Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.299
      1 /*	$NetBSD: kern_sig.c,v 1.299 2009/10/02 23:24:15 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.299 2009/10/02 23:24:15 elad Exp $");
     70 
     71 #include "opt_ptrace.h"
     72 #include "opt_compat_sunos.h"
     73 #include "opt_compat_netbsd.h"
     74 #include "opt_compat_netbsd32.h"
     75 #include "opt_pax.h"
     76 #include "opt_sa.h"
     77 
     78 #define	SIGPROP		/* include signal properties table */
     79 #include <sys/param.h>
     80 #include <sys/signalvar.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/wait.h>
     84 #include <sys/ktrace.h>
     85 #include <sys/syslog.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/file.h>
     88 #include <sys/pool.h>
     89 #include <sys/ucontext.h>
     90 #include <sys/sa.h>
     91 #include <sys/savar.h>
     92 #include <sys/exec.h>
     93 #include <sys/kauth.h>
     94 #include <sys/acct.h>
     95 #include <sys/callout.h>
     96 #include <sys/atomic.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 
    100 #ifdef PAX_SEGVGUARD
    101 #include <sys/pax.h>
    102 #endif /* PAX_SEGVGUARD */
    103 
    104 #include <uvm/uvm.h>
    105 #include <uvm/uvm_extern.h>
    106 
    107 static void	ksiginfo_exechook(struct proc *, void *);
    108 static void	proc_stop_callout(void *);
    109 static int	sigchecktrace(void);
    110 static int	sigpost(struct lwp *, sig_t, int, int, int);
    111 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    112 static int	sigunwait(struct proc *, const ksiginfo_t *);
    113 static void	sigswitch(bool, int, int);
    114 
    115 sigset_t	contsigmask, stopsigmask, sigcantmask;
    116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    117 static void	sigacts_poolpage_free(struct pool *, void *);
    118 static void	*sigacts_poolpage_alloc(struct pool *, int);
    119 static callout_t proc_stop_ch;
    120 static pool_cache_t siginfo_cache;
    121 static pool_cache_t ksiginfo_cache;
    122 
    123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    124 int (*coredump_vec)(struct lwp *, const char *) =
    125     (int (*)(struct lwp *, const char *))enosys;
    126 
    127 static struct pool_allocator sigactspool_allocator = {
    128         .pa_alloc = sigacts_poolpage_alloc,
    129 	.pa_free = sigacts_poolpage_free,
    130 };
    131 
    132 #ifdef DEBUG
    133 int	kern_logsigexit = 1;
    134 #else
    135 int	kern_logsigexit = 0;
    136 #endif
    137 
    138 static	const char logcoredump[] =
    139     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    140 static	const char lognocoredump[] =
    141     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    142 
    143 static kauth_listener_t signal_listener;
    144 
    145 static int
    146 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    147     void *arg0, void *arg1, void *arg2, void *arg3)
    148 {
    149 	struct proc *p;
    150 	int result, signum;
    151 
    152 	result = KAUTH_RESULT_DEFER;
    153 	p = arg0;
    154 	signum = (int)(unsigned long)arg1;
    155 
    156 	if (action != KAUTH_PROCESS_SIGNAL)
    157 		return result;
    158 
    159 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    160 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    161 		result = KAUTH_RESULT_ALLOW;
    162 
    163 	return result;
    164 }
    165 
    166 /*
    167  * signal_init:
    168  *
    169  * 	Initialize global signal-related data structures.
    170  */
    171 void
    172 signal_init(void)
    173 {
    174 
    175 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    176 
    177 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    178 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    179 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    180 
    181 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
    182 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
    183 
    184 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    185 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    186 
    187 	exechook_establish(ksiginfo_exechook, NULL);
    188 
    189 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    190 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    191 
    192 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    193 	    signal_listener_cb, NULL);
    194 }
    195 
    196 /*
    197  * sigacts_poolpage_alloc:
    198  *
    199  *	 Allocate a page for the sigacts memory pool.
    200  */
    201 static void *
    202 sigacts_poolpage_alloc(struct pool *pp, int flags)
    203 {
    204 
    205 	return (void *)uvm_km_alloc(kernel_map,
    206 	    (PAGE_SIZE)*2, (PAGE_SIZE)*2,
    207 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    208 	    | UVM_KMF_WIRED);
    209 }
    210 
    211 /*
    212  * sigacts_poolpage_free:
    213  *
    214  *	 Free a page on behalf of the sigacts memory pool.
    215  */
    216 static void
    217 sigacts_poolpage_free(struct pool *pp, void *v)
    218 {
    219 
    220         uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
    221 }
    222 
    223 /*
    224  * sigactsinit:
    225  *
    226  *	 Create an initial sigctx structure, using the same signal state as
    227  *	 p.  If 'share' is set, share the sigctx_proc part, otherwise just
    228  *	 copy it from parent.
    229  */
    230 struct sigacts *
    231 sigactsinit(struct proc *pp, int share)
    232 {
    233 	struct sigacts *ps, *ps2;
    234 
    235 	ps = pp->p_sigacts;
    236 
    237 	if (share) {
    238 		atomic_inc_uint(&ps->sa_refcnt);
    239 		ps2 = ps;
    240 	} else {
    241 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    242 		/* XXXAD get rid of this */
    243 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    244 		mutex_enter(&ps->sa_mutex);
    245 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    246 		    sizeof(ps2->sa_sigdesc));
    247 		mutex_exit(&ps->sa_mutex);
    248 		ps2->sa_refcnt = 1;
    249 	}
    250 
    251 	return ps2;
    252 }
    253 
    254 /*
    255  * sigactsunshare:
    256  *
    257  *	Make this process not share its sigctx, maintaining all
    258  *	signal state.
    259  */
    260 void
    261 sigactsunshare(struct proc *p)
    262 {
    263 	struct sigacts *ps, *oldps;
    264 
    265 	oldps = p->p_sigacts;
    266 	if (oldps->sa_refcnt == 1)
    267 		return;
    268 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    269 	/* XXXAD get rid of this */
    270 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    271 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    272 	p->p_sigacts = ps;
    273 	sigactsfree(oldps);
    274 }
    275 
    276 /*
    277  * sigactsfree;
    278  *
    279  *	Release a sigctx structure.
    280  */
    281 void
    282 sigactsfree(struct sigacts *ps)
    283 {
    284 
    285 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    286 		mutex_destroy(&ps->sa_mutex);
    287 		pool_cache_put(sigacts_cache, ps);
    288 	}
    289 }
    290 
    291 /*
    292  * siginit:
    293  *
    294  *	Initialize signal state for process 0; set to ignore signals that
    295  *	are ignored by default and disable the signal stack.  Locking not
    296  *	required as the system is still cold.
    297  */
    298 void
    299 siginit(struct proc *p)
    300 {
    301 	struct lwp *l;
    302 	struct sigacts *ps;
    303 	int signo, prop;
    304 
    305 	ps = p->p_sigacts;
    306 	sigemptyset(&contsigmask);
    307 	sigemptyset(&stopsigmask);
    308 	sigemptyset(&sigcantmask);
    309 	for (signo = 1; signo < NSIG; signo++) {
    310 		prop = sigprop[signo];
    311 		if (prop & SA_CONT)
    312 			sigaddset(&contsigmask, signo);
    313 		if (prop & SA_STOP)
    314 			sigaddset(&stopsigmask, signo);
    315 		if (prop & SA_CANTMASK)
    316 			sigaddset(&sigcantmask, signo);
    317 		if (prop & SA_IGNORE && signo != SIGCONT)
    318 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    319 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    320 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    321 	}
    322 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    323 	p->p_sflag &= ~PS_NOCLDSTOP;
    324 
    325 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    326 	sigemptyset(&p->p_sigpend.sp_set);
    327 
    328 	/*
    329 	 * Reset per LWP state.
    330 	 */
    331 	l = LIST_FIRST(&p->p_lwps);
    332 	l->l_sigwaited = NULL;
    333 	l->l_sigstk.ss_flags = SS_DISABLE;
    334 	l->l_sigstk.ss_size = 0;
    335 	l->l_sigstk.ss_sp = 0;
    336 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    337 	sigemptyset(&l->l_sigpend.sp_set);
    338 
    339 	/* One reference. */
    340 	ps->sa_refcnt = 1;
    341 }
    342 
    343 /*
    344  * execsigs:
    345  *
    346  *	Reset signals for an exec of the specified process.
    347  */
    348 void
    349 execsigs(struct proc *p)
    350 {
    351 	struct sigacts *ps;
    352 	struct lwp *l;
    353 	int signo, prop;
    354 	sigset_t tset;
    355 	ksiginfoq_t kq;
    356 
    357 	KASSERT(p->p_nlwps == 1);
    358 
    359 	sigactsunshare(p);
    360 	ps = p->p_sigacts;
    361 
    362 	/*
    363 	 * Reset caught signals.  Held signals remain held through
    364 	 * l->l_sigmask (unless they were caught, and are now ignored
    365 	 * by default).
    366 	 *
    367 	 * No need to lock yet, the process has only one LWP and
    368 	 * at this point the sigacts are private to the process.
    369 	 */
    370 	sigemptyset(&tset);
    371 	for (signo = 1; signo < NSIG; signo++) {
    372 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    373 			prop = sigprop[signo];
    374 			if (prop & SA_IGNORE) {
    375 				if ((prop & SA_CONT) == 0)
    376 					sigaddset(&p->p_sigctx.ps_sigignore,
    377 					    signo);
    378 				sigaddset(&tset, signo);
    379 			}
    380 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    381 		}
    382 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    383 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    384 	}
    385 	ksiginfo_queue_init(&kq);
    386 
    387 	mutex_enter(p->p_lock);
    388 	sigclearall(p, &tset, &kq);
    389 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    390 
    391 	/*
    392 	 * Reset no zombies if child dies flag as Solaris does.
    393 	 */
    394 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    395 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    396 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    397 
    398 	/*
    399 	 * Reset per-LWP state.
    400 	 */
    401 	l = LIST_FIRST(&p->p_lwps);
    402 	l->l_sigwaited = NULL;
    403 	l->l_sigstk.ss_flags = SS_DISABLE;
    404 	l->l_sigstk.ss_size = 0;
    405 	l->l_sigstk.ss_sp = 0;
    406 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    407 	sigemptyset(&l->l_sigpend.sp_set);
    408 	mutex_exit(p->p_lock);
    409 
    410 	ksiginfo_queue_drain(&kq);
    411 }
    412 
    413 /*
    414  * ksiginfo_exechook:
    415  *
    416  *	Free all pending ksiginfo entries from a process on exec.
    417  *	Additionally, drain any unused ksiginfo structures in the
    418  *	system back to the pool.
    419  *
    420  *	XXX This should not be a hook, every process has signals.
    421  */
    422 static void
    423 ksiginfo_exechook(struct proc *p, void *v)
    424 {
    425 	ksiginfoq_t kq;
    426 
    427 	ksiginfo_queue_init(&kq);
    428 
    429 	mutex_enter(p->p_lock);
    430 	sigclearall(p, NULL, &kq);
    431 	mutex_exit(p->p_lock);
    432 
    433 	ksiginfo_queue_drain(&kq);
    434 }
    435 
    436 /*
    437  * ksiginfo_alloc:
    438  *
    439  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    440  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    441  *	has not been queued somewhere, then just return it.  Additionally,
    442  *	if the existing ksiginfo_t does not contain any information beyond
    443  *	the signal number, then just return it.
    444  */
    445 ksiginfo_t *
    446 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    447 {
    448 	ksiginfo_t *kp;
    449 
    450 	if (ok != NULL) {
    451 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    452 		    KSI_FROMPOOL)
    453 		    	return ok;
    454 		if (KSI_EMPTY_P(ok))
    455 			return ok;
    456 	}
    457 
    458 	kp = pool_cache_get(ksiginfo_cache, flags);
    459 	if (kp == NULL) {
    460 #ifdef DIAGNOSTIC
    461 		printf("Out of memory allocating ksiginfo for pid %d\n",
    462 		    p->p_pid);
    463 #endif
    464 		return NULL;
    465 	}
    466 
    467 	if (ok != NULL) {
    468 		memcpy(kp, ok, sizeof(*kp));
    469 		kp->ksi_flags &= ~KSI_QUEUED;
    470 	} else
    471 		KSI_INIT_EMPTY(kp);
    472 
    473 	kp->ksi_flags |= KSI_FROMPOOL;
    474 
    475 	return kp;
    476 }
    477 
    478 /*
    479  * ksiginfo_free:
    480  *
    481  *	If the given ksiginfo_t is from the pool and has not been queued,
    482  *	then free it.
    483  */
    484 void
    485 ksiginfo_free(ksiginfo_t *kp)
    486 {
    487 
    488 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    489 		return;
    490 	pool_cache_put(ksiginfo_cache, kp);
    491 }
    492 
    493 /*
    494  * ksiginfo_queue_drain:
    495  *
    496  *	Drain a non-empty ksiginfo_t queue.
    497  */
    498 void
    499 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    500 {
    501 	ksiginfo_t *ksi;
    502 
    503 	KASSERT(!CIRCLEQ_EMPTY(kq));
    504 
    505 	while (!CIRCLEQ_EMPTY(kq)) {
    506 		ksi = CIRCLEQ_FIRST(kq);
    507 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    508 		pool_cache_put(ksiginfo_cache, ksi);
    509 	}
    510 }
    511 
    512 /*
    513  * sigget:
    514  *
    515  *	Fetch the first pending signal from a set.  Optionally, also fetch
    516  *	or manufacture a ksiginfo element.  Returns the number of the first
    517  *	pending signal, or zero.
    518  */
    519 int
    520 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    521 {
    522         ksiginfo_t *ksi;
    523 	sigset_t tset;
    524 
    525 	/* If there's no pending set, the signal is from the debugger. */
    526 	if (sp == NULL)
    527 		goto out;
    528 
    529 	/* Construct mask from signo, and 'mask'. */
    530 	if (signo == 0) {
    531 		if (mask != NULL) {
    532 			tset = *mask;
    533 			__sigandset(&sp->sp_set, &tset);
    534 		} else
    535 			tset = sp->sp_set;
    536 
    537 		/* If there are no signals pending, that's it. */
    538 		if ((signo = firstsig(&tset)) == 0)
    539 			goto out;
    540 	} else {
    541 		KASSERT(sigismember(&sp->sp_set, signo));
    542 	}
    543 
    544 	sigdelset(&sp->sp_set, signo);
    545 
    546 	/* Find siginfo and copy it out. */
    547 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    548 		if (ksi->ksi_signo == signo) {
    549 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    550 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    551 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    552 			ksi->ksi_flags &= ~KSI_QUEUED;
    553 			if (out != NULL) {
    554 				memcpy(out, ksi, sizeof(*out));
    555 				out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    556 			}
    557 			ksiginfo_free(ksi);
    558 			return signo;
    559 		}
    560 	}
    561 
    562 out:
    563 	/* If there's no siginfo, then manufacture it. */
    564 	if (out != NULL) {
    565 		KSI_INIT(out);
    566 		out->ksi_info._signo = signo;
    567 		out->ksi_info._code = SI_NOINFO;
    568 	}
    569 
    570 	return signo;
    571 }
    572 
    573 /*
    574  * sigput:
    575  *
    576  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    577  */
    578 static void
    579 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    580 {
    581 	ksiginfo_t *kp;
    582 
    583 	KASSERT(mutex_owned(p->p_lock));
    584 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    585 
    586 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    587 
    588 	/*
    589 	 * If there is no siginfo, we are done.
    590 	 */
    591 	if (KSI_EMPTY_P(ksi))
    592 		return;
    593 
    594 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    595 
    596 #ifdef notyet	/* XXX: QUEUING */
    597 	if (ksi->ksi_signo < SIGRTMIN)
    598 #endif
    599 	{
    600 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    601 			if (kp->ksi_signo == ksi->ksi_signo) {
    602 				KSI_COPY(ksi, kp);
    603 				kp->ksi_flags |= KSI_QUEUED;
    604 				return;
    605 			}
    606 		}
    607 	}
    608 
    609 	ksi->ksi_flags |= KSI_QUEUED;
    610 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    611 }
    612 
    613 /*
    614  * sigclear:
    615  *
    616  *	Clear all pending signals in the specified set.
    617  */
    618 void
    619 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    620 {
    621 	ksiginfo_t *ksi, *next;
    622 
    623 	if (mask == NULL)
    624 		sigemptyset(&sp->sp_set);
    625 	else
    626 		sigminusset(mask, &sp->sp_set);
    627 
    628 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    629 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    630 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    631 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    632 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    633 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    634 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    635 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    636 		}
    637 	}
    638 }
    639 
    640 /*
    641  * sigclearall:
    642  *
    643  *	Clear all pending signals in the specified set from a process and
    644  *	its LWPs.
    645  */
    646 void
    647 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    648 {
    649 	struct lwp *l;
    650 
    651 	KASSERT(mutex_owned(p->p_lock));
    652 
    653 	sigclear(&p->p_sigpend, mask, kq);
    654 
    655 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    656 		sigclear(&l->l_sigpend, mask, kq);
    657 	}
    658 }
    659 
    660 /*
    661  * sigispending:
    662  *
    663  *	Return true if there are pending signals for the current LWP.  May
    664  *	be called unlocked provided that LW_PENDSIG is set, and that the
    665  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    666  *	set.
    667  */
    668 int
    669 sigispending(struct lwp *l, int signo)
    670 {
    671 	struct proc *p = l->l_proc;
    672 	sigset_t tset;
    673 
    674 	membar_consumer();
    675 
    676 	tset = l->l_sigpend.sp_set;
    677 	sigplusset(&p->p_sigpend.sp_set, &tset);
    678 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    679 	sigminusset(&l->l_sigmask, &tset);
    680 
    681 	if (signo == 0) {
    682 		if (firstsig(&tset) != 0)
    683 			return EINTR;
    684 	} else if (sigismember(&tset, signo))
    685 		return EINTR;
    686 
    687 	return 0;
    688 }
    689 
    690 /*
    691  * siginfo_alloc:
    692  *
    693  *	 Allocate a new siginfo_t structure from the pool.
    694  */
    695 siginfo_t *
    696 siginfo_alloc(int flags)
    697 {
    698 
    699 	return pool_cache_get(siginfo_cache, flags);
    700 }
    701 
    702 /*
    703  * siginfo_free:
    704  *
    705  *	 Return a siginfo_t structure to the pool.
    706  */
    707 void
    708 siginfo_free(void *arg)
    709 {
    710 
    711 	pool_cache_put(siginfo_cache, arg);
    712 }
    713 
    714 void
    715 getucontext(struct lwp *l, ucontext_t *ucp)
    716 {
    717 	struct proc *p = l->l_proc;
    718 
    719 	KASSERT(mutex_owned(p->p_lock));
    720 
    721 	ucp->uc_flags = 0;
    722 	ucp->uc_link = l->l_ctxlink;
    723 
    724 #if KERN_SA
    725 	if (p->p_sa != NULL)
    726 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
    727 	else
    728 #endif /* KERN_SA */
    729 		ucp->uc_sigmask = l->l_sigmask;
    730 	ucp->uc_flags |= _UC_SIGMASK;
    731 
    732 	/*
    733 	 * The (unsupplied) definition of the `current execution stack'
    734 	 * in the System V Interface Definition appears to allow returning
    735 	 * the main context stack.
    736 	 */
    737 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    738 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    739 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    740 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    741 	} else {
    742 		/* Simply copy alternate signal execution stack. */
    743 		ucp->uc_stack = l->l_sigstk;
    744 	}
    745 	ucp->uc_flags |= _UC_STACK;
    746 	mutex_exit(p->p_lock);
    747 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    748 	mutex_enter(p->p_lock);
    749 }
    750 
    751 /*
    752  * getucontext_sa:
    753  *      Get a ucontext_t for use in SA upcall generation.
    754  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
    755  * fudge things with uc_link (which is usually NULL for libpthread
    756  * code), and 3) we report an empty signal mask.
    757  */
    758 void
    759 getucontext_sa(struct lwp *l, ucontext_t *ucp)
    760 {
    761 	ucp->uc_flags = 0;
    762 	ucp->uc_link = l->l_ctxlink;
    763 
    764 	sigemptyset(&ucp->uc_sigmask);
    765 	ucp->uc_flags |= _UC_SIGMASK;
    766 
    767 	/*
    768 	 * The (unsupplied) definition of the `current execution stack'
    769 	 * in the System V Interface Definition appears to allow returning
    770 	 * the main context stack.
    771 	 */
    772 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    773 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    774 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    775 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    776 	} else {
    777 		/* Simply copy alternate signal execution stack. */
    778 		ucp->uc_stack = l->l_sigstk;
    779 	}
    780 	ucp->uc_flags |= _UC_STACK;
    781 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    782 }
    783 
    784 int
    785 setucontext(struct lwp *l, const ucontext_t *ucp)
    786 {
    787 	struct proc *p = l->l_proc;
    788 	int error;
    789 
    790 	KASSERT(mutex_owned(p->p_lock));
    791 
    792 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    793 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    794 		if (error != 0)
    795 			return error;
    796 	}
    797 
    798 	mutex_exit(p->p_lock);
    799 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    800 	mutex_enter(p->p_lock);
    801 	if (error != 0)
    802 		return (error);
    803 
    804 	l->l_ctxlink = ucp->uc_link;
    805 
    806 	/*
    807 	 * If there was stack information, update whether or not we are
    808 	 * still running on an alternate signal stack.
    809 	 */
    810 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    811 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    812 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    813 		else
    814 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    815 	}
    816 
    817 	return 0;
    818 }
    819 
    820 /*
    821  * Common code for kill process group/broadcast kill.  cp is calling
    822  * process.
    823  */
    824 int
    825 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    826 {
    827 	struct proc	*p, *cp;
    828 	kauth_cred_t	pc;
    829 	struct pgrp	*pgrp;
    830 	int		nfound;
    831 	int		signo = ksi->ksi_signo;
    832 
    833 	cp = l->l_proc;
    834 	pc = l->l_cred;
    835 	nfound = 0;
    836 
    837 	mutex_enter(proc_lock);
    838 	if (all) {
    839 		/*
    840 		 * broadcast
    841 		 */
    842 		PROCLIST_FOREACH(p, &allproc) {
    843 			if (p->p_pid <= 1 || p == cp ||
    844 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
    845 				continue;
    846 			mutex_enter(p->p_lock);
    847 			if (kauth_authorize_process(pc,
    848 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    849 			    NULL) == 0) {
    850 				nfound++;
    851 				if (signo)
    852 					kpsignal2(p, ksi);
    853 			}
    854 			mutex_exit(p->p_lock);
    855 		}
    856 	} else {
    857 		if (pgid == 0)
    858 			/*
    859 			 * zero pgid means send to my process group.
    860 			 */
    861 			pgrp = cp->p_pgrp;
    862 		else {
    863 			pgrp = pg_find(pgid, PFIND_LOCKED);
    864 			if (pgrp == NULL)
    865 				goto out;
    866 		}
    867 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    868 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    869 				continue;
    870 			mutex_enter(p->p_lock);
    871 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    872 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    873 				nfound++;
    874 				if (signo && P_ZOMBIE(p) == 0)
    875 					kpsignal2(p, ksi);
    876 			}
    877 			mutex_exit(p->p_lock);
    878 		}
    879 	}
    880   out:
    881 	mutex_exit(proc_lock);
    882 	return (nfound ? 0 : ESRCH);
    883 }
    884 
    885 /*
    886  * Send a signal to a process group. If checktty is 1, limit to members
    887  * which have a controlling terminal.
    888  */
    889 void
    890 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    891 {
    892 	ksiginfo_t ksi;
    893 
    894 	KASSERT(!cpu_intr_p());
    895 	KASSERT(mutex_owned(proc_lock));
    896 
    897 	KSI_INIT_EMPTY(&ksi);
    898 	ksi.ksi_signo = sig;
    899 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    900 }
    901 
    902 void
    903 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    904 {
    905 	struct proc *p;
    906 
    907 	KASSERT(!cpu_intr_p());
    908 	KASSERT(mutex_owned(proc_lock));
    909 
    910 	if (__predict_false(pgrp == 0))
    911 		return;
    912 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    913 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    914 			kpsignal(p, ksi, data);
    915 }
    916 
    917 /*
    918  * Send a signal caused by a trap to the current LWP.  If it will be caught
    919  * immediately, deliver it with correct code.  Otherwise, post it normally.
    920  */
    921 void
    922 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    923 {
    924 	struct proc	*p;
    925 	struct sigacts	*ps;
    926 	int signo = ksi->ksi_signo;
    927 	sigset_t *mask;
    928 
    929 	KASSERT(KSI_TRAP_P(ksi));
    930 
    931 	ksi->ksi_lid = l->l_lid;
    932 	p = l->l_proc;
    933 
    934 	KASSERT(!cpu_intr_p());
    935 	mutex_enter(proc_lock);
    936 	mutex_enter(p->p_lock);
    937 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
    938 	ps = p->p_sigacts;
    939 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    940 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    941 	    !sigismember(mask, signo)) {
    942 		mutex_exit(proc_lock);
    943 		l->l_ru.ru_nsignals++;
    944 		kpsendsig(l, ksi, mask);
    945 		mutex_exit(p->p_lock);
    946 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
    947 		    mask, ksi);
    948 	} else {
    949 		/* XXX for core dump/debugger */
    950 		p->p_sigctx.ps_lwp = l->l_lid;
    951 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    952 		p->p_sigctx.ps_code = ksi->ksi_trap;
    953 		kpsignal2(p, ksi);
    954 		mutex_exit(p->p_lock);
    955 		mutex_exit(proc_lock);
    956 	}
    957 }
    958 
    959 /*
    960  * Fill in signal information and signal the parent for a child status change.
    961  */
    962 void
    963 child_psignal(struct proc *p, int mask)
    964 {
    965 	ksiginfo_t ksi;
    966 	struct proc *q;
    967 	int xstat;
    968 
    969 	KASSERT(mutex_owned(proc_lock));
    970 	KASSERT(mutex_owned(p->p_lock));
    971 
    972 	xstat = p->p_xstat;
    973 
    974 	KSI_INIT(&ksi);
    975 	ksi.ksi_signo = SIGCHLD;
    976 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    977 	ksi.ksi_pid = p->p_pid;
    978 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    979 	ksi.ksi_status = xstat;
    980 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    981 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    982 
    983 	q = p->p_pptr;
    984 
    985 	mutex_exit(p->p_lock);
    986 	mutex_enter(q->p_lock);
    987 
    988 	if ((q->p_sflag & mask) == 0)
    989 		kpsignal2(q, &ksi);
    990 
    991 	mutex_exit(q->p_lock);
    992 	mutex_enter(p->p_lock);
    993 }
    994 
    995 void
    996 psignal(struct proc *p, int signo)
    997 {
    998 	ksiginfo_t ksi;
    999 
   1000 	KASSERT(!cpu_intr_p());
   1001 	KASSERT(mutex_owned(proc_lock));
   1002 
   1003 	KSI_INIT_EMPTY(&ksi);
   1004 	ksi.ksi_signo = signo;
   1005 	mutex_enter(p->p_lock);
   1006 	kpsignal2(p, &ksi);
   1007 	mutex_exit(p->p_lock);
   1008 }
   1009 
   1010 void
   1011 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1012 {
   1013 	fdfile_t *ff;
   1014 	file_t *fp;
   1015 	fdtab_t *dt;
   1016 
   1017 	KASSERT(!cpu_intr_p());
   1018 	KASSERT(mutex_owned(proc_lock));
   1019 
   1020 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1021 		size_t fd;
   1022 		filedesc_t *fdp = p->p_fd;
   1023 
   1024 		/* XXXSMP locking */
   1025 		ksi->ksi_fd = -1;
   1026 		dt = fdp->fd_dt;
   1027 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1028 			if ((ff = dt->dt_ff[fd]) == NULL)
   1029 				continue;
   1030 			if ((fp = ff->ff_file) == NULL)
   1031 				continue;
   1032 			if (fp->f_data == data) {
   1033 				ksi->ksi_fd = fd;
   1034 				break;
   1035 			}
   1036 		}
   1037 	}
   1038 	mutex_enter(p->p_lock);
   1039 	kpsignal2(p, ksi);
   1040 	mutex_exit(p->p_lock);
   1041 }
   1042 
   1043 /*
   1044  * sigismasked:
   1045  *
   1046  *	 Returns true if signal is ignored or masked for the specified LWP.
   1047  */
   1048 int
   1049 sigismasked(struct lwp *l, int sig)
   1050 {
   1051 	struct proc *p = l->l_proc;
   1052 
   1053 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1054 	    sigismember(&l->l_sigmask, sig)
   1055 #if KERN_SA
   1056 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
   1057 #endif /* KERN_SA */
   1058 	    );
   1059 }
   1060 
   1061 /*
   1062  * sigpost:
   1063  *
   1064  *	 Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1065  *	 be able to take the signal.
   1066  */
   1067 static int
   1068 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
   1069 {
   1070 	int rv, masked;
   1071 	struct proc *p = l->l_proc;
   1072 
   1073 	KASSERT(mutex_owned(p->p_lock));
   1074 
   1075 	/*
   1076 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1077 	 * pending signals.  Don't give it more.
   1078 	 */
   1079 	if (l->l_refcnt == 0)
   1080 		return 0;
   1081 
   1082 	/*
   1083 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1084 	 * is found to take the signal immediately, it should be taken soon.
   1085 	 */
   1086 	lwp_lock(l);
   1087 	l->l_flag |= LW_PENDSIG;
   1088 
   1089 	/*
   1090 	 * When sending signals to SA processes, we first try to find an
   1091 	 * idle VP to take it.
   1092 	 */
   1093 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
   1094 		lwp_unlock(l);
   1095 		return 0;
   1096 	}
   1097 
   1098 	/*
   1099 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1100 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1101 	 */
   1102 #if KERN_SA
   1103 	if (p->p_sa != NULL)
   1104 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
   1105 	else
   1106 #endif
   1107 		masked = sigismember(&l->l_sigmask, sig);
   1108 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1109 		lwp_unlock(l);
   1110 		return 0;
   1111 	}
   1112 
   1113 	/*
   1114 	 * If killing the process, make it run fast.
   1115 	 */
   1116 	if (__predict_false((prop & SA_KILL) != 0) &&
   1117 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1118 		KASSERT(l->l_class == SCHED_OTHER);
   1119 		lwp_changepri(l, MAXPRI_USER);
   1120 	}
   1121 
   1122 	/*
   1123 	 * If the LWP is running or on a run queue, then we win.  If it's
   1124 	 * sleeping interruptably, wake it and make it take the signal.  If
   1125 	 * the sleep isn't interruptable, then the chances are it will get
   1126 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1127 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1128 	 * for later; otherwise punt.
   1129 	 */
   1130 	rv = 0;
   1131 
   1132 	switch (l->l_stat) {
   1133 	case LSRUN:
   1134 	case LSONPROC:
   1135 		lwp_need_userret(l);
   1136 		rv = 1;
   1137 		break;
   1138 
   1139 	case LSSLEEP:
   1140 		if ((l->l_flag & LW_SINTR) != 0) {
   1141 			/* setrunnable() will release the lock. */
   1142 			setrunnable(l);
   1143 			return 1;
   1144 		}
   1145 		break;
   1146 
   1147 	case LSSUSPENDED:
   1148 		if ((prop & SA_KILL) != 0) {
   1149 			/* lwp_continue() will release the lock. */
   1150 			lwp_continue(l);
   1151 			return 1;
   1152 		}
   1153 		break;
   1154 
   1155 	case LSSTOP:
   1156 		if ((prop & SA_STOP) != 0)
   1157 			break;
   1158 
   1159 		/*
   1160 		 * If the LWP is stopped and we are sending a continue
   1161 		 * signal, then start it again.
   1162 		 */
   1163 		if ((prop & SA_CONT) != 0) {
   1164 			if (l->l_wchan != NULL) {
   1165 				l->l_stat = LSSLEEP;
   1166 				p->p_nrlwps++;
   1167 				rv = 1;
   1168 				break;
   1169 			}
   1170 			/* setrunnable() will release the lock. */
   1171 			setrunnable(l);
   1172 			return 1;
   1173 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1174 			/* setrunnable() will release the lock. */
   1175 			setrunnable(l);
   1176 			return 1;
   1177 		}
   1178 		break;
   1179 
   1180 	default:
   1181 		break;
   1182 	}
   1183 
   1184 	lwp_unlock(l);
   1185 	return rv;
   1186 }
   1187 
   1188 /*
   1189  * Notify an LWP that it has a pending signal.
   1190  */
   1191 void
   1192 signotify(struct lwp *l)
   1193 {
   1194 	KASSERT(lwp_locked(l, NULL));
   1195 
   1196 	l->l_flag |= LW_PENDSIG;
   1197 	lwp_need_userret(l);
   1198 }
   1199 
   1200 /*
   1201  * Find an LWP within process p that is waiting on signal ksi, and hand
   1202  * it on.
   1203  */
   1204 static int
   1205 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1206 {
   1207 	struct lwp *l;
   1208 	int signo;
   1209 
   1210 	KASSERT(mutex_owned(p->p_lock));
   1211 
   1212 	signo = ksi->ksi_signo;
   1213 
   1214 	if (ksi->ksi_lid != 0) {
   1215 		/*
   1216 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1217 		 * it's interested.
   1218 		 */
   1219 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1220 			return 0;
   1221 		if (l->l_sigwaited == NULL ||
   1222 		    !sigismember(&l->l_sigwaitset, signo))
   1223 			return 0;
   1224 	} else {
   1225 		/*
   1226 		 * Look for any LWP that may be interested.
   1227 		 */
   1228 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1229 			KASSERT(l->l_sigwaited != NULL);
   1230 			if (sigismember(&l->l_sigwaitset, signo))
   1231 				break;
   1232 		}
   1233 	}
   1234 
   1235 	if (l != NULL) {
   1236 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1237 		l->l_sigwaited = NULL;
   1238 		LIST_REMOVE(l, l_sigwaiter);
   1239 		cv_signal(&l->l_sigcv);
   1240 		return 1;
   1241 	}
   1242 
   1243 	return 0;
   1244 }
   1245 
   1246 /*
   1247  * Send the signal to the process.  If the signal has an action, the action
   1248  * is usually performed by the target process rather than the caller; we add
   1249  * the signal to the set of pending signals for the process.
   1250  *
   1251  * Exceptions:
   1252  *   o When a stop signal is sent to a sleeping process that takes the
   1253  *     default action, the process is stopped without awakening it.
   1254  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1255  *     regardless of the signal action (eg, blocked or ignored).
   1256  *
   1257  * Other ignored signals are discarded immediately.
   1258  */
   1259 void
   1260 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1261 {
   1262 	int prop, lid, toall, signo = ksi->ksi_signo;
   1263 	struct sigacts *sa;
   1264 	struct lwp *l;
   1265 	ksiginfo_t *kp;
   1266 	ksiginfoq_t kq;
   1267 	sig_t action;
   1268 #ifdef KERN_SA
   1269 	struct sadata_vp *vp;
   1270 #endif
   1271 
   1272 	KASSERT(!cpu_intr_p());
   1273 	KASSERT(mutex_owned(proc_lock));
   1274 	KASSERT(mutex_owned(p->p_lock));
   1275 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1276 	KASSERT(signo > 0 && signo < NSIG);
   1277 
   1278 	/*
   1279 	 * If the process is being created by fork, is a zombie or is
   1280 	 * exiting, then just drop the signal here and bail out.
   1281 	 */
   1282 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1283 		return;
   1284 
   1285 	/*
   1286 	 * Notify any interested parties of the signal.
   1287 	 */
   1288 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1289 
   1290 	/*
   1291 	 * Some signals including SIGKILL must act on the entire process.
   1292 	 */
   1293 	kp = NULL;
   1294 	prop = sigprop[signo];
   1295 	toall = ((prop & SA_TOALL) != 0);
   1296 
   1297 	if (toall)
   1298 		lid = 0;
   1299 	else
   1300 		lid = ksi->ksi_lid;
   1301 
   1302 	/*
   1303 	 * If proc is traced, always give parent a chance.
   1304 	 */
   1305 	if (p->p_slflag & PSL_TRACED) {
   1306 		action = SIG_DFL;
   1307 
   1308 		if (lid == 0) {
   1309 			/*
   1310 			 * If the process is being traced and the signal
   1311 			 * is being caught, make sure to save any ksiginfo.
   1312 			 */
   1313 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1314 				return;
   1315 			sigput(&p->p_sigpend, p, kp);
   1316 		}
   1317 	} else {
   1318 		/*
   1319 		 * If the signal was the result of a trap and is not being
   1320 		 * caught, then reset it to default action so that the
   1321 		 * process dumps core immediately.
   1322 		 */
   1323 		if (KSI_TRAP_P(ksi)) {
   1324 			sa = p->p_sigacts;
   1325 			mutex_enter(&sa->sa_mutex);
   1326 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1327 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1328 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1329 			}
   1330 			mutex_exit(&sa->sa_mutex);
   1331 		}
   1332 
   1333 		/*
   1334 		 * If the signal is being ignored, then drop it.  Note: we
   1335 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1336 		 * SIG_IGN, action will be SIG_DFL here.
   1337 		 */
   1338 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1339 			return;
   1340 
   1341 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1342 			action = SIG_CATCH;
   1343 		else {
   1344 			action = SIG_DFL;
   1345 
   1346 			/*
   1347 			 * If sending a tty stop signal to a member of an
   1348 			 * orphaned process group, discard the signal here if
   1349 			 * the action is default; don't stop the process below
   1350 			 * if sleeping, and don't clear any pending SIGCONT.
   1351 			 */
   1352 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1353 				return;
   1354 
   1355 			if (prop & SA_KILL && p->p_nice > NZERO)
   1356 				p->p_nice = NZERO;
   1357 		}
   1358 	}
   1359 
   1360 	/*
   1361 	 * If stopping or continuing a process, discard any pending
   1362 	 * signals that would do the inverse.
   1363 	 */
   1364 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1365 		ksiginfo_queue_init(&kq);
   1366 		if ((prop & SA_CONT) != 0)
   1367 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1368 		if ((prop & SA_STOP) != 0)
   1369 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1370 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1371 	}
   1372 
   1373 	/*
   1374 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1375 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1376 	 * the signal info.  The signal won't be processed further here.
   1377 	 */
   1378 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1379 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1380 	    sigunwait(p, ksi))
   1381 		return;
   1382 
   1383 	/*
   1384 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1385 	 * here.
   1386 	 */
   1387 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1388 		return;
   1389 
   1390 	/*
   1391 	 * LWP private signals are easy - just find the LWP and post
   1392 	 * the signal to it.
   1393 	 */
   1394 	if (lid != 0) {
   1395 		l = lwp_find(p, lid);
   1396 		if (l != NULL) {
   1397 			sigput(&l->l_sigpend, p, kp);
   1398 			membar_producer();
   1399 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
   1400 		}
   1401 		goto out;
   1402 	}
   1403 
   1404 	/*
   1405 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1406 	 * or for an SA process.
   1407 	 */
   1408 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1409 		if ((p->p_slflag & PSL_TRACED) != 0)
   1410 			goto deliver;
   1411 
   1412 		/*
   1413 		 * If SIGCONT is default (or ignored) and process is
   1414 		 * asleep, we are finished; the process should not
   1415 		 * be awakened.
   1416 		 */
   1417 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1418 			goto out;
   1419 	} else {
   1420 		/*
   1421 		 * Process is stopped or stopping.  If traced, then no
   1422 		 * further action is necessary.
   1423 		 */
   1424 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
   1425 			goto out;
   1426 
   1427 		/*
   1428 		 * Run the process only if sending SIGCONT or SIGKILL.
   1429 		 */
   1430 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1431 			/*
   1432 			 * Re-adjust p_nstopchild if the process wasn't
   1433 			 * collected by its parent.
   1434 			 */
   1435 			p->p_stat = SACTIVE;
   1436 			p->p_sflag &= ~PS_STOPPING;
   1437 			if (!p->p_waited)
   1438 				p->p_pptr->p_nstopchild--;
   1439 
   1440 			/*
   1441 			 * Do not make signal pending if SIGCONT is default.
   1442 			 *
   1443 			 * If the process catches SIGCONT, let it handle the
   1444 			 * signal itself (if waiting on event - process runs,
   1445 			 * otherwise continues sleeping).
   1446 			 */
   1447 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
   1448 				KASSERT(signo != SIGKILL);
   1449 				goto deliver;
   1450 			}
   1451 		} else if ((prop & SA_STOP) != 0) {
   1452 			/*
   1453 			 * Already stopped, don't need to stop again.
   1454 			 * (If we did the shell could get confused.)
   1455 			 */
   1456 			goto out;
   1457 		}
   1458 	}
   1459 	/*
   1460 	 * Make signal pending.
   1461 	 */
   1462 	sigput(&p->p_sigpend, p, kp);
   1463 
   1464  deliver:
   1465 	/*
   1466 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1467 	 * visible on the per process list (for sigispending()).  This
   1468 	 * is unlikely to be needed in practice, but...
   1469 	 */
   1470 	membar_producer();
   1471 
   1472 	/*
   1473 	 * Try to find an LWP that can take the signal.
   1474 	 */
   1475 #if KERN_SA
   1476 	if ((p->p_sa != NULL) && !toall) {
   1477 		/*
   1478 		 * If we're in this delivery path, we are delivering a
   1479 		 * signal that needs to go to one thread in the process.
   1480 		 *
   1481 		 * In the SA case, we try to find an idle LWP that can take
   1482 		 * the signal.  If that fails, only then do we consider
   1483 		 * interrupting active LWPs. Since the signal's going to
   1484 		 * just one thread, we need only look at "blessed" lwps,
   1485 		 * so scan the vps for them.
   1486 		 */
   1487 		l = NULL;
   1488 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1489 			l = vp->savp_lwp;
   1490 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
   1491 				break;
   1492 		}
   1493 
   1494 		if (l == NULL) {
   1495 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1496 				l = vp->savp_lwp;
   1497 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
   1498 					break;
   1499 			}
   1500 		}
   1501 	} else	/* Catch the brace below if we're defined */
   1502 #endif /* KERN_SA */
   1503 	    {
   1504 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1505 			if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
   1506 				break;
   1507 	}
   1508 
   1509  out:
   1510  	/*
   1511  	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1512  	 * with locks held.  The caller should take care of this.
   1513  	 */
   1514  	ksiginfo_free(kp);
   1515 }
   1516 
   1517 void
   1518 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1519 {
   1520 	struct proc *p = l->l_proc;
   1521 #ifdef KERN_SA
   1522 	struct lwp *le, *li;
   1523 	siginfo_t *si;
   1524 	int f;
   1525 #endif /* KERN_SA */
   1526 
   1527 	KASSERT(mutex_owned(p->p_lock));
   1528 
   1529 #ifdef KERN_SA
   1530 	if (p->p_sflag & PS_SA) {
   1531 		/* f indicates if we should clear LP_SA_NOBLOCK */
   1532 		f = ~l->l_pflag & LP_SA_NOBLOCK;
   1533 		l->l_pflag |= LP_SA_NOBLOCK;
   1534 
   1535 		mutex_exit(p->p_lock);
   1536 		/* XXXUPSXXX What if not on sa_vp? */
   1537 		/*
   1538 		 * WRS: I think it won't matter, beyond the
   1539 		 * question of what exactly we do with a signal
   1540 		 * to a blocked user thread. Also, we try hard to always
   1541 		 * send signals to blessed lwps, so we would only send
   1542 		 * to a non-blessed lwp under special circumstances.
   1543 		 */
   1544 		si = siginfo_alloc(PR_WAITOK);
   1545 
   1546 		si->_info = ksi->ksi_info;
   1547 
   1548 		/*
   1549 		 * Figure out if we're the innocent victim or the main
   1550 		 * perpitrator.
   1551 		 */
   1552 		le = li = NULL;
   1553 		if (KSI_TRAP_P(ksi))
   1554 			le = l;
   1555 		else
   1556 			li = l;
   1557 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1558 		    sizeof(*si), si, siginfo_free) != 0) {
   1559 			siginfo_free(si);
   1560 #if 0
   1561 			if (KSI_TRAP_P(ksi))
   1562 				/* XXX What dowe do here? The signal
   1563 				 * didn't make it
   1564 				 */;
   1565 #endif
   1566 		}
   1567 		l->l_pflag ^= f;
   1568 		mutex_enter(p->p_lock);
   1569 		return;
   1570 	}
   1571 #endif /* KERN_SA */
   1572 
   1573 	(*p->p_emul->e_sendsig)(ksi, mask);
   1574 }
   1575 
   1576 /*
   1577  * Stop any LWPs sleeping interruptably.
   1578  */
   1579 static void
   1580 proc_stop_lwps(struct proc *p)
   1581 {
   1582 	struct lwp *l;
   1583 
   1584 	KASSERT(mutex_owned(p->p_lock));
   1585 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1586 
   1587 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1588 		lwp_lock(l);
   1589 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1590 			l->l_stat = LSSTOP;
   1591 			p->p_nrlwps--;
   1592 		}
   1593 		lwp_unlock(l);
   1594 	}
   1595 }
   1596 
   1597 /*
   1598  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1599  *
   1600  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1601  */
   1602 static void
   1603 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1604 {
   1605 
   1606 	KASSERT(mutex_owned(proc_lock));
   1607 	KASSERT(mutex_owned(p->p_lock));
   1608 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1609 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1610 
   1611 	p->p_sflag &= ~PS_STOPPING;
   1612 	p->p_stat = SSTOP;
   1613 	p->p_waited = 0;
   1614 	p->p_pptr->p_nstopchild++;
   1615 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1616 		if (ppsig) {
   1617 			/* child_psignal drops p_lock briefly. */
   1618 			child_psignal(p, ppmask);
   1619 		}
   1620 		cv_broadcast(&p->p_pptr->p_waitcv);
   1621 	}
   1622 }
   1623 
   1624 /*
   1625  * Stop the current process and switch away when being stopped or traced.
   1626  */
   1627 static void
   1628 sigswitch(bool ppsig, int ppmask, int signo)
   1629 {
   1630 	struct lwp *l = curlwp;
   1631 	struct proc *p = l->l_proc;
   1632 	int biglocks;
   1633 
   1634 	KASSERT(mutex_owned(p->p_lock));
   1635 	KASSERT(l->l_stat == LSONPROC);
   1636 	KASSERT(p->p_nrlwps > 0);
   1637 
   1638 	/*
   1639 	 * On entry we know that the process needs to stop.  If it's
   1640 	 * the result of a 'sideways' stop signal that has been sourced
   1641 	 * through issignal(), then stop other LWPs in the process too.
   1642 	 */
   1643 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1644 		KASSERT(signo != 0);
   1645 		proc_stop(p, 1, signo);
   1646 		KASSERT(p->p_nrlwps > 0);
   1647 	}
   1648 
   1649 	/*
   1650 	 * If we are the last live LWP, and the stop was a result of
   1651 	 * a new signal, then signal the parent.
   1652 	 */
   1653 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1654 		if (!mutex_tryenter(proc_lock)) {
   1655 			mutex_exit(p->p_lock);
   1656 			mutex_enter(proc_lock);
   1657 			mutex_enter(p->p_lock);
   1658 		}
   1659 
   1660 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1661 			/*
   1662 			 * Note that proc_stop_done() can drop
   1663 			 * p->p_lock briefly.
   1664 			 */
   1665 			proc_stop_done(p, ppsig, ppmask);
   1666 		}
   1667 
   1668 		mutex_exit(proc_lock);
   1669 	}
   1670 
   1671 	/*
   1672 	 * Unlock and switch away.
   1673 	 */
   1674 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1675 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1676 		p->p_nrlwps--;
   1677 		lwp_lock(l);
   1678 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1679 		l->l_stat = LSSTOP;
   1680 		lwp_unlock(l);
   1681 	}
   1682 
   1683 	mutex_exit(p->p_lock);
   1684 	lwp_lock(l);
   1685 	mi_switch(l);
   1686 	KERNEL_LOCK(biglocks, l);
   1687 	mutex_enter(p->p_lock);
   1688 }
   1689 
   1690 /*
   1691  * Check for a signal from the debugger.
   1692  */
   1693 static int
   1694 sigchecktrace(void)
   1695 {
   1696 	struct lwp *l = curlwp;
   1697 	struct proc *p = l->l_proc;
   1698 	sigset_t *mask;
   1699 	int signo;
   1700 
   1701 	KASSERT(mutex_owned(p->p_lock));
   1702 
   1703 	/* If there's a pending SIGKILL, process it immediately. */
   1704 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1705 		return 0;
   1706 
   1707 	/*
   1708 	 * If we are no longer being traced, or the parent didn't
   1709 	 * give us a signal, look for more signals.
   1710 	 */
   1711 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1712 		return 0;
   1713 
   1714 	/*
   1715 	 * If the new signal is being masked, look for other signals.
   1716 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1717 	 */
   1718 	signo = p->p_xstat;
   1719 	p->p_xstat = 0;
   1720 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   1721 	if (sigismember(mask, signo))
   1722 		signo = 0;
   1723 
   1724 	return signo;
   1725 }
   1726 
   1727 /*
   1728  * If the current process has received a signal (should be caught or cause
   1729  * termination, should interrupt current syscall), return the signal number.
   1730  *
   1731  * Stop signals with default action are processed immediately, then cleared;
   1732  * they aren't returned.  This is checked after each entry to the system for
   1733  * a syscall or trap.
   1734  *
   1735  * We will also return -1 if the process is exiting and the current LWP must
   1736  * follow suit.
   1737  */
   1738 int
   1739 issignal(struct lwp *l)
   1740 {
   1741 	struct proc *p;
   1742 	int signo, prop;
   1743 	sigpend_t *sp;
   1744 	sigset_t ss;
   1745 
   1746 	p = l->l_proc;
   1747 	sp = NULL;
   1748 	signo = 0;
   1749 
   1750 	KASSERT(p == curproc);
   1751 	KASSERT(mutex_owned(p->p_lock));
   1752 
   1753 	for (;;) {
   1754 		/* Discard any signals that we have decided not to take. */
   1755 		if (signo != 0)
   1756 			(void)sigget(sp, NULL, signo, NULL);
   1757 
   1758 		/* Bail out if we do not own the virtual processor */
   1759 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
   1760 			break;
   1761 
   1762 		/*
   1763 		 * If the process is stopped/stopping, then stop ourselves
   1764 		 * now that we're on the kernel/userspace boundary.  When
   1765 		 * we awaken, check for a signal from the debugger.
   1766 		 */
   1767 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1768 			sigswitch(true, PS_NOCLDSTOP, 0);
   1769 			signo = sigchecktrace();
   1770 		} else
   1771 			signo = 0;
   1772 
   1773 		/* Signals from the debugger are "out of band". */
   1774 		sp = NULL;
   1775 
   1776 		/*
   1777 		 * If the debugger didn't provide a signal, find a pending
   1778 		 * signal from our set.  Check per-LWP signals first, and
   1779 		 * then per-process.
   1780 		 */
   1781 		if (signo == 0) {
   1782 			sp = &l->l_sigpend;
   1783 			ss = sp->sp_set;
   1784 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1785 				sigminusset(&stopsigmask, &ss);
   1786 			sigminusset(&l->l_sigmask, &ss);
   1787 
   1788 			if ((signo = firstsig(&ss)) == 0) {
   1789 				sp = &p->p_sigpend;
   1790 				ss = sp->sp_set;
   1791 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1792 					sigminusset(&stopsigmask, &ss);
   1793 				sigminusset(&l->l_sigmask, &ss);
   1794 
   1795 				if ((signo = firstsig(&ss)) == 0) {
   1796 					/*
   1797 					 * No signal pending - clear the
   1798 					 * indicator and bail out.
   1799 					 */
   1800 					lwp_lock(l);
   1801 					l->l_flag &= ~LW_PENDSIG;
   1802 					lwp_unlock(l);
   1803 					sp = NULL;
   1804 					break;
   1805 				}
   1806 			}
   1807 		}
   1808 
   1809 		/*
   1810 		 * We should see pending but ignored signals only if
   1811 		 * we are being traced.
   1812 		 */
   1813 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1814 		    (p->p_slflag & PSL_TRACED) == 0) {
   1815 			/* Discard the signal. */
   1816 			continue;
   1817 		}
   1818 
   1819 		/*
   1820 		 * If traced, always stop, and stay stopped until released
   1821 		 * by the debugger.  If the our parent process is waiting
   1822 		 * for us, don't hang as we could deadlock.
   1823 		 */
   1824 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1825 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1826 			/* Take the signal. */
   1827 			(void)sigget(sp, NULL, signo, NULL);
   1828 			p->p_xstat = signo;
   1829 
   1830 			/* Emulation-specific handling of signal trace */
   1831 			if (p->p_emul->e_tracesig == NULL ||
   1832 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1833 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1834 				    signo);
   1835 
   1836 			/* Check for a signal from the debugger. */
   1837 			if ((signo = sigchecktrace()) == 0)
   1838 				continue;
   1839 
   1840 			/* Signals from the debugger are "out of band". */
   1841 			sp = NULL;
   1842 		}
   1843 
   1844 		prop = sigprop[signo];
   1845 
   1846 		/*
   1847 		 * Decide whether the signal should be returned.
   1848 		 */
   1849 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1850 		case (long)SIG_DFL:
   1851 			/*
   1852 			 * Don't take default actions on system processes.
   1853 			 */
   1854 			if (p->p_pid <= 1) {
   1855 #ifdef DIAGNOSTIC
   1856 				/*
   1857 				 * Are you sure you want to ignore SIGSEGV
   1858 				 * in init? XXX
   1859 				 */
   1860 				printf_nolog("Process (pid %d) got sig %d\n",
   1861 				    p->p_pid, signo);
   1862 #endif
   1863 				continue;
   1864 			}
   1865 
   1866 			/*
   1867 			 * If there is a pending stop signal to process with
   1868 			 * default action, stop here, then clear the signal.
   1869 			 * However, if process is member of an orphaned
   1870 			 * process group, ignore tty stop signals.
   1871 			 */
   1872 			if (prop & SA_STOP) {
   1873 				/*
   1874 				 * XXX Don't hold proc_lock for p_lflag,
   1875 				 * but it's not a big deal.
   1876 				 */
   1877 				if (p->p_slflag & PSL_TRACED ||
   1878 		    		    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1879 				    prop & SA_TTYSTOP)) {
   1880 				    	/* Ignore the signal. */
   1881 					continue;
   1882 				}
   1883 				/* Take the signal. */
   1884 				(void)sigget(sp, NULL, signo, NULL);
   1885 				p->p_xstat = signo;
   1886 				signo = 0;
   1887 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1888 			} else if (prop & SA_IGNORE) {
   1889 				/*
   1890 				 * Except for SIGCONT, shouldn't get here.
   1891 				 * Default action is to ignore; drop it.
   1892 				 */
   1893 				continue;
   1894 			}
   1895 			break;
   1896 
   1897 		case (long)SIG_IGN:
   1898 #ifdef DEBUG_ISSIGNAL
   1899 			/*
   1900 			 * Masking above should prevent us ever trying
   1901 			 * to take action on an ignored signal other
   1902 			 * than SIGCONT, unless process is traced.
   1903 			 */
   1904 			if ((prop & SA_CONT) == 0 &&
   1905 			    (p->p_slflag & PSL_TRACED) == 0)
   1906 				printf_nolog("issignal\n");
   1907 #endif
   1908 			continue;
   1909 
   1910 		default:
   1911 			/*
   1912 			 * This signal has an action, let postsig() process
   1913 			 * it.
   1914 			 */
   1915 			break;
   1916 		}
   1917 
   1918 		break;
   1919 	}
   1920 
   1921 	l->l_sigpendset = sp;
   1922 	return signo;
   1923 }
   1924 
   1925 /*
   1926  * Take the action for the specified signal
   1927  * from the current set of pending signals.
   1928  */
   1929 void
   1930 postsig(int signo)
   1931 {
   1932 	struct lwp	*l;
   1933 	struct proc	*p;
   1934 	struct sigacts	*ps;
   1935 	sig_t		action;
   1936 	sigset_t	*returnmask;
   1937 	ksiginfo_t	ksi;
   1938 
   1939 	l = curlwp;
   1940 	p = l->l_proc;
   1941 	ps = p->p_sigacts;
   1942 
   1943 	KASSERT(mutex_owned(p->p_lock));
   1944 	KASSERT(signo > 0);
   1945 
   1946 	/*
   1947 	 * Set the new mask value and also defer further occurrences of this
   1948 	 * signal.
   1949 	 *
   1950 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1951 	 * not of interest, but rather the mask from before the sigsuspend is
   1952 	 * what we want restored after the signal processing is completed.
   1953 	 */
   1954 	if (l->l_sigrestore) {
   1955 		returnmask = &l->l_sigoldmask;
   1956 		l->l_sigrestore = 0;
   1957 	} else
   1958 		returnmask = &l->l_sigmask;
   1959 
   1960 	/*
   1961 	 * Commit to taking the signal before releasing the mutex.
   1962 	 */
   1963 	action = SIGACTION_PS(ps, signo).sa_handler;
   1964 	l->l_ru.ru_nsignals++;
   1965 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1966 
   1967 	if (ktrpoint(KTR_PSIG)) {
   1968 		mutex_exit(p->p_lock);
   1969 		ktrpsig(signo, action, returnmask, &ksi);
   1970 		mutex_enter(p->p_lock);
   1971 	}
   1972 
   1973 	if (action == SIG_DFL) {
   1974 		/*
   1975 		 * Default action, where the default is to kill
   1976 		 * the process.  (Other cases were ignored above.)
   1977 		 */
   1978 		sigexit(l, signo);
   1979 		return;
   1980 	}
   1981 
   1982 	/*
   1983 	 * If we get here, the signal must be caught.
   1984 	 */
   1985 #ifdef DIAGNOSTIC
   1986 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1987 		panic("postsig action");
   1988 #endif
   1989 
   1990 	kpsendsig(l, &ksi, returnmask);
   1991 }
   1992 
   1993 /*
   1994  * sendsig:
   1995  *
   1996  *	Default signal delivery method for NetBSD.
   1997  */
   1998 void
   1999 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2000 {
   2001 	struct sigacts *sa;
   2002 	int sig;
   2003 
   2004 	sig = ksi->ksi_signo;
   2005 	sa = curproc->p_sigacts;
   2006 
   2007 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2008 	case 0:
   2009 	case 1:
   2010 		/* Compat for 1.6 and earlier. */
   2011 		if (sendsig_sigcontext_vec == NULL) {
   2012 			break;
   2013 		}
   2014 		(*sendsig_sigcontext_vec)(ksi, mask);
   2015 		return;
   2016 	case 2:
   2017 	case 3:
   2018 		sendsig_siginfo(ksi, mask);
   2019 		return;
   2020 	default:
   2021 		break;
   2022 	}
   2023 
   2024 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2025 	sigexit(curlwp, SIGILL);
   2026 }
   2027 
   2028 /*
   2029  * sendsig_reset:
   2030  *
   2031  *	Reset the signal action.  Called from emulation specific sendsig()
   2032  *	before unlocking to deliver the signal.
   2033  */
   2034 void
   2035 sendsig_reset(struct lwp *l, int signo)
   2036 {
   2037 	struct proc *p = l->l_proc;
   2038 	struct sigacts *ps = p->p_sigacts;
   2039 	sigset_t *mask;
   2040 
   2041 	KASSERT(mutex_owned(p->p_lock));
   2042 
   2043 	p->p_sigctx.ps_lwp = 0;
   2044 	p->p_sigctx.ps_code = 0;
   2045 	p->p_sigctx.ps_signo = 0;
   2046 
   2047 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   2048 
   2049 	mutex_enter(&ps->sa_mutex);
   2050 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
   2051 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2052 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2053 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2054 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2055 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2056 	}
   2057 	mutex_exit(&ps->sa_mutex);
   2058 }
   2059 
   2060 /*
   2061  * Kill the current process for stated reason.
   2062  */
   2063 void
   2064 killproc(struct proc *p, const char *why)
   2065 {
   2066 
   2067 	KASSERT(mutex_owned(proc_lock));
   2068 
   2069 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2070 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2071 	psignal(p, SIGKILL);
   2072 }
   2073 
   2074 /*
   2075  * Force the current process to exit with the specified signal, dumping core
   2076  * if appropriate.  We bypass the normal tests for masked and caught
   2077  * signals, allowing unrecoverable failures to terminate the process without
   2078  * changing signal state.  Mark the accounting record with the signal
   2079  * termination.  If dumping core, save the signal number for the debugger.
   2080  * Calls exit and does not return.
   2081  */
   2082 void
   2083 sigexit(struct lwp *l, int signo)
   2084 {
   2085 	int exitsig, error, docore;
   2086 	struct proc *p;
   2087 	struct lwp *t;
   2088 
   2089 	p = l->l_proc;
   2090 
   2091 	KASSERT(mutex_owned(p->p_lock));
   2092 	KERNEL_UNLOCK_ALL(l, NULL);
   2093 
   2094 	/*
   2095 	 * Don't permit coredump() multiple times in the same process.
   2096 	 * Call back into sigexit, where we will be suspended until
   2097 	 * the deed is done.  Note that this is a recursive call, but
   2098 	 * LW_WCORE will prevent us from coming back this way.
   2099 	 */
   2100 	if ((p->p_sflag & PS_WCORE) != 0) {
   2101 		lwp_lock(l);
   2102 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2103 		lwp_unlock(l);
   2104 		mutex_exit(p->p_lock);
   2105 		lwp_userret(l);
   2106 		panic("sigexit 1");
   2107 		/* NOTREACHED */
   2108 	}
   2109 
   2110 	/* If process is already on the way out, then bail now. */
   2111 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2112 		mutex_exit(p->p_lock);
   2113 		lwp_exit(l);
   2114 		panic("sigexit 2");
   2115 		/* NOTREACHED */
   2116 	}
   2117 
   2118 	/*
   2119 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2120 	 * so that their registers are available long enough to be dumped.
   2121  	 */
   2122 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2123 		p->p_sflag |= PS_WCORE;
   2124 		for (;;) {
   2125 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2126 				lwp_lock(t);
   2127 				if (t == l) {
   2128 					t->l_flag &= ~LW_WSUSPEND;
   2129 					lwp_unlock(t);
   2130 					continue;
   2131 				}
   2132 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2133 				lwp_suspend(l, t);
   2134 			}
   2135 
   2136 			if (p->p_nrlwps == 1)
   2137 				break;
   2138 
   2139 			/*
   2140 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2141 			 * for everyone else to stop before proceeding.
   2142 			 */
   2143 			p->p_nlwpwait++;
   2144 			cv_broadcast(&p->p_lwpcv);
   2145 			cv_wait(&p->p_lwpcv, p->p_lock);
   2146 			p->p_nlwpwait--;
   2147 		}
   2148 	}
   2149 
   2150 	exitsig = signo;
   2151 	p->p_acflag |= AXSIG;
   2152 	p->p_sigctx.ps_signo = signo;
   2153 
   2154 	if (docore) {
   2155 		mutex_exit(p->p_lock);
   2156 		if ((error = (*coredump_vec)(l, NULL)) == 0)
   2157 			exitsig |= WCOREFLAG;
   2158 
   2159 		if (kern_logsigexit) {
   2160 			int uid = l->l_cred ?
   2161 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2162 
   2163 			if (error)
   2164 				log(LOG_INFO, lognocoredump, p->p_pid,
   2165 				    p->p_comm, uid, signo, error);
   2166 			else
   2167 				log(LOG_INFO, logcoredump, p->p_pid,
   2168 				    p->p_comm, uid, signo);
   2169 		}
   2170 
   2171 #ifdef PAX_SEGVGUARD
   2172 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2173 #endif /* PAX_SEGVGUARD */
   2174 		/* Acquire the sched state mutex.  exit1() will release it. */
   2175 		mutex_enter(p->p_lock);
   2176 	}
   2177 
   2178 	/* No longer dumping core. */
   2179 	p->p_sflag &= ~PS_WCORE;
   2180 
   2181 	exit1(l, W_EXITCODE(0, exitsig));
   2182 	/* NOTREACHED */
   2183 }
   2184 
   2185 /*
   2186  * Put process 'p' into the stopped state and optionally, notify the parent.
   2187  */
   2188 void
   2189 proc_stop(struct proc *p, int notify, int signo)
   2190 {
   2191 	struct lwp *l;
   2192 
   2193 	KASSERT(mutex_owned(p->p_lock));
   2194 
   2195 	/*
   2196 	 * First off, set the stopping indicator and bring all sleeping
   2197 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2198 	 * unlock between here and the p->p_nrlwps check below.
   2199 	 */
   2200 	p->p_sflag |= PS_STOPPING;
   2201 	if (notify)
   2202 		p->p_sflag |= PS_NOTIFYSTOP;
   2203 	else
   2204 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2205 	membar_producer();
   2206 
   2207 	proc_stop_lwps(p);
   2208 
   2209 	/*
   2210 	 * If there are no LWPs available to take the signal, then we
   2211 	 * signal the parent process immediately.  Otherwise, the last
   2212 	 * LWP to stop will take care of it.
   2213 	 */
   2214 
   2215 	if (p->p_nrlwps == 0) {
   2216 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2217 	} else {
   2218 		/*
   2219 		 * Have the remaining LWPs come to a halt, and trigger
   2220 		 * proc_stop_callout() to ensure that they do.
   2221 		 */
   2222 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2223 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
   2224 		callout_schedule(&proc_stop_ch, 1);
   2225 	}
   2226 }
   2227 
   2228 /*
   2229  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2230  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2231  * to allow LWPs to release any locks that they may hold before stopping.
   2232  *
   2233  * Non-interruptable sleeps can be long, and there is the potential for an
   2234  * LWP to begin sleeping interruptably soon after the process has been set
   2235  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2236  * stopping, and so complete halt of the process and the return of status
   2237  * information to the parent could be delayed indefinitely.
   2238  *
   2239  * To handle this race, proc_stop_callout() runs once per tick while there
   2240  * are stopping processes in the system.  It sets LWPs that are sleeping
   2241  * interruptably into the LSSTOP state.
   2242  *
   2243  * Note that we are not concerned about keeping all LWPs stopped while the
   2244  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2245  * What we do need to ensure is that all LWPs in a stopping process have
   2246  * stopped at least once, so that notification can be sent to the parent
   2247  * process.
   2248  */
   2249 static void
   2250 proc_stop_callout(void *cookie)
   2251 {
   2252 	bool more, restart;
   2253 	struct proc *p;
   2254 
   2255 	(void)cookie;
   2256 
   2257 	do {
   2258 		restart = false;
   2259 		more = false;
   2260 
   2261 		mutex_enter(proc_lock);
   2262 		PROCLIST_FOREACH(p, &allproc) {
   2263 			if ((p->p_flag & PK_MARKER) != 0)
   2264 				continue;
   2265 			mutex_enter(p->p_lock);
   2266 
   2267 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2268 				mutex_exit(p->p_lock);
   2269 				continue;
   2270 			}
   2271 
   2272 			/* Stop any LWPs sleeping interruptably. */
   2273 			proc_stop_lwps(p);
   2274 			if (p->p_nrlwps == 0) {
   2275 				/*
   2276 				 * We brought the process to a halt.
   2277 				 * Mark it as stopped and notify the
   2278 				 * parent.
   2279 				 */
   2280 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2281 					/*
   2282 					 * Note that proc_stop_done() will
   2283 					 * drop p->p_lock briefly.
   2284 					 * Arrange to restart and check
   2285 					 * all processes again.
   2286 					 */
   2287 					restart = true;
   2288 				}
   2289 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2290 			} else
   2291 				more = true;
   2292 
   2293 			mutex_exit(p->p_lock);
   2294 			if (restart)
   2295 				break;
   2296 		}
   2297 		mutex_exit(proc_lock);
   2298 	} while (restart);
   2299 
   2300 	/*
   2301 	 * If we noted processes that are stopping but still have
   2302 	 * running LWPs, then arrange to check again in 1 tick.
   2303 	 */
   2304 	if (more)
   2305 		callout_schedule(&proc_stop_ch, 1);
   2306 }
   2307 
   2308 /*
   2309  * Given a process in state SSTOP, set the state back to SACTIVE and
   2310  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2311  */
   2312 void
   2313 proc_unstop(struct proc *p)
   2314 {
   2315 	struct lwp *l;
   2316 	int sig;
   2317 
   2318 	KASSERT(mutex_owned(proc_lock));
   2319 	KASSERT(mutex_owned(p->p_lock));
   2320 
   2321 	p->p_stat = SACTIVE;
   2322 	p->p_sflag &= ~PS_STOPPING;
   2323 	sig = p->p_xstat;
   2324 
   2325 	if (!p->p_waited)
   2326 		p->p_pptr->p_nstopchild--;
   2327 
   2328 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2329 		lwp_lock(l);
   2330 		if (l->l_stat != LSSTOP) {
   2331 			lwp_unlock(l);
   2332 			continue;
   2333 		}
   2334 		if (l->l_wchan == NULL) {
   2335 			setrunnable(l);
   2336 			continue;
   2337 		}
   2338 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2339 		        setrunnable(l);
   2340 		        sig = 0;
   2341 		} else {
   2342 			l->l_stat = LSSLEEP;
   2343 			p->p_nrlwps++;
   2344 			lwp_unlock(l);
   2345 		}
   2346 	}
   2347 }
   2348 
   2349 static int
   2350 filt_sigattach(struct knote *kn)
   2351 {
   2352 	struct proc *p = curproc;
   2353 
   2354 	kn->kn_obj = p;
   2355 	kn->kn_flags |= EV_CLEAR;               /* automatically set */
   2356 
   2357 	mutex_enter(p->p_lock);
   2358 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2359 	mutex_exit(p->p_lock);
   2360 
   2361 	return (0);
   2362 }
   2363 
   2364 static void
   2365 filt_sigdetach(struct knote *kn)
   2366 {
   2367 	struct proc *p = kn->kn_obj;
   2368 
   2369 	mutex_enter(p->p_lock);
   2370 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2371 	mutex_exit(p->p_lock);
   2372 }
   2373 
   2374 /*
   2375  * signal knotes are shared with proc knotes, so we apply a mask to
   2376  * the hint in order to differentiate them from process hints.  This
   2377  * could be avoided by using a signal-specific knote list, but probably
   2378  * isn't worth the trouble.
   2379  */
   2380 static int
   2381 filt_signal(struct knote *kn, long hint)
   2382 {
   2383 
   2384 	if (hint & NOTE_SIGNAL) {
   2385 		hint &= ~NOTE_SIGNAL;
   2386 
   2387 		if (kn->kn_id == hint)
   2388 			kn->kn_data++;
   2389 	}
   2390 	return (kn->kn_data != 0);
   2391 }
   2392 
   2393 const struct filterops sig_filtops = {
   2394 	0, filt_sigattach, filt_sigdetach, filt_signal
   2395 };
   2396