Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.301
      1 /*	$NetBSD: kern_sig.c,v 1.301 2009/12/20 04:49:09 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.301 2009/12/20 04:49:09 rmind Exp $");
     70 
     71 #include "opt_ptrace.h"
     72 #include "opt_compat_sunos.h"
     73 #include "opt_compat_netbsd.h"
     74 #include "opt_compat_netbsd32.h"
     75 #include "opt_pax.h"
     76 #include "opt_sa.h"
     77 
     78 #define	SIGPROP		/* include signal properties table */
     79 #include <sys/param.h>
     80 #include <sys/signalvar.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/wait.h>
     84 #include <sys/ktrace.h>
     85 #include <sys/syslog.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/file.h>
     88 #include <sys/pool.h>
     89 #include <sys/ucontext.h>
     90 #include <sys/sa.h>
     91 #include <sys/savar.h>
     92 #include <sys/exec.h>
     93 #include <sys/kauth.h>
     94 #include <sys/acct.h>
     95 #include <sys/callout.h>
     96 #include <sys/atomic.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 
    100 #ifdef PAX_SEGVGUARD
    101 #include <sys/pax.h>
    102 #endif /* PAX_SEGVGUARD */
    103 
    104 #include <uvm/uvm.h>
    105 #include <uvm/uvm_extern.h>
    106 
    107 static void	ksiginfo_exechook(struct proc *, void *);
    108 static void	proc_stop_callout(void *);
    109 static int	sigchecktrace(void);
    110 static int	sigpost(struct lwp *, sig_t, int, int, int);
    111 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    112 static int	sigunwait(struct proc *, const ksiginfo_t *);
    113 static void	sigswitch(bool, int, int);
    114 
    115 sigset_t	contsigmask, stopsigmask, sigcantmask;
    116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    117 static void	sigacts_poolpage_free(struct pool *, void *);
    118 static void	*sigacts_poolpage_alloc(struct pool *, int);
    119 static callout_t proc_stop_ch;
    120 static pool_cache_t siginfo_cache;
    121 static pool_cache_t ksiginfo_cache;
    122 
    123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    124 int (*coredump_vec)(struct lwp *, const char *) =
    125     (int (*)(struct lwp *, const char *))enosys;
    126 
    127 static struct pool_allocator sigactspool_allocator = {
    128 	.pa_alloc = sigacts_poolpage_alloc,
    129 	.pa_free = sigacts_poolpage_free
    130 };
    131 
    132 #ifdef DEBUG
    133 int	kern_logsigexit = 1;
    134 #else
    135 int	kern_logsigexit = 0;
    136 #endif
    137 
    138 static const char logcoredump[] =
    139     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    140 static const char lognocoredump[] =
    141     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    142 
    143 static kauth_listener_t signal_listener;
    144 
    145 static int
    146 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    147     void *arg0, void *arg1, void *arg2, void *arg3)
    148 {
    149 	struct proc *p;
    150 	int result, signum;
    151 
    152 	result = KAUTH_RESULT_DEFER;
    153 	p = arg0;
    154 	signum = (int)(unsigned long)arg1;
    155 
    156 	if (action != KAUTH_PROCESS_SIGNAL)
    157 		return result;
    158 
    159 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    160 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    161 		result = KAUTH_RESULT_ALLOW;
    162 
    163 	return result;
    164 }
    165 
    166 /*
    167  * signal_init:
    168  *
    169  *	Initialize global signal-related data structures.
    170  */
    171 void
    172 signal_init(void)
    173 {
    174 
    175 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    176 
    177 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    178 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    179 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    180 
    181 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
    182 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
    183 
    184 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    185 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    186 
    187 	exechook_establish(ksiginfo_exechook, NULL);
    188 
    189 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    190 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    191 
    192 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    193 	    signal_listener_cb, NULL);
    194 }
    195 
    196 /*
    197  * sigacts_poolpage_alloc:
    198  *
    199  *	Allocate a page for the sigacts memory pool.
    200  */
    201 static void *
    202 sigacts_poolpage_alloc(struct pool *pp, int flags)
    203 {
    204 
    205 	return (void *)uvm_km_alloc(kernel_map,
    206 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    207 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    208 	    | UVM_KMF_WIRED);
    209 }
    210 
    211 /*
    212  * sigacts_poolpage_free:
    213  *
    214  *	Free a page on behalf of the sigacts memory pool.
    215  */
    216 static void
    217 sigacts_poolpage_free(struct pool *pp, void *v)
    218 {
    219 
    220 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    221 }
    222 
    223 /*
    224  * sigactsinit:
    225  *
    226  *	Create an initial sigacts structure, using the same signal state
    227  *	as of specified process.  If 'share' is set, share the sigacts by
    228  *	holding a reference, otherwise just copy it from parent.
    229  */
    230 struct sigacts *
    231 sigactsinit(struct proc *pp, int share)
    232 {
    233 	struct sigacts *ps, *ps2;
    234 
    235 	ps = pp->p_sigacts;
    236 
    237 	if (share) {
    238 		atomic_inc_uint(&ps->sa_refcnt);
    239 		ps2 = ps;
    240 	} else {
    241 		ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    242 		/* XXXAD get rid of this */
    243 		mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    244 		mutex_enter(&ps->sa_mutex);
    245 		memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
    246 		    sizeof(ps2->sa_sigdesc));
    247 		mutex_exit(&ps->sa_mutex);
    248 		ps2->sa_refcnt = 1;
    249 	}
    250 
    251 	return ps2;
    252 }
    253 
    254 /*
    255  * sigactsunshare:
    256  *
    257  *	Make this process not share its sigacts, maintaining all signal state.
    258  */
    259 void
    260 sigactsunshare(struct proc *p)
    261 {
    262 	struct sigacts *ps, *oldps;
    263 
    264 	oldps = p->p_sigacts;
    265 	if (oldps->sa_refcnt == 1)
    266 		return;
    267 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    268 	/* XXXAD get rid of this */
    269 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    270 	memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    271 	p->p_sigacts = ps;
    272 	sigactsfree(oldps);
    273 }
    274 
    275 /*
    276  * sigactsfree;
    277  *
    278  *	Release a sigacts structure.
    279  */
    280 void
    281 sigactsfree(struct sigacts *ps)
    282 {
    283 
    284 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    285 		mutex_destroy(&ps->sa_mutex);
    286 		pool_cache_put(sigacts_cache, ps);
    287 	}
    288 }
    289 
    290 /*
    291  * siginit:
    292  *
    293  *	Initialize signal state for process 0; set to ignore signals that
    294  *	are ignored by default and disable the signal stack.  Locking not
    295  *	required as the system is still cold.
    296  */
    297 void
    298 siginit(struct proc *p)
    299 {
    300 	struct lwp *l;
    301 	struct sigacts *ps;
    302 	int signo, prop;
    303 
    304 	ps = p->p_sigacts;
    305 	sigemptyset(&contsigmask);
    306 	sigemptyset(&stopsigmask);
    307 	sigemptyset(&sigcantmask);
    308 	for (signo = 1; signo < NSIG; signo++) {
    309 		prop = sigprop[signo];
    310 		if (prop & SA_CONT)
    311 			sigaddset(&contsigmask, signo);
    312 		if (prop & SA_STOP)
    313 			sigaddset(&stopsigmask, signo);
    314 		if (prop & SA_CANTMASK)
    315 			sigaddset(&sigcantmask, signo);
    316 		if (prop & SA_IGNORE && signo != SIGCONT)
    317 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    318 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    319 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    320 	}
    321 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    322 	p->p_sflag &= ~PS_NOCLDSTOP;
    323 
    324 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    325 	sigemptyset(&p->p_sigpend.sp_set);
    326 
    327 	/*
    328 	 * Reset per LWP state.
    329 	 */
    330 	l = LIST_FIRST(&p->p_lwps);
    331 	l->l_sigwaited = NULL;
    332 	l->l_sigstk.ss_flags = SS_DISABLE;
    333 	l->l_sigstk.ss_size = 0;
    334 	l->l_sigstk.ss_sp = 0;
    335 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    336 	sigemptyset(&l->l_sigpend.sp_set);
    337 
    338 	/* One reference. */
    339 	ps->sa_refcnt = 1;
    340 }
    341 
    342 /*
    343  * execsigs:
    344  *
    345  *	Reset signals for an exec of the specified process.
    346  */
    347 void
    348 execsigs(struct proc *p)
    349 {
    350 	struct sigacts *ps;
    351 	struct lwp *l;
    352 	int signo, prop;
    353 	sigset_t tset;
    354 	ksiginfoq_t kq;
    355 
    356 	KASSERT(p->p_nlwps == 1);
    357 
    358 	sigactsunshare(p);
    359 	ps = p->p_sigacts;
    360 
    361 	/*
    362 	 * Reset caught signals.  Held signals remain held through
    363 	 * l->l_sigmask (unless they were caught, and are now ignored
    364 	 * by default).
    365 	 *
    366 	 * No need to lock yet, the process has only one LWP and
    367 	 * at this point the sigacts are private to the process.
    368 	 */
    369 	sigemptyset(&tset);
    370 	for (signo = 1; signo < NSIG; signo++) {
    371 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    372 			prop = sigprop[signo];
    373 			if (prop & SA_IGNORE) {
    374 				if ((prop & SA_CONT) == 0)
    375 					sigaddset(&p->p_sigctx.ps_sigignore,
    376 					    signo);
    377 				sigaddset(&tset, signo);
    378 			}
    379 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    380 		}
    381 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    382 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    383 	}
    384 	ksiginfo_queue_init(&kq);
    385 
    386 	mutex_enter(p->p_lock);
    387 	sigclearall(p, &tset, &kq);
    388 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    389 
    390 	/*
    391 	 * Reset no zombies if child dies flag as Solaris does.
    392 	 */
    393 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    394 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    395 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    396 
    397 	/*
    398 	 * Reset per-LWP state.
    399 	 */
    400 	l = LIST_FIRST(&p->p_lwps);
    401 	l->l_sigwaited = NULL;
    402 	l->l_sigstk.ss_flags = SS_DISABLE;
    403 	l->l_sigstk.ss_size = 0;
    404 	l->l_sigstk.ss_sp = 0;
    405 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    406 	sigemptyset(&l->l_sigpend.sp_set);
    407 	mutex_exit(p->p_lock);
    408 
    409 	ksiginfo_queue_drain(&kq);
    410 }
    411 
    412 /*
    413  * ksiginfo_exechook:
    414  *
    415  *	Free all pending ksiginfo entries from a process on exec.
    416  *	Additionally, drain any unused ksiginfo structures in the
    417  *	system back to the pool.
    418  *
    419  *	XXX This should not be a hook, every process has signals.
    420  */
    421 static void
    422 ksiginfo_exechook(struct proc *p, void *v)
    423 {
    424 	ksiginfoq_t kq;
    425 
    426 	ksiginfo_queue_init(&kq);
    427 
    428 	mutex_enter(p->p_lock);
    429 	sigclearall(p, NULL, &kq);
    430 	mutex_exit(p->p_lock);
    431 
    432 	ksiginfo_queue_drain(&kq);
    433 }
    434 
    435 /*
    436  * ksiginfo_alloc:
    437  *
    438  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    439  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    440  *	has not been queued somewhere, then just return it.  Additionally,
    441  *	if the existing ksiginfo_t does not contain any information beyond
    442  *	the signal number, then just return it.
    443  */
    444 ksiginfo_t *
    445 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    446 {
    447 	ksiginfo_t *kp;
    448 
    449 	if (ok != NULL) {
    450 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    451 		    KSI_FROMPOOL)
    452 			return ok;
    453 		if (KSI_EMPTY_P(ok))
    454 			return ok;
    455 	}
    456 
    457 	kp = pool_cache_get(ksiginfo_cache, flags);
    458 	if (kp == NULL) {
    459 #ifdef DIAGNOSTIC
    460 		printf("Out of memory allocating ksiginfo for pid %d\n",
    461 		    p->p_pid);
    462 #endif
    463 		return NULL;
    464 	}
    465 
    466 	if (ok != NULL) {
    467 		memcpy(kp, ok, sizeof(*kp));
    468 		kp->ksi_flags &= ~KSI_QUEUED;
    469 	} else
    470 		KSI_INIT_EMPTY(kp);
    471 
    472 	kp->ksi_flags |= KSI_FROMPOOL;
    473 
    474 	return kp;
    475 }
    476 
    477 /*
    478  * ksiginfo_free:
    479  *
    480  *	If the given ksiginfo_t is from the pool and has not been queued,
    481  *	then free it.
    482  */
    483 void
    484 ksiginfo_free(ksiginfo_t *kp)
    485 {
    486 
    487 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    488 		return;
    489 	pool_cache_put(ksiginfo_cache, kp);
    490 }
    491 
    492 /*
    493  * ksiginfo_queue_drain:
    494  *
    495  *	Drain a non-empty ksiginfo_t queue.
    496  */
    497 void
    498 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    499 {
    500 	ksiginfo_t *ksi;
    501 
    502 	KASSERT(!CIRCLEQ_EMPTY(kq));
    503 
    504 	while (!CIRCLEQ_EMPTY(kq)) {
    505 		ksi = CIRCLEQ_FIRST(kq);
    506 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    507 		pool_cache_put(ksiginfo_cache, ksi);
    508 	}
    509 }
    510 
    511 /*
    512  * sigget:
    513  *
    514  *	Fetch the first pending signal from a set.  Optionally, also fetch
    515  *	or manufacture a ksiginfo element.  Returns the number of the first
    516  *	pending signal, or zero.
    517  */
    518 int
    519 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    520 {
    521 	ksiginfo_t *ksi;
    522 	sigset_t tset;
    523 
    524 	/* If there's no pending set, the signal is from the debugger. */
    525 	if (sp == NULL)
    526 		goto out;
    527 
    528 	/* Construct mask from signo, and 'mask'. */
    529 	if (signo == 0) {
    530 		if (mask != NULL) {
    531 			tset = *mask;
    532 			__sigandset(&sp->sp_set, &tset);
    533 		} else
    534 			tset = sp->sp_set;
    535 
    536 		/* If there are no signals pending - return. */
    537 		if ((signo = firstsig(&tset)) == 0)
    538 			goto out;
    539 	} else {
    540 		KASSERT(sigismember(&sp->sp_set, signo));
    541 	}
    542 
    543 	sigdelset(&sp->sp_set, signo);
    544 
    545 	/* Find siginfo and copy it out. */
    546 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    547 		if (ksi->ksi_signo != signo)
    548 			continue;
    549 		CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    550 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    551 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    552 		ksi->ksi_flags &= ~KSI_QUEUED;
    553 		if (out != NULL) {
    554 			memcpy(out, ksi, sizeof(*out));
    555 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    556 		}
    557 		ksiginfo_free(ksi);	/* XXXSMP */
    558 		return signo;
    559 	}
    560 out:
    561 	/* If there is no siginfo, then manufacture it. */
    562 	if (out != NULL) {
    563 		KSI_INIT(out);
    564 		out->ksi_info._signo = signo;
    565 		out->ksi_info._code = SI_NOINFO;
    566 	}
    567 	return signo;
    568 }
    569 
    570 /*
    571  * sigput:
    572  *
    573  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    574  */
    575 static void
    576 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    577 {
    578 	ksiginfo_t *kp;
    579 
    580 	KASSERT(mutex_owned(p->p_lock));
    581 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    582 
    583 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    584 
    585 	/*
    586 	 * If there is no siginfo, we are done.
    587 	 */
    588 	if (KSI_EMPTY_P(ksi))
    589 		return;
    590 
    591 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    592 
    593 #ifdef notyet	/* XXX: QUEUING */
    594 	if (ksi->ksi_signo < SIGRTMIN)
    595 #endif
    596 	{
    597 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    598 			if (kp->ksi_signo == ksi->ksi_signo) {
    599 				KSI_COPY(ksi, kp);
    600 				kp->ksi_flags |= KSI_QUEUED;
    601 				return;
    602 			}
    603 		}
    604 	}
    605 
    606 	ksi->ksi_flags |= KSI_QUEUED;
    607 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    608 }
    609 
    610 /*
    611  * sigclear:
    612  *
    613  *	Clear all pending signals in the specified set.
    614  */
    615 void
    616 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    617 {
    618 	ksiginfo_t *ksi, *next;
    619 
    620 	if (mask == NULL)
    621 		sigemptyset(&sp->sp_set);
    622 	else
    623 		sigminusset(mask, &sp->sp_set);
    624 
    625 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    626 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    627 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    628 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    629 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    630 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    631 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    632 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    633 		}
    634 	}
    635 }
    636 
    637 /*
    638  * sigclearall:
    639  *
    640  *	Clear all pending signals in the specified set from a process and
    641  *	its LWPs.
    642  */
    643 void
    644 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    645 {
    646 	struct lwp *l;
    647 
    648 	KASSERT(mutex_owned(p->p_lock));
    649 
    650 	sigclear(&p->p_sigpend, mask, kq);
    651 
    652 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    653 		sigclear(&l->l_sigpend, mask, kq);
    654 	}
    655 }
    656 
    657 /*
    658  * sigispending:
    659  *
    660  *	Return true if there are pending signals for the current LWP.  May
    661  *	be called unlocked provided that LW_PENDSIG is set, and that the
    662  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    663  *	set.
    664  */
    665 int
    666 sigispending(struct lwp *l, int signo)
    667 {
    668 	struct proc *p = l->l_proc;
    669 	sigset_t tset;
    670 
    671 	membar_consumer();
    672 
    673 	tset = l->l_sigpend.sp_set;
    674 	sigplusset(&p->p_sigpend.sp_set, &tset);
    675 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    676 	sigminusset(&l->l_sigmask, &tset);
    677 
    678 	if (signo == 0) {
    679 		if (firstsig(&tset) != 0)
    680 			return EINTR;
    681 	} else if (sigismember(&tset, signo))
    682 		return EINTR;
    683 
    684 	return 0;
    685 }
    686 
    687 #ifdef KERN_SA
    688 
    689 /*
    690  * siginfo_alloc:
    691  *
    692  *	Allocate a new siginfo_t structure from the pool.
    693  */
    694 siginfo_t *
    695 siginfo_alloc(int flags)
    696 {
    697 
    698 	return pool_cache_get(siginfo_cache, flags);
    699 }
    700 
    701 /*
    702  * siginfo_free:
    703  *
    704  *	Return a siginfo_t structure to the pool.
    705  */
    706 void
    707 siginfo_free(void *arg)
    708 {
    709 
    710 	pool_cache_put(siginfo_cache, arg);
    711 }
    712 
    713 #endif
    714 
    715 void
    716 getucontext(struct lwp *l, ucontext_t *ucp)
    717 {
    718 	struct proc *p = l->l_proc;
    719 
    720 	KASSERT(mutex_owned(p->p_lock));
    721 
    722 	ucp->uc_flags = 0;
    723 	ucp->uc_link = l->l_ctxlink;
    724 
    725 #if KERN_SA
    726 	if (p->p_sa != NULL)
    727 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
    728 	else
    729 #endif /* KERN_SA */
    730 		ucp->uc_sigmask = l->l_sigmask;
    731 	ucp->uc_flags |= _UC_SIGMASK;
    732 
    733 	/*
    734 	 * The (unsupplied) definition of the `current execution stack'
    735 	 * in the System V Interface Definition appears to allow returning
    736 	 * the main context stack.
    737 	 */
    738 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    739 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    740 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    741 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    742 	} else {
    743 		/* Simply copy alternate signal execution stack. */
    744 		ucp->uc_stack = l->l_sigstk;
    745 	}
    746 	ucp->uc_flags |= _UC_STACK;
    747 	mutex_exit(p->p_lock);
    748 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    749 	mutex_enter(p->p_lock);
    750 }
    751 
    752 /*
    753  * getucontext_sa:
    754  *      Get a ucontext_t for use in SA upcall generation.
    755  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
    756  * fudge things with uc_link (which is usually NULL for libpthread
    757  * code), and 3) we report an empty signal mask.
    758  */
    759 void
    760 getucontext_sa(struct lwp *l, ucontext_t *ucp)
    761 {
    762 	ucp->uc_flags = 0;
    763 	ucp->uc_link = l->l_ctxlink;
    764 
    765 	sigemptyset(&ucp->uc_sigmask);
    766 	ucp->uc_flags |= _UC_SIGMASK;
    767 
    768 	/*
    769 	 * The (unsupplied) definition of the `current execution stack'
    770 	 * in the System V Interface Definition appears to allow returning
    771 	 * the main context stack.
    772 	 */
    773 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    774 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    775 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    776 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    777 	} else {
    778 		/* Simply copy alternate signal execution stack. */
    779 		ucp->uc_stack = l->l_sigstk;
    780 	}
    781 	ucp->uc_flags |= _UC_STACK;
    782 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    783 }
    784 
    785 int
    786 setucontext(struct lwp *l, const ucontext_t *ucp)
    787 {
    788 	struct proc *p = l->l_proc;
    789 	int error;
    790 
    791 	KASSERT(mutex_owned(p->p_lock));
    792 
    793 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    794 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    795 		if (error != 0)
    796 			return error;
    797 	}
    798 
    799 	mutex_exit(p->p_lock);
    800 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    801 	mutex_enter(p->p_lock);
    802 	if (error != 0)
    803 		return (error);
    804 
    805 	l->l_ctxlink = ucp->uc_link;
    806 
    807 	/*
    808 	 * If there was stack information, update whether or not we are
    809 	 * still running on an alternate signal stack.
    810 	 */
    811 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    812 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    813 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    814 		else
    815 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    816 	}
    817 
    818 	return 0;
    819 }
    820 
    821 /*
    822  * killpg1: common code for kill process group/broadcast kill.
    823  */
    824 int
    825 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    826 {
    827 	struct proc	*p, *cp;
    828 	kauth_cred_t	pc;
    829 	struct pgrp	*pgrp;
    830 	int		nfound;
    831 	int		signo = ksi->ksi_signo;
    832 
    833 	cp = l->l_proc;
    834 	pc = l->l_cred;
    835 	nfound = 0;
    836 
    837 	mutex_enter(proc_lock);
    838 	if (all) {
    839 		/*
    840 		 * Broadcast.
    841 		 */
    842 		PROCLIST_FOREACH(p, &allproc) {
    843 			if (p->p_pid <= 1 || p == cp ||
    844 			    p->p_flag & (PK_SYSTEM|PK_MARKER))
    845 				continue;
    846 			mutex_enter(p->p_lock);
    847 			if (kauth_authorize_process(pc,
    848 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    849 			    NULL) == 0) {
    850 				nfound++;
    851 				if (signo)
    852 					kpsignal2(p, ksi);
    853 			}
    854 			mutex_exit(p->p_lock);
    855 		}
    856 	} else {
    857 		if (pgid == 0)
    858 			/* Zero pgid means send to my process group. */
    859 			pgrp = cp->p_pgrp;
    860 		else {
    861 			pgrp = pg_find(pgid, PFIND_LOCKED);
    862 			if (pgrp == NULL)
    863 				goto out;
    864 		}
    865 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    866 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    867 				continue;
    868 			mutex_enter(p->p_lock);
    869 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    870 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    871 				nfound++;
    872 				if (signo && P_ZOMBIE(p) == 0)
    873 					kpsignal2(p, ksi);
    874 			}
    875 			mutex_exit(p->p_lock);
    876 		}
    877 	}
    878 out:
    879 	mutex_exit(proc_lock);
    880 	return nfound ? 0 : ESRCH;
    881 }
    882 
    883 /*
    884  * Send a signal to a process group.  If checktty is set, limit to members
    885  * which have a controlling terminal.
    886  */
    887 void
    888 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    889 {
    890 	ksiginfo_t ksi;
    891 
    892 	KASSERT(!cpu_intr_p());
    893 	KASSERT(mutex_owned(proc_lock));
    894 
    895 	KSI_INIT_EMPTY(&ksi);
    896 	ksi.ksi_signo = sig;
    897 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    898 }
    899 
    900 void
    901 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    902 {
    903 	struct proc *p;
    904 
    905 	KASSERT(!cpu_intr_p());
    906 	KASSERT(mutex_owned(proc_lock));
    907 	KASSERT(pgrp != NULL);
    908 
    909 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    910 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    911 			kpsignal(p, ksi, data);
    912 }
    913 
    914 /*
    915  * Send a signal caused by a trap to the current LWP.  If it will be caught
    916  * immediately, deliver it with correct code.  Otherwise, post it normally.
    917  */
    918 void
    919 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    920 {
    921 	struct proc	*p;
    922 	struct sigacts	*ps;
    923 	int signo = ksi->ksi_signo;
    924 	sigset_t *mask;
    925 
    926 	KASSERT(KSI_TRAP_P(ksi));
    927 
    928 	ksi->ksi_lid = l->l_lid;
    929 	p = l->l_proc;
    930 
    931 	KASSERT(!cpu_intr_p());
    932 	mutex_enter(proc_lock);
    933 	mutex_enter(p->p_lock);
    934 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
    935 	ps = p->p_sigacts;
    936 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    937 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    938 	    !sigismember(mask, signo)) {
    939 		mutex_exit(proc_lock);
    940 		l->l_ru.ru_nsignals++;
    941 		kpsendsig(l, ksi, mask);
    942 		mutex_exit(p->p_lock);
    943 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
    944 	} else {
    945 		/* XXX for core dump/debugger */
    946 		p->p_sigctx.ps_lwp = l->l_lid;
    947 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    948 		p->p_sigctx.ps_code = ksi->ksi_trap;
    949 		kpsignal2(p, ksi);
    950 		mutex_exit(p->p_lock);
    951 		mutex_exit(proc_lock);
    952 	}
    953 }
    954 
    955 /*
    956  * Fill in signal information and signal the parent for a child status change.
    957  */
    958 void
    959 child_psignal(struct proc *p, int mask)
    960 {
    961 	ksiginfo_t ksi;
    962 	struct proc *q;
    963 	int xstat;
    964 
    965 	KASSERT(mutex_owned(proc_lock));
    966 	KASSERT(mutex_owned(p->p_lock));
    967 
    968 	xstat = p->p_xstat;
    969 
    970 	KSI_INIT(&ksi);
    971 	ksi.ksi_signo = SIGCHLD;
    972 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    973 	ksi.ksi_pid = p->p_pid;
    974 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    975 	ksi.ksi_status = xstat;
    976 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    977 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    978 
    979 	q = p->p_pptr;
    980 
    981 	mutex_exit(p->p_lock);
    982 	mutex_enter(q->p_lock);
    983 
    984 	if ((q->p_sflag & mask) == 0)
    985 		kpsignal2(q, &ksi);
    986 
    987 	mutex_exit(q->p_lock);
    988 	mutex_enter(p->p_lock);
    989 }
    990 
    991 void
    992 psignal(struct proc *p, int signo)
    993 {
    994 	ksiginfo_t ksi;
    995 
    996 	KASSERT(!cpu_intr_p());
    997 	KASSERT(mutex_owned(proc_lock));
    998 
    999 	KSI_INIT_EMPTY(&ksi);
   1000 	ksi.ksi_signo = signo;
   1001 	mutex_enter(p->p_lock);
   1002 	kpsignal2(p, &ksi);
   1003 	mutex_exit(p->p_lock);
   1004 }
   1005 
   1006 void
   1007 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1008 {
   1009 	fdfile_t *ff;
   1010 	file_t *fp;
   1011 	fdtab_t *dt;
   1012 
   1013 	KASSERT(!cpu_intr_p());
   1014 	KASSERT(mutex_owned(proc_lock));
   1015 
   1016 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1017 		size_t fd;
   1018 		filedesc_t *fdp = p->p_fd;
   1019 
   1020 		/* XXXSMP locking */
   1021 		ksi->ksi_fd = -1;
   1022 		dt = fdp->fd_dt;
   1023 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1024 			if ((ff = dt->dt_ff[fd]) == NULL)
   1025 				continue;
   1026 			if ((fp = ff->ff_file) == NULL)
   1027 				continue;
   1028 			if (fp->f_data == data) {
   1029 				ksi->ksi_fd = fd;
   1030 				break;
   1031 			}
   1032 		}
   1033 	}
   1034 	mutex_enter(p->p_lock);
   1035 	kpsignal2(p, ksi);
   1036 	mutex_exit(p->p_lock);
   1037 }
   1038 
   1039 /*
   1040  * sigismasked:
   1041  *
   1042  *	Returns true if signal is ignored or masked for the specified LWP.
   1043  */
   1044 int
   1045 sigismasked(struct lwp *l, int sig)
   1046 {
   1047 	struct proc *p = l->l_proc;
   1048 
   1049 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1050 	    sigismember(&l->l_sigmask, sig)
   1051 #if KERN_SA
   1052 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
   1053 #endif /* KERN_SA */
   1054 	    );
   1055 }
   1056 
   1057 /*
   1058  * sigpost:
   1059  *
   1060  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1061  *	be able to take the signal.
   1062  */
   1063 static int
   1064 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
   1065 {
   1066 	int rv, masked;
   1067 	struct proc *p = l->l_proc;
   1068 
   1069 	KASSERT(mutex_owned(p->p_lock));
   1070 
   1071 	/*
   1072 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1073 	 * pending signals.  Don't give it more.
   1074 	 */
   1075 	if (l->l_refcnt == 0)
   1076 		return 0;
   1077 
   1078 	/*
   1079 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1080 	 * is found to take the signal immediately, it should be taken soon.
   1081 	 */
   1082 	lwp_lock(l);
   1083 	l->l_flag |= LW_PENDSIG;
   1084 
   1085 	/*
   1086 	 * When sending signals to SA processes, we first try to find an
   1087 	 * idle VP to take it.
   1088 	 */
   1089 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
   1090 		lwp_unlock(l);
   1091 		return 0;
   1092 	}
   1093 
   1094 	/*
   1095 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1096 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1097 	 */
   1098 #if KERN_SA
   1099 	if (p->p_sa != NULL)
   1100 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
   1101 	else
   1102 #endif
   1103 		masked = sigismember(&l->l_sigmask, sig);
   1104 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1105 		lwp_unlock(l);
   1106 		return 0;
   1107 	}
   1108 
   1109 	/*
   1110 	 * If killing the process, make it run fast.
   1111 	 */
   1112 	if (__predict_false((prop & SA_KILL) != 0) &&
   1113 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1114 		KASSERT(l->l_class == SCHED_OTHER);
   1115 		lwp_changepri(l, MAXPRI_USER);
   1116 	}
   1117 
   1118 	/*
   1119 	 * If the LWP is running or on a run queue, then we win.  If it's
   1120 	 * sleeping interruptably, wake it and make it take the signal.  If
   1121 	 * the sleep isn't interruptable, then the chances are it will get
   1122 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1123 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1124 	 * for later; otherwise punt.
   1125 	 */
   1126 	rv = 0;
   1127 
   1128 	switch (l->l_stat) {
   1129 	case LSRUN:
   1130 	case LSONPROC:
   1131 		lwp_need_userret(l);
   1132 		rv = 1;
   1133 		break;
   1134 
   1135 	case LSSLEEP:
   1136 		if ((l->l_flag & LW_SINTR) != 0) {
   1137 			/* setrunnable() will release the lock. */
   1138 			setrunnable(l);
   1139 			return 1;
   1140 		}
   1141 		break;
   1142 
   1143 	case LSSUSPENDED:
   1144 		if ((prop & SA_KILL) != 0) {
   1145 			/* lwp_continue() will release the lock. */
   1146 			lwp_continue(l);
   1147 			return 1;
   1148 		}
   1149 		break;
   1150 
   1151 	case LSSTOP:
   1152 		if ((prop & SA_STOP) != 0)
   1153 			break;
   1154 
   1155 		/*
   1156 		 * If the LWP is stopped and we are sending a continue
   1157 		 * signal, then start it again.
   1158 		 */
   1159 		if ((prop & SA_CONT) != 0) {
   1160 			if (l->l_wchan != NULL) {
   1161 				l->l_stat = LSSLEEP;
   1162 				p->p_nrlwps++;
   1163 				rv = 1;
   1164 				break;
   1165 			}
   1166 			/* setrunnable() will release the lock. */
   1167 			setrunnable(l);
   1168 			return 1;
   1169 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1170 			/* setrunnable() will release the lock. */
   1171 			setrunnable(l);
   1172 			return 1;
   1173 		}
   1174 		break;
   1175 
   1176 	default:
   1177 		break;
   1178 	}
   1179 
   1180 	lwp_unlock(l);
   1181 	return rv;
   1182 }
   1183 
   1184 /*
   1185  * Notify an LWP that it has a pending signal.
   1186  */
   1187 void
   1188 signotify(struct lwp *l)
   1189 {
   1190 	KASSERT(lwp_locked(l, NULL));
   1191 
   1192 	l->l_flag |= LW_PENDSIG;
   1193 	lwp_need_userret(l);
   1194 }
   1195 
   1196 /*
   1197  * Find an LWP within process p that is waiting on signal ksi, and hand
   1198  * it on.
   1199  */
   1200 static int
   1201 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1202 {
   1203 	struct lwp *l;
   1204 	int signo;
   1205 
   1206 	KASSERT(mutex_owned(p->p_lock));
   1207 
   1208 	signo = ksi->ksi_signo;
   1209 
   1210 	if (ksi->ksi_lid != 0) {
   1211 		/*
   1212 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1213 		 * it's interested.
   1214 		 */
   1215 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1216 			return 0;
   1217 		if (l->l_sigwaited == NULL ||
   1218 		    !sigismember(&l->l_sigwaitset, signo))
   1219 			return 0;
   1220 	} else {
   1221 		/*
   1222 		 * Look for any LWP that may be interested.
   1223 		 */
   1224 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1225 			KASSERT(l->l_sigwaited != NULL);
   1226 			if (sigismember(&l->l_sigwaitset, signo))
   1227 				break;
   1228 		}
   1229 	}
   1230 
   1231 	if (l != NULL) {
   1232 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1233 		l->l_sigwaited = NULL;
   1234 		LIST_REMOVE(l, l_sigwaiter);
   1235 		cv_signal(&l->l_sigcv);
   1236 		return 1;
   1237 	}
   1238 
   1239 	return 0;
   1240 }
   1241 
   1242 /*
   1243  * Send the signal to the process.  If the signal has an action, the action
   1244  * is usually performed by the target process rather than the caller; we add
   1245  * the signal to the set of pending signals for the process.
   1246  *
   1247  * Exceptions:
   1248  *   o When a stop signal is sent to a sleeping process that takes the
   1249  *     default action, the process is stopped without awakening it.
   1250  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1251  *     regardless of the signal action (eg, blocked or ignored).
   1252  *
   1253  * Other ignored signals are discarded immediately.
   1254  */
   1255 void
   1256 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1257 {
   1258 	int prop, signo = ksi->ksi_signo;
   1259 	struct sigacts *sa;
   1260 	struct lwp *l;
   1261 	ksiginfo_t *kp;
   1262 	lwpid_t lid;
   1263 	sig_t action;
   1264 	bool toall;
   1265 
   1266 	KASSERT(!cpu_intr_p());
   1267 	KASSERT(mutex_owned(proc_lock));
   1268 	KASSERT(mutex_owned(p->p_lock));
   1269 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1270 	KASSERT(signo > 0 && signo < NSIG);
   1271 
   1272 	/*
   1273 	 * If the process is being created by fork, is a zombie or is
   1274 	 * exiting, then just drop the signal here and bail out.
   1275 	 */
   1276 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1277 		return;
   1278 
   1279 	/*
   1280 	 * Notify any interested parties of the signal.
   1281 	 */
   1282 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1283 
   1284 	/*
   1285 	 * Some signals including SIGKILL must act on the entire process.
   1286 	 */
   1287 	kp = NULL;
   1288 	prop = sigprop[signo];
   1289 	toall = ((prop & SA_TOALL) != 0);
   1290 	lid = toall ? 0 : ksi->ksi_lid;
   1291 
   1292 	/*
   1293 	 * If proc is traced, always give parent a chance.
   1294 	 */
   1295 	if (p->p_slflag & PSL_TRACED) {
   1296 		action = SIG_DFL;
   1297 
   1298 		if (lid == 0) {
   1299 			/*
   1300 			 * If the process is being traced and the signal
   1301 			 * is being caught, make sure to save any ksiginfo.
   1302 			 */
   1303 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1304 				return;
   1305 			sigput(&p->p_sigpend, p, kp);
   1306 		}
   1307 	} else {
   1308 		/*
   1309 		 * If the signal was the result of a trap and is not being
   1310 		 * caught, then reset it to default action so that the
   1311 		 * process dumps core immediately.
   1312 		 */
   1313 		if (KSI_TRAP_P(ksi)) {
   1314 			sa = p->p_sigacts;
   1315 			mutex_enter(&sa->sa_mutex);
   1316 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1317 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1318 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1319 			}
   1320 			mutex_exit(&sa->sa_mutex);
   1321 		}
   1322 
   1323 		/*
   1324 		 * If the signal is being ignored, then drop it.  Note: we
   1325 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1326 		 * SIG_IGN, action will be SIG_DFL here.
   1327 		 */
   1328 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1329 			return;
   1330 
   1331 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1332 			action = SIG_CATCH;
   1333 		else {
   1334 			action = SIG_DFL;
   1335 
   1336 			/*
   1337 			 * If sending a tty stop signal to a member of an
   1338 			 * orphaned process group, discard the signal here if
   1339 			 * the action is default; don't stop the process below
   1340 			 * if sleeping, and don't clear any pending SIGCONT.
   1341 			 */
   1342 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1343 				return;
   1344 
   1345 			if (prop & SA_KILL && p->p_nice > NZERO)
   1346 				p->p_nice = NZERO;
   1347 		}
   1348 	}
   1349 
   1350 	/*
   1351 	 * If stopping or continuing a process, discard any pending
   1352 	 * signals that would do the inverse.
   1353 	 */
   1354 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1355 		ksiginfoq_t kq;
   1356 
   1357 		ksiginfo_queue_init(&kq);
   1358 		if ((prop & SA_CONT) != 0)
   1359 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1360 		if ((prop & SA_STOP) != 0)
   1361 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1362 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1363 	}
   1364 
   1365 	/*
   1366 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1367 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1368 	 * the signal info.  The signal won't be processed further here.
   1369 	 */
   1370 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1371 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1372 	    sigunwait(p, ksi))
   1373 		return;
   1374 
   1375 	/*
   1376 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1377 	 * here.
   1378 	 */
   1379 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1380 		return;
   1381 
   1382 	/*
   1383 	 * LWP private signals are easy - just find the LWP and post
   1384 	 * the signal to it.
   1385 	 */
   1386 	if (lid != 0) {
   1387 		l = lwp_find(p, lid);
   1388 		if (l != NULL) {
   1389 			sigput(&l->l_sigpend, p, kp);
   1390 			membar_producer();
   1391 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
   1392 		}
   1393 		goto out;
   1394 	}
   1395 
   1396 	/*
   1397 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1398 	 * or for an SA process.
   1399 	 */
   1400 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1401 		if ((p->p_slflag & PSL_TRACED) != 0)
   1402 			goto deliver;
   1403 
   1404 		/*
   1405 		 * If SIGCONT is default (or ignored) and process is
   1406 		 * asleep, we are finished; the process should not
   1407 		 * be awakened.
   1408 		 */
   1409 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1410 			goto out;
   1411 	} else {
   1412 		/*
   1413 		 * Process is stopped or stopping.
   1414 		 * - If traced, then no action is needed, unless killing.
   1415 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1416 		 */
   1417 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1418 			goto out;
   1419 		}
   1420 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1421 			/*
   1422 			 * Re-adjust p_nstopchild if the process wasn't
   1423 			 * collected by its parent.
   1424 			 */
   1425 			p->p_stat = SACTIVE;
   1426 			p->p_sflag &= ~PS_STOPPING;
   1427 			if (!p->p_waited) {
   1428 				p->p_pptr->p_nstopchild--;
   1429 			}
   1430 			if (p->p_slflag & PSL_TRACED) {
   1431 				KASSERT(signo == SIGKILL);
   1432 				goto deliver;
   1433 			}
   1434 			/*
   1435 			 * Do not make signal pending if SIGCONT is default.
   1436 			 *
   1437 			 * If the process catches SIGCONT, let it handle the
   1438 			 * signal itself (if waiting on event - process runs,
   1439 			 * otherwise continues sleeping).
   1440 			 */
   1441 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
   1442 				KASSERT(signo != SIGKILL);
   1443 				goto deliver;
   1444 			}
   1445 		} else if ((prop & SA_STOP) != 0) {
   1446 			/*
   1447 			 * Already stopped, don't need to stop again.
   1448 			 * (If we did the shell could get confused.)
   1449 			 */
   1450 			goto out;
   1451 		}
   1452 	}
   1453 	/*
   1454 	 * Make signal pending.
   1455 	 */
   1456 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1457 	sigput(&p->p_sigpend, p, kp);
   1458 
   1459 deliver:
   1460 	/*
   1461 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1462 	 * visible on the per process list (for sigispending()).  This
   1463 	 * is unlikely to be needed in practice, but...
   1464 	 */
   1465 	membar_producer();
   1466 
   1467 	/*
   1468 	 * Try to find an LWP that can take the signal.
   1469 	 */
   1470 #if KERN_SA
   1471 	if ((p->p_sa != NULL) && !toall) {
   1472 		struct sadata_vp *vp;
   1473 		/*
   1474 		 * If we're in this delivery path, we are delivering a
   1475 		 * signal that needs to go to one thread in the process.
   1476 		 *
   1477 		 * In the SA case, we try to find an idle LWP that can take
   1478 		 * the signal.  If that fails, only then do we consider
   1479 		 * interrupting active LWPs. Since the signal's going to
   1480 		 * just one thread, we need only look at "blessed" lwps,
   1481 		 * so scan the vps for them.
   1482 		 */
   1483 		l = NULL;
   1484 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1485 			l = vp->savp_lwp;
   1486 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
   1487 				break;
   1488 		}
   1489 
   1490 		if (l == NULL) {
   1491 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1492 				l = vp->savp_lwp;
   1493 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
   1494 					break;
   1495 			}
   1496 		}
   1497 		/* Delivered, skip next. */
   1498 		goto out;
   1499 	}
   1500 #endif
   1501 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1502 		if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
   1503 			break;
   1504 	}
   1505 out:
   1506 	/*
   1507 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1508 	 * with locks held.  The caller should take care of this.
   1509 	 */
   1510 	ksiginfo_free(kp);
   1511 }
   1512 
   1513 void
   1514 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1515 {
   1516 	struct proc *p = l->l_proc;
   1517 #ifdef KERN_SA
   1518 	struct lwp *le, *li;
   1519 	siginfo_t *si;
   1520 	int f;
   1521 #endif /* KERN_SA */
   1522 
   1523 	KASSERT(mutex_owned(p->p_lock));
   1524 
   1525 #ifdef KERN_SA
   1526 	if (p->p_sflag & PS_SA) {
   1527 		/* f indicates if we should clear LP_SA_NOBLOCK */
   1528 		f = ~l->l_pflag & LP_SA_NOBLOCK;
   1529 		l->l_pflag |= LP_SA_NOBLOCK;
   1530 
   1531 		mutex_exit(p->p_lock);
   1532 		/* XXXUPSXXX What if not on sa_vp? */
   1533 		/*
   1534 		 * WRS: I think it won't matter, beyond the
   1535 		 * question of what exactly we do with a signal
   1536 		 * to a blocked user thread. Also, we try hard to always
   1537 		 * send signals to blessed lwps, so we would only send
   1538 		 * to a non-blessed lwp under special circumstances.
   1539 		 */
   1540 		si = siginfo_alloc(PR_WAITOK);
   1541 
   1542 		si->_info = ksi->ksi_info;
   1543 
   1544 		/*
   1545 		 * Figure out if we're the innocent victim or the main
   1546 		 * perpitrator.
   1547 		 */
   1548 		le = li = NULL;
   1549 		if (KSI_TRAP_P(ksi))
   1550 			le = l;
   1551 		else
   1552 			li = l;
   1553 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1554 		    sizeof(*si), si, siginfo_free) != 0) {
   1555 			siginfo_free(si);
   1556 #if 0
   1557 			if (KSI_TRAP_P(ksi))
   1558 				/* XXX What dowe do here? The signal
   1559 				 * didn't make it
   1560 				 */;
   1561 #endif
   1562 		}
   1563 		l->l_pflag ^= f;
   1564 		mutex_enter(p->p_lock);
   1565 		return;
   1566 	}
   1567 #endif /* KERN_SA */
   1568 
   1569 	(*p->p_emul->e_sendsig)(ksi, mask);
   1570 }
   1571 
   1572 /*
   1573  * Stop any LWPs sleeping interruptably.
   1574  */
   1575 static void
   1576 proc_stop_lwps(struct proc *p)
   1577 {
   1578 	struct lwp *l;
   1579 
   1580 	KASSERT(mutex_owned(p->p_lock));
   1581 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1582 
   1583 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1584 		lwp_lock(l);
   1585 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1586 			l->l_stat = LSSTOP;
   1587 			p->p_nrlwps--;
   1588 		}
   1589 		lwp_unlock(l);
   1590 	}
   1591 }
   1592 
   1593 /*
   1594  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1595  *
   1596  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1597  */
   1598 static void
   1599 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1600 {
   1601 
   1602 	KASSERT(mutex_owned(proc_lock));
   1603 	KASSERT(mutex_owned(p->p_lock));
   1604 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1605 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1606 
   1607 	p->p_sflag &= ~PS_STOPPING;
   1608 	p->p_stat = SSTOP;
   1609 	p->p_waited = 0;
   1610 	p->p_pptr->p_nstopchild++;
   1611 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1612 		if (ppsig) {
   1613 			/* child_psignal drops p_lock briefly. */
   1614 			child_psignal(p, ppmask);
   1615 		}
   1616 		cv_broadcast(&p->p_pptr->p_waitcv);
   1617 	}
   1618 }
   1619 
   1620 /*
   1621  * Stop the current process and switch away when being stopped or traced.
   1622  */
   1623 static void
   1624 sigswitch(bool ppsig, int ppmask, int signo)
   1625 {
   1626 	struct lwp *l = curlwp;
   1627 	struct proc *p = l->l_proc;
   1628 	int biglocks;
   1629 
   1630 	KASSERT(mutex_owned(p->p_lock));
   1631 	KASSERT(l->l_stat == LSONPROC);
   1632 	KASSERT(p->p_nrlwps > 0);
   1633 
   1634 	/*
   1635 	 * On entry we know that the process needs to stop.  If it's
   1636 	 * the result of a 'sideways' stop signal that has been sourced
   1637 	 * through issignal(), then stop other LWPs in the process too.
   1638 	 */
   1639 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1640 		KASSERT(signo != 0);
   1641 		proc_stop(p, 1, signo);
   1642 		KASSERT(p->p_nrlwps > 0);
   1643 	}
   1644 
   1645 	/*
   1646 	 * If we are the last live LWP, and the stop was a result of
   1647 	 * a new signal, then signal the parent.
   1648 	 */
   1649 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1650 		if (!mutex_tryenter(proc_lock)) {
   1651 			mutex_exit(p->p_lock);
   1652 			mutex_enter(proc_lock);
   1653 			mutex_enter(p->p_lock);
   1654 		}
   1655 
   1656 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1657 			/*
   1658 			 * Note that proc_stop_done() can drop
   1659 			 * p->p_lock briefly.
   1660 			 */
   1661 			proc_stop_done(p, ppsig, ppmask);
   1662 		}
   1663 
   1664 		mutex_exit(proc_lock);
   1665 	}
   1666 
   1667 	/*
   1668 	 * Unlock and switch away.
   1669 	 */
   1670 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1671 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1672 		p->p_nrlwps--;
   1673 		lwp_lock(l);
   1674 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1675 		l->l_stat = LSSTOP;
   1676 		lwp_unlock(l);
   1677 	}
   1678 
   1679 	mutex_exit(p->p_lock);
   1680 	lwp_lock(l);
   1681 	mi_switch(l);
   1682 	KERNEL_LOCK(biglocks, l);
   1683 	mutex_enter(p->p_lock);
   1684 }
   1685 
   1686 /*
   1687  * Check for a signal from the debugger.
   1688  */
   1689 static int
   1690 sigchecktrace(void)
   1691 {
   1692 	struct lwp *l = curlwp;
   1693 	struct proc *p = l->l_proc;
   1694 	sigset_t *mask;
   1695 	int signo;
   1696 
   1697 	KASSERT(mutex_owned(p->p_lock));
   1698 
   1699 	/* If there's a pending SIGKILL, process it immediately. */
   1700 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1701 		return 0;
   1702 
   1703 	/*
   1704 	 * If we are no longer being traced, or the parent didn't
   1705 	 * give us a signal, look for more signals.
   1706 	 */
   1707 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
   1708 		return 0;
   1709 
   1710 	/*
   1711 	 * If the new signal is being masked, look for other signals.
   1712 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1713 	 */
   1714 	signo = p->p_xstat;
   1715 	p->p_xstat = 0;
   1716 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   1717 	if (sigismember(mask, signo))
   1718 		signo = 0;
   1719 
   1720 	return signo;
   1721 }
   1722 
   1723 /*
   1724  * If the current process has received a signal (should be caught or cause
   1725  * termination, should interrupt current syscall), return the signal number.
   1726  *
   1727  * Stop signals with default action are processed immediately, then cleared;
   1728  * they aren't returned.  This is checked after each entry to the system for
   1729  * a syscall or trap.
   1730  *
   1731  * We will also return -1 if the process is exiting and the current LWP must
   1732  * follow suit.
   1733  */
   1734 int
   1735 issignal(struct lwp *l)
   1736 {
   1737 	struct proc *p;
   1738 	int signo, prop;
   1739 	sigpend_t *sp;
   1740 	sigset_t ss;
   1741 
   1742 	p = l->l_proc;
   1743 	sp = NULL;
   1744 	signo = 0;
   1745 
   1746 	KASSERT(p == curproc);
   1747 	KASSERT(mutex_owned(p->p_lock));
   1748 
   1749 	for (;;) {
   1750 		/* Discard any signals that we have decided not to take. */
   1751 		if (signo != 0)
   1752 			(void)sigget(sp, NULL, signo, NULL);
   1753 
   1754 		/* Bail out if we do not own the virtual processor */
   1755 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
   1756 			break;
   1757 
   1758 		/*
   1759 		 * If the process is stopped/stopping, then stop ourselves
   1760 		 * now that we're on the kernel/userspace boundary.  When
   1761 		 * we awaken, check for a signal from the debugger.
   1762 		 */
   1763 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1764 			sigswitch(true, PS_NOCLDSTOP, 0);
   1765 			signo = sigchecktrace();
   1766 		} else
   1767 			signo = 0;
   1768 
   1769 		/* Signals from the debugger are "out of band". */
   1770 		sp = NULL;
   1771 
   1772 		/*
   1773 		 * If the debugger didn't provide a signal, find a pending
   1774 		 * signal from our set.  Check per-LWP signals first, and
   1775 		 * then per-process.
   1776 		 */
   1777 		if (signo == 0) {
   1778 			sp = &l->l_sigpend;
   1779 			ss = sp->sp_set;
   1780 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1781 				sigminusset(&stopsigmask, &ss);
   1782 			sigminusset(&l->l_sigmask, &ss);
   1783 
   1784 			if ((signo = firstsig(&ss)) == 0) {
   1785 				sp = &p->p_sigpend;
   1786 				ss = sp->sp_set;
   1787 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1788 					sigminusset(&stopsigmask, &ss);
   1789 				sigminusset(&l->l_sigmask, &ss);
   1790 
   1791 				if ((signo = firstsig(&ss)) == 0) {
   1792 					/*
   1793 					 * No signal pending - clear the
   1794 					 * indicator and bail out.
   1795 					 */
   1796 					lwp_lock(l);
   1797 					l->l_flag &= ~LW_PENDSIG;
   1798 					lwp_unlock(l);
   1799 					sp = NULL;
   1800 					break;
   1801 				}
   1802 			}
   1803 		}
   1804 
   1805 		/*
   1806 		 * We should see pending but ignored signals only if
   1807 		 * we are being traced.
   1808 		 */
   1809 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1810 		    (p->p_slflag & PSL_TRACED) == 0) {
   1811 			/* Discard the signal. */
   1812 			continue;
   1813 		}
   1814 
   1815 		/*
   1816 		 * If traced, always stop, and stay stopped until released
   1817 		 * by the debugger.  If the our parent process is waiting
   1818 		 * for us, don't hang as we could deadlock.
   1819 		 */
   1820 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1821 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1822 			/* Take the signal. */
   1823 			(void)sigget(sp, NULL, signo, NULL);
   1824 			p->p_xstat = signo;
   1825 
   1826 			/* Emulation-specific handling of signal trace */
   1827 			if (p->p_emul->e_tracesig == NULL ||
   1828 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1829 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1830 				    signo);
   1831 
   1832 			/* Check for a signal from the debugger. */
   1833 			if ((signo = sigchecktrace()) == 0)
   1834 				continue;
   1835 
   1836 			/* Signals from the debugger are "out of band". */
   1837 			sp = NULL;
   1838 		}
   1839 
   1840 		prop = sigprop[signo];
   1841 
   1842 		/*
   1843 		 * Decide whether the signal should be returned.
   1844 		 */
   1845 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1846 		case (long)SIG_DFL:
   1847 			/*
   1848 			 * Don't take default actions on system processes.
   1849 			 */
   1850 			if (p->p_pid <= 1) {
   1851 #ifdef DIAGNOSTIC
   1852 				/*
   1853 				 * Are you sure you want to ignore SIGSEGV
   1854 				 * in init? XXX
   1855 				 */
   1856 				printf_nolog("Process (pid %d) got sig %d\n",
   1857 				    p->p_pid, signo);
   1858 #endif
   1859 				continue;
   1860 			}
   1861 
   1862 			/*
   1863 			 * If there is a pending stop signal to process with
   1864 			 * default action, stop here, then clear the signal.
   1865 			 * However, if process is member of an orphaned
   1866 			 * process group, ignore tty stop signals.
   1867 			 */
   1868 			if (prop & SA_STOP) {
   1869 				/*
   1870 				 * XXX Don't hold proc_lock for p_lflag,
   1871 				 * but it's not a big deal.
   1872 				 */
   1873 				if (p->p_slflag & PSL_TRACED ||
   1874 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1875 				    prop & SA_TTYSTOP)) {
   1876 					/* Ignore the signal. */
   1877 					continue;
   1878 				}
   1879 				/* Take the signal. */
   1880 				(void)sigget(sp, NULL, signo, NULL);
   1881 				p->p_xstat = signo;
   1882 				signo = 0;
   1883 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1884 			} else if (prop & SA_IGNORE) {
   1885 				/*
   1886 				 * Except for SIGCONT, shouldn't get here.
   1887 				 * Default action is to ignore; drop it.
   1888 				 */
   1889 				continue;
   1890 			}
   1891 			break;
   1892 
   1893 		case (long)SIG_IGN:
   1894 #ifdef DEBUG_ISSIGNAL
   1895 			/*
   1896 			 * Masking above should prevent us ever trying
   1897 			 * to take action on an ignored signal other
   1898 			 * than SIGCONT, unless process is traced.
   1899 			 */
   1900 			if ((prop & SA_CONT) == 0 &&
   1901 			    (p->p_slflag & PSL_TRACED) == 0)
   1902 				printf_nolog("issignal\n");
   1903 #endif
   1904 			continue;
   1905 
   1906 		default:
   1907 			/*
   1908 			 * This signal has an action, let postsig() process
   1909 			 * it.
   1910 			 */
   1911 			break;
   1912 		}
   1913 
   1914 		break;
   1915 	}
   1916 
   1917 	l->l_sigpendset = sp;
   1918 	return signo;
   1919 }
   1920 
   1921 /*
   1922  * Take the action for the specified signal
   1923  * from the current set of pending signals.
   1924  */
   1925 void
   1926 postsig(int signo)
   1927 {
   1928 	struct lwp	*l;
   1929 	struct proc	*p;
   1930 	struct sigacts	*ps;
   1931 	sig_t		action;
   1932 	sigset_t	*returnmask;
   1933 	ksiginfo_t	ksi;
   1934 
   1935 	l = curlwp;
   1936 	p = l->l_proc;
   1937 	ps = p->p_sigacts;
   1938 
   1939 	KASSERT(mutex_owned(p->p_lock));
   1940 	KASSERT(signo > 0);
   1941 
   1942 	/*
   1943 	 * Set the new mask value and also defer further occurrences of this
   1944 	 * signal.
   1945 	 *
   1946 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1947 	 * not of interest, but rather the mask from before the sigsuspend is
   1948 	 * what we want restored after the signal processing is completed.
   1949 	 */
   1950 	if (l->l_sigrestore) {
   1951 		returnmask = &l->l_sigoldmask;
   1952 		l->l_sigrestore = 0;
   1953 	} else
   1954 		returnmask = &l->l_sigmask;
   1955 
   1956 	/*
   1957 	 * Commit to taking the signal before releasing the mutex.
   1958 	 */
   1959 	action = SIGACTION_PS(ps, signo).sa_handler;
   1960 	l->l_ru.ru_nsignals++;
   1961 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1962 
   1963 	if (ktrpoint(KTR_PSIG)) {
   1964 		mutex_exit(p->p_lock);
   1965 		ktrpsig(signo, action, returnmask, &ksi);
   1966 		mutex_enter(p->p_lock);
   1967 	}
   1968 
   1969 	if (action == SIG_DFL) {
   1970 		/*
   1971 		 * Default action, where the default is to kill
   1972 		 * the process.  (Other cases were ignored above.)
   1973 		 */
   1974 		sigexit(l, signo);
   1975 		return;
   1976 	}
   1977 
   1978 	/*
   1979 	 * If we get here, the signal must be caught.
   1980 	 */
   1981 #ifdef DIAGNOSTIC
   1982 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1983 		panic("postsig action");
   1984 #endif
   1985 
   1986 	kpsendsig(l, &ksi, returnmask);
   1987 }
   1988 
   1989 /*
   1990  * sendsig:
   1991  *
   1992  *	Default signal delivery method for NetBSD.
   1993  */
   1994 void
   1995 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1996 {
   1997 	struct sigacts *sa;
   1998 	int sig;
   1999 
   2000 	sig = ksi->ksi_signo;
   2001 	sa = curproc->p_sigacts;
   2002 
   2003 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2004 	case 0:
   2005 	case 1:
   2006 		/* Compat for 1.6 and earlier. */
   2007 		if (sendsig_sigcontext_vec == NULL) {
   2008 			break;
   2009 		}
   2010 		(*sendsig_sigcontext_vec)(ksi, mask);
   2011 		return;
   2012 	case 2:
   2013 	case 3:
   2014 		sendsig_siginfo(ksi, mask);
   2015 		return;
   2016 	default:
   2017 		break;
   2018 	}
   2019 
   2020 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2021 	sigexit(curlwp, SIGILL);
   2022 }
   2023 
   2024 /*
   2025  * sendsig_reset:
   2026  *
   2027  *	Reset the signal action.  Called from emulation specific sendsig()
   2028  *	before unlocking to deliver the signal.
   2029  */
   2030 void
   2031 sendsig_reset(struct lwp *l, int signo)
   2032 {
   2033 	struct proc *p = l->l_proc;
   2034 	struct sigacts *ps = p->p_sigacts;
   2035 	sigset_t *mask;
   2036 
   2037 	KASSERT(mutex_owned(p->p_lock));
   2038 
   2039 	p->p_sigctx.ps_lwp = 0;
   2040 	p->p_sigctx.ps_code = 0;
   2041 	p->p_sigctx.ps_signo = 0;
   2042 
   2043 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   2044 
   2045 	mutex_enter(&ps->sa_mutex);
   2046 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
   2047 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2048 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2049 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2050 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2051 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2052 	}
   2053 	mutex_exit(&ps->sa_mutex);
   2054 }
   2055 
   2056 /*
   2057  * Kill the current process for stated reason.
   2058  */
   2059 void
   2060 killproc(struct proc *p, const char *why)
   2061 {
   2062 
   2063 	KASSERT(mutex_owned(proc_lock));
   2064 
   2065 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2066 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2067 	psignal(p, SIGKILL);
   2068 }
   2069 
   2070 /*
   2071  * Force the current process to exit with the specified signal, dumping core
   2072  * if appropriate.  We bypass the normal tests for masked and caught
   2073  * signals, allowing unrecoverable failures to terminate the process without
   2074  * changing signal state.  Mark the accounting record with the signal
   2075  * termination.  If dumping core, save the signal number for the debugger.
   2076  * Calls exit and does not return.
   2077  */
   2078 void
   2079 sigexit(struct lwp *l, int signo)
   2080 {
   2081 	int exitsig, error, docore;
   2082 	struct proc *p;
   2083 	struct lwp *t;
   2084 
   2085 	p = l->l_proc;
   2086 
   2087 	KASSERT(mutex_owned(p->p_lock));
   2088 	KERNEL_UNLOCK_ALL(l, NULL);
   2089 
   2090 	/*
   2091 	 * Don't permit coredump() multiple times in the same process.
   2092 	 * Call back into sigexit, where we will be suspended until
   2093 	 * the deed is done.  Note that this is a recursive call, but
   2094 	 * LW_WCORE will prevent us from coming back this way.
   2095 	 */
   2096 	if ((p->p_sflag & PS_WCORE) != 0) {
   2097 		lwp_lock(l);
   2098 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2099 		lwp_unlock(l);
   2100 		mutex_exit(p->p_lock);
   2101 		lwp_userret(l);
   2102 		panic("sigexit 1");
   2103 		/* NOTREACHED */
   2104 	}
   2105 
   2106 	/* If process is already on the way out, then bail now. */
   2107 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2108 		mutex_exit(p->p_lock);
   2109 		lwp_exit(l);
   2110 		panic("sigexit 2");
   2111 		/* NOTREACHED */
   2112 	}
   2113 
   2114 	/*
   2115 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2116 	 * so that their registers are available long enough to be dumped.
   2117  	 */
   2118 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2119 		p->p_sflag |= PS_WCORE;
   2120 		for (;;) {
   2121 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2122 				lwp_lock(t);
   2123 				if (t == l) {
   2124 					t->l_flag &= ~LW_WSUSPEND;
   2125 					lwp_unlock(t);
   2126 					continue;
   2127 				}
   2128 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2129 				lwp_suspend(l, t);
   2130 			}
   2131 
   2132 			if (p->p_nrlwps == 1)
   2133 				break;
   2134 
   2135 			/*
   2136 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2137 			 * for everyone else to stop before proceeding.
   2138 			 */
   2139 			p->p_nlwpwait++;
   2140 			cv_broadcast(&p->p_lwpcv);
   2141 			cv_wait(&p->p_lwpcv, p->p_lock);
   2142 			p->p_nlwpwait--;
   2143 		}
   2144 	}
   2145 
   2146 	exitsig = signo;
   2147 	p->p_acflag |= AXSIG;
   2148 	p->p_sigctx.ps_signo = signo;
   2149 
   2150 	if (docore) {
   2151 		mutex_exit(p->p_lock);
   2152 		if ((error = (*coredump_vec)(l, NULL)) == 0)
   2153 			exitsig |= WCOREFLAG;
   2154 
   2155 		if (kern_logsigexit) {
   2156 			int uid = l->l_cred ?
   2157 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2158 
   2159 			if (error)
   2160 				log(LOG_INFO, lognocoredump, p->p_pid,
   2161 				    p->p_comm, uid, signo, error);
   2162 			else
   2163 				log(LOG_INFO, logcoredump, p->p_pid,
   2164 				    p->p_comm, uid, signo);
   2165 		}
   2166 
   2167 #ifdef PAX_SEGVGUARD
   2168 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2169 #endif /* PAX_SEGVGUARD */
   2170 		/* Acquire the sched state mutex.  exit1() will release it. */
   2171 		mutex_enter(p->p_lock);
   2172 	}
   2173 
   2174 	/* No longer dumping core. */
   2175 	p->p_sflag &= ~PS_WCORE;
   2176 
   2177 	exit1(l, W_EXITCODE(0, exitsig));
   2178 	/* NOTREACHED */
   2179 }
   2180 
   2181 /*
   2182  * Put process 'p' into the stopped state and optionally, notify the parent.
   2183  */
   2184 void
   2185 proc_stop(struct proc *p, int notify, int signo)
   2186 {
   2187 	struct lwp *l;
   2188 
   2189 	KASSERT(mutex_owned(p->p_lock));
   2190 
   2191 	/*
   2192 	 * First off, set the stopping indicator and bring all sleeping
   2193 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2194 	 * unlock between here and the p->p_nrlwps check below.
   2195 	 */
   2196 	p->p_sflag |= PS_STOPPING;
   2197 	if (notify)
   2198 		p->p_sflag |= PS_NOTIFYSTOP;
   2199 	else
   2200 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2201 	membar_producer();
   2202 
   2203 	proc_stop_lwps(p);
   2204 
   2205 	/*
   2206 	 * If there are no LWPs available to take the signal, then we
   2207 	 * signal the parent process immediately.  Otherwise, the last
   2208 	 * LWP to stop will take care of it.
   2209 	 */
   2210 
   2211 	if (p->p_nrlwps == 0) {
   2212 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2213 	} else {
   2214 		/*
   2215 		 * Have the remaining LWPs come to a halt, and trigger
   2216 		 * proc_stop_callout() to ensure that they do.
   2217 		 */
   2218 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2219 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
   2220 		callout_schedule(&proc_stop_ch, 1);
   2221 	}
   2222 }
   2223 
   2224 /*
   2225  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2226  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2227  * to allow LWPs to release any locks that they may hold before stopping.
   2228  *
   2229  * Non-interruptable sleeps can be long, and there is the potential for an
   2230  * LWP to begin sleeping interruptably soon after the process has been set
   2231  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2232  * stopping, and so complete halt of the process and the return of status
   2233  * information to the parent could be delayed indefinitely.
   2234  *
   2235  * To handle this race, proc_stop_callout() runs once per tick while there
   2236  * are stopping processes in the system.  It sets LWPs that are sleeping
   2237  * interruptably into the LSSTOP state.
   2238  *
   2239  * Note that we are not concerned about keeping all LWPs stopped while the
   2240  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2241  * What we do need to ensure is that all LWPs in a stopping process have
   2242  * stopped at least once, so that notification can be sent to the parent
   2243  * process.
   2244  */
   2245 static void
   2246 proc_stop_callout(void *cookie)
   2247 {
   2248 	bool more, restart;
   2249 	struct proc *p;
   2250 
   2251 	(void)cookie;
   2252 
   2253 	do {
   2254 		restart = false;
   2255 		more = false;
   2256 
   2257 		mutex_enter(proc_lock);
   2258 		PROCLIST_FOREACH(p, &allproc) {
   2259 			if ((p->p_flag & PK_MARKER) != 0)
   2260 				continue;
   2261 			mutex_enter(p->p_lock);
   2262 
   2263 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2264 				mutex_exit(p->p_lock);
   2265 				continue;
   2266 			}
   2267 
   2268 			/* Stop any LWPs sleeping interruptably. */
   2269 			proc_stop_lwps(p);
   2270 			if (p->p_nrlwps == 0) {
   2271 				/*
   2272 				 * We brought the process to a halt.
   2273 				 * Mark it as stopped and notify the
   2274 				 * parent.
   2275 				 */
   2276 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2277 					/*
   2278 					 * Note that proc_stop_done() will
   2279 					 * drop p->p_lock briefly.
   2280 					 * Arrange to restart and check
   2281 					 * all processes again.
   2282 					 */
   2283 					restart = true;
   2284 				}
   2285 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2286 			} else
   2287 				more = true;
   2288 
   2289 			mutex_exit(p->p_lock);
   2290 			if (restart)
   2291 				break;
   2292 		}
   2293 		mutex_exit(proc_lock);
   2294 	} while (restart);
   2295 
   2296 	/*
   2297 	 * If we noted processes that are stopping but still have
   2298 	 * running LWPs, then arrange to check again in 1 tick.
   2299 	 */
   2300 	if (more)
   2301 		callout_schedule(&proc_stop_ch, 1);
   2302 }
   2303 
   2304 /*
   2305  * Given a process in state SSTOP, set the state back to SACTIVE and
   2306  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2307  */
   2308 void
   2309 proc_unstop(struct proc *p)
   2310 {
   2311 	struct lwp *l;
   2312 	int sig;
   2313 
   2314 	KASSERT(mutex_owned(proc_lock));
   2315 	KASSERT(mutex_owned(p->p_lock));
   2316 
   2317 	p->p_stat = SACTIVE;
   2318 	p->p_sflag &= ~PS_STOPPING;
   2319 	sig = p->p_xstat;
   2320 
   2321 	if (!p->p_waited)
   2322 		p->p_pptr->p_nstopchild--;
   2323 
   2324 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2325 		lwp_lock(l);
   2326 		if (l->l_stat != LSSTOP) {
   2327 			lwp_unlock(l);
   2328 			continue;
   2329 		}
   2330 		if (l->l_wchan == NULL) {
   2331 			setrunnable(l);
   2332 			continue;
   2333 		}
   2334 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2335 			setrunnable(l);
   2336 			sig = 0;
   2337 		} else {
   2338 			l->l_stat = LSSLEEP;
   2339 			p->p_nrlwps++;
   2340 			lwp_unlock(l);
   2341 		}
   2342 	}
   2343 }
   2344 
   2345 static int
   2346 filt_sigattach(struct knote *kn)
   2347 {
   2348 	struct proc *p = curproc;
   2349 
   2350 	kn->kn_obj = p;
   2351 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2352 
   2353 	mutex_enter(p->p_lock);
   2354 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2355 	mutex_exit(p->p_lock);
   2356 
   2357 	return 0;
   2358 }
   2359 
   2360 static void
   2361 filt_sigdetach(struct knote *kn)
   2362 {
   2363 	struct proc *p = kn->kn_obj;
   2364 
   2365 	mutex_enter(p->p_lock);
   2366 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2367 	mutex_exit(p->p_lock);
   2368 }
   2369 
   2370 /*
   2371  * Signal knotes are shared with proc knotes, so we apply a mask to
   2372  * the hint in order to differentiate them from process hints.  This
   2373  * could be avoided by using a signal-specific knote list, but probably
   2374  * isn't worth the trouble.
   2375  */
   2376 static int
   2377 filt_signal(struct knote *kn, long hint)
   2378 {
   2379 
   2380 	if (hint & NOTE_SIGNAL) {
   2381 		hint &= ~NOTE_SIGNAL;
   2382 
   2383 		if (kn->kn_id == hint)
   2384 			kn->kn_data++;
   2385 	}
   2386 	return (kn->kn_data != 0);
   2387 }
   2388 
   2389 const struct filterops sig_filtops = {
   2390 	0, filt_sigattach, filt_sigdetach, filt_signal
   2391 };
   2392