kern_sig.c revision 1.297 1 /* $NetBSD: kern_sig.c,v 1.297 2009/03/29 05:02:46 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.297 2009/03/29 05:02:46 rmind Exp $");
70
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
77
78 #define SIGPROP /* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/exec.h>
93 #include <sys/kauth.h>
94 #include <sys/acct.h>
95 #include <sys/callout.h>
96 #include <sys/atomic.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99
100 #ifdef PAX_SEGVGUARD
101 #include <sys/pax.h>
102 #endif /* PAX_SEGVGUARD */
103
104 #include <uvm/uvm.h>
105 #include <uvm/uvm_extern.h>
106
107 static void ksiginfo_exechook(struct proc *, void *);
108 static void proc_stop_callout(void *);
109 static int sigchecktrace(void);
110 static int sigpost(struct lwp *, sig_t, int, int, int);
111 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
112 static int sigunwait(struct proc *, const ksiginfo_t *);
113 static void sigswitch(bool, int, int);
114
115 sigset_t contsigmask, stopsigmask, sigcantmask;
116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
117 static void sigacts_poolpage_free(struct pool *, void *);
118 static void *sigacts_poolpage_alloc(struct pool *, int);
119 static callout_t proc_stop_ch;
120 static pool_cache_t siginfo_cache;
121 static pool_cache_t ksiginfo_cache;
122
123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
124 int (*coredump_vec)(struct lwp *, const char *) =
125 (int (*)(struct lwp *, const char *))enosys;
126
127 static struct pool_allocator sigactspool_allocator = {
128 .pa_alloc = sigacts_poolpage_alloc,
129 .pa_free = sigacts_poolpage_free,
130 };
131
132 #ifdef DEBUG
133 int kern_logsigexit = 1;
134 #else
135 int kern_logsigexit = 0;
136 #endif
137
138 static const char logcoredump[] =
139 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
140 static const char lognocoredump[] =
141 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
142
143 /*
144 * signal_init:
145 *
146 * Initialize global signal-related data structures.
147 */
148 void
149 signal_init(void)
150 {
151
152 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
153
154 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
155 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
156 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
157
158 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
159 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
160
161 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
162 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
163
164 exechook_establish(ksiginfo_exechook, NULL);
165
166 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
167 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
168 }
169
170 /*
171 * sigacts_poolpage_alloc:
172 *
173 * Allocate a page for the sigacts memory pool.
174 */
175 static void *
176 sigacts_poolpage_alloc(struct pool *pp, int flags)
177 {
178
179 return (void *)uvm_km_alloc(kernel_map,
180 (PAGE_SIZE)*2, (PAGE_SIZE)*2,
181 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
182 | UVM_KMF_WIRED);
183 }
184
185 /*
186 * sigacts_poolpage_free:
187 *
188 * Free a page on behalf of the sigacts memory pool.
189 */
190 static void
191 sigacts_poolpage_free(struct pool *pp, void *v)
192 {
193
194 uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
195 }
196
197 /*
198 * sigactsinit:
199 *
200 * Create an initial sigctx structure, using the same signal state as
201 * p. If 'share' is set, share the sigctx_proc part, otherwise just
202 * copy it from parent.
203 */
204 struct sigacts *
205 sigactsinit(struct proc *pp, int share)
206 {
207 struct sigacts *ps, *ps2;
208
209 ps = pp->p_sigacts;
210
211 if (share) {
212 atomic_inc_uint(&ps->sa_refcnt);
213 ps2 = ps;
214 } else {
215 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
216 /* XXXAD get rid of this */
217 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
218 mutex_enter(&ps->sa_mutex);
219 memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
220 sizeof(ps2->sa_sigdesc));
221 mutex_exit(&ps->sa_mutex);
222 ps2->sa_refcnt = 1;
223 }
224
225 return ps2;
226 }
227
228 /*
229 * sigactsunshare:
230 *
231 * Make this process not share its sigctx, maintaining all
232 * signal state.
233 */
234 void
235 sigactsunshare(struct proc *p)
236 {
237 struct sigacts *ps, *oldps;
238
239 oldps = p->p_sigacts;
240 if (oldps->sa_refcnt == 1)
241 return;
242 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
243 /* XXXAD get rid of this */
244 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
245 memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
246 p->p_sigacts = ps;
247 sigactsfree(oldps);
248 }
249
250 /*
251 * sigactsfree;
252 *
253 * Release a sigctx structure.
254 */
255 void
256 sigactsfree(struct sigacts *ps)
257 {
258
259 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
260 mutex_destroy(&ps->sa_mutex);
261 pool_cache_put(sigacts_cache, ps);
262 }
263 }
264
265 /*
266 * siginit:
267 *
268 * Initialize signal state for process 0; set to ignore signals that
269 * are ignored by default and disable the signal stack. Locking not
270 * required as the system is still cold.
271 */
272 void
273 siginit(struct proc *p)
274 {
275 struct lwp *l;
276 struct sigacts *ps;
277 int signo, prop;
278
279 ps = p->p_sigacts;
280 sigemptyset(&contsigmask);
281 sigemptyset(&stopsigmask);
282 sigemptyset(&sigcantmask);
283 for (signo = 1; signo < NSIG; signo++) {
284 prop = sigprop[signo];
285 if (prop & SA_CONT)
286 sigaddset(&contsigmask, signo);
287 if (prop & SA_STOP)
288 sigaddset(&stopsigmask, signo);
289 if (prop & SA_CANTMASK)
290 sigaddset(&sigcantmask, signo);
291 if (prop & SA_IGNORE && signo != SIGCONT)
292 sigaddset(&p->p_sigctx.ps_sigignore, signo);
293 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
294 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
295 }
296 sigemptyset(&p->p_sigctx.ps_sigcatch);
297 p->p_sflag &= ~PS_NOCLDSTOP;
298
299 ksiginfo_queue_init(&p->p_sigpend.sp_info);
300 sigemptyset(&p->p_sigpend.sp_set);
301
302 /*
303 * Reset per LWP state.
304 */
305 l = LIST_FIRST(&p->p_lwps);
306 l->l_sigwaited = NULL;
307 l->l_sigstk.ss_flags = SS_DISABLE;
308 l->l_sigstk.ss_size = 0;
309 l->l_sigstk.ss_sp = 0;
310 ksiginfo_queue_init(&l->l_sigpend.sp_info);
311 sigemptyset(&l->l_sigpend.sp_set);
312
313 /* One reference. */
314 ps->sa_refcnt = 1;
315 }
316
317 /*
318 * execsigs:
319 *
320 * Reset signals for an exec of the specified process.
321 */
322 void
323 execsigs(struct proc *p)
324 {
325 struct sigacts *ps;
326 struct lwp *l;
327 int signo, prop;
328 sigset_t tset;
329 ksiginfoq_t kq;
330
331 KASSERT(p->p_nlwps == 1);
332
333 sigactsunshare(p);
334 ps = p->p_sigacts;
335
336 /*
337 * Reset caught signals. Held signals remain held through
338 * l->l_sigmask (unless they were caught, and are now ignored
339 * by default).
340 *
341 * No need to lock yet, the process has only one LWP and
342 * at this point the sigacts are private to the process.
343 */
344 sigemptyset(&tset);
345 for (signo = 1; signo < NSIG; signo++) {
346 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
347 prop = sigprop[signo];
348 if (prop & SA_IGNORE) {
349 if ((prop & SA_CONT) == 0)
350 sigaddset(&p->p_sigctx.ps_sigignore,
351 signo);
352 sigaddset(&tset, signo);
353 }
354 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
355 }
356 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
357 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
358 }
359 ksiginfo_queue_init(&kq);
360
361 mutex_enter(p->p_lock);
362 sigclearall(p, &tset, &kq);
363 sigemptyset(&p->p_sigctx.ps_sigcatch);
364
365 /*
366 * Reset no zombies if child dies flag as Solaris does.
367 */
368 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
369 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
370 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
371
372 /*
373 * Reset per-LWP state.
374 */
375 l = LIST_FIRST(&p->p_lwps);
376 l->l_sigwaited = NULL;
377 l->l_sigstk.ss_flags = SS_DISABLE;
378 l->l_sigstk.ss_size = 0;
379 l->l_sigstk.ss_sp = 0;
380 ksiginfo_queue_init(&l->l_sigpend.sp_info);
381 sigemptyset(&l->l_sigpend.sp_set);
382 mutex_exit(p->p_lock);
383
384 ksiginfo_queue_drain(&kq);
385 }
386
387 /*
388 * ksiginfo_exechook:
389 *
390 * Free all pending ksiginfo entries from a process on exec.
391 * Additionally, drain any unused ksiginfo structures in the
392 * system back to the pool.
393 *
394 * XXX This should not be a hook, every process has signals.
395 */
396 static void
397 ksiginfo_exechook(struct proc *p, void *v)
398 {
399 ksiginfoq_t kq;
400
401 ksiginfo_queue_init(&kq);
402
403 mutex_enter(p->p_lock);
404 sigclearall(p, NULL, &kq);
405 mutex_exit(p->p_lock);
406
407 ksiginfo_queue_drain(&kq);
408 }
409
410 /*
411 * ksiginfo_alloc:
412 *
413 * Allocate a new ksiginfo structure from the pool, and optionally copy
414 * an existing one. If the existing ksiginfo_t is from the pool, and
415 * has not been queued somewhere, then just return it. Additionally,
416 * if the existing ksiginfo_t does not contain any information beyond
417 * the signal number, then just return it.
418 */
419 ksiginfo_t *
420 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
421 {
422 ksiginfo_t *kp;
423
424 if (ok != NULL) {
425 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
426 KSI_FROMPOOL)
427 return ok;
428 if (KSI_EMPTY_P(ok))
429 return ok;
430 }
431
432 kp = pool_cache_get(ksiginfo_cache, flags);
433 if (kp == NULL) {
434 #ifdef DIAGNOSTIC
435 printf("Out of memory allocating ksiginfo for pid %d\n",
436 p->p_pid);
437 #endif
438 return NULL;
439 }
440
441 if (ok != NULL) {
442 memcpy(kp, ok, sizeof(*kp));
443 kp->ksi_flags &= ~KSI_QUEUED;
444 } else
445 KSI_INIT_EMPTY(kp);
446
447 kp->ksi_flags |= KSI_FROMPOOL;
448
449 return kp;
450 }
451
452 /*
453 * ksiginfo_free:
454 *
455 * If the given ksiginfo_t is from the pool and has not been queued,
456 * then free it.
457 */
458 void
459 ksiginfo_free(ksiginfo_t *kp)
460 {
461
462 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
463 return;
464 pool_cache_put(ksiginfo_cache, kp);
465 }
466
467 /*
468 * ksiginfo_queue_drain:
469 *
470 * Drain a non-empty ksiginfo_t queue.
471 */
472 void
473 ksiginfo_queue_drain0(ksiginfoq_t *kq)
474 {
475 ksiginfo_t *ksi;
476
477 KASSERT(!CIRCLEQ_EMPTY(kq));
478
479 while (!CIRCLEQ_EMPTY(kq)) {
480 ksi = CIRCLEQ_FIRST(kq);
481 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
482 pool_cache_put(ksiginfo_cache, ksi);
483 }
484 }
485
486 /*
487 * sigget:
488 *
489 * Fetch the first pending signal from a set. Optionally, also fetch
490 * or manufacture a ksiginfo element. Returns the number of the first
491 * pending signal, or zero.
492 */
493 int
494 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
495 {
496 ksiginfo_t *ksi;
497 sigset_t tset;
498
499 /* If there's no pending set, the signal is from the debugger. */
500 if (sp == NULL)
501 goto out;
502
503 /* Construct mask from signo, and 'mask'. */
504 if (signo == 0) {
505 if (mask != NULL) {
506 tset = *mask;
507 __sigandset(&sp->sp_set, &tset);
508 } else
509 tset = sp->sp_set;
510
511 /* If there are no signals pending, that's it. */
512 if ((signo = firstsig(&tset)) == 0)
513 goto out;
514 } else {
515 KASSERT(sigismember(&sp->sp_set, signo));
516 }
517
518 sigdelset(&sp->sp_set, signo);
519
520 /* Find siginfo and copy it out. */
521 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
522 if (ksi->ksi_signo == signo) {
523 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
524 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
525 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
526 ksi->ksi_flags &= ~KSI_QUEUED;
527 if (out != NULL) {
528 memcpy(out, ksi, sizeof(*out));
529 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
530 }
531 ksiginfo_free(ksi);
532 return signo;
533 }
534 }
535
536 out:
537 /* If there's no siginfo, then manufacture it. */
538 if (out != NULL) {
539 KSI_INIT(out);
540 out->ksi_info._signo = signo;
541 out->ksi_info._code = SI_NOINFO;
542 }
543
544 return signo;
545 }
546
547 /*
548 * sigput:
549 *
550 * Append a new ksiginfo element to the list of pending ksiginfo's.
551 */
552 static void
553 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
554 {
555 ksiginfo_t *kp;
556
557 KASSERT(mutex_owned(p->p_lock));
558 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
559
560 sigaddset(&sp->sp_set, ksi->ksi_signo);
561
562 /*
563 * If there is no siginfo, we are done.
564 */
565 if (KSI_EMPTY_P(ksi))
566 return;
567
568 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
569
570 #ifdef notyet /* XXX: QUEUING */
571 if (ksi->ksi_signo < SIGRTMIN)
572 #endif
573 {
574 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
575 if (kp->ksi_signo == ksi->ksi_signo) {
576 KSI_COPY(ksi, kp);
577 kp->ksi_flags |= KSI_QUEUED;
578 return;
579 }
580 }
581 }
582
583 ksi->ksi_flags |= KSI_QUEUED;
584 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
585 }
586
587 /*
588 * sigclear:
589 *
590 * Clear all pending signals in the specified set.
591 */
592 void
593 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
594 {
595 ksiginfo_t *ksi, *next;
596
597 if (mask == NULL)
598 sigemptyset(&sp->sp_set);
599 else
600 sigminusset(mask, &sp->sp_set);
601
602 ksi = CIRCLEQ_FIRST(&sp->sp_info);
603 for (; ksi != (void *)&sp->sp_info; ksi = next) {
604 next = CIRCLEQ_NEXT(ksi, ksi_list);
605 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
606 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
607 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
608 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
609 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
610 }
611 }
612 }
613
614 /*
615 * sigclearall:
616 *
617 * Clear all pending signals in the specified set from a process and
618 * its LWPs.
619 */
620 void
621 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
622 {
623 struct lwp *l;
624
625 KASSERT(mutex_owned(p->p_lock));
626
627 sigclear(&p->p_sigpend, mask, kq);
628
629 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
630 sigclear(&l->l_sigpend, mask, kq);
631 }
632 }
633
634 /*
635 * sigispending:
636 *
637 * Return true if there are pending signals for the current LWP. May
638 * be called unlocked provided that LW_PENDSIG is set, and that the
639 * signal has been posted to the appopriate queue before LW_PENDSIG is
640 * set.
641 */
642 int
643 sigispending(struct lwp *l, int signo)
644 {
645 struct proc *p = l->l_proc;
646 sigset_t tset;
647
648 membar_consumer();
649
650 tset = l->l_sigpend.sp_set;
651 sigplusset(&p->p_sigpend.sp_set, &tset);
652 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
653 sigminusset(&l->l_sigmask, &tset);
654
655 if (signo == 0) {
656 if (firstsig(&tset) != 0)
657 return EINTR;
658 } else if (sigismember(&tset, signo))
659 return EINTR;
660
661 return 0;
662 }
663
664 /*
665 * siginfo_alloc:
666 *
667 * Allocate a new siginfo_t structure from the pool.
668 */
669 siginfo_t *
670 siginfo_alloc(int flags)
671 {
672
673 return pool_cache_get(siginfo_cache, flags);
674 }
675
676 /*
677 * siginfo_free:
678 *
679 * Return a siginfo_t structure to the pool.
680 */
681 void
682 siginfo_free(void *arg)
683 {
684
685 pool_cache_put(siginfo_cache, arg);
686 }
687
688 void
689 getucontext(struct lwp *l, ucontext_t *ucp)
690 {
691 struct proc *p = l->l_proc;
692
693 KASSERT(mutex_owned(p->p_lock));
694
695 ucp->uc_flags = 0;
696 ucp->uc_link = l->l_ctxlink;
697
698 #if KERN_SA
699 if (p->p_sa != NULL)
700 ucp->uc_sigmask = p->p_sa->sa_sigmask;
701 else
702 #endif /* KERN_SA */
703 ucp->uc_sigmask = l->l_sigmask;
704 ucp->uc_flags |= _UC_SIGMASK;
705
706 /*
707 * The (unsupplied) definition of the `current execution stack'
708 * in the System V Interface Definition appears to allow returning
709 * the main context stack.
710 */
711 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
712 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
713 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
714 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
715 } else {
716 /* Simply copy alternate signal execution stack. */
717 ucp->uc_stack = l->l_sigstk;
718 }
719 ucp->uc_flags |= _UC_STACK;
720 mutex_exit(p->p_lock);
721 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
722 mutex_enter(p->p_lock);
723 }
724
725 /*
726 * getucontext_sa:
727 * Get a ucontext_t for use in SA upcall generation.
728 * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
729 * fudge things with uc_link (which is usually NULL for libpthread
730 * code), and 3) we report an empty signal mask.
731 */
732 void
733 getucontext_sa(struct lwp *l, ucontext_t *ucp)
734 {
735 ucp->uc_flags = 0;
736 ucp->uc_link = l->l_ctxlink;
737
738 sigemptyset(&ucp->uc_sigmask);
739 ucp->uc_flags |= _UC_SIGMASK;
740
741 /*
742 * The (unsupplied) definition of the `current execution stack'
743 * in the System V Interface Definition appears to allow returning
744 * the main context stack.
745 */
746 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
747 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
748 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
749 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
750 } else {
751 /* Simply copy alternate signal execution stack. */
752 ucp->uc_stack = l->l_sigstk;
753 }
754 ucp->uc_flags |= _UC_STACK;
755 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
756 }
757
758 int
759 setucontext(struct lwp *l, const ucontext_t *ucp)
760 {
761 struct proc *p = l->l_proc;
762 int error;
763
764 KASSERT(mutex_owned(p->p_lock));
765
766 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
767 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
768 if (error != 0)
769 return error;
770 }
771
772 mutex_exit(p->p_lock);
773 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
774 mutex_enter(p->p_lock);
775 if (error != 0)
776 return (error);
777
778 l->l_ctxlink = ucp->uc_link;
779
780 /*
781 * If there was stack information, update whether or not we are
782 * still running on an alternate signal stack.
783 */
784 if ((ucp->uc_flags & _UC_STACK) != 0) {
785 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
786 l->l_sigstk.ss_flags |= SS_ONSTACK;
787 else
788 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
789 }
790
791 return 0;
792 }
793
794 /*
795 * Common code for kill process group/broadcast kill. cp is calling
796 * process.
797 */
798 int
799 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
800 {
801 struct proc *p, *cp;
802 kauth_cred_t pc;
803 struct pgrp *pgrp;
804 int nfound;
805 int signo = ksi->ksi_signo;
806
807 cp = l->l_proc;
808 pc = l->l_cred;
809 nfound = 0;
810
811 mutex_enter(proc_lock);
812 if (all) {
813 /*
814 * broadcast
815 */
816 PROCLIST_FOREACH(p, &allproc) {
817 if (p->p_pid <= 1 || p == cp ||
818 p->p_flag & (PK_SYSTEM|PK_MARKER))
819 continue;
820 mutex_enter(p->p_lock);
821 if (kauth_authorize_process(pc,
822 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
823 NULL) == 0) {
824 nfound++;
825 if (signo)
826 kpsignal2(p, ksi);
827 }
828 mutex_exit(p->p_lock);
829 }
830 } else {
831 if (pgid == 0)
832 /*
833 * zero pgid means send to my process group.
834 */
835 pgrp = cp->p_pgrp;
836 else {
837 pgrp = pg_find(pgid, PFIND_LOCKED);
838 if (pgrp == NULL)
839 goto out;
840 }
841 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
842 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
843 continue;
844 mutex_enter(p->p_lock);
845 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
846 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
847 nfound++;
848 if (signo && P_ZOMBIE(p) == 0)
849 kpsignal2(p, ksi);
850 }
851 mutex_exit(p->p_lock);
852 }
853 }
854 out:
855 mutex_exit(proc_lock);
856 return (nfound ? 0 : ESRCH);
857 }
858
859 /*
860 * Send a signal to a process group. If checktty is 1, limit to members
861 * which have a controlling terminal.
862 */
863 void
864 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
865 {
866 ksiginfo_t ksi;
867
868 KASSERT(!cpu_intr_p());
869 KASSERT(mutex_owned(proc_lock));
870
871 KSI_INIT_EMPTY(&ksi);
872 ksi.ksi_signo = sig;
873 kpgsignal(pgrp, &ksi, NULL, checkctty);
874 }
875
876 void
877 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
878 {
879 struct proc *p;
880
881 KASSERT(!cpu_intr_p());
882 KASSERT(mutex_owned(proc_lock));
883
884 if (__predict_false(pgrp == 0))
885 return;
886 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
887 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
888 kpsignal(p, ksi, data);
889 }
890
891 /*
892 * Send a signal caused by a trap to the current LWP. If it will be caught
893 * immediately, deliver it with correct code. Otherwise, post it normally.
894 */
895 void
896 trapsignal(struct lwp *l, ksiginfo_t *ksi)
897 {
898 struct proc *p;
899 struct sigacts *ps;
900 int signo = ksi->ksi_signo;
901 sigset_t *mask;
902
903 KASSERT(KSI_TRAP_P(ksi));
904
905 ksi->ksi_lid = l->l_lid;
906 p = l->l_proc;
907
908 KASSERT(!cpu_intr_p());
909 mutex_enter(proc_lock);
910 mutex_enter(p->p_lock);
911 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
912 ps = p->p_sigacts;
913 if ((p->p_slflag & PSL_TRACED) == 0 &&
914 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
915 !sigismember(mask, signo)) {
916 mutex_exit(proc_lock);
917 l->l_ru.ru_nsignals++;
918 kpsendsig(l, ksi, mask);
919 mutex_exit(p->p_lock);
920 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
921 mask, ksi);
922 } else {
923 /* XXX for core dump/debugger */
924 p->p_sigctx.ps_lwp = l->l_lid;
925 p->p_sigctx.ps_signo = ksi->ksi_signo;
926 p->p_sigctx.ps_code = ksi->ksi_trap;
927 kpsignal2(p, ksi);
928 mutex_exit(p->p_lock);
929 mutex_exit(proc_lock);
930 }
931 }
932
933 /*
934 * Fill in signal information and signal the parent for a child status change.
935 */
936 void
937 child_psignal(struct proc *p, int mask)
938 {
939 ksiginfo_t ksi;
940 struct proc *q;
941 int xstat;
942
943 KASSERT(mutex_owned(proc_lock));
944 KASSERT(mutex_owned(p->p_lock));
945
946 xstat = p->p_xstat;
947
948 KSI_INIT(&ksi);
949 ksi.ksi_signo = SIGCHLD;
950 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
951 ksi.ksi_pid = p->p_pid;
952 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
953 ksi.ksi_status = xstat;
954 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
955 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
956
957 q = p->p_pptr;
958
959 mutex_exit(p->p_lock);
960 mutex_enter(q->p_lock);
961
962 if ((q->p_sflag & mask) == 0)
963 kpsignal2(q, &ksi);
964
965 mutex_exit(q->p_lock);
966 mutex_enter(p->p_lock);
967 }
968
969 void
970 psignal(struct proc *p, int signo)
971 {
972 ksiginfo_t ksi;
973
974 KASSERT(!cpu_intr_p());
975 KASSERT(mutex_owned(proc_lock));
976
977 KSI_INIT_EMPTY(&ksi);
978 ksi.ksi_signo = signo;
979 mutex_enter(p->p_lock);
980 kpsignal2(p, &ksi);
981 mutex_exit(p->p_lock);
982 }
983
984 void
985 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
986 {
987 fdfile_t *ff;
988 file_t *fp;
989
990 KASSERT(!cpu_intr_p());
991 KASSERT(mutex_owned(proc_lock));
992
993 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
994 size_t fd;
995 filedesc_t *fdp = p->p_fd;
996
997 /* XXXSMP locking */
998 ksi->ksi_fd = -1;
999 for (fd = 0; fd < fdp->fd_nfiles; fd++) {
1000 if ((ff = fdp->fd_ofiles[fd]) == NULL)
1001 continue;
1002 if ((fp = ff->ff_file) == NULL)
1003 continue;
1004 if (fp->f_data == data) {
1005 ksi->ksi_fd = fd;
1006 break;
1007 }
1008 }
1009 }
1010 mutex_enter(p->p_lock);
1011 kpsignal2(p, ksi);
1012 mutex_exit(p->p_lock);
1013 }
1014
1015 /*
1016 * sigismasked:
1017 *
1018 * Returns true if signal is ignored or masked for the specified LWP.
1019 */
1020 int
1021 sigismasked(struct lwp *l, int sig)
1022 {
1023 struct proc *p = l->l_proc;
1024
1025 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1026 sigismember(&l->l_sigmask, sig)
1027 #if KERN_SA
1028 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1029 #endif /* KERN_SA */
1030 );
1031 }
1032
1033 /*
1034 * sigpost:
1035 *
1036 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1037 * be able to take the signal.
1038 */
1039 static int
1040 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1041 {
1042 int rv, masked;
1043 struct proc *p = l->l_proc;
1044
1045 KASSERT(mutex_owned(p->p_lock));
1046
1047 /*
1048 * If the LWP is on the way out, sigclear() will be busy draining all
1049 * pending signals. Don't give it more.
1050 */
1051 if (l->l_refcnt == 0)
1052 return 0;
1053
1054 /*
1055 * Have the LWP check for signals. This ensures that even if no LWP
1056 * is found to take the signal immediately, it should be taken soon.
1057 */
1058 lwp_lock(l);
1059 l->l_flag |= LW_PENDSIG;
1060
1061 /*
1062 * When sending signals to SA processes, we first try to find an
1063 * idle VP to take it.
1064 */
1065 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1066 lwp_unlock(l);
1067 return 0;
1068 }
1069
1070 /*
1071 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1072 * Note: SIGKILL and SIGSTOP cannot be masked.
1073 */
1074 #if KERN_SA
1075 if (p->p_sa != NULL)
1076 masked = sigismember(&p->p_sa->sa_sigmask, sig);
1077 else
1078 #endif
1079 masked = sigismember(&l->l_sigmask, sig);
1080 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1081 lwp_unlock(l);
1082 return 0;
1083 }
1084
1085 /*
1086 * If killing the process, make it run fast.
1087 */
1088 if (__predict_false((prop & SA_KILL) != 0) &&
1089 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1090 KASSERT(l->l_class == SCHED_OTHER);
1091 lwp_changepri(l, MAXPRI_USER);
1092 }
1093
1094 /*
1095 * If the LWP is running or on a run queue, then we win. If it's
1096 * sleeping interruptably, wake it and make it take the signal. If
1097 * the sleep isn't interruptable, then the chances are it will get
1098 * to see the signal soon anyhow. If suspended, it can't take the
1099 * signal right now. If it's LWP private or for all LWPs, save it
1100 * for later; otherwise punt.
1101 */
1102 rv = 0;
1103
1104 switch (l->l_stat) {
1105 case LSRUN:
1106 case LSONPROC:
1107 lwp_need_userret(l);
1108 rv = 1;
1109 break;
1110
1111 case LSSLEEP:
1112 if ((l->l_flag & LW_SINTR) != 0) {
1113 /* setrunnable() will release the lock. */
1114 setrunnable(l);
1115 return 1;
1116 }
1117 break;
1118
1119 case LSSUSPENDED:
1120 if ((prop & SA_KILL) != 0) {
1121 /* lwp_continue() will release the lock. */
1122 lwp_continue(l);
1123 return 1;
1124 }
1125 break;
1126
1127 case LSSTOP:
1128 if ((prop & SA_STOP) != 0)
1129 break;
1130
1131 /*
1132 * If the LWP is stopped and we are sending a continue
1133 * signal, then start it again.
1134 */
1135 if ((prop & SA_CONT) != 0) {
1136 if (l->l_wchan != NULL) {
1137 l->l_stat = LSSLEEP;
1138 p->p_nrlwps++;
1139 rv = 1;
1140 break;
1141 }
1142 /* setrunnable() will release the lock. */
1143 setrunnable(l);
1144 return 1;
1145 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1146 /* setrunnable() will release the lock. */
1147 setrunnable(l);
1148 return 1;
1149 }
1150 break;
1151
1152 default:
1153 break;
1154 }
1155
1156 lwp_unlock(l);
1157 return rv;
1158 }
1159
1160 /*
1161 * Notify an LWP that it has a pending signal.
1162 */
1163 void
1164 signotify(struct lwp *l)
1165 {
1166 KASSERT(lwp_locked(l, NULL));
1167
1168 l->l_flag |= LW_PENDSIG;
1169 lwp_need_userret(l);
1170 }
1171
1172 /*
1173 * Find an LWP within process p that is waiting on signal ksi, and hand
1174 * it on.
1175 */
1176 static int
1177 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1178 {
1179 struct lwp *l;
1180 int signo;
1181
1182 KASSERT(mutex_owned(p->p_lock));
1183
1184 signo = ksi->ksi_signo;
1185
1186 if (ksi->ksi_lid != 0) {
1187 /*
1188 * Signal came via _lwp_kill(). Find the LWP and see if
1189 * it's interested.
1190 */
1191 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1192 return 0;
1193 if (l->l_sigwaited == NULL ||
1194 !sigismember(&l->l_sigwaitset, signo))
1195 return 0;
1196 } else {
1197 /*
1198 * Look for any LWP that may be interested.
1199 */
1200 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1201 KASSERT(l->l_sigwaited != NULL);
1202 if (sigismember(&l->l_sigwaitset, signo))
1203 break;
1204 }
1205 }
1206
1207 if (l != NULL) {
1208 l->l_sigwaited->ksi_info = ksi->ksi_info;
1209 l->l_sigwaited = NULL;
1210 LIST_REMOVE(l, l_sigwaiter);
1211 cv_signal(&l->l_sigcv);
1212 return 1;
1213 }
1214
1215 return 0;
1216 }
1217
1218 /*
1219 * Send the signal to the process. If the signal has an action, the action
1220 * is usually performed by the target process rather than the caller; we add
1221 * the signal to the set of pending signals for the process.
1222 *
1223 * Exceptions:
1224 * o When a stop signal is sent to a sleeping process that takes the
1225 * default action, the process is stopped without awakening it.
1226 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1227 * regardless of the signal action (eg, blocked or ignored).
1228 *
1229 * Other ignored signals are discarded immediately.
1230 */
1231 void
1232 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1233 {
1234 int prop, lid, toall, signo = ksi->ksi_signo;
1235 struct sigacts *sa;
1236 struct lwp *l;
1237 ksiginfo_t *kp;
1238 ksiginfoq_t kq;
1239 sig_t action;
1240 #ifdef KERN_SA
1241 struct sadata_vp *vp;
1242 #endif
1243
1244 KASSERT(!cpu_intr_p());
1245 KASSERT(mutex_owned(proc_lock));
1246 KASSERT(mutex_owned(p->p_lock));
1247 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1248 KASSERT(signo > 0 && signo < NSIG);
1249
1250 /*
1251 * If the process is being created by fork, is a zombie or is
1252 * exiting, then just drop the signal here and bail out.
1253 */
1254 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1255 return;
1256
1257 /*
1258 * Notify any interested parties of the signal.
1259 */
1260 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1261
1262 /*
1263 * Some signals including SIGKILL must act on the entire process.
1264 */
1265 kp = NULL;
1266 prop = sigprop[signo];
1267 toall = ((prop & SA_TOALL) != 0);
1268
1269 if (toall)
1270 lid = 0;
1271 else
1272 lid = ksi->ksi_lid;
1273
1274 /*
1275 * If proc is traced, always give parent a chance.
1276 */
1277 if (p->p_slflag & PSL_TRACED) {
1278 action = SIG_DFL;
1279
1280 if (lid == 0) {
1281 /*
1282 * If the process is being traced and the signal
1283 * is being caught, make sure to save any ksiginfo.
1284 */
1285 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1286 return;
1287 sigput(&p->p_sigpend, p, kp);
1288 }
1289 } else {
1290 /*
1291 * If the signal was the result of a trap and is not being
1292 * caught, then reset it to default action so that the
1293 * process dumps core immediately.
1294 */
1295 if (KSI_TRAP_P(ksi)) {
1296 sa = p->p_sigacts;
1297 mutex_enter(&sa->sa_mutex);
1298 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1299 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1300 SIGACTION(p, signo).sa_handler = SIG_DFL;
1301 }
1302 mutex_exit(&sa->sa_mutex);
1303 }
1304
1305 /*
1306 * If the signal is being ignored, then drop it. Note: we
1307 * don't set SIGCONT in ps_sigignore, and if it is set to
1308 * SIG_IGN, action will be SIG_DFL here.
1309 */
1310 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1311 return;
1312
1313 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1314 action = SIG_CATCH;
1315 else {
1316 action = SIG_DFL;
1317
1318 /*
1319 * If sending a tty stop signal to a member of an
1320 * orphaned process group, discard the signal here if
1321 * the action is default; don't stop the process below
1322 * if sleeping, and don't clear any pending SIGCONT.
1323 */
1324 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1325 return;
1326
1327 if (prop & SA_KILL && p->p_nice > NZERO)
1328 p->p_nice = NZERO;
1329 }
1330 }
1331
1332 /*
1333 * If stopping or continuing a process, discard any pending
1334 * signals that would do the inverse.
1335 */
1336 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1337 ksiginfo_queue_init(&kq);
1338 if ((prop & SA_CONT) != 0)
1339 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1340 if ((prop & SA_STOP) != 0)
1341 sigclear(&p->p_sigpend, &contsigmask, &kq);
1342 ksiginfo_queue_drain(&kq); /* XXXSMP */
1343 }
1344
1345 /*
1346 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1347 * please!), check if any LWPs are waiting on it. If yes, pass on
1348 * the signal info. The signal won't be processed further here.
1349 */
1350 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1351 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1352 sigunwait(p, ksi))
1353 return;
1354
1355 /*
1356 * XXXSMP Should be allocated by the caller, we're holding locks
1357 * here.
1358 */
1359 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1360 return;
1361
1362 /*
1363 * LWP private signals are easy - just find the LWP and post
1364 * the signal to it.
1365 */
1366 if (lid != 0) {
1367 l = lwp_find(p, lid);
1368 if (l != NULL) {
1369 sigput(&l->l_sigpend, p, kp);
1370 membar_producer();
1371 (void)sigpost(l, action, prop, kp->ksi_signo, 0);
1372 }
1373 goto out;
1374 }
1375
1376 /*
1377 * Some signals go to all LWPs, even if posted with _lwp_kill()
1378 * or for an SA process.
1379 */
1380 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1381 if ((p->p_slflag & PSL_TRACED) != 0)
1382 goto deliver;
1383
1384 /*
1385 * If SIGCONT is default (or ignored) and process is
1386 * asleep, we are finished; the process should not
1387 * be awakened.
1388 */
1389 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1390 goto out;
1391 } else {
1392 /*
1393 * Process is stopped or stopping. If traced, then no
1394 * further action is necessary.
1395 */
1396 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
1397 goto out;
1398
1399 /*
1400 * Run the process only if sending SIGCONT or SIGKILL.
1401 */
1402 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1403 /*
1404 * Re-adjust p_nstopchild if the process wasn't
1405 * collected by its parent.
1406 */
1407 p->p_stat = SACTIVE;
1408 p->p_sflag &= ~PS_STOPPING;
1409 if (!p->p_waited)
1410 p->p_pptr->p_nstopchild--;
1411
1412 /*
1413 * Do not make signal pending if SIGCONT is default.
1414 *
1415 * If the process catches SIGCONT, let it handle the
1416 * signal itself (if waiting on event - process runs,
1417 * otherwise continues sleeping).
1418 */
1419 if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1420 KASSERT(signo != SIGKILL);
1421 goto deliver;
1422 }
1423 } else if ((prop & SA_STOP) != 0) {
1424 /*
1425 * Already stopped, don't need to stop again.
1426 * (If we did the shell could get confused.)
1427 */
1428 goto out;
1429 }
1430 }
1431 /*
1432 * Make signal pending.
1433 */
1434 sigput(&p->p_sigpend, p, kp);
1435
1436 deliver:
1437 /*
1438 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1439 * visible on the per process list (for sigispending()). This
1440 * is unlikely to be needed in practice, but...
1441 */
1442 membar_producer();
1443
1444 /*
1445 * Try to find an LWP that can take the signal.
1446 */
1447 #if KERN_SA
1448 if ((p->p_sa != NULL) && !toall) {
1449 /*
1450 * If we're in this delivery path, we are delivering a
1451 * signal that needs to go to one thread in the process.
1452 *
1453 * In the SA case, we try to find an idle LWP that can take
1454 * the signal. If that fails, only then do we consider
1455 * interrupting active LWPs. Since the signal's going to
1456 * just one thread, we need only look at "blessed" lwps,
1457 * so scan the vps for them.
1458 */
1459 l = NULL;
1460 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1461 l = vp->savp_lwp;
1462 if (sigpost(l, action, prop, kp->ksi_signo, 1))
1463 break;
1464 }
1465
1466 if (l == NULL) {
1467 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1468 l = vp->savp_lwp;
1469 if (sigpost(l, action, prop, kp->ksi_signo, 0))
1470 break;
1471 }
1472 }
1473 } else /* Catch the brace below if we're defined */
1474 #endif /* KERN_SA */
1475 {
1476 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1477 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1478 break;
1479 }
1480
1481 out:
1482 /*
1483 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1484 * with locks held. The caller should take care of this.
1485 */
1486 ksiginfo_free(kp);
1487 }
1488
1489 void
1490 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1491 {
1492 struct proc *p = l->l_proc;
1493 #ifdef KERN_SA
1494 struct lwp *le, *li;
1495 siginfo_t *si;
1496 int f;
1497 #endif /* KERN_SA */
1498
1499 KASSERT(mutex_owned(p->p_lock));
1500
1501 #ifdef KERN_SA
1502 if (p->p_sflag & PS_SA) {
1503 /* f indicates if we should clear LP_SA_NOBLOCK */
1504 f = ~l->l_pflag & LP_SA_NOBLOCK;
1505 l->l_pflag |= LP_SA_NOBLOCK;
1506
1507 mutex_exit(p->p_lock);
1508 /* XXXUPSXXX What if not on sa_vp? */
1509 /*
1510 * WRS: I think it won't matter, beyond the
1511 * question of what exactly we do with a signal
1512 * to a blocked user thread. Also, we try hard to always
1513 * send signals to blessed lwps, so we would only send
1514 * to a non-blessed lwp under special circumstances.
1515 */
1516 si = siginfo_alloc(PR_WAITOK);
1517
1518 si->_info = ksi->ksi_info;
1519
1520 /*
1521 * Figure out if we're the innocent victim or the main
1522 * perpitrator.
1523 */
1524 le = li = NULL;
1525 if (KSI_TRAP_P(ksi))
1526 le = l;
1527 else
1528 li = l;
1529 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1530 sizeof(*si), si, siginfo_free) != 0) {
1531 siginfo_free(si);
1532 #if 0
1533 if (KSI_TRAP_P(ksi))
1534 /* XXX What dowe do here? The signal
1535 * didn't make it
1536 */;
1537 #endif
1538 }
1539 l->l_pflag ^= f;
1540 mutex_enter(p->p_lock);
1541 return;
1542 }
1543 #endif /* KERN_SA */
1544
1545 (*p->p_emul->e_sendsig)(ksi, mask);
1546 }
1547
1548 /*
1549 * Stop any LWPs sleeping interruptably.
1550 */
1551 static void
1552 proc_stop_lwps(struct proc *p)
1553 {
1554 struct lwp *l;
1555
1556 KASSERT(mutex_owned(p->p_lock));
1557 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1558
1559 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1560 lwp_lock(l);
1561 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1562 l->l_stat = LSSTOP;
1563 p->p_nrlwps--;
1564 }
1565 lwp_unlock(l);
1566 }
1567 }
1568
1569 /*
1570 * Finish stopping of a process. Mark it stopped and notify the parent.
1571 *
1572 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1573 */
1574 static void
1575 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1576 {
1577
1578 KASSERT(mutex_owned(proc_lock));
1579 KASSERT(mutex_owned(p->p_lock));
1580 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1581 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1582
1583 p->p_sflag &= ~PS_STOPPING;
1584 p->p_stat = SSTOP;
1585 p->p_waited = 0;
1586 p->p_pptr->p_nstopchild++;
1587 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1588 if (ppsig) {
1589 /* child_psignal drops p_lock briefly. */
1590 child_psignal(p, ppmask);
1591 }
1592 cv_broadcast(&p->p_pptr->p_waitcv);
1593 }
1594 }
1595
1596 /*
1597 * Stop the current process and switch away when being stopped or traced.
1598 */
1599 static void
1600 sigswitch(bool ppsig, int ppmask, int signo)
1601 {
1602 struct lwp *l = curlwp;
1603 struct proc *p = l->l_proc;
1604 int biglocks;
1605
1606 KASSERT(mutex_owned(p->p_lock));
1607 KASSERT(l->l_stat == LSONPROC);
1608 KASSERT(p->p_nrlwps > 0);
1609
1610 /*
1611 * On entry we know that the process needs to stop. If it's
1612 * the result of a 'sideways' stop signal that has been sourced
1613 * through issignal(), then stop other LWPs in the process too.
1614 */
1615 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1616 KASSERT(signo != 0);
1617 proc_stop(p, 1, signo);
1618 KASSERT(p->p_nrlwps > 0);
1619 }
1620
1621 /*
1622 * If we are the last live LWP, and the stop was a result of
1623 * a new signal, then signal the parent.
1624 */
1625 if ((p->p_sflag & PS_STOPPING) != 0) {
1626 if (!mutex_tryenter(proc_lock)) {
1627 mutex_exit(p->p_lock);
1628 mutex_enter(proc_lock);
1629 mutex_enter(p->p_lock);
1630 }
1631
1632 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1633 /*
1634 * Note that proc_stop_done() can drop
1635 * p->p_lock briefly.
1636 */
1637 proc_stop_done(p, ppsig, ppmask);
1638 }
1639
1640 mutex_exit(proc_lock);
1641 }
1642
1643 /*
1644 * Unlock and switch away.
1645 */
1646 KERNEL_UNLOCK_ALL(l, &biglocks);
1647 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1648 p->p_nrlwps--;
1649 lwp_lock(l);
1650 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1651 l->l_stat = LSSTOP;
1652 lwp_unlock(l);
1653 }
1654
1655 mutex_exit(p->p_lock);
1656 lwp_lock(l);
1657 mi_switch(l);
1658 KERNEL_LOCK(biglocks, l);
1659 mutex_enter(p->p_lock);
1660 }
1661
1662 /*
1663 * Check for a signal from the debugger.
1664 */
1665 static int
1666 sigchecktrace(void)
1667 {
1668 struct lwp *l = curlwp;
1669 struct proc *p = l->l_proc;
1670 sigset_t *mask;
1671 int signo;
1672
1673 KASSERT(mutex_owned(p->p_lock));
1674
1675 /* If there's a pending SIGKILL, process it immediately. */
1676 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1677 return 0;
1678
1679 /*
1680 * If we are no longer being traced, or the parent didn't
1681 * give us a signal, look for more signals.
1682 */
1683 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1684 return 0;
1685
1686 /*
1687 * If the new signal is being masked, look for other signals.
1688 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1689 */
1690 signo = p->p_xstat;
1691 p->p_xstat = 0;
1692 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1693 if (sigismember(mask, signo))
1694 signo = 0;
1695
1696 return signo;
1697 }
1698
1699 /*
1700 * If the current process has received a signal (should be caught or cause
1701 * termination, should interrupt current syscall), return the signal number.
1702 *
1703 * Stop signals with default action are processed immediately, then cleared;
1704 * they aren't returned. This is checked after each entry to the system for
1705 * a syscall or trap.
1706 *
1707 * We will also return -1 if the process is exiting and the current LWP must
1708 * follow suit.
1709 */
1710 int
1711 issignal(struct lwp *l)
1712 {
1713 struct proc *p;
1714 int signo, prop;
1715 sigpend_t *sp;
1716 sigset_t ss;
1717
1718 p = l->l_proc;
1719 sp = NULL;
1720 signo = 0;
1721
1722 KASSERT(p == curproc);
1723 KASSERT(mutex_owned(p->p_lock));
1724
1725 for (;;) {
1726 /* Discard any signals that we have decided not to take. */
1727 if (signo != 0)
1728 (void)sigget(sp, NULL, signo, NULL);
1729
1730 /* Bail out if we do not own the virtual processor */
1731 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1732 break;
1733
1734 /*
1735 * If the process is stopped/stopping, then stop ourselves
1736 * now that we're on the kernel/userspace boundary. When
1737 * we awaken, check for a signal from the debugger.
1738 */
1739 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1740 sigswitch(true, PS_NOCLDSTOP, 0);
1741 signo = sigchecktrace();
1742 } else
1743 signo = 0;
1744
1745 /* Signals from the debugger are "out of band". */
1746 sp = NULL;
1747
1748 /*
1749 * If the debugger didn't provide a signal, find a pending
1750 * signal from our set. Check per-LWP signals first, and
1751 * then per-process.
1752 */
1753 if (signo == 0) {
1754 sp = &l->l_sigpend;
1755 ss = sp->sp_set;
1756 if ((p->p_lflag & PL_PPWAIT) != 0)
1757 sigminusset(&stopsigmask, &ss);
1758 sigminusset(&l->l_sigmask, &ss);
1759
1760 if ((signo = firstsig(&ss)) == 0) {
1761 sp = &p->p_sigpend;
1762 ss = sp->sp_set;
1763 if ((p->p_lflag & PL_PPWAIT) != 0)
1764 sigminusset(&stopsigmask, &ss);
1765 sigminusset(&l->l_sigmask, &ss);
1766
1767 if ((signo = firstsig(&ss)) == 0) {
1768 /*
1769 * No signal pending - clear the
1770 * indicator and bail out.
1771 */
1772 lwp_lock(l);
1773 l->l_flag &= ~LW_PENDSIG;
1774 lwp_unlock(l);
1775 sp = NULL;
1776 break;
1777 }
1778 }
1779 }
1780
1781 /*
1782 * We should see pending but ignored signals only if
1783 * we are being traced.
1784 */
1785 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1786 (p->p_slflag & PSL_TRACED) == 0) {
1787 /* Discard the signal. */
1788 continue;
1789 }
1790
1791 /*
1792 * If traced, always stop, and stay stopped until released
1793 * by the debugger. If the our parent process is waiting
1794 * for us, don't hang as we could deadlock.
1795 */
1796 if ((p->p_slflag & PSL_TRACED) != 0 &&
1797 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1798 /* Take the signal. */
1799 (void)sigget(sp, NULL, signo, NULL);
1800 p->p_xstat = signo;
1801
1802 /* Emulation-specific handling of signal trace */
1803 if (p->p_emul->e_tracesig == NULL ||
1804 (*p->p_emul->e_tracesig)(p, signo) == 0)
1805 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1806 signo);
1807
1808 /* Check for a signal from the debugger. */
1809 if ((signo = sigchecktrace()) == 0)
1810 continue;
1811
1812 /* Signals from the debugger are "out of band". */
1813 sp = NULL;
1814 }
1815
1816 prop = sigprop[signo];
1817
1818 /*
1819 * Decide whether the signal should be returned.
1820 */
1821 switch ((long)SIGACTION(p, signo).sa_handler) {
1822 case (long)SIG_DFL:
1823 /*
1824 * Don't take default actions on system processes.
1825 */
1826 if (p->p_pid <= 1) {
1827 #ifdef DIAGNOSTIC
1828 /*
1829 * Are you sure you want to ignore SIGSEGV
1830 * in init? XXX
1831 */
1832 printf_nolog("Process (pid %d) got sig %d\n",
1833 p->p_pid, signo);
1834 #endif
1835 continue;
1836 }
1837
1838 /*
1839 * If there is a pending stop signal to process with
1840 * default action, stop here, then clear the signal.
1841 * However, if process is member of an orphaned
1842 * process group, ignore tty stop signals.
1843 */
1844 if (prop & SA_STOP) {
1845 /*
1846 * XXX Don't hold proc_lock for p_lflag,
1847 * but it's not a big deal.
1848 */
1849 if (p->p_slflag & PSL_TRACED ||
1850 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1851 prop & SA_TTYSTOP)) {
1852 /* Ignore the signal. */
1853 continue;
1854 }
1855 /* Take the signal. */
1856 (void)sigget(sp, NULL, signo, NULL);
1857 p->p_xstat = signo;
1858 signo = 0;
1859 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1860 } else if (prop & SA_IGNORE) {
1861 /*
1862 * Except for SIGCONT, shouldn't get here.
1863 * Default action is to ignore; drop it.
1864 */
1865 continue;
1866 }
1867 break;
1868
1869 case (long)SIG_IGN:
1870 #ifdef DEBUG_ISSIGNAL
1871 /*
1872 * Masking above should prevent us ever trying
1873 * to take action on an ignored signal other
1874 * than SIGCONT, unless process is traced.
1875 */
1876 if ((prop & SA_CONT) == 0 &&
1877 (p->p_slflag & PSL_TRACED) == 0)
1878 printf_nolog("issignal\n");
1879 #endif
1880 continue;
1881
1882 default:
1883 /*
1884 * This signal has an action, let postsig() process
1885 * it.
1886 */
1887 break;
1888 }
1889
1890 break;
1891 }
1892
1893 l->l_sigpendset = sp;
1894 return signo;
1895 }
1896
1897 /*
1898 * Take the action for the specified signal
1899 * from the current set of pending signals.
1900 */
1901 void
1902 postsig(int signo)
1903 {
1904 struct lwp *l;
1905 struct proc *p;
1906 struct sigacts *ps;
1907 sig_t action;
1908 sigset_t *returnmask;
1909 ksiginfo_t ksi;
1910
1911 l = curlwp;
1912 p = l->l_proc;
1913 ps = p->p_sigacts;
1914
1915 KASSERT(mutex_owned(p->p_lock));
1916 KASSERT(signo > 0);
1917
1918 /*
1919 * Set the new mask value and also defer further occurrences of this
1920 * signal.
1921 *
1922 * Special case: user has done a sigsuspend. Here the current mask is
1923 * not of interest, but rather the mask from before the sigsuspend is
1924 * what we want restored after the signal processing is completed.
1925 */
1926 if (l->l_sigrestore) {
1927 returnmask = &l->l_sigoldmask;
1928 l->l_sigrestore = 0;
1929 } else
1930 returnmask = &l->l_sigmask;
1931
1932 /*
1933 * Commit to taking the signal before releasing the mutex.
1934 */
1935 action = SIGACTION_PS(ps, signo).sa_handler;
1936 l->l_ru.ru_nsignals++;
1937 sigget(l->l_sigpendset, &ksi, signo, NULL);
1938
1939 if (ktrpoint(KTR_PSIG)) {
1940 mutex_exit(p->p_lock);
1941 ktrpsig(signo, action, returnmask, &ksi);
1942 mutex_enter(p->p_lock);
1943 }
1944
1945 if (action == SIG_DFL) {
1946 /*
1947 * Default action, where the default is to kill
1948 * the process. (Other cases were ignored above.)
1949 */
1950 sigexit(l, signo);
1951 return;
1952 }
1953
1954 /*
1955 * If we get here, the signal must be caught.
1956 */
1957 #ifdef DIAGNOSTIC
1958 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1959 panic("postsig action");
1960 #endif
1961
1962 kpsendsig(l, &ksi, returnmask);
1963 }
1964
1965 /*
1966 * sendsig:
1967 *
1968 * Default signal delivery method for NetBSD.
1969 */
1970 void
1971 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1972 {
1973 struct sigacts *sa;
1974 int sig;
1975
1976 sig = ksi->ksi_signo;
1977 sa = curproc->p_sigacts;
1978
1979 switch (sa->sa_sigdesc[sig].sd_vers) {
1980 case 0:
1981 case 1:
1982 /* Compat for 1.6 and earlier. */
1983 if (sendsig_sigcontext_vec == NULL) {
1984 break;
1985 }
1986 (*sendsig_sigcontext_vec)(ksi, mask);
1987 return;
1988 case 2:
1989 case 3:
1990 sendsig_siginfo(ksi, mask);
1991 return;
1992 default:
1993 break;
1994 }
1995
1996 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1997 sigexit(curlwp, SIGILL);
1998 }
1999
2000 /*
2001 * sendsig_reset:
2002 *
2003 * Reset the signal action. Called from emulation specific sendsig()
2004 * before unlocking to deliver the signal.
2005 */
2006 void
2007 sendsig_reset(struct lwp *l, int signo)
2008 {
2009 struct proc *p = l->l_proc;
2010 struct sigacts *ps = p->p_sigacts;
2011 sigset_t *mask;
2012
2013 KASSERT(mutex_owned(p->p_lock));
2014
2015 p->p_sigctx.ps_lwp = 0;
2016 p->p_sigctx.ps_code = 0;
2017 p->p_sigctx.ps_signo = 0;
2018
2019 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2020
2021 mutex_enter(&ps->sa_mutex);
2022 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2023 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2024 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2025 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2026 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2027 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2028 }
2029 mutex_exit(&ps->sa_mutex);
2030 }
2031
2032 /*
2033 * Kill the current process for stated reason.
2034 */
2035 void
2036 killproc(struct proc *p, const char *why)
2037 {
2038
2039 KASSERT(mutex_owned(proc_lock));
2040
2041 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2042 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2043 psignal(p, SIGKILL);
2044 }
2045
2046 /*
2047 * Force the current process to exit with the specified signal, dumping core
2048 * if appropriate. We bypass the normal tests for masked and caught
2049 * signals, allowing unrecoverable failures to terminate the process without
2050 * changing signal state. Mark the accounting record with the signal
2051 * termination. If dumping core, save the signal number for the debugger.
2052 * Calls exit and does not return.
2053 */
2054 void
2055 sigexit(struct lwp *l, int signo)
2056 {
2057 int exitsig, error, docore;
2058 struct proc *p;
2059 struct lwp *t;
2060
2061 p = l->l_proc;
2062
2063 KASSERT(mutex_owned(p->p_lock));
2064 KERNEL_UNLOCK_ALL(l, NULL);
2065
2066 /*
2067 * Don't permit coredump() multiple times in the same process.
2068 * Call back into sigexit, where we will be suspended until
2069 * the deed is done. Note that this is a recursive call, but
2070 * LW_WCORE will prevent us from coming back this way.
2071 */
2072 if ((p->p_sflag & PS_WCORE) != 0) {
2073 lwp_lock(l);
2074 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2075 lwp_unlock(l);
2076 mutex_exit(p->p_lock);
2077 lwp_userret(l);
2078 panic("sigexit 1");
2079 /* NOTREACHED */
2080 }
2081
2082 /* If process is already on the way out, then bail now. */
2083 if ((p->p_sflag & PS_WEXIT) != 0) {
2084 mutex_exit(p->p_lock);
2085 lwp_exit(l);
2086 panic("sigexit 2");
2087 /* NOTREACHED */
2088 }
2089
2090 /*
2091 * Prepare all other LWPs for exit. If dumping core, suspend them
2092 * so that their registers are available long enough to be dumped.
2093 */
2094 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2095 p->p_sflag |= PS_WCORE;
2096 for (;;) {
2097 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2098 lwp_lock(t);
2099 if (t == l) {
2100 t->l_flag &= ~LW_WSUSPEND;
2101 lwp_unlock(t);
2102 continue;
2103 }
2104 t->l_flag |= (LW_WCORE | LW_WEXIT);
2105 lwp_suspend(l, t);
2106 }
2107
2108 if (p->p_nrlwps == 1)
2109 break;
2110
2111 /*
2112 * Kick any LWPs sitting in lwp_wait1(), and wait
2113 * for everyone else to stop before proceeding.
2114 */
2115 p->p_nlwpwait++;
2116 cv_broadcast(&p->p_lwpcv);
2117 cv_wait(&p->p_lwpcv, p->p_lock);
2118 p->p_nlwpwait--;
2119 }
2120 }
2121
2122 exitsig = signo;
2123 p->p_acflag |= AXSIG;
2124 p->p_sigctx.ps_signo = signo;
2125
2126 if (docore) {
2127 mutex_exit(p->p_lock);
2128 if ((error = (*coredump_vec)(l, NULL)) == 0)
2129 exitsig |= WCOREFLAG;
2130
2131 if (kern_logsigexit) {
2132 int uid = l->l_cred ?
2133 (int)kauth_cred_geteuid(l->l_cred) : -1;
2134
2135 if (error)
2136 log(LOG_INFO, lognocoredump, p->p_pid,
2137 p->p_comm, uid, signo, error);
2138 else
2139 log(LOG_INFO, logcoredump, p->p_pid,
2140 p->p_comm, uid, signo);
2141 }
2142
2143 #ifdef PAX_SEGVGUARD
2144 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2145 #endif /* PAX_SEGVGUARD */
2146 /* Acquire the sched state mutex. exit1() will release it. */
2147 mutex_enter(p->p_lock);
2148 }
2149
2150 /* No longer dumping core. */
2151 p->p_sflag &= ~PS_WCORE;
2152
2153 exit1(l, W_EXITCODE(0, exitsig));
2154 /* NOTREACHED */
2155 }
2156
2157 /*
2158 * Put process 'p' into the stopped state and optionally, notify the parent.
2159 */
2160 void
2161 proc_stop(struct proc *p, int notify, int signo)
2162 {
2163 struct lwp *l;
2164
2165 KASSERT(mutex_owned(p->p_lock));
2166
2167 /*
2168 * First off, set the stopping indicator and bring all sleeping
2169 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2170 * unlock between here and the p->p_nrlwps check below.
2171 */
2172 p->p_sflag |= PS_STOPPING;
2173 if (notify)
2174 p->p_sflag |= PS_NOTIFYSTOP;
2175 else
2176 p->p_sflag &= ~PS_NOTIFYSTOP;
2177 membar_producer();
2178
2179 proc_stop_lwps(p);
2180
2181 /*
2182 * If there are no LWPs available to take the signal, then we
2183 * signal the parent process immediately. Otherwise, the last
2184 * LWP to stop will take care of it.
2185 */
2186
2187 if (p->p_nrlwps == 0) {
2188 proc_stop_done(p, true, PS_NOCLDSTOP);
2189 } else {
2190 /*
2191 * Have the remaining LWPs come to a halt, and trigger
2192 * proc_stop_callout() to ensure that they do.
2193 */
2194 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2195 sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2196 callout_schedule(&proc_stop_ch, 1);
2197 }
2198 }
2199
2200 /*
2201 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2202 * but wait for them to come to a halt at the kernel-user boundary. This is
2203 * to allow LWPs to release any locks that they may hold before stopping.
2204 *
2205 * Non-interruptable sleeps can be long, and there is the potential for an
2206 * LWP to begin sleeping interruptably soon after the process has been set
2207 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2208 * stopping, and so complete halt of the process and the return of status
2209 * information to the parent could be delayed indefinitely.
2210 *
2211 * To handle this race, proc_stop_callout() runs once per tick while there
2212 * are stopping processes in the system. It sets LWPs that are sleeping
2213 * interruptably into the LSSTOP state.
2214 *
2215 * Note that we are not concerned about keeping all LWPs stopped while the
2216 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2217 * What we do need to ensure is that all LWPs in a stopping process have
2218 * stopped at least once, so that notification can be sent to the parent
2219 * process.
2220 */
2221 static void
2222 proc_stop_callout(void *cookie)
2223 {
2224 bool more, restart;
2225 struct proc *p;
2226
2227 (void)cookie;
2228
2229 do {
2230 restart = false;
2231 more = false;
2232
2233 mutex_enter(proc_lock);
2234 PROCLIST_FOREACH(p, &allproc) {
2235 if ((p->p_flag & PK_MARKER) != 0)
2236 continue;
2237 mutex_enter(p->p_lock);
2238
2239 if ((p->p_sflag & PS_STOPPING) == 0) {
2240 mutex_exit(p->p_lock);
2241 continue;
2242 }
2243
2244 /* Stop any LWPs sleeping interruptably. */
2245 proc_stop_lwps(p);
2246 if (p->p_nrlwps == 0) {
2247 /*
2248 * We brought the process to a halt.
2249 * Mark it as stopped and notify the
2250 * parent.
2251 */
2252 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2253 /*
2254 * Note that proc_stop_done() will
2255 * drop p->p_lock briefly.
2256 * Arrange to restart and check
2257 * all processes again.
2258 */
2259 restart = true;
2260 }
2261 proc_stop_done(p, true, PS_NOCLDSTOP);
2262 } else
2263 more = true;
2264
2265 mutex_exit(p->p_lock);
2266 if (restart)
2267 break;
2268 }
2269 mutex_exit(proc_lock);
2270 } while (restart);
2271
2272 /*
2273 * If we noted processes that are stopping but still have
2274 * running LWPs, then arrange to check again in 1 tick.
2275 */
2276 if (more)
2277 callout_schedule(&proc_stop_ch, 1);
2278 }
2279
2280 /*
2281 * Given a process in state SSTOP, set the state back to SACTIVE and
2282 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2283 */
2284 void
2285 proc_unstop(struct proc *p)
2286 {
2287 struct lwp *l;
2288 int sig;
2289
2290 KASSERT(mutex_owned(proc_lock));
2291 KASSERT(mutex_owned(p->p_lock));
2292
2293 p->p_stat = SACTIVE;
2294 p->p_sflag &= ~PS_STOPPING;
2295 sig = p->p_xstat;
2296
2297 if (!p->p_waited)
2298 p->p_pptr->p_nstopchild--;
2299
2300 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2301 lwp_lock(l);
2302 if (l->l_stat != LSSTOP) {
2303 lwp_unlock(l);
2304 continue;
2305 }
2306 if (l->l_wchan == NULL) {
2307 setrunnable(l);
2308 continue;
2309 }
2310 if (sig && (l->l_flag & LW_SINTR) != 0) {
2311 setrunnable(l);
2312 sig = 0;
2313 } else {
2314 l->l_stat = LSSLEEP;
2315 p->p_nrlwps++;
2316 lwp_unlock(l);
2317 }
2318 }
2319 }
2320
2321 static int
2322 filt_sigattach(struct knote *kn)
2323 {
2324 struct proc *p = curproc;
2325
2326 kn->kn_obj = p;
2327 kn->kn_flags |= EV_CLEAR; /* automatically set */
2328
2329 mutex_enter(p->p_lock);
2330 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2331 mutex_exit(p->p_lock);
2332
2333 return (0);
2334 }
2335
2336 static void
2337 filt_sigdetach(struct knote *kn)
2338 {
2339 struct proc *p = kn->kn_obj;
2340
2341 mutex_enter(p->p_lock);
2342 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2343 mutex_exit(p->p_lock);
2344 }
2345
2346 /*
2347 * signal knotes are shared with proc knotes, so we apply a mask to
2348 * the hint in order to differentiate them from process hints. This
2349 * could be avoided by using a signal-specific knote list, but probably
2350 * isn't worth the trouble.
2351 */
2352 static int
2353 filt_signal(struct knote *kn, long hint)
2354 {
2355
2356 if (hint & NOTE_SIGNAL) {
2357 hint &= ~NOTE_SIGNAL;
2358
2359 if (kn->kn_id == hint)
2360 kn->kn_data++;
2361 }
2362 return (kn->kn_data != 0);
2363 }
2364
2365 const struct filterops sig_filtops = {
2366 0, filt_sigattach, filt_sigdetach, filt_signal
2367 };
2368