacts = ps;
250 sigactsfree(oldps);
251 }
252
253 /*
254 * sigactsfree;
255 *
256 * Release a sigctx structure.
257 */
258 void
259 sigactsfree(struct sigacts *ps)
260 {
261
262 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
263 mutex_destroy(&ps->sa_mutex);
264 pool_cache_put(sigacts_cache, ps);
265 }
266 }
267
268 /*
269 * siginit:
270 *
271 * Initialize signal state for process 0; set to ignore signals that
272 * are ignored by default and disable the signal stack. Locking not
273 * required as the system is still cold.
274 */
275 void
276 siginit(struct proc *p)
277 {
278 struct lwp *l;
279 struct sigacts *ps;
280 int signo, prop;
281
282 ps = p->p_sigacts;
283 sigemptyset(&contsigmask);
284 sigemptyset(&stopsigmask);
285 sigemptyset(&sigcantmask);
286 for (signo = 1; signo < NSIG; signo++) {
287 prop = sigprop[signo];
288 if (prop & SA_CONT)
289 sigaddset(&contsigmask, signo);
290 if (prop & SA_STOP)
291 sigaddset(&stopsigmask, signo);
292 if (prop & SA_CANTMASK)
293 sigaddset(&sigcantmask, signo);
294 if (prop & SA_IGNORE && signo != SIGCONT)
295 sigaddset(&p->p_sigctx.ps_sigignore, signo);
296 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
297 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
298 }
299 sigemptyset(&p->p_sigctx.ps_sigcatch);
300 p->p_sflag &= ~PS_NOCLDSTOP;
301
302 ksiginfo_queue_init(&p->p_sigpend.sp_info);
303 sigemptyset(&p->p_sigpend.sp_set);
304
305 /*
306 * Reset per LWP state.
307 */
308 l = LIST_FIRST(&p->p_lwps);
309 l->l_sigwaited = NULL;
310 l->l_sigstk.ss_flags = SS_DISABLE;
311 l->l_sigstk.ss_size = 0;
312 l->l_sigstk.ss_sp = 0;
313 ksiginfo_queue_init(&l->l_sigpend.sp_info);
314 sigemptyset(&l->l_sigpend.sp_set);
315
316 /* One reference. */
317 ps->sa_refcnt = 1;
318 }
319
320 /*
321 * execsigs:
322 *
323 * Reset signals for an exec of the specified process.
324 */
325 void
326 execsigs(struct proc *p)
327 {
328 struct sigacts *ps;
329 struct lwp *l;
330 int signo, prop;
331 sigset_t tset;
332 ksiginfoq_t kq;
333
334 KASSERT(p->p_nlwps == 1);
335
336 sigactsunshare(p);
337 ps = p->p_sigacts;
338
339 /*
340 * Reset caught signals. Held signals remain held through
341 * l->l_sigmask (unless they were caught, and are now ignored
342 * by default).
343 *
344 * No need to lock yet, the process has only one LWP and
345 * at this point the sigacts are private to the process.
346 */
347 sigemptyset(&tset);
348 for (signo = 1; signo < NSIG; signo++) {
349 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
350 prop = sigprop[signo];
351 if (prop & SA_IGNORE) {
352 if ((prop & SA_CONT) == 0)
353 sigaddset(&p->p_sigctx.ps_sigignore,
354 signo);
355 sigaddset(&tset, signo);
356 }
357 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
358 }
359 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
360 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
361 }
362 ksiginfo_queue_init(&kq);
363
364 mutex_enter(p->p_lock);
365 sigclearall(p, &tset, &kq);
366 sigemptyset(&p->p_sigctx.ps_sigcatch);
367
368 /*
369 * Reset no zombies if child dies flag as Solaris does.
370 */
371 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
372 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
373 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
374
375 /*
376 * Reset per-LWP state.
377 */
378 l = LIST_FIRST(&p->p_lwps);
379 l->l_sigwaited = NULL;
380 l->l_sigstk.ss_flags = SS_DISABLE;
381 l->l_sigstk.ss_size = 0;
382 l->l_sigstk.ss_sp = 0;
383 ksiginfo_queue_init(&l->l_sigpend.sp_info);
384 sigemptyset(&l->l_sigpend.sp_set);
385 mutex_exit(p->p_lock);
386
387 ksiginfo_queue_drain(&kq);
388 }
389
390 /*
391 * ksiginfo_exechook:
392 *
393 * Free all pending ksiginfo entries from a process on exec.
394 * Additionally, drain any unused ksiginfo structures in the
395 * system back to the pool.
396 *
397 * XXX This should not be a hook, every process has signals.
398 */
399 static void
400 ksiginfo_exechook(struct proc *p, void *v)
401 {
402 ksiginfoq_t kq;
403
404 ksiginfo_queue_init(&kq);
405
406 mutex_enter(p->p_lock);
407 sigclearall(p, NULL, &kq);
408 mutex_exit(p->p_lock);
409
410 ksiginfo_queue_drain(&kq);
411 }
412
413 /*
414 * ksiginfo_alloc:
415 *
416 * Allocate a new ksiginfo structure from the pool, and optionally copy
417 * an existing one. If the existing ksiginfo_t is from the pool, and
418 * has not been queued somewhere, then just return it. Additionally,
419 * if the existing ksiginfo_t does not contain any information beyond
420 * the signal number, then just return it.
421 */
422 ksiginfo_t *
423 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
424 {
425 ksiginfo_t *kp;
426
427 if (ok != NULL) {
428 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
429 KSI_FROMPOOL)
430 return ok;
431 if (KSI_EMPTY_P(ok))
432 return ok;
433 }
434
435 kp = pool_cache_get(ksiginfo_cache, flags);
436 if (kp == NULL) {
437 #ifdef DIAGNOSTIC
438 printf("Out of memory allocating ksiginfo for pid %d\n",
439 p->p_pid);
440 #endif
441 return NULL;
442 }
443
444 if (ok != NULL) {
445 memcpy(kp, ok, sizeof(*kp));
446 kp->ksi_flags &= ~KSI_QUEUED;
447 } else
448 KSI_INIT_EMPTY(kp);
449
450 kp->ksi_flags |= KSI_FROMPOOL;
451
452 return kp;
453 }
454
455 /*
456 * ksiginfo_free:
457 *
458 * If the given ksiginfo_t is from the pool and has not been queued,
459 * then free it.
460 */
461 void
462 ksiginfo_free(ksiginfo_t *kp)
463 {
464
465 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
466 return;
467 pool_cache_put(ksiginfo_cache, kp);
468 }
469
470 /*
471 * ksiginfo_queue_drain:
472 *
473 * Drain a non-empty ksiginfo_t queue.
474 */
475 void
476 ksiginfo_queue_drain0(ksiginfoq_t *kq)
477 {
478 ksiginfo_t *ksi;
479
480 KASSERT(!CIRCLEQ_EMPTY(kq));
481
482 while (!CIRCLEQ_EMPTY(kq)) {
483 ksi = CIRCLEQ_FIRST(kq);
484 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
485 pool_cache_put(ksiginfo_cache, ksi);
486 }
487 }
488
489 /*
490 * sigget:
491 *
492 * Fetch the first pending signal from a set. Optionally, also fetch
493 * or manufacture a ksiginfo element. Returns the number of the first
494 * pending signal, or zero.
495 */
496 int
497 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
498 {
499 ksiginfo_t *ksi;
500 sigset_t tset;
501
502 /* If there's no pending set, the signal is from the debugger. */
503 if (sp == NULL)
504 goto out;
505
506 /* Construct mask from signo, and 'mask'. */
507 if (signo == 0) {
508 if (mask != NULL) {
509 tset = *mask;
510 __sigandset(&sp->sp_set, &tset);
511 } else
512 tset = sp->sp_set;
513
514 /* If there are no signals pending, that's it. */
515 if ((signo = firstsig(&tset)) == 0)
516 goto out;
517 } else {
518 KASSERT(sigismember(&sp->sp_set, signo));
519 }
520
521 sigdelset(&sp->sp_set, signo);
522
523 /* Find siginfo and copy it out. */
524 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
525 if (ksi->ksi_signo == signo) {
526 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
527 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
528 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
529 ksi->ksi_flags &= ~KSI_QUEUED;
530 if (out != NULL) {
531 memcpy(out, ksi, sizeof(*out));
532 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
533 }
534 ksiginfo_free(ksi);
535 return signo;
536 }
537 }
538
539 out:
540 /* If there's no siginfo, then manufacture it. */
541 if (out != NULL) {
542 KSI_INIT(out);
543 out->ksi_info._signo = signo;
544 out->ksi_info._code = SI_NOINFO;
545 }
546
547 return signo;
548 }
549
550 /*
551 * sigput:
552 *
553 * Append a new ksiginfo element to the list of pending ksiginfo's, if
554 * we need to (e.g. SA_SIGINFO was requested).
555 */
556 void
557 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
558 {
559 ksiginfo_t *kp;
560 struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
561
562 KASSERT(mutex_owned(p->p_lock));
563 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
564
565 sigaddset(&sp->sp_set, ksi->ksi_signo);
566
567 /*
568 * If there is no siginfo, or is not required (and we don't add
569 * it for the benefit of ktrace, we are done).
570 */
571 if (KSI_EMPTY_P(ksi) ||
572 (!KTRPOINT(p, KTR_PSIG) && (sa->sa_flags & SA_SIGINFO) == 0))
573 return;
574
575 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
576
577 #ifdef notyet /* XXX: QUEUING */
578 if (ksi->ksi_signo < SIGRTMIN)
579 #endif
580 {
581 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
582 if (kp->ksi_signo == ksi->ksi_signo) {
583 KSI_COPY(ksi, kp);
584 kp->ksi_flags |= KSI_QUEUED;
585 return;
586 }
587 }
588 }
589
590 ksi->ksi_flags |= KSI_QUEUED;
591 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
592 }
593
594 /*
595 * sigclear:
596 *
597 * Clear all pending signals in the specified set.
598 */
599 void
600 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
601 {
602 ksiginfo_t *ksi, *next;
603
604 if (mask == NULL)
605 sigemptyset(&sp->sp_set);
606 else
607 sigminusset(mask, &sp->sp_set);
608
609 ksi = CIRCLEQ_FIRST(&sp->sp_info);
610 for (; ksi != (void *)&sp->sp_info; ksi = next) {
611 next = CIRCLEQ_NEXT(ksi, ksi_list);
612 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
613 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
614 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
615 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
616 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
617 }
618 }
619 }
620
621 /*
622 * sigclearall:
623 *
624 * Clear all pending signals in the specified set from a process and
625 * its LWPs.
626 */
627 void
628 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
629 {
630 struct lwp *l;
631
632 KASSERT(mutex_owned(p->p_lock));
633
634 sigclear(&p->p_sigpend, mask, kq);
635
636 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
637 sigclear(&l->l_sigpend, mask, kq);
638 }
639 }
640
641 /*
642 * sigispending:
643 *
644 * Return true if there are pending signals for the current LWP. May
645 * be called unlocked provided that LW_PENDSIG is set, and that the
646 * signal has been posted to the appopriate queue before LW_PENDSIG is
647 * set.
648 */
649 int
650 sigispending(struct lwp *l, int signo)
651 {
652 struct proc *p = l->l_proc;
653 sigset_t tset;
654
655 membar_consumer();
656
657 tset = l->l_sigpend.sp_set;
658 sigplusset(&p->p_sigpend.sp_set, &tset);
659 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
660 sigminusset(&l->l_sigmask, &tset);
661
662 if (signo == 0) {
663 if (firstsig(&tset) != 0)
664 return EINTR;
665 } else if (sigismember(&tset, signo))
666 return EINTR;
667
668 return 0;
669 }
670
671 /*
672 * siginfo_alloc:
673 *
674 * Allocate a new siginfo_t structure from the pool.
675 */
676 siginfo_t *
677 siginfo_alloc(int flags)
678 {
679
680 return pool_cache_get(siginfo_cache, flags);
681 }
682
683 /*
684 * siginfo_free:
685 *
686 * Return a siginfo_t structure to the pool.
687 */
688 void
689 siginfo_free(void *arg)
690 {
691
692 pool_cache_put(siginfo_cache, arg);
693 }
694
695 void
696 getucontext(struct lwp *l, ucontext_t *ucp)
697 {
698 struct proc *p = l->l_proc;
699
700 KASSERT(mutex_owned(p->p_lock));
701
702 ucp->uc_flags = 0;
703 ucp->uc_link = l->l_ctxlink;
704
705 #if KERN_SA
706 if (p->p_sa != NULL)
707 ucp->uc_sigmask = p->p_sa->sa_sigmask;
708 else
709 #endif /* KERN_SA */
710 ucp->uc_sigmask = l->l_sigmask;
711 ucp->uc_flags |= _UC_SIGMASK;
712
713 /*
714 * The (unsupplied) definition of the `current execution stack'
715 * in the System V Interface Definition appears to allow returning
716 * the main context stack.
717 */
718 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
719 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
720 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
721 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
722 } else {
723 /* Simply copy alternate signal execution stack. */
724 ucp->uc_stack = l->l_sigstk;
725 }
726 ucp->uc_flags |= _UC_STACK;
727 mutex_exit(p->p_lock);
728 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
729 mutex_enter(p->p_lock);
730 }
731
732 /*
733 * getucontext_sa:
734 * Get a ucontext_t for use in SA upcall generation.
735 * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
736 * fudge things with uc_link (which is usually NULL for libpthread
737 * code), and 3) we report an empty signal mask.
738 */
739 void
740 getucontext_sa(struct lwp *l, ucontext_t *ucp)
741 {
742 ucp->uc_flags = 0;
743 ucp->uc_link = l->l_ctxlink;
744
745 sigemptyset(&ucp->uc_sigmask);
746 ucp->uc_flags |= _UC_SIGMASK;
747
748 /*
749 * The (unsupplied) definition of the `current execution stack'
750 * in the System V Interface Definition appears to allow returning
751 * the main context stack.
752 */
753 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
754 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
755 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
756 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
757 } else {
758 /* Simply copy alternate signal execution stack. */
759 ucp->uc_stack = l->l_sigstk;
760 }
761 ucp->uc_flags |= _UC_STACK;
762 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
763 }
764
765 int
766 setucontext(struct lwp *l, const ucontext_t *ucp)
767 {
768 struct proc *p = l->l_proc;
769 int error;
770
771 KASSERT(mutex_owned(p->p_lock));
772
773 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
774 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
775 if (error != 0)
776 return error;
777 }
778
779 mutex_exit(p->p_lock);
780 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
781 mutex_enter(p->p_lock);
782 if (error != 0)
783 return (error);
784
785 l->l_ctxlink = ucp->uc_link;
786
787 /*
788 * If there was stack information, update whether or not we are
789 * still running on an alternate signal stack.
790 */
791 if ((ucp->uc_flags & _UC_STACK) != 0) {
792 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
793 l->l_sigstk.ss_flags |= SS_ONSTACK;
794 else
795 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
796 }
797
798 return 0;
799 }
800
801 /*
802 * Common code for kill process group/broadcast kill. cp is calling
803 * process.
804 */
805 int
806 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
807 {
808 struct proc *p, *cp;
809 kauth_cred_t pc;
810 struct pgrp *pgrp;
811 int nfound;
812 int signo = ksi->ksi_signo;
813
814 cp = l->l_proc;
815 pc = l->l_cred;
816 nfound = 0;
817
818 mutex_enter(proc_lock);
819 if (all) {
820 /*
821 * broadcast
822 */
823 PROCLIST_FOREACH(p, &allproc) {
824 if (p->p_pid <= 1 || p == cp ||
825 p->p_flag & (PK_SYSTEM|PK_MARKER))
826 continue;
827 mutex_enter(p->p_lock);
828 if (kauth_authorize_process(pc,
829 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
830 NULL) == 0) {
831 nfound++;
832 if (signo)
833 kpsignal2(p, ksi);
834 }
835 mutex_exit(p->p_lock);
836 }
837 } else {
838 if (pgid == 0)
839 /*
840 * zero pgid means send to my process group.
841 */
842 pgrp = cp->p_pgrp;
843 else {
844 pgrp = pg_find(pgid, PFIND_LOCKED);
845 if (pgrp == NULL)
846 goto out;
847 }
848 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
849 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
850 continue;
851 mutex_enter(p->p_lock);
852 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
853 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
854 nfound++;
855 if (signo && P_ZOMBIE(p) == 0)
856 kpsignal2(p, ksi);
857 }
858 mutex_exit(p->p_lock);
859 }
860 }
861 out:
862 mutex_exit(proc_lock);
863 return (nfound ? 0 : ESRCH);
864 }
865
866 /*
867 * Send a signal to a process group. If checktty is 1, limit to members
868 * which have a controlling terminal.
869 */
870 void
871 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
872 {
873 ksiginfo_t ksi;
874
875 KASSERT(!cpu_intr_p());
876 KASSERT(mutex_owned(proc_lock));
877
878 KSI_INIT_EMPTY(&ksi);
879 ksi.ksi_signo = sig;
880 kpgsignal(pgrp, &ksi, NULL, checkctty);
881 }
882
883 void
884 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
885 {
886 struct proc *p;
887
888 KASSERT(!cpu_intr_p());
889 KASSERT(mutex_owned(proc_lock));
890
891 if (pgrp)
892 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
893 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
894 kpsignal(p, ksi, data);
895 }
896
897 /*
898 * Send a signal caused by a trap to the current LWP. If it will be caught
899 * immediately, deliver it with correct code. Otherwise, post it normally.
900 */
901 void
902 trapsignal(struct lwp *l, ksiginfo_t *ksi)
903 {
904 struct proc *p;
905 struct sigacts *ps;
906 int signo = ksi->ksi_signo;
907 sigset_t *mask;
908
909 KASSERT(KSI_TRAP_P(ksi));
910
911 ksi->ksi_lid = l->l_lid;
912 p = l->l_proc;
913
914 KASSERT(!cpu_intr_p());
915 mutex_enter(proc_lock);
916 mutex_enter(p->p_lock);
917 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
918 ps = p->p_sigacts;
919 if ((p->p_slflag & PSL_TRACED) == 0 &&
920 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
921 !sigismember(mask, signo)) {
922 mutex_exit(proc_lock);
923 l->l_ru.ru_nsignals++;
924 kpsendsig(l, ksi, mask);
925 mutex_exit(p->p_lock);
926 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
927 mask, ksi);
928 } else {
929 /* XXX for core dump/debugger */
930 p->p_sigctx.ps_lwp = l->l_lid;
931 p->p_sigctx.ps_signo = ksi->ksi_signo;
932 p->p_sigctx.ps_code = ksi->ksi_trap;
933 kpsignal2(p, ksi);
934 mutex_exit(p->p_lock);
935 mutex_exit(proc_lock);
936 }
937 }
938
939 /*
940 * Fill in signal information and signal the parent for a child status change.
941 */
942 void
943 child_psignal(struct proc *p, int mask)
944 {
945 ksiginfo_t ksi;
946 struct proc *q;
947 int xstat;
948
949 KASSERT(mutex_owned(proc_lock));
950 KASSERT(mutex_owned(p->p_lock));
951
952 xstat = p->p_xstat;
953
954 KSI_INIT(&ksi);
955 ksi.ksi_signo = SIGCHLD;
956 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
957 ksi.ksi_pid = p->p_pid;
958 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
959 ksi.ksi_status = xstat;
960 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
961 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
962
963 q = p->p_pptr;
964
965 mutex_exit(p->p_lock);
966 mutex_enter(q->p_lock);
967
968 if ((q->p_sflag & mask) == 0)
969 kpsignal2(q, &ksi);
970
971 mutex_exit(q->p_lock);
972 mutex_enter(p->p_lock);
973 }
974
975 void
976 psignal(struct proc *p, int signo)
977 {
978 ksiginfo_t ksi;
979
980 KASSERT(!cpu_intr_p());
981 KASSERT(mutex_owned(proc_lock));
982
983 KSI_INIT_EMPTY(&ksi);
984 ksi.ksi_signo = signo;
985 mutex_enter(p->p_lock);
986 kpsignal2(p, &ksi);
987 mutex_exit(p->p_lock);
988 }
989
990 void
991 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
992 {
993 fdfile_t *ff;
994 file_t *fp;
995
996 KASSERT(!cpu_intr_p());
997 KASSERT(mutex_owned(proc_lock));
998
999 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1000 size_t fd;
1001 filedesc_t *fdp = p->p_fd;
1002
1003 /* XXXSMP locking */
1004 ksi->ksi_fd = -1;
1005 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1006 if ((ff = fdp->fd_ofiles[fd]) == NULL)
1007 continue;
1008 if ((fp = ff->ff_file) == NULL)
1009 continue;
1010 if (fp->f_data == data) {
1011 ksi->ksi_fd = fd;
1012 break;
1013 }
1014 }
1015 }
1016 mutex_enter(p->p_lock);
1017 kpsignal2(p, ksi);
1018 mutex_exit(p->p_lock);
1019 }
1020
1021 /*
1022 * sigismasked:
1023 *
1024 * Returns true if signal is ignored or masked for the specified LWP.
1025 */
1026 int
1027 sigismasked(struct lwp *l, int sig)
1028 {
1029 struct proc *p = l->l_proc;
1030
1031 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1032 sigismember(&l->l_sigmask, sig)
1033 #if KERN_SA
1034 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1035 #endif /* KERN_SA */
1036 );
1037 }
1038
1039 /*
1040 * sigpost:
1041 *
1042 * Post a pending signal to an LWP. Returns non-zero if the LWP was
1043 * able to take the signal.
1044 */
1045 int
1046 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1047 {
1048 int rv, masked;
1049 struct proc *p = l->l_proc;
1050
1051 KASSERT(mutex_owned(p->p_lock));
1052
1053 /*
1054 * If the LWP is on the way out, sigclear() will be busy draining all
1055 * pending signals. Don't give it more.
1056 */
1057 if (l->l_refcnt == 0)
1058 return 0;
1059
1060 lwp_lock(l);
1061
1062 /*
1063 * When sending signals to SA processes, we first try to find an
1064 * idle VP to take it.
1065 */
1066 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1067 lwp_unlock(l);
1068 return 0;
1069 }
1070
1071 /*
1072 * Have the LWP check for signals. This ensures that even if no LWP
1073 * is found to take the signal immediately, it should be taken soon.
1074 */
1075 l->l_flag |= LW_PENDSIG;
1076
1077 /*
1078 * When sending signals to SA processes, we first try to find an
1079 * idle VP to take it.
1080 */
1081 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1082 lwp_unlock(l);
1083 return 0;
1084 }
1085
1086 /*
1087 * SIGCONT can be masked, but must always restart stopped LWPs.
1088 */
1089 #if KERN_SA
1090 if (p->p_sa != NULL)
1091 masked = sigismember(&p->p_sa->sa_sigmask, sig);
1092 else
1093 #endif /* KERN_SA */
1094 masked = sigismember(&l->l_sigmask, sig);
1095 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1096 lwp_unlock(l);
1097 return 0;
1098 }
1099
1100 /*
1101 * If killing the process, make it run fast.
1102 */
1103 if (__predict_false((prop & SA_KILL) != 0) &&
1104 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1105 KASSERT(l->l_class == SCHED_OTHER);
1106 lwp_changepri(l, MAXPRI_USER);
1107 }
1108
1109 /*
1110 * If the LWP is running or on a run queue, then we win. If it's
1111 * sleeping interruptably, wake it and make it take the signal. If
1112 * the sleep isn't interruptable, then the chances are it will get
1113 * to see the signal soon anyhow. If suspended, it can't take the
1114 * signal right now. If it's LWP private or for all LWPs, save it
1115 * for later; otherwise punt.
1116 */
1117 rv = 0;
1118
1119 switch (l->l_stat) {
1120 case LSRUN:
1121 case LSONPROC:
1122 lwp_need_userret(l);
1123 rv = 1;
1124 break;
1125
1126 case LSSLEEP:
1127 if ((l->l_flag & LW_SINTR) != 0) {
1128 /* setrunnable() will release the lock. */
1129 setrunnable(l);
1130 return 1;
1131 }
1132 break;
1133
1134 case LSSUSPENDED:
1135 if ((prop & SA_KILL) != 0) {
1136 /* lwp_continue() will release the lock. */
1137 lwp_continue(l);
1138 return 1;
1139 }
1140 break;
1141
1142 case LSSTOP:
1143 if ((prop & SA_STOP) != 0)
1144 break;
1145
1146 /*
1147 * If the LWP is stopped and we are sending a continue
1148 * signal, then start it again.
1149 */
1150 if ((prop & SA_CONT) != 0) {
1151 if (l->l_wchan != NULL) {
1152 l->l_stat = LSSLEEP;
1153 p->p_nrlwps++;
1154 rv = 1;
1155 break;
1156 }
1157 /* setrunnable() will release the lock. */
1158 setrunnable(l);
1159 return 1;
1160 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1161 /* setrunnable() will release the lock. */
1162 setrunnable(l);
1163 return 1;
1164 }
1165 break;
1166
1167 default:
1168 break;
1169 }
1170
1171 lwp_unlock(l);
1172 return rv;
1173 }
1174
1175 /*
1176 * Notify an LWP that it has a pending signal.
1177 */
1178 void
1179 signotify(struct lwp *l)
1180 {
1181 KASSERT(lwp_locked(l, NULL));
1182
1183 l->l_flag |= LW_PENDSIG;
1184 lwp_need_userret(l);
1185 }
1186
1187 /*
1188 * Find an LWP within process p that is waiting on signal ksi, and hand
1189 * it on.
1190 */
1191 int
1192 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1193 {
1194 struct lwp *l;
1195 int signo;
1196
1197 KASSERT(mutex_owned(p->p_lock));
1198
1199 signo = ksi->ksi_signo;
1200
1201 if (ksi->ksi_lid != 0) {
1202 /*
1203 * Signal came via _lwp_kill(). Find the LWP and see if
1204 * it's interested.
1205 */
1206 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1207 return 0;
1208 if (l->l_sigwaited == NULL ||
1209 !sigismember(&l->l_sigwaitset, signo))
1210 return 0;
1211 } else {
1212 /*
1213 * Look for any LWP that may be interested.
1214 */
1215 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1216 KASSERT(l->l_sigwaited != NULL);
1217 if (sigismember(&l->l_sigwaitset, signo))
1218 break;
1219 }
1220 }
1221
1222 if (l != NULL) {
1223 l->l_sigwaited->ksi_info = ksi->ksi_info;
1224 l->l_sigwaited = NULL;
1225 LIST_REMOVE(l, l_sigwaiter);
1226 cv_signal(&l->l_sigcv);
1227 return 1;
1228 }
1229
1230 return 0;
1231 }
1232
1233 /*
1234 * Send the signal to the process. If the signal has an action, the action
1235 * is usually performed by the target process rather than the caller; we add
1236 * the signal to the set of pending signals for the process.
1237 *
1238 * Exceptions:
1239 * o When a stop signal is sent to a sleeping process that takes the
1240 * default action, the process is stopped without awakening it.
1241 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1242 * regardless of the signal action (eg, blocked or ignored).
1243 *
1244 * Other ignored signals are discarded immediately.
1245 */
1246 void
1247 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1248 {
1249 int prop, lid, toall, signo = ksi->ksi_signo;
1250 struct sigacts *sa;
1251 struct lwp *l;
1252 ksiginfo_t *kp;
1253 ksiginfoq_t kq;
1254 sig_t action;
1255 #ifdef KERN_SA
1256 struct sadata_vp *vp;
1257 #endif
1258
1259 KASSERT(!cpu_intr_p());
1260 KASSERT(mutex_owned(proc_lock));
1261 KASSERT(mutex_owned(p->p_lock));
1262 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1263 KASSERT(signo > 0 && signo < NSIG);
1264
1265 /*
1266 * If the process is being created by fork, is a zombie or is
1267 * exiting, then just drop the signal here and bail out.
1268 */
1269 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1270 return;
1271
1272 /*
1273 * Notify any interested parties of the signal.
1274 */
1275 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1276
1277 /*
1278 * Some signals including SIGKILL must act on the entire process.
1279 */
1280 kp = NULL;
1281 prop = sigprop[signo];
1282 toall = ((prop & SA_TOALL) != 0);
1283
1284 if (toall)
1285 lid = 0;
1286 else
1287 lid = ksi->ksi_lid;
1288
1289 /*
1290 * If proc is traced, always give parent a chance.
1291 */
1292 if (p->p_slflag & PSL_TRACED) {
1293 action = SIG_DFL;
1294
1295 if (lid == 0) {
1296 /*
1297 * If the process is being traced and the signal
1298 * is being caught, make sure to save any ksiginfo.
1299 */
1300 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1301 return;
1302 sigput(&p->p_sigpend, p, kp);
1303 }
1304 } else {
1305 /*
1306 * If the signal was the result of a trap and is not being
1307 * caught, then reset it to default action so that the
1308 * process dumps core immediately.
1309 */
1310 if (KSI_TRAP_P(ksi)) {
1311 sa = p->p_sigacts;
1312 mutex_enter(&sa->sa_mutex);
1313 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1314 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1315 SIGACTION(p, signo).sa_handler = SIG_DFL;
1316 }
1317 mutex_exit(&sa->sa_mutex);
1318 }
1319
1320 /*
1321 * If the signal is being ignored, then drop it. Note: we
1322 * don't set SIGCONT in ps_sigignore, and if it is set to
1323 * SIG_IGN, action will be SIG_DFL here.
1324 */
1325 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1326 return;
1327
1328 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1329 action = SIG_CATCH;
1330 else {
1331 action = SIG_DFL;
1332
1333 /*
1334 * If sending a tty stop signal to a member of an
1335 * orphaned process group, discard the signal here if
1336 * the action is default; don't stop the process below
1337 * if sleeping, and don't clear any pending SIGCONT.
1338 */
1339 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1340 return;
1341
1342 if (prop & SA_KILL && p->p_nice > NZERO)
1343 p->p_nice = NZERO;
1344 }
1345 }
1346
1347 /*
1348 * If stopping or continuing a process, discard any pending
1349 * signals that would do the inverse.
1350 */
1351 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1352 ksiginfo_queue_init(&kq);
1353 if ((prop & SA_CONT) != 0)
1354 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1355 if ((prop & SA_STOP) != 0)
1356 sigclear(&p->p_sigpend, &contsigmask, &kq);
1357 ksiginfo_queue_drain(&kq); /* XXXSMP */
1358 }
1359
1360 /*
1361 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1362 * please!), check if any LWPs are waiting on it. If yes, pass on
1363 * the signal info. The signal won't be processed further here.
1364 */
1365 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1366 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1367 sigunwait(p, ksi))
1368 return;
1369
1370 /*
1371 * XXXSMP Should be allocated by the caller, we're holding locks
1372 * here.
1373 */
1374 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1375 return;
1376
1377 /*
1378 * LWP private signals are easy - just find the LWP and post
1379 * the signal to it.
1380 */
1381 if (lid != 0) {
1382 l = lwp_find(p, lid);
1383 if (l != NULL) {
1384 sigput(&l->l_sigpend, p, kp);
1385 membar_producer();
1386 (void)sigpost(l, action, prop, kp->ksi_signo, 0);
1387 }
1388 goto out;
1389 }
1390
1391 /*
1392 * Some signals go to all LWPs, even if posted with _lwp_kill()
1393 * or for an SA process.
1394 */
1395 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1396 if ((p->p_slflag & PSL_TRACED) != 0)
1397 goto deliver;
1398
1399 /*
1400 * If SIGCONT is default (or ignored) and process is
1401 * asleep, we are finished; the process should not
1402 * be awakened.
1403 */
1404 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1405 goto out;
1406
1407 sigput(&p->p_sigpend, p, kp);
1408 } else {
1409 /*
1410 * Process is stopped or stopping. If traced, then no
1411 * further action is necessary.
1412 */
1413 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1414 goto out;
1415
1416 if ((prop & (SA_CONT | SA_KILL)) != 0) {
1417 /*
1418 * Re-adjust p_nstopchild if the process wasn't
1419 * collected by its parent.
1420 */
1421 p->p_stat = SACTIVE;
1422 p->p_sflag &= ~PS_STOPPING;
1423 if (!p->p_waited)
1424 p->p_pptr->p_nstopchild--;
1425
1426 /*
1427 * If SIGCONT is default (or ignored), we continue
1428 * the process but don't leave the signal in
1429 * ps_siglist, as it has no further action. If
1430 * SIGCONT is held, we continue the process and
1431 * leave the signal in ps_siglist. If the process
1432 * catches SIGCONT, let it handle the signal itself.
1433 * If it isn't waiting on an event, then it goes
1434 * back to run state. Otherwise, process goes back
1435 * to sleep state.
1436 */
1437 if ((prop & SA_CONT) == 0 || action != SIG_DFL)
1438 sigput(&p->p_sigpend, p, kp);
1439 } else if ((prop & SA_STOP) != 0) {
1440 /*
1441 * Already stopped, don't need to stop again.
1442 * (If we did the shell could get confused.)
1443 */
1444 goto out;
1445 } else
1446 sigput(&p->p_sigpend, p, kp);
1447 }
1448
1449 deliver:
1450 /*
1451 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1452 * visible on the per process list (for sigispending()). This
1453 * is unlikely to be needed in practice, but...
1454 */
1455 membar_producer();
1456
1457 /*
1458 * Try to find an LWP that can take the signal.
1459 */
1460 #if KERN_SA
1461 if ((p->p_sa != NULL) && !toall) {
1462 /*
1463 * If we're in this delivery path, we are delivering a
1464 * signal that needs to go to one thread in the process.
1465 *
1466 * In the SA case, we try to find an idle LWP that can take
1467 * the signal. If that fails, only then do we consider
1468 * interrupting active LWPs. Since the signal's going to
1469 * just one thread, we need only look at "blessed" lwps,
1470 * so scan the vps for them.
1471 */
1472 l = NULL;
1473 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1474 l = vp->savp_lwp;
1475 if (sigpost(l, action, prop, kp->ksi_signo, 1))
1476 break;
1477 }
1478
1479 if (l == NULL) {
1480 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1481 l = vp->savp_lwp;
1482 if (sigpost(l, action, prop, kp->ksi_signo, 0))
1483 break;
1484 }
1485 }
1486 } else /* Catch the brace below if we're defined */
1487 #endif /* KERN_SA */
1488 {
1489 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1490 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1491 break;
1492 }
1493
1494 out:
1495 /*
1496 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1497 * with locks held. The caller should take care of this.
1498 */
1499 ksiginfo_free(kp);
1500 }
1501
1502 void
1503 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1504 {
1505 struct proc *p = l->l_proc;
1506 #ifdef KERN_SA
1507 struct lwp *le, *li;
1508 siginfo_t *si;
1509 int f;
1510 #endif /* KERN_SA */
1511
1512 KASSERT(mutex_owned(p->p_lock));
1513
1514 #ifdef KERN_SA
1515 if (p->p_sflag & PS_SA) {
1516 /* f indicates if we should clear LP_SA_NOBLOCK */
1517 f = ~l->l_pflag & LP_SA_NOBLOCK;
1518 l->l_pflag |= LP_SA_NOBLOCK;
1519
1520 mutex_exit(p->p_lock);
1521 /* XXXUPSXXX What if not on sa_vp? */
1522 /*
1523 * WRS: I think it won't matter, beyond the
1524 * question of what exactly we do with a signal
1525 * to a blocked user thread. Also, we try hard to always
1526 * send signals to blessed lwps, so we would only send
1527 * to a non-blessed lwp under special circumstances.
1528 */
1529 si = siginfo_alloc(PR_WAITOK);
1530
1531 si->_info = ksi->ksi_info;
1532
1533 /*
1534 * Figure out if we're the innocent victim or the main
1535 * perpitrator.
1536 */
1537 le = li = NULL;
1538 if (KSI_TRAP_P(ksi))
1539 le = l;
1540 else
1541 li = l;
1542 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1543 sizeof(*si), si, siginfo_free) != 0) {
1544 siginfo_free(si);
1545 #if 0
1546 if (KSI_TRAP_P(ksi))
1547 /* XXX What dowe do here? The signal
1548 * didn't make it
1549 */;
1550 #endif
1551 }
1552 l->l_pflag ^= f;
1553 mutex_enter(p->p_lock);
1554 return;
1555 }
1556 #endif /* KERN_SA */
1557
1558 (*p->p_emul->e_sendsig)(ksi, mask);
1559 }
1560
1561 /*
1562 * Stop any LWPs sleeping interruptably.
1563 */
1564 static void
1565 proc_stop_lwps(struct proc *p)
1566 {
1567 struct lwp *l;
1568
1569 KASSERT(mutex_owned(p->p_lock));
1570 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1571
1572 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1573 lwp_lock(l);
1574 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1575 l->l_stat = LSSTOP;
1576 p->p_nrlwps--;
1577 }
1578 lwp_unlock(l);
1579 }
1580 }
1581
1582 /*
1583 * Finish stopping of a process. Mark it stopped and notify the parent.
1584 *
1585 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1586 */
1587 static void
1588 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1589 {
1590
1591 KASSERT(mutex_owned(proc_lock));
1592 KASSERT(mutex_owned(p->p_lock));
1593 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1594 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1595
1596 p->p_sflag &= ~PS_STOPPING;
1597 p->p_stat = SSTOP;
1598 p->p_waited = 0;
1599 p->p_pptr->p_nstopchild++;
1600 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1601 if (ppsig) {
1602 /* child_psignal drops p_lock briefly. */
1603 child_psignal(p, ppmask);
1604 }
1605 cv_broadcast(&p->p_pptr->p_waitcv);
1606 }
1607 }
1608
1609 /*
1610 * Stop the current process and switch away when being stopped or traced.
1611 */
1612 void
1613 sigswitch(bool ppsig, int ppmask, int signo)
1614 {
1615 struct lwp *l = curlwp;
1616 struct proc *p = l->l_proc;
1617 int biglocks;
1618
1619 KASSERT(mutex_owned(p->p_lock));
1620 KASSERT(l->l_stat == LSONPROC);
1621 KASSERT(p->p_nrlwps > 0);
1622
1623 /*
1624 * On entry we know that the process needs to stop. If it's
1625 * the result of a 'sideways' stop signal that has been sourced
1626 * through issignal(), then stop other LWPs in the process too.
1627 */
1628 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1629 KASSERT(signo != 0);
1630 proc_stop(p, 1, signo);
1631 KASSERT(p->p_nrlwps > 0);
1632 }
1633
1634 /*
1635 * If we are the last live LWP, and the stop was a result of
1636 * a new signal, then signal the parent.
1637 */
1638 if ((p->p_sflag & PS_STOPPING) != 0) {
1639 if (!mutex_tryenter(proc_lock)) {
1640 mutex_exit(p->p_lock);
1641 mutex_enter(proc_lock);
1642 mutex_enter(p->p_lock);
1643 }
1644
1645 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1646 /*
1647 * Note that proc_stop_done() can drop
1648 * p->p_lock briefly.
1649 */
1650 proc_stop_done(p, ppsig, ppmask);
1651 }
1652
1653 mutex_exit(proc_lock);
1654 }
1655
1656 /*
1657 * Unlock and switch away.
1658 */
1659 KERNEL_UNLOCK_ALL(l, &biglocks);
1660 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1661 p->p_nrlwps--;
1662 lwp_lock(l);
1663 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1664 l->l_stat = LSSTOP;
1665 lwp_unlock(l);
1666 }
1667
1668 mutex_exit(p->p_lock);
1669 lwp_lock(l);
1670 mi_switch(l);
1671 KERNEL_LOCK(biglocks, l);
1672 mutex_enter(p->p_lock);
1673 }
1674
1675 /*
1676 * Check for a signal from the debugger.
1677 */
1678 int
1679 sigchecktrace(sigpend_t **spp)
1680 {
1681 struct lwp *l = curlwp;
1682 struct proc *p = l->l_proc;
1683 sigset_t *mask;
1684 int signo;
1685
1686 KASSERT(mutex_owned(p->p_lock));
1687
1688 /*
1689 * If we are no longer being traced, or the parent didn't
1690 * give us a signal, look for more signals.
1691 */
1692 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1693 return 0;
1694
1695 /* If there's a pending SIGKILL, process it immediately. */
1696 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1697 return 0;
1698
1699 /*
1700 * If the new signal is being masked, look for other signals.
1701 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1702 */
1703 signo = p->p_xstat;
1704 p->p_xstat = 0;
1705 if ((sigprop[signo] & SA_TOLWP) != 0)
1706 *spp = &l->l_sigpend;
1707 else
1708 *spp = &p->p_sigpend;
1709 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1710 if (sigismember(mask, signo))
1711 signo = 0;
1712
1713 return signo;
1714 }
1715
1716 /*
1717 * If the current process has received a signal (should be caught or cause
1718 * termination, should interrupt current syscall), return the signal number.
1719 *
1720 * Stop signals with default action are processed immediately, then cleared;
1721 * they aren't returned. This is checked after each entry to the system for
1722 * a syscall or trap.
1723 *
1724 * We will also return -1 if the process is exiting and the current LWP must
1725 * follow suit.
1726 *
1727 * Note that we may be called while on a sleep queue, so MUST NOT sleep. We
1728 * can switch away, though.
1729 */
1730 int
1731 issignal(struct lwp *l)
1732 {
1733 struct proc *p = l->l_proc;
1734 int signo = 0, prop;
1735 sigpend_t *sp = NULL;
1736 sigset_t ss;
1737
1738 KASSERT(mutex_owned(p->p_lock));
1739
1740 for (;;) {
1741 /* Discard any signals that we have decided not to take. */
1742 if (signo != 0)
1743 (void)sigget(sp, NULL, signo, NULL);
1744
1745 /* Bail out if we do not own the virtual processor */
1746 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1747 break;
1748
1749 /*
1750 * If the process is stopped/stopping, then stop ourselves
1751 * now that we're on the kernel/userspace boundary. When
1752 * we awaken, check for a signal from the debugger.
1753 */
1754 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1755 sigswitch(true, PS_NOCLDSTOP, 0);
1756 signo = sigchecktrace(&sp);
1757 } else
1758 signo = 0;
1759
1760 /*
1761 * If the debugger didn't provide a signal, find a pending
1762 * signal from our set. Check per-LWP signals first, and
1763 * then per-process.
1764 */
1765 if (signo == 0) {
1766 sp = &l->l_sigpend;
1767 ss = sp->sp_set;
1768 if ((p->p_lflag & PL_PPWAIT) != 0)
1769 sigminusset(&stopsigmask, &ss);
1770 sigminusset(&l->l_sigmask, &ss);
1771
1772 if ((signo = firstsig(&ss)) == 0) {
1773 sp = &p->p_sigpend;
1774 ss = sp->sp_set;
1775 if ((p->p_lflag & PL_PPWAIT) != 0)
1776 sigminusset(&stopsigmask, &ss);
1777 sigminusset(&l->l_sigmask, &ss);
1778
1779 if ((signo = firstsig(&ss)) == 0) {
1780 /*
1781 * No signal pending - clear the
1782 * indicator and bail out.
1783 */
1784 lwp_lock(l);
1785 l->l_flag &= ~LW_PENDSIG;
1786 lwp_unlock(l);
1787 sp = NULL;
1788 break;
1789 }
1790 }
1791 }
1792
1793 /*
1794 * We should see pending but ignored signals only if
1795 * we are being traced.
1796 */
1797 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1798 (p->p_slflag & PSL_TRACED) == 0) {
1799 /* Discard the signal. */
1800 continue;
1801 }
1802
1803 /*
1804 * If traced, always stop, and stay stopped until released
1805 * by the debugger. If the our parent process is waiting
1806 * for us, don't hang as we could deadlock.
1807 */
1808 if ((p->p_slflag & PSL_TRACED) != 0 &&
1809 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1810 /* Take the signal. */
1811 (void)sigget(sp, NULL, signo, NULL);
1812 p->p_xstat = signo;
1813
1814 /* Emulation-specific handling of signal trace */
1815 if (p->p_emul->e_tracesig == NULL ||
1816 (*p->p_emul->e_tracesig)(p, signo) == 0)
1817 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1818 signo);
1819
1820 /* Check for a signal from the debugger. */
1821 if ((signo = sigchecktrace(&sp)) == 0)
1822 continue;
1823 }
1824
1825 prop = sigprop[signo];
1826
1827 /*
1828 * Decide whether the signal should be returned.
1829 */
1830 switch ((long)SIGACTION(p, signo).sa_handler) {
1831 case (long)SIG_DFL:
1832 /*
1833 * Don't take default actions on system processes.
1834 */
1835 if (p->p_pid <= 1) {
1836 #ifdef DIAGNOSTIC
1837 /*
1838 * Are you sure you want to ignore SIGSEGV
1839 * in init? XXX
1840 */
1841 printf_nolog("Process (pid %d) got sig %d\n",
1842 p->p_pid, signo);
1843 #endif
1844 continue;
1845 }
1846
1847 /*
1848 * If there is a pending stop signal to process with
1849 * default action, stop here, then clear the signal.
1850 * However, if process is member of an orphaned
1851 * process group, ignore tty stop signals.
1852 */
1853 if (prop & SA_STOP) {
1854 /*
1855 * XXX Don't hold proc_lock for p_lflag,
1856 * but it's not a big deal.
1857 */
1858 if (p->p_slflag & PSL_TRACED ||
1859 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1860 prop & SA_TTYSTOP)) {
1861 /* Ignore the signal. */
1862 continue;
1863 }
1864 /* Take the signal. */
1865 (void)sigget(sp, NULL, signo, NULL);
1866 p->p_xstat = signo;
1867 signo = 0;
1868 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1869 } else if (prop & SA_IGNORE) {
1870 /*
1871 * Except for SIGCONT, shouldn't get here.
1872 * Default action is to ignore; drop it.
1873 */
1874 continue;
1875 }
1876 break;
1877
1878 case (long)SIG_IGN:
1879 #ifdef DEBUG_ISSIGNAL
1880 /*
1881 * Masking above should prevent us ever trying
1882 * to take action on an ignored signal other
1883 * than SIGCONT, unless process is traced.
1884 */
1885 if ((prop & SA_CONT) == 0 &&
1886 (p->p_slflag & PSL_TRACED) == 0)
1887 printf_nolog("issignal\n");
1888 #endif
1889 continue;
1890
1891 default:
1892 /*
1893 * This signal has an action, let postsig() process
1894 * it.
1895 */
1896 break;
1897 }
1898
1899 break;
1900 }
1901
1902 l->l_sigpendset = sp;
1903 return signo;
1904 }
1905
1906 /*
1907 * Take the action for the specified signal
1908 * from the current set of pending signals.
1909 */
1910 void
1911 postsig(int signo)
1912 {
1913 struct lwp *l;
1914 struct proc *p;
1915 struct sigacts *ps;
1916 sig_t action;
1917 sigset_t *returnmask;
1918 ksiginfo_t ksi;
1919
1920 l = curlwp;
1921 p = l->l_proc;
1922 ps = p->p_sigacts;
1923
1924 KASSERT(mutex_owned(p->p_lock));
1925 KASSERT(signo > 0);
1926
1927 /*
1928 * Set the new mask value and also defer further occurrences of this
1929 * signal.
1930 *
1931 * Special case: user has done a sigsuspend. Here the current mask is
1932 * not of interest, but rather the mask from before the sigsuspen is
1933 * what we want restored after the signal processing is completed.
1934 */
1935 if (l->l_sigrestore) {
1936 returnmask = &l->l_sigoldmask;
1937 l->l_sigrestore = 0;
1938 } else
1939 returnmask = &l->l_sigmask;
1940
1941 /*
1942 * Commit to taking the signal before releasing the mutex.
1943 */
1944 action = SIGACTION_PS(ps, signo).sa_handler;
1945 l->l_ru.ru_nsignals++;
1946 sigget(l->l_sigpendset, &ksi, signo, NULL);
1947
1948 if (ktrpoint(KTR_PSIG)) {
1949 mutex_exit(p->p_lock);
1950 ktrpsig(signo, action, returnmask, &ksi);
1951 mutex_enter(p->p_lock);
1952 }
1953
1954 if (action == SIG_DFL) {
1955 /*
1956 * Default action, where the default is to kill
1957 * the process. (Other cases were ignored above.)
1958 */
1959 sigexit(l, signo);
1960 return;
1961 }
1962
1963 /*
1964 * If we get here, the signal must be caught.
1965 */
1966 #ifdef DIAGNOSTIC
1967 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1968 panic("postsig action");
1969 #endif
1970
1971 kpsendsig(l, &ksi, returnmask);
1972 }
1973
1974 /*
1975 * sendsig:
1976 *
1977 * Default signal delivery method for NetBSD.
1978 */
1979 void
1980 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1981 {
1982 struct sigacts *sa;
1983 int sig;
1984
1985 sig = ksi->ksi_signo;
1986 sa = curproc->p_sigacts;
1987
1988 switch (sa->sa_sigdesc[sig].sd_vers) {
1989 case 0:
1990 case 1:
1991 /* Compat for 1.6 and earlier. */
1992 if (sendsig_sigcontext_vec == NULL) {
1993 break;
1994 }
1995 (*sendsig_sigcontext_vec)(ksi, mask);
1996 return;
1997 case 2:
1998 sendsig_siginfo(ksi, mask);
1999 return;
2000 default:
2001 break;
2002 }
2003
2004 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2005 sigexit(curlwp, SIGILL);
2006 }
2007
2008 /*
2009 * sendsig_reset:
2010 *
2011 * Reset the signal action. Called from emulation specific sendsig()
2012 * before unlocking to deliver the signal.
2013 */
2014 void
2015 sendsig_reset(struct lwp *l, int signo)
2016 {
2017 struct proc *p = l->l_proc;
2018 struct sigacts *ps = p->p_sigacts;
2019 sigset_t *mask;
2020
2021 KASSERT(mutex_owned(p->p_lock));
2022
2023 p->p_sigctx.ps_lwp = 0;
2024 p->p_sigctx.ps_code = 0;
2025 p->p_sigctx.ps_signo = 0;
2026
2027 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2028
2029 mutex_enter(&ps->sa_mutex);
2030 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2031 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2032 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2033 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2034 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2035 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2036 }
2037 mutex_exit(&ps->sa_mutex);
2038 }
2039
2040 /*
2041 * Kill the current process for stated reason.
2042 */
2043 void
2044 killproc(struct proc *p, const char *why)
2045 {
2046
2047 KASSERT(mutex_owned(proc_lock));
2048
2049 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2050 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2051 psignal(p, SIGKILL);
2052 }
2053
2054 /*
2055 * Force the current process to exit with the specified signal, dumping core
2056 * if appropriate. We bypass the normal tests for masked and caught
2057 * signals, allowing unrecoverable failures to terminate the process without
2058 * changing signal state. Mark the accounting record with the signal
2059 * termination. If dumping core, save the signal number for the debugger.
2060 * Calls exit and does not return.
2061 */
2062 void
2063 sigexit(struct lwp *l, int signo)
2064 {
2065 int exitsig, error, docore;
2066 struct proc *p;
2067 struct lwp *t;
2068
2069 p = l->l_proc;
2070
2071 KASSERT(mutex_owned(p->p_lock));
2072 KERNEL_UNLOCK_ALL(l, NULL);
2073
2074 /*
2075 * Don't permit coredump() multiple times in the same process.
2076 * Call back into sigexit, where we will be suspended until
2077 * the deed is done. Note that this is a recursive call, but
2078 * LW_WCORE will prevent us from coming back this way.
2079 */
2080 if ((p->p_sflag & PS_WCORE) != 0) {
2081 lwp_lock(l);
2082 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2083 lwp_unlock(l);
2084 mutex_exit(p->p_lock);
2085 lwp_userret(l);
2086 panic("sigexit 1");
2087 /* NOTREACHED */
2088 }
2089
2090 /* If process is already on the way out, then bail now. */
2091 if ((p->p_sflag & PS_WEXIT) != 0) {
2092 mutex_exit(p->p_lock);
2093 lwp_exit(l);
2094 panic("sigexit 2");
2095 /* NOTREACHED */
2096 }
2097
2098 /*
2099 * Prepare all other LWPs for exit. If dumping core, suspend them
2100 * so that their registers are available long enough to be dumped.
2101 */
2102 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2103 p->p_sflag |= PS_WCORE;
2104 for (;;) {
2105 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2106 lwp_lock(t);
2107 if (t == l) {
2108 t->l_flag &= ~LW_WSUSPEND;
2109 lwp_unlock(t);
2110 continue;
2111 }
2112 t->l_flag |= (LW_WCORE | LW_WEXIT);
2113 lwp_suspend(l, t);
2114 }
2115
2116 if (p->p_nrlwps == 1)
2117 break;
2118
2119 /*
2120 * Kick any LWPs sitting in lwp_wait1(), and wait
2121 * for everyone else to stop before proceeding.
2122 */
2123 p->p_nlwpwait++;
2124 cv_broadcast(&p->p_lwpcv);
2125 cv_wait(&p->p_lwpcv, p->p_lock);
2126 p->p_nlwpwait--;
2127 }
2128 }
2129
2130 exitsig = signo;
2131 p->p_acflag |= AXSIG;
2132 p->p_sigctx.ps_signo = signo;
2133
2134 if (docore) {
2135 mutex_exit(p->p_lock);
2136 if ((error = (*coredump_vec)(l, NULL)) == 0)
2137 exitsig |= WCOREFLAG;
2138
2139 if (kern_logsigexit) {
2140 int uid = l->l_cred ?
2141 (int)kauth_cred_geteuid(l->l_cred) : -1;
2142
2143 if (error)
2144 log(LOG_INFO, lognocoredump, p->p_pid,
2145 p->p_comm, uid, signo, error);
2146 else
2147 log(LOG_INFO, logcoredump, p->p_pid,
2148 p->p_comm, uid, signo);
2149 }
2150
2151 #ifdef PAX_SEGVGUARD
2152 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2153 #endif /* PAX_SEGVGUARD */
2154 /* Acquire the sched state mutex. exit1() will release it. */
2155 mutex_enter(p->p_lock);
2156 }
2157
2158 /* No longer dumping core. */
2159 p->p_sflag &= ~PS_WCORE;
2160
2161 exit1(l, W_EXITCODE(0, exitsig));
2162 /* NOTREACHED */
2163 }
2164
2165 /*
2166 * Put process 'p' into the stopped state and optionally, notify the parent.
2167 */
2168 void
2169 proc_stop(struct proc *p, int notify, int signo)
2170 {
2171 struct lwp *l;
2172
2173 KASSERT(mutex_owned(p->p_lock));
2174
2175 /*
2176 * First off, set the stopping indicator and bring all sleeping
2177 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2178 * unlock between here and the p->p_nrlwps check below.
2179 */
2180 p->p_sflag |= PS_STOPPING;
2181 if (notify)
2182 p->p_sflag |= PS_NOTIFYSTOP;
2183 else
2184 p->p_sflag &= ~PS_NOTIFYSTOP;
2185 membar_producer();
2186
2187 proc_stop_lwps(p);
2188
2189 /*
2190 * If there are no LWPs available to take the signal, then we
2191 * signal the parent process immediately. Otherwise, the last
2192 * LWP to stop will take care of it.
2193 */
2194
2195 if (p->p_nrlwps == 0) {
2196 proc_stop_done(p, true, PS_NOCLDSTOP);
2197 } else {
2198 /*
2199 * Have the remaining LWPs come to a halt, and trigger
2200 * proc_stop_callout() to ensure that they do.
2201 */
2202 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2203 sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2204 callout_schedule(&proc_stop_ch, 1);
2205 }
2206 }
2207
2208 /*
2209 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2210 * but wait for them to come to a halt at the kernel-user boundary. This is
2211 * to allow LWPs to release any locks that they may hold before stopping.
2212 *
2213 * Non-interruptable sleeps can be long, and there is the potential for an
2214 * LWP to begin sleeping interruptably soon after the process has been set
2215 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2216 * stopping, and so complete halt of the process and the return of status
2217 * information to the parent could be delayed indefinitely.
2218 *
2219 * To handle this race, proc_stop_callout() runs once per tick while there
2220 * are stopping processes in the system. It sets LWPs that are sleeping
2221 * interruptably into the LSSTOP state.
2222 *
2223 * Note that we are not concerned about keeping all LWPs stopped while the
2224 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2225 * What we do need to ensure is that all LWPs in a stopping process have
2226 * stopped at least once, so that notification can be sent to the parent
2227 * process.
2228 */
2229 static void
2230 proc_stop_callout(void *cookie)
2231 {
2232 bool more, restart;
2233 struct proc *p;
2234
2235 (void)cookie;
2236
2237 do {
2238 restart = false;
2239 more = false;
2240
2241 mutex_enter(proc_lock);
2242 PROCLIST_FOREACH(p, &allproc) {
2243 if ((p->p_flag & PK_MARKER) != 0)
2244 continue;
2245 mutex_enter(p->p_lock);
2246
2247 if ((p->p_sflag & PS_STOPPING) == 0) {
2248 mutex_exit(p->p_lock);
2249 continue;
2250 }
2251
2252 /* Stop any LWPs sleeping interruptably. */
2253 proc_stop_lwps(p);
2254 if (p->p_nrlwps == 0) {
2255 /*
2256 * We brought the process to a halt.
2257 * Mark it as stopped and notify the
2258 * parent.
2259 */
2260 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2261 /*
2262 * Note that proc_stop_done() will
2263 * drop p->p_lock briefly.
2264 * Arrange to restart and check
2265 * all processes again.
2266 */
2267 restart = true;
2268 }
2269 proc_stop_done(p, true, PS_NOCLDSTOP);
2270 } else
2271 more = true;
2272
2273 mutex_exit(p->p_lock);
2274 if (restart)
2275 break;
2276 }
2277 mutex_exit(proc_lock);
2278 } while (restart);
2279
2280 /*
2281 * If we noted processes that are stopping but still have
2282 * running LWPs, then arrange to check again in 1 tick.
2283 */
2284 if (more)
2285 callout_schedule(&proc_stop_ch, 1);
2286 }
2287
2288 /*
2289 * Given a process in state SSTOP, set the state back to SACTIVE and
2290 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2291 */
2292 void
2293 proc_unstop(struct proc *p)
2294 {
2295 struct lwp *l;
2296 int sig;
2297
2298 KASSERT(mutex_owned(proc_lock));
2299 KASSERT(mutex_owned(p->p_lock));
2300
2301 p->p_stat = SACTIVE;
2302 p->p_sflag &= ~PS_STOPPING;
2303 sig = p->p_xstat;
2304
2305 if (!p->p_waited)
2306 p->p_pptr->p_nstopchild--;
2307
2308 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2309 lwp_lock(l);
2310 if (l->l_stat != LSSTOP) {
2311 lwp_unlock(l);
2312 continue;
2313 }
2314 if (l->l_wchan == NULL) {
2315 setrunnable(l);
2316 continue;
2317 }
2318 if (sig && (l->l_flag & LW_SINTR) != 0) {
2319 setrunnable(l);
2320 sig = 0;
2321 } else {
2322 l->l_stat = LSSLEEP;
2323 p->p_nrlwps++;
2324 lwp_unlock(l);
2325 }
2326 }
2327 }
2328
2329 static int
2330 filt_sigattach(struct knote *kn)
2331 {
2332 struct proc *p = curproc;
2333
2334 kn->kn_obj = p;
2335 kn->kn_flags |= EV_CLEAR; /* automatically set */
2336
2337 mutex_enter(p->p_lock);
2338 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2339 mutex_exit(p->p_lock);
2340
2341 return (0);
2342 }
2343
2344 static void
2345 filt_sigdetach(struct knote *kn)
2346 {
2347 struct proc *p = kn->kn_obj;
2348
2349 mutex_enter(p->p_lock);
2350 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2351 mutex_exit(p->p_lock);
2352 }
2353
2354 /*
2355 * signal knotes are shared with proc knotes, so we apply a mask to
2356 * the hint in order to differentiate them from process hints. This
2357 * could be avoided by using a signal-specific knote list, but probably
2358 * isn't worth the trouble.
2359 */
2360 static int
2361 filt_signal(struct knote *kn, long hint)
2362 {
2363
2364 if (hint & NOTE_SIGNAL) {
2365 hint &= ~NOTE_SIGNAL;
2366
2367 if (kn->kn_id == hint)
2368 kn->kn_data++;
2369 }
2370 return (kn->kn_data != 0);
2371 }
2372
2373 const struct filterops sig_filtops = {
2374 0, filt_sigattach, filt_sigdetach, filt_signal
2375 };
2376