Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.297
      1 /*	$NetBSD: kern_sig.c,v 1.297 2009/03/29 05:02:46 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.297 2009/03/29 05:02:46 rmind Exp $");
     70 
     71 #include "opt_ptrace.h"
     72 #include "opt_compat_sunos.h"
     73 #include "opt_compat_netbsd.h"
     74 #include "opt_compat_netbsd32.h"
     75 #include "opt_pax.h"
     76 #include "opt_sa.h"
     77 
     78 #define	SIGPROP		/* include signal properties table */
     79 #include <sys/param.h>
     80 #include <sys/signalvar.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/wait.h>
     84 #include <sys/ktrace.h>
     85 #include <sys/syslog.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/file.h>
     88 #include <sys/pool.h>
     89 #include <sys/ucontext.h>
     90 #include <sys/sa.h>
     91 #include <sys/savar.h>
     92 #include <sys/exec.h>
     93 #include <sys/kauth.h>
     94 #include <sys/acct.h>
     95 #include <sys/callout.h>
     96 #include <sys/atomic.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 
    100 #ifdef PAX_SEGVGUARD
    101 #include <sys/pax.h>
    102 #endif /* PAX_SEGVGUARD */
    103 
    104 #include <uvm/uvm.h>
    105 #include <uvm/uvm_extern.h>
    106 
    107 static void	ksiginfo_exechook(struct proc *, void *);
    108 static void	proc_stop_callout(void *);
    109 static int	sigchecktrace(void);
    110 static int	sigpost(struct lwp *, sig_t, int, int, int);
    111 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    112 static int	sigunwait(struct proc *, const ksiginfo_t *);
    113 static void	sigswitch(bool, int, int);
    114 
    115 sigset_t	contsigmask, stopsigmask, sigcantmask;
    116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    117 static void	sigacts_poolpage_free(struct pool *, void *);
    118 static void	*sigacts_poolpage_alloc(struct pool *, int);
    119 static callout_t proc_stop_ch;
    120 static pool_cache_t siginfo_cache;
    121 static pool_cache_t ksiginfo_cache;
    122 
    123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    124 int (*coredump_vec)(struct lwp *, const char *) =
    125     (int (*)(struct lwp *, const char *))enosys;
    126 
    127 static struct pool_allocator sigactspool_allocator = {
    128         .pa_alloc = sigacts_poolpage_alloc,
    129 	.pa_free = sigacts_poolpage_free,
    130 };
    131 
    132 #ifdef DEBUG
    133 int	kern_logsigexit = 1;
    134 #else
    135 int	kern_logsigexit = 0;
    136 #endif
    137 
    138 static	const char logcoredump[] =
    139     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    140 static	const char lognocoredump[] =
    141     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    142 
    143 /*
    144  * signal_init:
    145  *
    146  * 	Initialize global signal-related data structures.
    147  */
    148 void
    149 signal_init(void)
    150 {
    151 
    152 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    153 
    154 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    155 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    156 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    157 
    158 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
    159 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
    160 
    161 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    162 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    163 
    164 	exechook_establish(ksiginfo_exechook, NULL);
    165 
    166 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    167 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    168 }
    169 
    170 /*
    171  * sigacts_poolpage_alloc:
    172  *
    173  *	 Allocate a page for the sigacts memory pool.
    174  */
    175 static void *
    176 sigacts_poolpage_alloc(struct pool *pp, int flags)
    177 {
    178 
    179 	return (void *)uvm_km_alloc(kernel_map,
    180 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    181 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    182 	    | UVM_KMF_WIRED);
    183 }
    184 
    185 /*
    186  * sigacts_poolpage_free:
    187  *
    188  *	 Free a page on behalf of the sigacts memory pool.
    189  */
    190 static void
    191 sigacts_poolpage_free(struct pool *pp, void *v)
    192 {
    193 
    194         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    195 }
    196 
    197 /*
    198  * sigactsinit:
    199  *
    200  *	 Create an initial sigctx structure, using the same signal state as
    201  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    202  *	 copy it from parent.
    203  */
    204 struct sigacts *
    205 sigactsinit(struct proc *pp, int share)
    206 {
    207 	struct sigacts *ps, *ps2;
    208 
    209 	ps = pp->p_sigacts;
    210 
    211 	if (share) {
    212 		atomic_inc_uint(&ps->sa_refcnt);
    213 		ps2 = ps;
    214 	} else {
    215 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    216 		/* XXXAD get rid of this */
    217 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    218 		mutex_enter(&ps->sa_mutex);
    219 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    220 		    sizeof(ps2->sa_sigdesc));
    221 		mutex_exit(&ps->sa_mutex);
    222 		ps2->sa_refcnt = 1;
    223 	}
    224 
    225 	return ps2;
    226 }
    227 
    228 /*
    229  * sigactsunshare:
    230  *
    231  *	Make this process not share its sigctx, maintaining all
    232  *	signal state.
    233  */
    234 void
    235 sigactsunshare(struct proc *p)
    236 {
    237 	struct sigacts *ps, *oldps;
    238 
    239 	oldps = p->p_sigacts;
    240 	if (oldps->sa_refcnt == 1)
    241 		return;
    242 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    243 	/* XXXAD get rid of this */
    244 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    245 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    246 	p->p_sigacts = ps;
    247 	sigactsfree(oldps);
    248 }
    249 
    250 /*
    251  * sigactsfree;
    252  *
    253  *	Release a sigctx structure.
    254  */
    255 void
    256 sigactsfree(struct sigacts *ps)
    257 {
    258 
    259 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    260 		mutex_destroy(&ps->sa_mutex);
    261 		pool_cache_put(sigacts_cache, ps);
    262 	}
    263 }
    264 
    265 /*
    266  * siginit:
    267  *
    268  *	Initialize signal state for process 0; set to ignore signals that
    269  *	are ignored by default and disable the signal stack.  Locking not
    270  *	required as the system is still cold.
    271  */
    272 void
    273 siginit(struct proc *p)
    274 {
    275 	struct lwp *l;
    276 	struct sigacts *ps;
    277 	int signo, prop;
    278 
    279 	ps = p->p_sigacts;
    280 	sigemptyset(&contsigmask);
    281 	sigemptyset(&stopsigmask);
    282 	sigemptyset(&sigcantmask);
    283 	for (signo = 1; signo < NSIG; signo++) {
    284 		prop = sigprop[signo];
    285 		if (prop & SA_CONT)
    286 			sigaddset(&contsigmask, signo);
    287 		if (prop & SA_STOP)
    288 			sigaddset(&stopsigmask, signo);
    289 		if (prop & SA_CANTMASK)
    290 			sigaddset(&sigcantmask, signo);
    291 		if (prop & SA_IGNORE && signo != SIGCONT)
    292 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    293 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    294 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    295 	}
    296 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    297 	p->p_sflag &= ~PS_NOCLDSTOP;
    298 
    299 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    300 	sigemptyset(&p->p_sigpend.sp_set);
    301 
    302 	/*
    303 	 * Reset per LWP state.
    304 	 */
    305 	l = LIST_FIRST(&p->p_lwps);
    306 	l->l_sigwaited = NULL;
    307 	l->l_sigstk.ss_flags = SS_DISABLE;
    308 	l->l_sigstk.ss_size = 0;
    309 	l->l_sigstk.ss_sp = 0;
    310 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    311 	sigemptyset(&l->l_sigpend.sp_set);
    312 
    313 	/* One reference. */
    314 	ps->sa_refcnt = 1;
    315 }
    316 
    317 /*
    318  * execsigs:
    319  *
    320  *	Reset signals for an exec of the specified process.
    321  */
    322 void
    323 execsigs(struct proc *p)
    324 {
    325 	struct sigacts *ps;
    326 	struct lwp *l;
    327 	int signo, prop;
    328 	sigset_t tset;
    329 	ksiginfoq_t kq;
    330 
    331 	KASSERT(p->p_nlwps == 1);
    332 
    333 	sigactsunshare(p);
    334 	ps = p->p_sigacts;
    335 
    336 	/*
    337 	 * Reset caught signals.  Held signals remain held through
    338 	 * l->l_sigmask (unless they were caught, and are now ignored
    339 	 * by default).
    340 	 *
    341 	 * No need to lock yet, the process has only one LWP and
    342 	 * at this point the sigacts are private to the process.
    343 	 */
    344 	sigemptyset(&tset);
    345 	for (signo = 1; signo < NSIG; signo++) {
    346 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    347 			prop = sigprop[signo];
    348 			if (prop & SA_IGNORE) {
    349 				if ((prop & SA_CONT) == 0)
    350 					sigaddset(&p->p_sigctx.ps_sigignore,
    351 					    signo);
    352 				sigaddset(&tset, signo);
    353 			}
    354 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    355 		}
    356 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    357 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    358 	}
    359 	ksiginfo_queue_init(&kq);
    360 
    361 	mutex_enter(p->p_lock);
    362 	sigclearall(p, &tset, &kq);
    363 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    364 
    365 	/*
    366 	 * Reset no zombies if child dies flag as Solaris does.
    367 	 */
    368 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    369 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    370 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    371 
    372 	/*
    373 	 * Reset per-LWP state.
    374 	 */
    375 	l = LIST_FIRST(&p->p_lwps);
    376 	l->l_sigwaited = NULL;
    377 	l->l_sigstk.ss_flags = SS_DISABLE;
    378 	l->l_sigstk.ss_size = 0;
    379 	l->l_sigstk.ss_sp = 0;
    380 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    381 	sigemptyset(&l->l_sigpend.sp_set);
    382 	mutex_exit(p->p_lock);
    383 
    384 	ksiginfo_queue_drain(&kq);
    385 }
    386 
    387 /*
    388  * ksiginfo_exechook:
    389  *
    390  *	Free all pending ksiginfo entries from a process on exec.
    391  *	Additionally, drain any unused ksiginfo structures in the
    392  *	system back to the pool.
    393  *
    394  *	XXX This should not be a hook, every process has signals.
    395  */
    396 static void
    397 ksiginfo_exechook(struct proc *p, void *v)
    398 {
    399 	ksiginfoq_t kq;
    400 
    401 	ksiginfo_queue_init(&kq);
    402 
    403 	mutex_enter(p->p_lock);
    404 	sigclearall(p, NULL, &kq);
    405 	mutex_exit(p->p_lock);
    406 
    407 	ksiginfo_queue_drain(&kq);
    408 }
    409 
    410 /*
    411  * ksiginfo_alloc:
    412  *
    413  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    414  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    415  *	has not been queued somewhere, then just return it.  Additionally,
    416  *	if the existing ksiginfo_t does not contain any information beyond
    417  *	the signal number, then just return it.
    418  */
    419 ksiginfo_t *
    420 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    421 {
    422 	ksiginfo_t *kp;
    423 
    424 	if (ok != NULL) {
    425 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    426 		    KSI_FROMPOOL)
    427 		    	return ok;
    428 		if (KSI_EMPTY_P(ok))
    429 			return ok;
    430 	}
    431 
    432 	kp = pool_cache_get(ksiginfo_cache, flags);
    433 	if (kp == NULL) {
    434 #ifdef DIAGNOSTIC
    435 		printf("Out of memory allocating ksiginfo for pid %d\n",
    436 		    p->p_pid);
    437 #endif
    438 		return NULL;
    439 	}
    440 
    441 	if (ok != NULL) {
    442 		memcpy(kp, ok, sizeof(*kp));
    443 		kp->ksi_flags &= ~KSI_QUEUED;
    444 	} else
    445 		KSI_INIT_EMPTY(kp);
    446 
    447 	kp->ksi_flags |= KSI_FROMPOOL;
    448 
    449 	return kp;
    450 }
    451 
    452 /*
    453  * ksiginfo_free:
    454  *
    455  *	If the given ksiginfo_t is from the pool and has not been queued,
    456  *	then free it.
    457  */
    458 void
    459 ksiginfo_free(ksiginfo_t *kp)
    460 {
    461 
    462 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    463 		return;
    464 	pool_cache_put(ksiginfo_cache, kp);
    465 }
    466 
    467 /*
    468  * ksiginfo_queue_drain:
    469  *
    470  *	Drain a non-empty ksiginfo_t queue.
    471  */
    472 void
    473 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    474 {
    475 	ksiginfo_t *ksi;
    476 
    477 	KASSERT(!CIRCLEQ_EMPTY(kq));
    478 
    479 	while (!CIRCLEQ_EMPTY(kq)) {
    480 		ksi = CIRCLEQ_FIRST(kq);
    481 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    482 		pool_cache_put(ksiginfo_cache, ksi);
    483 	}
    484 }
    485 
    486 /*
    487  * sigget:
    488  *
    489  *	Fetch the first pending signal from a set.  Optionally, also fetch
    490  *	or manufacture a ksiginfo element.  Returns the number of the first
    491  *	pending signal, or zero.
    492  */
    493 int
    494 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    495 {
    496         ksiginfo_t *ksi;
    497 	sigset_t tset;
    498 
    499 	/* If there's no pending set, the signal is from the debugger. */
    500 	if (sp == NULL)
    501 		goto out;
    502 
    503 	/* Construct mask from signo, and 'mask'. */
    504 	if (signo == 0) {
    505 		if (mask != NULL) {
    506 			tset = *mask;
    507 			__sigandset(&sp->sp_set, &tset);
    508 		} else
    509 			tset = sp->sp_set;
    510 
    511 		/* If there are no signals pending, that's it. */
    512 		if ((signo = firstsig(&tset)) == 0)
    513 			goto out;
    514 	} else {
    515 		KASSERT(sigismember(&sp->sp_set, signo));
    516 	}
    517 
    518 	sigdelset(&sp->sp_set, signo);
    519 
    520 	/* Find siginfo and copy it out. */
    521 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    522 		if (ksi->ksi_signo == signo) {
    523 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    524 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    525 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    526 			ksi->ksi_flags &= ~KSI_QUEUED;
    527 			if (out != NULL) {
    528 				memcpy(out, ksi, sizeof(*out));
    529 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    530 			}
    531 			ksiginfo_free(ksi);
    532 			return signo;
    533 		}
    534 	}
    535 
    536 out:
    537 	/* If there's no siginfo, then manufacture it. */
    538 	if (out != NULL) {
    539 		KSI_INIT(out);
    540 		out->ksi_info._signo = signo;
    541 		out->ksi_info._code = SI_NOINFO;
    542 	}
    543 
    544 	return signo;
    545 }
    546 
    547 /*
    548  * sigput:
    549  *
    550  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    551  */
    552 static void
    553 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    554 {
    555 	ksiginfo_t *kp;
    556 
    557 	KASSERT(mutex_owned(p->p_lock));
    558 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    559 
    560 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    561 
    562 	/*
    563 	 * If there is no siginfo, we are done.
    564 	 */
    565 	if (KSI_EMPTY_P(ksi))
    566 		return;
    567 
    568 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    569 
    570 #ifdef notyet	/* XXX: QUEUING */
    571 	if (ksi->ksi_signo < SIGRTMIN)
    572 #endif
    573 	{
    574 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    575 			if (kp->ksi_signo == ksi->ksi_signo) {
    576 				KSI_COPY(ksi, kp);
    577 				kp->ksi_flags |= KSI_QUEUED;
    578 				return;
    579 			}
    580 		}
    581 	}
    582 
    583 	ksi->ksi_flags |= KSI_QUEUED;
    584 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    585 }
    586 
    587 /*
    588  * sigclear:
    589  *
    590  *	Clear all pending signals in the specified set.
    591  */
    592 void
    593 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    594 {
    595 	ksiginfo_t *ksi, *next;
    596 
    597 	if (mask == NULL)
    598 		sigemptyset(&sp->sp_set);
    599 	else
    600 		sigminusset(mask, &sp->sp_set);
    601 
    602 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    603 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    604 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    605 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    606 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    607 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    608 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    609 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    610 		}
    611 	}
    612 }
    613 
    614 /*
    615  * sigclearall:
    616  *
    617  *	Clear all pending signals in the specified set from a process and
    618  *	its LWPs.
    619  */
    620 void
    621 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    622 {
    623 	struct lwp *l;
    624 
    625 	KASSERT(mutex_owned(p->p_lock));
    626 
    627 	sigclear(&p->p_sigpend, mask, kq);
    628 
    629 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    630 		sigclear(&l->l_sigpend, mask, kq);
    631 	}
    632 }
    633 
    634 /*
    635  * sigispending:
    636  *
    637  *	Return true if there are pending signals for the current LWP.  May
    638  *	be called unlocked provided that LW_PENDSIG is set, and that the
    639  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    640  *	set.
    641  */
    642 int
    643 sigispending(struct lwp *l, int signo)
    644 {
    645 	struct proc *p = l->l_proc;
    646 	sigset_t tset;
    647 
    648 	membar_consumer();
    649 
    650 	tset = l->l_sigpend.sp_set;
    651 	sigplusset(&p->p_sigpend.sp_set, &tset);
    652 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    653 	sigminusset(&l->l_sigmask, &tset);
    654 
    655 	if (signo == 0) {
    656 		if (firstsig(&tset) != 0)
    657 			return EINTR;
    658 	} else if (sigismember(&tset, signo))
    659 		return EINTR;
    660 
    661 	return 0;
    662 }
    663 
    664 /*
    665  * siginfo_alloc:
    666  *
    667  *	 Allocate a new siginfo_t structure from the pool.
    668  */
    669 siginfo_t *
    670 siginfo_alloc(int flags)
    671 {
    672 
    673 	return pool_cache_get(siginfo_cache, flags);
    674 }
    675 
    676 /*
    677  * siginfo_free:
    678  *
    679  *	 Return a siginfo_t structure to the pool.
    680  */
    681 void
    682 siginfo_free(void *arg)
    683 {
    684 
    685 	pool_cache_put(siginfo_cache, arg);
    686 }
    687 
    688 void
    689 getucontext(struct lwp *l, ucontext_t *ucp)
    690 {
    691 	struct proc *p = l->l_proc;
    692 
    693 	KASSERT(mutex_owned(p->p_lock));
    694 
    695 	ucp->uc_flags = 0;
    696 	ucp->uc_link = l->l_ctxlink;
    697 
    698 #if KERN_SA
    699 	if (p->p_sa != NULL)
    700 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
    701 	else
    702 #endif /* KERN_SA */
    703 		ucp->uc_sigmask = l->l_sigmask;
    704 	ucp->uc_flags |= _UC_SIGMASK;
    705 
    706 	/*
    707 	 * The (unsupplied) definition of the `current execution stack'
    708 	 * in the System V Interface Definition appears to allow returning
    709 	 * the main context stack.
    710 	 */
    711 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    712 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    713 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    714 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    715 	} else {
    716 		/* Simply copy alternate signal execution stack. */
    717 		ucp->uc_stack = l->l_sigstk;
    718 	}
    719 	ucp->uc_flags |= _UC_STACK;
    720 	mutex_exit(p->p_lock);
    721 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    722 	mutex_enter(p->p_lock);
    723 }
    724 
    725 /*
    726  * getucontext_sa:
    727  *      Get a ucontext_t for use in SA upcall generation.
    728  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
    729  * fudge things with uc_link (which is usually NULL for libpthread
    730  * code), and 3) we report an empty signal mask.
    731  */
    732 void
    733 getucontext_sa(struct lwp *l, ucontext_t *ucp)
    734 {
    735 	ucp->uc_flags = 0;
    736 	ucp->uc_link = l->l_ctxlink;
    737 
    738 	sigemptyset(&ucp->uc_sigmask);
    739 	ucp->uc_flags |= _UC_SIGMASK;
    740 
    741 	/*
    742 	 * The (unsupplied) definition of the `current execution stack'
    743 	 * in the System V Interface Definition appears to allow returning
    744 	 * the main context stack.
    745 	 */
    746 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    747 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    748 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    749 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    750 	} else {
    751 		/* Simply copy alternate signal execution stack. */
    752 		ucp->uc_stack = l->l_sigstk;
    753 	}
    754 	ucp->uc_flags |= _UC_STACK;
    755 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    756 }
    757 
    758 int
    759 setucontext(struct lwp *l, const ucontext_t *ucp)
    760 {
    761 	struct proc *p = l->l_proc;
    762 	int error;
    763 
    764 	KASSERT(mutex_owned(p->p_lock));
    765 
    766 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    767 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    768 		if (error != 0)
    769 			return error;
    770 	}
    771 
    772 	mutex_exit(p->p_lock);
    773 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    774 	mutex_enter(p->p_lock);
    775 	if (error != 0)
    776 		return (error);
    777 
    778 	l->l_ctxlink = ucp->uc_link;
    779 
    780 	/*
    781 	 * If there was stack information, update whether or not we are
    782 	 * still running on an alternate signal stack.
    783 	 */
    784 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    785 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    786 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    787 		else
    788 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    789 	}
    790 
    791 	return 0;
    792 }
    793 
    794 /*
    795  * Common code for kill process group/broadcast kill.  cp is calling
    796  * process.
    797  */
    798 int
    799 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    800 {
    801 	struct proc	*p, *cp;
    802 	kauth_cred_t	pc;
    803 	struct pgrp	*pgrp;
    804 	int		nfound;
    805 	int		signo = ksi->ksi_signo;
    806 
    807 	cp = l->l_proc;
    808 	pc = l->l_cred;
    809 	nfound = 0;
    810 
    811 	mutex_enter(proc_lock);
    812 	if (all) {
    813 		/*
    814 		 * broadcast
    815 		 */
    816 		PROCLIST_FOREACH(p, &allproc) {
    817 			if (p->p_pid <= 1 || p == cp ||
    818 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
    819 				continue;
    820 			mutex_enter(p->p_lock);
    821 			if (kauth_authorize_process(pc,
    822 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    823 			    NULL) == 0) {
    824 				nfound++;
    825 				if (signo)
    826 					kpsignal2(p, ksi);
    827 			}
    828 			mutex_exit(p->p_lock);
    829 		}
    830 	} else {
    831 		if (pgid == 0)
    832 			/*
    833 			 * zero pgid means send to my process group.
    834 			 */
    835 			pgrp = cp->p_pgrp;
    836 		else {
    837 			pgrp = pg_find(pgid, PFIND_LOCKED);
    838 			if (pgrp == NULL)
    839 				goto out;
    840 		}
    841 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    842 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    843 				continue;
    844 			mutex_enter(p->p_lock);
    845 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    846 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    847 				nfound++;
    848 				if (signo && P_ZOMBIE(p) == 0)
    849 					kpsignal2(p, ksi);
    850 			}
    851 			mutex_exit(p->p_lock);
    852 		}
    853 	}
    854   out:
    855 	mutex_exit(proc_lock);
    856 	return (nfound ? 0 : ESRCH);
    857 }
    858 
    859 /*
    860  * Send a signal to a process group. If checktty is 1, limit to members
    861  * which have a controlling terminal.
    862  */
    863 void
    864 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    865 {
    866 	ksiginfo_t ksi;
    867 
    868 	KASSERT(!cpu_intr_p());
    869 	KASSERT(mutex_owned(proc_lock));
    870 
    871 	KSI_INIT_EMPTY(&ksi);
    872 	ksi.ksi_signo = sig;
    873 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    874 }
    875 
    876 void
    877 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    878 {
    879 	struct proc *p;
    880 
    881 	KASSERT(!cpu_intr_p());
    882 	KASSERT(mutex_owned(proc_lock));
    883 
    884 	if (__predict_false(pgrp == 0))
    885 		return;
    886 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    887 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    888 			kpsignal(p, ksi, data);
    889 }
    890 
    891 /*
    892  * Send a signal caused by a trap to the current LWP.  If it will be caught
    893  * immediately, deliver it with correct code.  Otherwise, post it normally.
    894  */
    895 void
    896 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    897 {
    898 	struct proc	*p;
    899 	struct sigacts	*ps;
    900 	int signo = ksi->ksi_signo;
    901 	sigset_t *mask;
    902 
    903 	KASSERT(KSI_TRAP_P(ksi));
    904 
    905 	ksi->ksi_lid = l->l_lid;
    906 	p = l->l_proc;
    907 
    908 	KASSERT(!cpu_intr_p());
    909 	mutex_enter(proc_lock);
    910 	mutex_enter(p->p_lock);
    911 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
    912 	ps = p->p_sigacts;
    913 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    914 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    915 	    !sigismember(mask, signo)) {
    916 		mutex_exit(proc_lock);
    917 		l->l_ru.ru_nsignals++;
    918 		kpsendsig(l, ksi, mask);
    919 		mutex_exit(p->p_lock);
    920 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    921 		    mask, ksi);
    922 	} else {
    923 		/* XXX for core dump/debugger */
    924 		p->p_sigctx.ps_lwp = l->l_lid;
    925 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    926 		p->p_sigctx.ps_code = ksi->ksi_trap;
    927 		kpsignal2(p, ksi);
    928 		mutex_exit(p->p_lock);
    929 		mutex_exit(proc_lock);
    930 	}
    931 }
    932 
    933 /*
    934  * Fill in signal information and signal the parent for a child status change.
    935  */
    936 void
    937 child_psignal(struct proc *p, int mask)
    938 {
    939 	ksiginfo_t ksi;
    940 	struct proc *q;
    941 	int xstat;
    942 
    943 	KASSERT(mutex_owned(proc_lock));
    944 	KASSERT(mutex_owned(p->p_lock));
    945 
    946 	xstat = p->p_xstat;
    947 
    948 	KSI_INIT(&ksi);
    949 	ksi.ksi_signo = SIGCHLD;
    950 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    951 	ksi.ksi_pid = p->p_pid;
    952 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    953 	ksi.ksi_status = xstat;
    954 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    955 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    956 
    957 	q = p->p_pptr;
    958 
    959 	mutex_exit(p->p_lock);
    960 	mutex_enter(q->p_lock);
    961 
    962 	if ((q->p_sflag & mask) == 0)
    963 		kpsignal2(q, &ksi);
    964 
    965 	mutex_exit(q->p_lock);
    966 	mutex_enter(p->p_lock);
    967 }
    968 
    969 void
    970 psignal(struct proc *p, int signo)
    971 {
    972 	ksiginfo_t ksi;
    973 
    974 	KASSERT(!cpu_intr_p());
    975 	KASSERT(mutex_owned(proc_lock));
    976 
    977 	KSI_INIT_EMPTY(&ksi);
    978 	ksi.ksi_signo = signo;
    979 	mutex_enter(p->p_lock);
    980 	kpsignal2(p, &ksi);
    981 	mutex_exit(p->p_lock);
    982 }
    983 
    984 void
    985 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    986 {
    987 	fdfile_t *ff;
    988 	file_t *fp;
    989 
    990 	KASSERT(!cpu_intr_p());
    991 	KASSERT(mutex_owned(proc_lock));
    992 
    993 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    994 		size_t fd;
    995 		filedesc_t *fdp = p->p_fd;
    996 
    997 		/* XXXSMP locking */
    998 		ksi->ksi_fd = -1;
    999 		for (fd = 0; fd < fdp->fd_nfiles; fd++) {
   1000 			if ((ff = fdp->fd_ofiles[fd]) == NULL)
   1001 				continue;
   1002 			if ((fp = ff->ff_file) == NULL)
   1003 				continue;
   1004 			if (fp->f_data == data) {
   1005 				ksi->ksi_fd = fd;
   1006 				break;
   1007 			}
   1008 		}
   1009 	}
   1010 	mutex_enter(p->p_lock);
   1011 	kpsignal2(p, ksi);
   1012 	mutex_exit(p->p_lock);
   1013 }
   1014 
   1015 /*
   1016  * sigismasked:
   1017  *
   1018  *	 Returns true if signal is ignored or masked for the specified LWP.
   1019  */
   1020 int
   1021 sigismasked(struct lwp *l, int sig)
   1022 {
   1023 	struct proc *p = l->l_proc;
   1024 
   1025 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1026 	    sigismember(&l->l_sigmask, sig)
   1027 #if KERN_SA
   1028 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
   1029 #endif /* KERN_SA */
   1030 	    );
   1031 }
   1032 
   1033 /*
   1034  * sigpost:
   1035  *
   1036  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1037  *	 be able to take the signal.
   1038  */
   1039 static int
   1040 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
   1041 {
   1042 	int rv, masked;
   1043 	struct proc *p = l->l_proc;
   1044 
   1045 	KASSERT(mutex_owned(p->p_lock));
   1046 
   1047 	/*
   1048 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1049 	 * pending signals.  Don't give it more.
   1050 	 */
   1051 	if (l->l_refcnt == 0)
   1052 		return 0;
   1053 
   1054 	/*
   1055 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1056 	 * is found to take the signal immediately, it should be taken soon.
   1057 	 */
   1058 	lwp_lock(l);
   1059 	l->l_flag |= LW_PENDSIG;
   1060 
   1061 	/*
   1062 	 * When sending signals to SA processes, we first try to find an
   1063 	 * idle VP to take it.
   1064 	 */
   1065 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
   1066 		lwp_unlock(l);
   1067 		return 0;
   1068 	}
   1069 
   1070 	/*
   1071 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1072 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1073 	 */
   1074 #if KERN_SA
   1075 	if (p->p_sa != NULL)
   1076 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
   1077 	else
   1078 #endif
   1079 		masked = sigismember(&l->l_sigmask, sig);
   1080 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1081 		lwp_unlock(l);
   1082 		return 0;
   1083 	}
   1084 
   1085 	/*
   1086 	 * If killing the process, make it run fast.
   1087 	 */
   1088 	if (__predict_false((prop & SA_KILL) != 0) &&
   1089 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1090 		KASSERT(l->l_class == SCHED_OTHER);
   1091 		lwp_changepri(l, MAXPRI_USER);
   1092 	}
   1093 
   1094 	/*
   1095 	 * If the LWP is running or on a run queue, then we win.  If it's
   1096 	 * sleeping interruptably, wake it and make it take the signal.  If
   1097 	 * the sleep isn't interruptable, then the chances are it will get
   1098 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1099 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1100 	 * for later; otherwise punt.
   1101 	 */
   1102 	rv = 0;
   1103 
   1104 	switch (l->l_stat) {
   1105 	case LSRUN:
   1106 	case LSONPROC:
   1107 		lwp_need_userret(l);
   1108 		rv = 1;
   1109 		break;
   1110 
   1111 	case LSSLEEP:
   1112 		if ((l->l_flag & LW_SINTR) != 0) {
   1113 			/* setrunnable() will release the lock. */
   1114 			setrunnable(l);
   1115 			return 1;
   1116 		}
   1117 		break;
   1118 
   1119 	case LSSUSPENDED:
   1120 		if ((prop & SA_KILL) != 0) {
   1121 			/* lwp_continue() will release the lock. */
   1122 			lwp_continue(l);
   1123 			return 1;
   1124 		}
   1125 		break;
   1126 
   1127 	case LSSTOP:
   1128 		if ((prop & SA_STOP) != 0)
   1129 			break;
   1130 
   1131 		/*
   1132 		 * If the LWP is stopped and we are sending a continue
   1133 		 * signal, then start it again.
   1134 		 */
   1135 		if ((prop & SA_CONT) != 0) {
   1136 			if (l->l_wchan != NULL) {
   1137 				l->l_stat = LSSLEEP;
   1138 				p->p_nrlwps++;
   1139 				rv = 1;
   1140 				break;
   1141 			}
   1142 			/* setrunnable() will release the lock. */
   1143 			setrunnable(l);
   1144 			return 1;
   1145 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1146 			/* setrunnable() will release the lock. */
   1147 			setrunnable(l);
   1148 			return 1;
   1149 		}
   1150 		break;
   1151 
   1152 	default:
   1153 		break;
   1154 	}
   1155 
   1156 	lwp_unlock(l);
   1157 	return rv;
   1158 }
   1159 
   1160 /*
   1161  * Notify an LWP that it has a pending signal.
   1162  */
   1163 void
   1164 signotify(struct lwp *l)
   1165 {
   1166 	KASSERT(lwp_locked(l, NULL));
   1167 
   1168 	l->l_flag |= LW_PENDSIG;
   1169 	lwp_need_userret(l);
   1170 }
   1171 
   1172 /*
   1173  * Find an LWP within process p that is waiting on signal ksi, and hand
   1174  * it on.
   1175  */
   1176 static int
   1177 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1178 {
   1179 	struct lwp *l;
   1180 	int signo;
   1181 
   1182 	KASSERT(mutex_owned(p->p_lock));
   1183 
   1184 	signo = ksi->ksi_signo;
   1185 
   1186 	if (ksi->ksi_lid != 0) {
   1187 		/*
   1188 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1189 		 * it's interested.
   1190 		 */
   1191 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1192 			return 0;
   1193 		if (l->l_sigwaited == NULL ||
   1194 		    !sigismember(&l->l_sigwaitset, signo))
   1195 			return 0;
   1196 	} else {
   1197 		/*
   1198 		 * Look for any LWP that may be interested.
   1199 		 */
   1200 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1201 			KASSERT(l->l_sigwaited != NULL);
   1202 			if (sigismember(&l->l_sigwaitset, signo))
   1203 				break;
   1204 		}
   1205 	}
   1206 
   1207 	if (l != NULL) {
   1208 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1209 		l->l_sigwaited = NULL;
   1210 		LIST_REMOVE(l, l_sigwaiter);
   1211 		cv_signal(&l->l_sigcv);
   1212 		return 1;
   1213 	}
   1214 
   1215 	return 0;
   1216 }
   1217 
   1218 /*
   1219  * Send the signal to the process.  If the signal has an action, the action
   1220  * is usually performed by the target process rather than the caller; we add
   1221  * the signal to the set of pending signals for the process.
   1222  *
   1223  * Exceptions:
   1224  *   o When a stop signal is sent to a sleeping process that takes the
   1225  *     default action, the process is stopped without awakening it.
   1226  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1227  *     regardless of the signal action (eg, blocked or ignored).
   1228  *
   1229  * Other ignored signals are discarded immediately.
   1230  */
   1231 void
   1232 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1233 {
   1234 	int prop, lid, toall, signo = ksi->ksi_signo;
   1235 	struct sigacts *sa;
   1236 	struct lwp *l;
   1237 	ksiginfo_t *kp;
   1238 	ksiginfoq_t kq;
   1239 	sig_t action;
   1240 #ifdef KERN_SA
   1241 	struct sadata_vp *vp;
   1242 #endif
   1243 
   1244 	KASSERT(!cpu_intr_p());
   1245 	KASSERT(mutex_owned(proc_lock));
   1246 	KASSERT(mutex_owned(p->p_lock));
   1247 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1248 	KASSERT(signo > 0 && signo < NSIG);
   1249 
   1250 	/*
   1251 	 * If the process is being created by fork, is a zombie or is
   1252 	 * exiting, then just drop the signal here and bail out.
   1253 	 */
   1254 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1255 		return;
   1256 
   1257 	/*
   1258 	 * Notify any interested parties of the signal.
   1259 	 */
   1260 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1261 
   1262 	/*
   1263 	 * Some signals including SIGKILL must act on the entire process.
   1264 	 */
   1265 	kp = NULL;
   1266 	prop = sigprop[signo];
   1267 	toall = ((prop & SA_TOALL) != 0);
   1268 
   1269 	if (toall)
   1270 		lid = 0;
   1271 	else
   1272 		lid = ksi->ksi_lid;
   1273 
   1274 	/*
   1275 	 * If proc is traced, always give parent a chance.
   1276 	 */
   1277 	if (p->p_slflag & PSL_TRACED) {
   1278 		action = SIG_DFL;
   1279 
   1280 		if (lid == 0) {
   1281 			/*
   1282 			 * If the process is being traced and the signal
   1283 			 * is being caught, make sure to save any ksiginfo.
   1284 			 */
   1285 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1286 				return;
   1287 			sigput(&p->p_sigpend, p, kp);
   1288 		}
   1289 	} else {
   1290 		/*
   1291 		 * If the signal was the result of a trap and is not being
   1292 		 * caught, then reset it to default action so that the
   1293 		 * process dumps core immediately.
   1294 		 */
   1295 		if (KSI_TRAP_P(ksi)) {
   1296 			sa = p->p_sigacts;
   1297 			mutex_enter(&sa->sa_mutex);
   1298 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1299 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1300 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1301 			}
   1302 			mutex_exit(&sa->sa_mutex);
   1303 		}
   1304 
   1305 		/*
   1306 		 * If the signal is being ignored, then drop it.  Note: we
   1307 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1308 		 * SIG_IGN, action will be SIG_DFL here.
   1309 		 */
   1310 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1311 			return;
   1312 
   1313 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1314 			action = SIG_CATCH;
   1315 		else {
   1316 			action = SIG_DFL;
   1317 
   1318 			/*
   1319 			 * If sending a tty stop signal to a member of an
   1320 			 * orphaned process group, discard the signal here if
   1321 			 * the action is default; don't stop the process below
   1322 			 * if sleeping, and don't clear any pending SIGCONT.
   1323 			 */
   1324 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1325 				return;
   1326 
   1327 			if (prop & SA_KILL && p->p_nice > NZERO)
   1328 				p->p_nice = NZERO;
   1329 		}
   1330 	}
   1331 
   1332 	/*
   1333 	 * If stopping or continuing a process, discard any pending
   1334 	 * signals that would do the inverse.
   1335 	 */
   1336 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1337 		ksiginfo_queue_init(&kq);
   1338 		if ((prop & SA_CONT) != 0)
   1339 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1340 		if ((prop & SA_STOP) != 0)
   1341 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1342 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1343 	}
   1344 
   1345 	/*
   1346 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1347 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1348 	 * the signal info.  The signal won't be processed further here.
   1349 	 */
   1350 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1351 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1352 	    sigunwait(p, ksi))
   1353 		return;
   1354 
   1355 	/*
   1356 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1357 	 * here.
   1358 	 */
   1359 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1360 		return;
   1361 
   1362 	/*
   1363 	 * LWP private signals are easy - just find the LWP and post
   1364 	 * the signal to it.
   1365 	 */
   1366 	if (lid != 0) {
   1367 		l = lwp_find(p, lid);
   1368 		if (l != NULL) {
   1369 			sigput(&l->l_sigpend, p, kp);
   1370 			membar_producer();
   1371 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
   1372 		}
   1373 		goto out;
   1374 	}
   1375 
   1376 	/*
   1377 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1378 	 * or for an SA process.
   1379 	 */
   1380 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1381 		if ((p->p_slflag & PSL_TRACED) != 0)
   1382 			goto deliver;
   1383 
   1384 		/*
   1385 		 * If SIGCONT is default (or ignored) and process is
   1386 		 * asleep, we are finished; the process should not
   1387 		 * be awakened.
   1388 		 */
   1389 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1390 			goto out;
   1391 	} else {
   1392 		/*
   1393 		 * Process is stopped or stopping.  If traced, then no
   1394 		 * further action is necessary.
   1395 		 */
   1396 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1397 			goto out;
   1398 
   1399 		/*
   1400 		 * Run the process only if sending SIGCONT or SIGKILL.
   1401 		 */
   1402 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1403 			/*
   1404 			 * Re-adjust p_nstopchild if the process wasn't
   1405 			 * collected by its parent.
   1406 			 */
   1407 			p->p_stat = SACTIVE;
   1408 			p->p_sflag &= ~PS_STOPPING;
   1409 			if (!p->p_waited)
   1410 				p->p_pptr->p_nstopchild--;
   1411 
   1412 			/*
   1413 			 * Do not make signal pending if SIGCONT is default.
   1414 			 *
   1415 			 * If the process catches SIGCONT, let it handle the
   1416 			 * signal itself (if waiting on event - process runs,
   1417 			 * otherwise continues sleeping).
   1418 			 */
   1419 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
   1420 				KASSERT(signo != SIGKILL);
   1421 				goto deliver;
   1422 			}
   1423 		} else if ((prop & SA_STOP) != 0) {
   1424 			/*
   1425 			 * Already stopped, don't need to stop again.
   1426 			 * (If we did the shell could get confused.)
   1427 			 */
   1428 			goto out;
   1429 		}
   1430 	}
   1431 	/*
   1432 	 * Make signal pending.
   1433 	 */
   1434 	sigput(&p->p_sigpend, p, kp);
   1435 
   1436  deliver:
   1437 	/*
   1438 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1439 	 * visible on the per process list (for sigispending()).  This
   1440 	 * is unlikely to be needed in practice, but...
   1441 	 */
   1442 	membar_producer();
   1443 
   1444 	/*
   1445 	 * Try to find an LWP that can take the signal.
   1446 	 */
   1447 #if KERN_SA
   1448 	if ((p->p_sa != NULL) && !toall) {
   1449 		/*
   1450 		 * If we're in this delivery path, we are delivering a
   1451 		 * signal that needs to go to one thread in the process.
   1452 		 *
   1453 		 * In the SA case, we try to find an idle LWP that can take
   1454 		 * the signal.  If that fails, only then do we consider
   1455 		 * interrupting active LWPs. Since the signal's going to
   1456 		 * just one thread, we need only look at "blessed" lwps,
   1457 		 * so scan the vps for them.
   1458 		 */
   1459 		l = NULL;
   1460 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1461 			l = vp->savp_lwp;
   1462 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
   1463 				break;
   1464 		}
   1465 
   1466 		if (l == NULL) {
   1467 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1468 				l = vp->savp_lwp;
   1469 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
   1470 					break;
   1471 			}
   1472 		}
   1473 	} else	/* Catch the brace below if we're defined */
   1474 #endif /* KERN_SA */
   1475 	    {
   1476 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1477 			if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
   1478 				break;
   1479 	}
   1480 
   1481  out:
   1482  	/*
   1483  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1484  	 * with locks held.  The caller should take care of this.
   1485  	 */
   1486  	ksiginfo_free(kp);
   1487 }
   1488 
   1489 void
   1490 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1491 {
   1492 	struct proc *p = l->l_proc;
   1493 #ifdef KERN_SA
   1494 	struct lwp *le, *li;
   1495 	siginfo_t *si;
   1496 	int f;
   1497 #endif /* KERN_SA */
   1498 
   1499 	KASSERT(mutex_owned(p->p_lock));
   1500 
   1501 #ifdef KERN_SA
   1502 	if (p->p_sflag & PS_SA) {
   1503 		/* f indicates if we should clear LP_SA_NOBLOCK */
   1504 		f = ~l->l_pflag & LP_SA_NOBLOCK;
   1505 		l->l_pflag |= LP_SA_NOBLOCK;
   1506 
   1507 		mutex_exit(p->p_lock);
   1508 		/* XXXUPSXXX What if not on sa_vp? */
   1509 		/*
   1510 		 * WRS: I think it won't matter, beyond the
   1511 		 * question of what exactly we do with a signal
   1512 		 * to a blocked user thread. Also, we try hard to always
   1513 		 * send signals to blessed lwps, so we would only send
   1514 		 * to a non-blessed lwp under special circumstances.
   1515 		 */
   1516 		si = siginfo_alloc(PR_WAITOK);
   1517 
   1518 		si->_info = ksi->ksi_info;
   1519 
   1520 		/*
   1521 		 * Figure out if we're the innocent victim or the main
   1522 		 * perpitrator.
   1523 		 */
   1524 		le = li = NULL;
   1525 		if (KSI_TRAP_P(ksi))
   1526 			le = l;
   1527 		else
   1528 			li = l;
   1529 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1530 		    sizeof(*si), si, siginfo_free) != 0) {
   1531 			siginfo_free(si);
   1532 #if 0
   1533 			if (KSI_TRAP_P(ksi))
   1534 				/* XXX What dowe do here? The signal
   1535 				 * didn't make it
   1536 				 */;
   1537 #endif
   1538 		}
   1539 		l->l_pflag ^= f;
   1540 		mutex_enter(p->p_lock);
   1541 		return;
   1542 	}
   1543 #endif /* KERN_SA */
   1544 
   1545 	(*p->p_emul->e_sendsig)(ksi, mask);
   1546 }
   1547 
   1548 /*
   1549  * Stop any LWPs sleeping interruptably.
   1550  */
   1551 static void
   1552 proc_stop_lwps(struct proc *p)
   1553 {
   1554 	struct lwp *l;
   1555 
   1556 	KASSERT(mutex_owned(p->p_lock));
   1557 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1558 
   1559 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1560 		lwp_lock(l);
   1561 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1562 			l->l_stat = LSSTOP;
   1563 			p->p_nrlwps--;
   1564 		}
   1565 		lwp_unlock(l);
   1566 	}
   1567 }
   1568 
   1569 /*
   1570  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1571  *
   1572  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1573  */
   1574 static void
   1575 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1576 {
   1577 
   1578 	KASSERT(mutex_owned(proc_lock));
   1579 	KASSERT(mutex_owned(p->p_lock));
   1580 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1581 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1582 
   1583 	p->p_sflag &= ~PS_STOPPING;
   1584 	p->p_stat = SSTOP;
   1585 	p->p_waited = 0;
   1586 	p->p_pptr->p_nstopchild++;
   1587 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1588 		if (ppsig) {
   1589 			/* child_psignal drops p_lock briefly. */
   1590 			child_psignal(p, ppmask);
   1591 		}
   1592 		cv_broadcast(&p->p_pptr->p_waitcv);
   1593 	}
   1594 }
   1595 
   1596 /*
   1597  * Stop the current process and switch away when being stopped or traced.
   1598  */
   1599 static void
   1600 sigswitch(bool ppsig, int ppmask, int signo)
   1601 {
   1602 	struct lwp *l = curlwp;
   1603 	struct proc *p = l->l_proc;
   1604 	int biglocks;
   1605 
   1606 	KASSERT(mutex_owned(p->p_lock));
   1607 	KASSERT(l->l_stat == LSONPROC);
   1608 	KASSERT(p->p_nrlwps > 0);
   1609 
   1610 	/*
   1611 	 * On entry we know that the process needs to stop.  If it's
   1612 	 * the result of a 'sideways' stop signal that has been sourced
   1613 	 * through issignal(), then stop other LWPs in the process too.
   1614 	 */
   1615 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1616 		KASSERT(signo != 0);
   1617 		proc_stop(p, 1, signo);
   1618 		KASSERT(p->p_nrlwps > 0);
   1619 	}
   1620 
   1621 	/*
   1622 	 * If we are the last live LWP, and the stop was a result of
   1623 	 * a new signal, then signal the parent.
   1624 	 */
   1625 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1626 		if (!mutex_tryenter(proc_lock)) {
   1627 			mutex_exit(p->p_lock);
   1628 			mutex_enter(proc_lock);
   1629 			mutex_enter(p->p_lock);
   1630 		}
   1631 
   1632 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1633 			/*
   1634 			 * Note that proc_stop_done() can drop
   1635 			 * p->p_lock briefly.
   1636 			 */
   1637 			proc_stop_done(p, ppsig, ppmask);
   1638 		}
   1639 
   1640 		mutex_exit(proc_lock);
   1641 	}
   1642 
   1643 	/*
   1644 	 * Unlock and switch away.
   1645 	 */
   1646 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1647 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1648 		p->p_nrlwps--;
   1649 		lwp_lock(l);
   1650 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1651 		l->l_stat = LSSTOP;
   1652 		lwp_unlock(l);
   1653 	}
   1654 
   1655 	mutex_exit(p->p_lock);
   1656 	lwp_lock(l);
   1657 	mi_switch(l);
   1658 	KERNEL_LOCK(biglocks, l);
   1659 	mutex_enter(p->p_lock);
   1660 }
   1661 
   1662 /*
   1663  * Check for a signal from the debugger.
   1664  */
   1665 static int
   1666 sigchecktrace(void)
   1667 {
   1668 	struct lwp *l = curlwp;
   1669 	struct proc *p = l->l_proc;
   1670 	sigset_t *mask;
   1671 	int signo;
   1672 
   1673 	KASSERT(mutex_owned(p->p_lock));
   1674 
   1675 	/* If there's a pending SIGKILL, process it immediately. */
   1676 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1677 		return 0;
   1678 
   1679 	/*
   1680 	 * If we are no longer being traced, or the parent didn't
   1681 	 * give us a signal, look for more signals.
   1682 	 */
   1683 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1684 		return 0;
   1685 
   1686 	/*
   1687 	 * If the new signal is being masked, look for other signals.
   1688 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1689 	 */
   1690 	signo = p->p_xstat;
   1691 	p->p_xstat = 0;
   1692 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   1693 	if (sigismember(mask, signo))
   1694 		signo = 0;
   1695 
   1696 	return signo;
   1697 }
   1698 
   1699 /*
   1700  * If the current process has received a signal (should be caught or cause
   1701  * termination, should interrupt current syscall), return the signal number.
   1702  *
   1703  * Stop signals with default action are processed immediately, then cleared;
   1704  * they aren't returned.  This is checked after each entry to the system for
   1705  * a syscall or trap.
   1706  *
   1707  * We will also return -1 if the process is exiting and the current LWP must
   1708  * follow suit.
   1709  */
   1710 int
   1711 issignal(struct lwp *l)
   1712 {
   1713 	struct proc *p;
   1714 	int signo, prop;
   1715 	sigpend_t *sp;
   1716 	sigset_t ss;
   1717 
   1718 	p = l->l_proc;
   1719 	sp = NULL;
   1720 	signo = 0;
   1721 
   1722 	KASSERT(p == curproc);
   1723 	KASSERT(mutex_owned(p->p_lock));
   1724 
   1725 	for (;;) {
   1726 		/* Discard any signals that we have decided not to take. */
   1727 		if (signo != 0)
   1728 			(void)sigget(sp, NULL, signo, NULL);
   1729 
   1730 		/* Bail out if we do not own the virtual processor */
   1731 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
   1732 			break;
   1733 
   1734 		/*
   1735 		 * If the process is stopped/stopping, then stop ourselves
   1736 		 * now that we're on the kernel/userspace boundary.  When
   1737 		 * we awaken, check for a signal from the debugger.
   1738 		 */
   1739 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1740 			sigswitch(true, PS_NOCLDSTOP, 0);
   1741 			signo = sigchecktrace();
   1742 		} else
   1743 			signo = 0;
   1744 
   1745 		/* Signals from the debugger are "out of band". */
   1746 		sp = NULL;
   1747 
   1748 		/*
   1749 		 * If the debugger didn't provide a signal, find a pending
   1750 		 * signal from our set.  Check per-LWP signals first, and
   1751 		 * then per-process.
   1752 		 */
   1753 		if (signo == 0) {
   1754 			sp = &l->l_sigpend;
   1755 			ss = sp->sp_set;
   1756 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1757 				sigminusset(&stopsigmask, &ss);
   1758 			sigminusset(&l->l_sigmask, &ss);
   1759 
   1760 			if ((signo = firstsig(&ss)) == 0) {
   1761 				sp = &p->p_sigpend;
   1762 				ss = sp->sp_set;
   1763 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1764 					sigminusset(&stopsigmask, &ss);
   1765 				sigminusset(&l->l_sigmask, &ss);
   1766 
   1767 				if ((signo = firstsig(&ss)) == 0) {
   1768 					/*
   1769 					 * No signal pending - clear the
   1770 					 * indicator and bail out.
   1771 					 */
   1772 					lwp_lock(l);
   1773 					l->l_flag &= ~LW_PENDSIG;
   1774 					lwp_unlock(l);
   1775 					sp = NULL;
   1776 					break;
   1777 				}
   1778 			}
   1779 		}
   1780 
   1781 		/*
   1782 		 * We should see pending but ignored signals only if
   1783 		 * we are being traced.
   1784 		 */
   1785 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1786 		    (p->p_slflag & PSL_TRACED) == 0) {
   1787 			/* Discard the signal. */
   1788 			continue;
   1789 		}
   1790 
   1791 		/*
   1792 		 * If traced, always stop, and stay stopped until released
   1793 		 * by the debugger.  If the our parent process is waiting
   1794 		 * for us, don't hang as we could deadlock.
   1795 		 */
   1796 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1797 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1798 			/* Take the signal. */
   1799 			(void)sigget(sp, NULL, signo, NULL);
   1800 			p->p_xstat = signo;
   1801 
   1802 			/* Emulation-specific handling of signal trace */
   1803 			if (p->p_emul->e_tracesig == NULL ||
   1804 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1805 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1806 				    signo);
   1807 
   1808 			/* Check for a signal from the debugger. */
   1809 			if ((signo = sigchecktrace()) == 0)
   1810 				continue;
   1811 
   1812 			/* Signals from the debugger are "out of band". */
   1813 			sp = NULL;
   1814 		}
   1815 
   1816 		prop = sigprop[signo];
   1817 
   1818 		/*
   1819 		 * Decide whether the signal should be returned.
   1820 		 */
   1821 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1822 		case (long)SIG_DFL:
   1823 			/*
   1824 			 * Don't take default actions on system processes.
   1825 			 */
   1826 			if (p->p_pid <= 1) {
   1827 #ifdef DIAGNOSTIC
   1828 				/*
   1829 				 * Are you sure you want to ignore SIGSEGV
   1830 				 * in init? XXX
   1831 				 */
   1832 				printf_nolog("Process (pid %d) got sig %d\n",
   1833 				    p->p_pid, signo);
   1834 #endif
   1835 				continue;
   1836 			}
   1837 
   1838 			/*
   1839 			 * If there is a pending stop signal to process with
   1840 			 * default action, stop here, then clear the signal.
   1841 			 * However, if process is member of an orphaned
   1842 			 * process group, ignore tty stop signals.
   1843 			 */
   1844 			if (prop & SA_STOP) {
   1845 				/*
   1846 				 * XXX Don't hold proc_lock for p_lflag,
   1847 				 * but it's not a big deal.
   1848 				 */
   1849 				if (p->p_slflag & PSL_TRACED ||
   1850 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1851 				    prop & SA_TTYSTOP)) {
   1852 				    	/* Ignore the signal. */
   1853 					continue;
   1854 				}
   1855 				/* Take the signal. */
   1856 				(void)sigget(sp, NULL, signo, NULL);
   1857 				p->p_xstat = signo;
   1858 				signo = 0;
   1859 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1860 			} else if (prop & SA_IGNORE) {
   1861 				/*
   1862 				 * Except for SIGCONT, shouldn't get here.
   1863 				 * Default action is to ignore; drop it.
   1864 				 */
   1865 				continue;
   1866 			}
   1867 			break;
   1868 
   1869 		case (long)SIG_IGN:
   1870 #ifdef DEBUG_ISSIGNAL
   1871 			/*
   1872 			 * Masking above should prevent us ever trying
   1873 			 * to take action on an ignored signal other
   1874 			 * than SIGCONT, unless process is traced.
   1875 			 */
   1876 			if ((prop & SA_CONT) == 0 &&
   1877 			    (p->p_slflag & PSL_TRACED) == 0)
   1878 				printf_nolog("issignal\n");
   1879 #endif
   1880 			continue;
   1881 
   1882 		default:
   1883 			/*
   1884 			 * This signal has an action, let postsig() process
   1885 			 * it.
   1886 			 */
   1887 			break;
   1888 		}
   1889 
   1890 		break;
   1891 	}
   1892 
   1893 	l->l_sigpendset = sp;
   1894 	return signo;
   1895 }
   1896 
   1897 /*
   1898  * Take the action for the specified signal
   1899  * from the current set of pending signals.
   1900  */
   1901 void
   1902 postsig(int signo)
   1903 {
   1904 	struct lwp	*l;
   1905 	struct proc	*p;
   1906 	struct sigacts	*ps;
   1907 	sig_t		action;
   1908 	sigset_t	*returnmask;
   1909 	ksiginfo_t	ksi;
   1910 
   1911 	l = curlwp;
   1912 	p = l->l_proc;
   1913 	ps = p->p_sigacts;
   1914 
   1915 	KASSERT(mutex_owned(p->p_lock));
   1916 	KASSERT(signo > 0);
   1917 
   1918 	/*
   1919 	 * Set the new mask value and also defer further occurrences of this
   1920 	 * signal.
   1921 	 *
   1922 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1923 	 * not of interest, but rather the mask from before the sigsuspend is
   1924 	 * what we want restored after the signal processing is completed.
   1925 	 */
   1926 	if (l->l_sigrestore) {
   1927 		returnmask = &l->l_sigoldmask;
   1928 		l->l_sigrestore = 0;
   1929 	} else
   1930 		returnmask = &l->l_sigmask;
   1931 
   1932 	/*
   1933 	 * Commit to taking the signal before releasing the mutex.
   1934 	 */
   1935 	action = SIGACTION_PS(ps, signo).sa_handler;
   1936 	l->l_ru.ru_nsignals++;
   1937 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1938 
   1939 	if (ktrpoint(KTR_PSIG)) {
   1940 		mutex_exit(p->p_lock);
   1941 		ktrpsig(signo, action, returnmask, &ksi);
   1942 		mutex_enter(p->p_lock);
   1943 	}
   1944 
   1945 	if (action == SIG_DFL) {
   1946 		/*
   1947 		 * Default action, where the default is to kill
   1948 		 * the process.  (Other cases were ignored above.)
   1949 		 */
   1950 		sigexit(l, signo);
   1951 		return;
   1952 	}
   1953 
   1954 	/*
   1955 	 * If we get here, the signal must be caught.
   1956 	 */
   1957 #ifdef DIAGNOSTIC
   1958 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1959 		panic("postsig action");
   1960 #endif
   1961 
   1962 	kpsendsig(l, &ksi, returnmask);
   1963 }
   1964 
   1965 /*
   1966  * sendsig:
   1967  *
   1968  *	Default signal delivery method for NetBSD.
   1969  */
   1970 void
   1971 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1972 {
   1973 	struct sigacts *sa;
   1974 	int sig;
   1975 
   1976 	sig = ksi->ksi_signo;
   1977 	sa = curproc->p_sigacts;
   1978 
   1979 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1980 	case 0:
   1981 	case 1:
   1982 		/* Compat for 1.6 and earlier. */
   1983 		if (sendsig_sigcontext_vec == NULL) {
   1984 			break;
   1985 		}
   1986 		(*sendsig_sigcontext_vec)(ksi, mask);
   1987 		return;
   1988 	case 2:
   1989 	case 3:
   1990 		sendsig_siginfo(ksi, mask);
   1991 		return;
   1992 	default:
   1993 		break;
   1994 	}
   1995 
   1996 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1997 	sigexit(curlwp, SIGILL);
   1998 }
   1999 
   2000 /*
   2001  * sendsig_reset:
   2002  *
   2003  *	Reset the signal action.  Called from emulation specific sendsig()
   2004  *	before unlocking to deliver the signal.
   2005  */
   2006 void
   2007 sendsig_reset(struct lwp *l, int signo)
   2008 {
   2009 	struct proc *p = l->l_proc;
   2010 	struct sigacts *ps = p->p_sigacts;
   2011 	sigset_t *mask;
   2012 
   2013 	KASSERT(mutex_owned(p->p_lock));
   2014 
   2015 	p->p_sigctx.ps_lwp = 0;
   2016 	p->p_sigctx.ps_code = 0;
   2017 	p->p_sigctx.ps_signo = 0;
   2018 
   2019 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   2020 
   2021 	mutex_enter(&ps->sa_mutex);
   2022 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
   2023 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2024 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2025 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2026 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2027 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2028 	}
   2029 	mutex_exit(&ps->sa_mutex);
   2030 }
   2031 
   2032 /*
   2033  * Kill the current process for stated reason.
   2034  */
   2035 void
   2036 killproc(struct proc *p, const char *why)
   2037 {
   2038 
   2039 	KASSERT(mutex_owned(proc_lock));
   2040 
   2041 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2042 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2043 	psignal(p, SIGKILL);
   2044 }
   2045 
   2046 /*
   2047  * Force the current process to exit with the specified signal, dumping core
   2048  * if appropriate.  We bypass the normal tests for masked and caught
   2049  * signals, allowing unrecoverable failures to terminate the process without
   2050  * changing signal state.  Mark the accounting record with the signal
   2051  * termination.  If dumping core, save the signal number for the debugger.
   2052  * Calls exit and does not return.
   2053  */
   2054 void
   2055 sigexit(struct lwp *l, int signo)
   2056 {
   2057 	int exitsig, error, docore;
   2058 	struct proc *p;
   2059 	struct lwp *t;
   2060 
   2061 	p = l->l_proc;
   2062 
   2063 	KASSERT(mutex_owned(p->p_lock));
   2064 	KERNEL_UNLOCK_ALL(l, NULL);
   2065 
   2066 	/*
   2067 	 * Don't permit coredump() multiple times in the same process.
   2068 	 * Call back into sigexit, where we will be suspended until
   2069 	 * the deed is done.  Note that this is a recursive call, but
   2070 	 * LW_WCORE will prevent us from coming back this way.
   2071 	 */
   2072 	if ((p->p_sflag & PS_WCORE) != 0) {
   2073 		lwp_lock(l);
   2074 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2075 		lwp_unlock(l);
   2076 		mutex_exit(p->p_lock);
   2077 		lwp_userret(l);
   2078 		panic("sigexit 1");
   2079 		/* NOTREACHED */
   2080 	}
   2081 
   2082 	/* If process is already on the way out, then bail now. */
   2083 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2084 		mutex_exit(p->p_lock);
   2085 		lwp_exit(l);
   2086 		panic("sigexit 2");
   2087 		/* NOTREACHED */
   2088 	}
   2089 
   2090 	/*
   2091 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2092 	 * so that their registers are available long enough to be dumped.
   2093  	 */
   2094 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2095 		p->p_sflag |= PS_WCORE;
   2096 		for (;;) {
   2097 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2098 				lwp_lock(t);
   2099 				if (t == l) {
   2100 					t->l_flag &= ~LW_WSUSPEND;
   2101 					lwp_unlock(t);
   2102 					continue;
   2103 				}
   2104 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2105 				lwp_suspend(l, t);
   2106 			}
   2107 
   2108 			if (p->p_nrlwps == 1)
   2109 				break;
   2110 
   2111 			/*
   2112 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2113 			 * for everyone else to stop before proceeding.
   2114 			 */
   2115 			p->p_nlwpwait++;
   2116 			cv_broadcast(&p->p_lwpcv);
   2117 			cv_wait(&p->p_lwpcv, p->p_lock);
   2118 			p->p_nlwpwait--;
   2119 		}
   2120 	}
   2121 
   2122 	exitsig = signo;
   2123 	p->p_acflag |= AXSIG;
   2124 	p->p_sigctx.ps_signo = signo;
   2125 
   2126 	if (docore) {
   2127 		mutex_exit(p->p_lock);
   2128 		if ((error = (*coredump_vec)(l, NULL)) == 0)
   2129 			exitsig |= WCOREFLAG;
   2130 
   2131 		if (kern_logsigexit) {
   2132 			int uid = l->l_cred ?
   2133 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2134 
   2135 			if (error)
   2136 				log(LOG_INFO, lognocoredump, p->p_pid,
   2137 				    p->p_comm, uid, signo, error);
   2138 			else
   2139 				log(LOG_INFO, logcoredump, p->p_pid,
   2140 				    p->p_comm, uid, signo);
   2141 		}
   2142 
   2143 #ifdef PAX_SEGVGUARD
   2144 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2145 #endif /* PAX_SEGVGUARD */
   2146 		/* Acquire the sched state mutex.  exit1() will release it. */
   2147 		mutex_enter(p->p_lock);
   2148 	}
   2149 
   2150 	/* No longer dumping core. */
   2151 	p->p_sflag &= ~PS_WCORE;
   2152 
   2153 	exit1(l, W_EXITCODE(0, exitsig));
   2154 	/* NOTREACHED */
   2155 }
   2156 
   2157 /*
   2158  * Put process 'p' into the stopped state and optionally, notify the parent.
   2159  */
   2160 void
   2161 proc_stop(struct proc *p, int notify, int signo)
   2162 {
   2163 	struct lwp *l;
   2164 
   2165 	KASSERT(mutex_owned(p->p_lock));
   2166 
   2167 	/*
   2168 	 * First off, set the stopping indicator and bring all sleeping
   2169 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2170 	 * unlock between here and the p->p_nrlwps check below.
   2171 	 */
   2172 	p->p_sflag |= PS_STOPPING;
   2173 	if (notify)
   2174 		p->p_sflag |= PS_NOTIFYSTOP;
   2175 	else
   2176 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2177 	membar_producer();
   2178 
   2179 	proc_stop_lwps(p);
   2180 
   2181 	/*
   2182 	 * If there are no LWPs available to take the signal, then we
   2183 	 * signal the parent process immediately.  Otherwise, the last
   2184 	 * LWP to stop will take care of it.
   2185 	 */
   2186 
   2187 	if (p->p_nrlwps == 0) {
   2188 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2189 	} else {
   2190 		/*
   2191 		 * Have the remaining LWPs come to a halt, and trigger
   2192 		 * proc_stop_callout() to ensure that they do.
   2193 		 */
   2194 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2195 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
   2196 		callout_schedule(&proc_stop_ch, 1);
   2197 	}
   2198 }
   2199 
   2200 /*
   2201  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2202  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2203  * to allow LWPs to release any locks that they may hold before stopping.
   2204  *
   2205  * Non-interruptable sleeps can be long, and there is the potential for an
   2206  * LWP to begin sleeping interruptably soon after the process has been set
   2207  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2208  * stopping, and so complete halt of the process and the return of status
   2209  * information to the parent could be delayed indefinitely.
   2210  *
   2211  * To handle this race, proc_stop_callout() runs once per tick while there
   2212  * are stopping processes in the system.  It sets LWPs that are sleeping
   2213  * interruptably into the LSSTOP state.
   2214  *
   2215  * Note that we are not concerned about keeping all LWPs stopped while the
   2216  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2217  * What we do need to ensure is that all LWPs in a stopping process have
   2218  * stopped at least once, so that notification can be sent to the parent
   2219  * process.
   2220  */
   2221 static void
   2222 proc_stop_callout(void *cookie)
   2223 {
   2224 	bool more, restart;
   2225 	struct proc *p;
   2226 
   2227 	(void)cookie;
   2228 
   2229 	do {
   2230 		restart = false;
   2231 		more = false;
   2232 
   2233 		mutex_enter(proc_lock);
   2234 		PROCLIST_FOREACH(p, &allproc) {
   2235 			if ((p->p_flag & PK_MARKER) != 0)
   2236 				continue;
   2237 			mutex_enter(p->p_lock);
   2238 
   2239 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2240 				mutex_exit(p->p_lock);
   2241 				continue;
   2242 			}
   2243 
   2244 			/* Stop any LWPs sleeping interruptably. */
   2245 			proc_stop_lwps(p);
   2246 			if (p->p_nrlwps == 0) {
   2247 				/*
   2248 				 * We brought the process to a halt.
   2249 				 * Mark it as stopped and notify the
   2250 				 * parent.
   2251 				 */
   2252 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2253 					/*
   2254 					 * Note that proc_stop_done() will
   2255 					 * drop p->p_lock briefly.
   2256 					 * Arrange to restart and check
   2257 					 * all processes again.
   2258 					 */
   2259 					restart = true;
   2260 				}
   2261 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2262 			} else
   2263 				more = true;
   2264 
   2265 			mutex_exit(p->p_lock);
   2266 			if (restart)
   2267 				break;
   2268 		}
   2269 		mutex_exit(proc_lock);
   2270 	} while (restart);
   2271 
   2272 	/*
   2273 	 * If we noted processes that are stopping but still have
   2274 	 * running LWPs, then arrange to check again in 1 tick.
   2275 	 */
   2276 	if (more)
   2277 		callout_schedule(&proc_stop_ch, 1);
   2278 }
   2279 
   2280 /*
   2281  * Given a process in state SSTOP, set the state back to SACTIVE and
   2282  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2283  */
   2284 void
   2285 proc_unstop(struct proc *p)
   2286 {
   2287 	struct lwp *l;
   2288 	int sig;
   2289 
   2290 	KASSERT(mutex_owned(proc_lock));
   2291 	KASSERT(mutex_owned(p->p_lock));
   2292 
   2293 	p->p_stat = SACTIVE;
   2294 	p->p_sflag &= ~PS_STOPPING;
   2295 	sig = p->p_xstat;
   2296 
   2297 	if (!p->p_waited)
   2298 		p->p_pptr->p_nstopchild--;
   2299 
   2300 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2301 		lwp_lock(l);
   2302 		if (l->l_stat != LSSTOP) {
   2303 			lwp_unlock(l);
   2304 			continue;
   2305 		}
   2306 		if (l->l_wchan == NULL) {
   2307 			setrunnable(l);
   2308 			continue;
   2309 		}
   2310 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2311 		        setrunnable(l);
   2312 		        sig = 0;
   2313 		} else {
   2314 			l->l_stat = LSSLEEP;
   2315 			p->p_nrlwps++;
   2316 			lwp_unlock(l);
   2317 		}
   2318 	}
   2319 }
   2320 
   2321 static int
   2322 filt_sigattach(struct knote *kn)
   2323 {
   2324 	struct proc *p = curproc;
   2325 
   2326 	kn->kn_obj = p;
   2327 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2328 
   2329 	mutex_enter(p->p_lock);
   2330 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2331 	mutex_exit(p->p_lock);
   2332 
   2333 	return (0);
   2334 }
   2335 
   2336 static void
   2337 filt_sigdetach(struct knote *kn)
   2338 {
   2339 	struct proc *p = kn->kn_obj;
   2340 
   2341 	mutex_enter(p->p_lock);
   2342 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2343 	mutex_exit(p->p_lock);
   2344 }
   2345 
   2346 /*
   2347  * signal knotes are shared with proc knotes, so we apply a mask to
   2348  * the hint in order to differentiate them from process hints.  This
   2349  * could be avoided by using a signal-specific knote list, but probably
   2350  * isn't worth the trouble.
   2351  */
   2352 static int
   2353 filt_signal(struct knote *kn, long hint)
   2354 {
   2355 
   2356 	if (hint & NOTE_SIGNAL) {
   2357 		hint &= ~NOTE_SIGNAL;
   2358 
   2359 		if (kn->kn_id == hint)
   2360 			kn->kn_data++;
   2361 	}
   2362 	return (kn->kn_data != 0);
   2363 }
   2364 
   2365 const struct filterops sig_filtops = {
   2366 	0, filt_sigattach, filt_sigdetach, filt_signal
   2367 };
   2368