Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.305
      1 /*	$NetBSD: kern_sig.c,v 1.305 2010/04/06 13:50:22 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.305 2010/04/06 13:50:22 christos Exp $");
     70 
     71 #include "opt_ptrace.h"
     72 #include "opt_compat_sunos.h"
     73 #include "opt_compat_netbsd.h"
     74 #include "opt_compat_netbsd32.h"
     75 #include "opt_pax.h"
     76 #include "opt_sa.h"
     77 
     78 #define	SIGPROP		/* include signal properties table */
     79 #include <sys/param.h>
     80 #include <sys/signalvar.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/wait.h>
     84 #include <sys/ktrace.h>
     85 #include <sys/syslog.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/file.h>
     88 #include <sys/pool.h>
     89 #include <sys/ucontext.h>
     90 #include <sys/sa.h>
     91 #include <sys/savar.h>
     92 #include <sys/exec.h>
     93 #include <sys/kauth.h>
     94 #include <sys/acct.h>
     95 #include <sys/callout.h>
     96 #include <sys/atomic.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/sdt.h>
    100 
    101 #ifdef PAX_SEGVGUARD
    102 #include <sys/pax.h>
    103 #endif /* PAX_SEGVGUARD */
    104 
    105 #include <uvm/uvm.h>
    106 #include <uvm/uvm_extern.h>
    107 
    108 static void	ksiginfo_exechook(struct proc *, void *);
    109 static void	proc_stop_callout(void *);
    110 static int	sigchecktrace(void);
    111 static int	sigpost(struct lwp *, sig_t, int, int, int);
    112 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    113 static int	sigunwait(struct proc *, const ksiginfo_t *);
    114 static void	sigswitch(bool, int, int);
    115 
    116 sigset_t	contsigmask, stopsigmask, sigcantmask;
    117 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
    118 static void	sigacts_poolpage_free(struct pool *, void *);
    119 static void	*sigacts_poolpage_alloc(struct pool *, int);
    120 static callout_t proc_stop_ch;
    121 static pool_cache_t siginfo_cache;
    122 static pool_cache_t ksiginfo_cache;
    123 
    124 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    125 int (*coredump_vec)(struct lwp *, const char *) =
    126     (int (*)(struct lwp *, const char *))enosys;
    127 
    128 /*
    129  * DTrace SDT provider definitions
    130  */
    131 SDT_PROBE_DEFINE(proc,,,signal_send,
    132 	    "struct lwp *", NULL,	/* target thread */
    133 	    "struct proc *", NULL,	/* target process */
    134 	    "int", NULL, 		/* signal */
    135 	    NULL, NULL, NULL, NULL);
    136 SDT_PROBE_DEFINE(proc,,,signal_discard,
    137 	    "struct lwp *", NULL,	/* target thread */
    138 	    "struct proc *", NULL,	/* target process */
    139 	    "int", NULL, 		/* signal */
    140 	    NULL, NULL, NULL, NULL);
    141 SDT_PROBE_DEFINE(proc,,,signal_clear,
    142 	    "int", NULL,		/* signal */
    143 	    NULL, NULL, NULL, NULL,
    144 	    NULL, NULL, NULL, NULL);
    145 SDT_PROBE_DEFINE(proc,,,signal_handle,
    146 	    "int", NULL,		/* signal */
    147 	    "ksiginfo_t *", NULL,
    148 	    "void (*)(void)", NULL,	/* handler address */
    149 	    NULL, NULL, NULL, NULL);
    150 
    151 
    152 static struct pool_allocator sigactspool_allocator = {
    153 	.pa_alloc = sigacts_poolpage_alloc,
    154 	.pa_free = sigacts_poolpage_free
    155 };
    156 
    157 #ifdef DEBUG
    158 int	kern_logsigexit = 1;
    159 #else
    160 int	kern_logsigexit = 0;
    161 #endif
    162 
    163 static const char logcoredump[] =
    164     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    165 static const char lognocoredump[] =
    166     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    167 
    168 static kauth_listener_t signal_listener;
    169 
    170 static int
    171 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    172     void *arg0, void *arg1, void *arg2, void *arg3)
    173 {
    174 	struct proc *p;
    175 	int result, signum;
    176 
    177 	result = KAUTH_RESULT_DEFER;
    178 	p = arg0;
    179 	signum = (int)(unsigned long)arg1;
    180 
    181 	if (action != KAUTH_PROCESS_SIGNAL)
    182 		return result;
    183 
    184 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    185 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    186 		result = KAUTH_RESULT_ALLOW;
    187 
    188 	return result;
    189 }
    190 
    191 /*
    192  * signal_init:
    193  *
    194  *	Initialize global signal-related data structures.
    195  */
    196 void
    197 signal_init(void)
    198 {
    199 
    200 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    201 
    202 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    203 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    204 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    205 
    206 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
    207 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
    208 
    209 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    210 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    211 
    212 	exechook_establish(ksiginfo_exechook, NULL);
    213 
    214 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    215 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    216 
    217 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    218 	    signal_listener_cb, NULL);
    219 }
    220 
    221 /*
    222  * sigacts_poolpage_alloc:
    223  *
    224  *	Allocate a page for the sigacts memory pool.
    225  */
    226 static void *
    227 sigacts_poolpage_alloc(struct pool *pp, int flags)
    228 {
    229 
    230 	return (void *)uvm_km_alloc(kernel_map,
    231 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    232 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    233 	    | UVM_KMF_WIRED);
    234 }
    235 
    236 /*
    237  * sigacts_poolpage_free:
    238  *
    239  *	Free a page on behalf of the sigacts memory pool.
    240  */
    241 static void
    242 sigacts_poolpage_free(struct pool *pp, void *v)
    243 {
    244 
    245 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    246 }
    247 
    248 /*
    249  * sigactsinit:
    250  *
    251  *	Create an initial sigacts structure, using the same signal state
    252  *	as of specified process.  If 'share' is set, share the sigacts by
    253  *	holding a reference, otherwise just copy it from parent.
    254  */
    255 struct sigacts *
    256 sigactsinit(struct proc *pp, int share)
    257 {
    258 	struct sigacts *ps = pp->p_sigacts, *ps2;
    259 
    260 	if (__predict_false(share)) {
    261 		atomic_inc_uint(&ps->sa_refcnt);
    262 		return ps;
    263 	}
    264 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    265 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    266 	ps2->sa_refcnt = 1;
    267 
    268 	mutex_enter(&ps->sa_mutex);
    269 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    270 	mutex_exit(&ps->sa_mutex);
    271 	return ps2;
    272 }
    273 
    274 /*
    275  * sigactsunshare:
    276  *
    277  *	Make this process not share its sigacts, maintaining all signal state.
    278  */
    279 void
    280 sigactsunshare(struct proc *p)
    281 {
    282 	struct sigacts *ps, *oldps = p->p_sigacts;
    283 
    284 	if (__predict_true(oldps->sa_refcnt == 1))
    285 		return;
    286 
    287 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    288 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    289 	memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
    290 	ps->sa_refcnt = 1;
    291 
    292 	p->p_sigacts = ps;
    293 	sigactsfree(oldps);
    294 }
    295 
    296 /*
    297  * sigactsfree;
    298  *
    299  *	Release a sigacts structure.
    300  */
    301 void
    302 sigactsfree(struct sigacts *ps)
    303 {
    304 
    305 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    306 		mutex_destroy(&ps->sa_mutex);
    307 		pool_cache_put(sigacts_cache, ps);
    308 	}
    309 }
    310 
    311 /*
    312  * siginit:
    313  *
    314  *	Initialize signal state for process 0; set to ignore signals that
    315  *	are ignored by default and disable the signal stack.  Locking not
    316  *	required as the system is still cold.
    317  */
    318 void
    319 siginit(struct proc *p)
    320 {
    321 	struct lwp *l;
    322 	struct sigacts *ps;
    323 	int signo, prop;
    324 
    325 	ps = p->p_sigacts;
    326 	sigemptyset(&contsigmask);
    327 	sigemptyset(&stopsigmask);
    328 	sigemptyset(&sigcantmask);
    329 	for (signo = 1; signo < NSIG; signo++) {
    330 		prop = sigprop[signo];
    331 		if (prop & SA_CONT)
    332 			sigaddset(&contsigmask, signo);
    333 		if (prop & SA_STOP)
    334 			sigaddset(&stopsigmask, signo);
    335 		if (prop & SA_CANTMASK)
    336 			sigaddset(&sigcantmask, signo);
    337 		if (prop & SA_IGNORE && signo != SIGCONT)
    338 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    339 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    340 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    341 	}
    342 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    343 	p->p_sflag &= ~PS_NOCLDSTOP;
    344 
    345 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    346 	sigemptyset(&p->p_sigpend.sp_set);
    347 
    348 	/*
    349 	 * Reset per LWP state.
    350 	 */
    351 	l = LIST_FIRST(&p->p_lwps);
    352 	l->l_sigwaited = NULL;
    353 	l->l_sigstk.ss_flags = SS_DISABLE;
    354 	l->l_sigstk.ss_size = 0;
    355 	l->l_sigstk.ss_sp = 0;
    356 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    357 	sigemptyset(&l->l_sigpend.sp_set);
    358 
    359 	/* One reference. */
    360 	ps->sa_refcnt = 1;
    361 }
    362 
    363 /*
    364  * execsigs:
    365  *
    366  *	Reset signals for an exec of the specified process.
    367  */
    368 void
    369 execsigs(struct proc *p)
    370 {
    371 	struct sigacts *ps;
    372 	struct lwp *l;
    373 	int signo, prop;
    374 	sigset_t tset;
    375 	ksiginfoq_t kq;
    376 
    377 	KASSERT(p->p_nlwps == 1);
    378 
    379 	sigactsunshare(p);
    380 	ps = p->p_sigacts;
    381 
    382 	/*
    383 	 * Reset caught signals.  Held signals remain held through
    384 	 * l->l_sigmask (unless they were caught, and are now ignored
    385 	 * by default).
    386 	 *
    387 	 * No need to lock yet, the process has only one LWP and
    388 	 * at this point the sigacts are private to the process.
    389 	 */
    390 	sigemptyset(&tset);
    391 	for (signo = 1; signo < NSIG; signo++) {
    392 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    393 			prop = sigprop[signo];
    394 			if (prop & SA_IGNORE) {
    395 				if ((prop & SA_CONT) == 0)
    396 					sigaddset(&p->p_sigctx.ps_sigignore,
    397 					    signo);
    398 				sigaddset(&tset, signo);
    399 			}
    400 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    401 		}
    402 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    403 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    404 	}
    405 	ksiginfo_queue_init(&kq);
    406 
    407 	mutex_enter(p->p_lock);
    408 	sigclearall(p, &tset, &kq);
    409 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    410 
    411 	/*
    412 	 * Reset no zombies if child dies flag as Solaris does.
    413 	 */
    414 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    415 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    416 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    417 
    418 	/*
    419 	 * Reset per-LWP state.
    420 	 */
    421 	l = LIST_FIRST(&p->p_lwps);
    422 	l->l_sigwaited = NULL;
    423 	l->l_sigstk.ss_flags = SS_DISABLE;
    424 	l->l_sigstk.ss_size = 0;
    425 	l->l_sigstk.ss_sp = 0;
    426 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    427 	sigemptyset(&l->l_sigpend.sp_set);
    428 	mutex_exit(p->p_lock);
    429 
    430 	ksiginfo_queue_drain(&kq);
    431 }
    432 
    433 /*
    434  * ksiginfo_exechook:
    435  *
    436  *	Free all pending ksiginfo entries from a process on exec.
    437  *	Additionally, drain any unused ksiginfo structures in the
    438  *	system back to the pool.
    439  *
    440  *	XXX This should not be a hook, every process has signals.
    441  */
    442 static void
    443 ksiginfo_exechook(struct proc *p, void *v)
    444 {
    445 	ksiginfoq_t kq;
    446 
    447 	ksiginfo_queue_init(&kq);
    448 
    449 	mutex_enter(p->p_lock);
    450 	sigclearall(p, NULL, &kq);
    451 	mutex_exit(p->p_lock);
    452 
    453 	ksiginfo_queue_drain(&kq);
    454 }
    455 
    456 /*
    457  * ksiginfo_alloc:
    458  *
    459  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    460  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    461  *	has not been queued somewhere, then just return it.  Additionally,
    462  *	if the existing ksiginfo_t does not contain any information beyond
    463  *	the signal number, then just return it.
    464  */
    465 ksiginfo_t *
    466 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    467 {
    468 	ksiginfo_t *kp;
    469 
    470 	if (ok != NULL) {
    471 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    472 		    KSI_FROMPOOL)
    473 			return ok;
    474 		if (KSI_EMPTY_P(ok))
    475 			return ok;
    476 	}
    477 
    478 	kp = pool_cache_get(ksiginfo_cache, flags);
    479 	if (kp == NULL) {
    480 #ifdef DIAGNOSTIC
    481 		printf("Out of memory allocating ksiginfo for pid %d\n",
    482 		    p->p_pid);
    483 #endif
    484 		return NULL;
    485 	}
    486 
    487 	if (ok != NULL) {
    488 		memcpy(kp, ok, sizeof(*kp));
    489 		kp->ksi_flags &= ~KSI_QUEUED;
    490 	} else
    491 		KSI_INIT_EMPTY(kp);
    492 
    493 	kp->ksi_flags |= KSI_FROMPOOL;
    494 
    495 	return kp;
    496 }
    497 
    498 /*
    499  * ksiginfo_free:
    500  *
    501  *	If the given ksiginfo_t is from the pool and has not been queued,
    502  *	then free it.
    503  */
    504 void
    505 ksiginfo_free(ksiginfo_t *kp)
    506 {
    507 
    508 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    509 		return;
    510 	pool_cache_put(ksiginfo_cache, kp);
    511 }
    512 
    513 /*
    514  * ksiginfo_queue_drain:
    515  *
    516  *	Drain a non-empty ksiginfo_t queue.
    517  */
    518 void
    519 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    520 {
    521 	ksiginfo_t *ksi;
    522 
    523 	KASSERT(!CIRCLEQ_EMPTY(kq));
    524 
    525 	while (!CIRCLEQ_EMPTY(kq)) {
    526 		ksi = CIRCLEQ_FIRST(kq);
    527 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    528 		pool_cache_put(ksiginfo_cache, ksi);
    529 	}
    530 }
    531 
    532 /*
    533  * sigget:
    534  *
    535  *	Fetch the first pending signal from a set.  Optionally, also fetch
    536  *	or manufacture a ksiginfo element.  Returns the number of the first
    537  *	pending signal, or zero.
    538  */
    539 int
    540 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    541 {
    542 	ksiginfo_t *ksi;
    543 	sigset_t tset;
    544 
    545 	/* If there's no pending set, the signal is from the debugger. */
    546 	if (sp == NULL)
    547 		goto out;
    548 
    549 	/* Construct mask from signo, and 'mask'. */
    550 	if (signo == 0) {
    551 		if (mask != NULL) {
    552 			tset = *mask;
    553 			__sigandset(&sp->sp_set, &tset);
    554 		} else
    555 			tset = sp->sp_set;
    556 
    557 		/* If there are no signals pending - return. */
    558 		if ((signo = firstsig(&tset)) == 0)
    559 			goto out;
    560 	} else {
    561 		KASSERT(sigismember(&sp->sp_set, signo));
    562 	}
    563 
    564 	sigdelset(&sp->sp_set, signo);
    565 
    566 	/* Find siginfo and copy it out. */
    567 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    568 		if (ksi->ksi_signo != signo)
    569 			continue;
    570 		CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    571 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    572 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    573 		ksi->ksi_flags &= ~KSI_QUEUED;
    574 		if (out != NULL) {
    575 			memcpy(out, ksi, sizeof(*out));
    576 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    577 		}
    578 		ksiginfo_free(ksi);	/* XXXSMP */
    579 		return signo;
    580 	}
    581 out:
    582 	/* If there is no siginfo, then manufacture it. */
    583 	if (out != NULL) {
    584 		KSI_INIT(out);
    585 		out->ksi_info._signo = signo;
    586 		out->ksi_info._code = SI_NOINFO;
    587 	}
    588 	return signo;
    589 }
    590 
    591 /*
    592  * sigput:
    593  *
    594  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    595  */
    596 static void
    597 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    598 {
    599 	ksiginfo_t *kp;
    600 
    601 	KASSERT(mutex_owned(p->p_lock));
    602 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    603 
    604 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    605 
    606 	/*
    607 	 * If there is no siginfo, we are done.
    608 	 */
    609 	if (KSI_EMPTY_P(ksi))
    610 		return;
    611 
    612 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    613 
    614 #ifdef notyet	/* XXX: QUEUING */
    615 	if (ksi->ksi_signo < SIGRTMIN)
    616 #endif
    617 	{
    618 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    619 			if (kp->ksi_signo == ksi->ksi_signo) {
    620 				KSI_COPY(ksi, kp);
    621 				kp->ksi_flags |= KSI_QUEUED;
    622 				return;
    623 			}
    624 		}
    625 	}
    626 
    627 	ksi->ksi_flags |= KSI_QUEUED;
    628 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    629 }
    630 
    631 /*
    632  * sigclear:
    633  *
    634  *	Clear all pending signals in the specified set.
    635  */
    636 void
    637 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    638 {
    639 	ksiginfo_t *ksi, *next;
    640 
    641 	if (mask == NULL)
    642 		sigemptyset(&sp->sp_set);
    643 	else
    644 		sigminusset(mask, &sp->sp_set);
    645 
    646 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    647 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    648 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    649 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    650 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    651 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    652 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    653 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    654 		}
    655 	}
    656 }
    657 
    658 /*
    659  * sigclearall:
    660  *
    661  *	Clear all pending signals in the specified set from a process and
    662  *	its LWPs.
    663  */
    664 void
    665 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    666 {
    667 	struct lwp *l;
    668 
    669 	KASSERT(mutex_owned(p->p_lock));
    670 
    671 	sigclear(&p->p_sigpend, mask, kq);
    672 
    673 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    674 		sigclear(&l->l_sigpend, mask, kq);
    675 	}
    676 }
    677 
    678 /*
    679  * sigispending:
    680  *
    681  *	Return true if there are pending signals for the current LWP.  May
    682  *	be called unlocked provided that LW_PENDSIG is set, and that the
    683  *	signal has been posted to the appopriate queue before LW_PENDSIG is
    684  *	set.
    685  */
    686 int
    687 sigispending(struct lwp *l, int signo)
    688 {
    689 	struct proc *p = l->l_proc;
    690 	sigset_t tset;
    691 
    692 	membar_consumer();
    693 
    694 	tset = l->l_sigpend.sp_set;
    695 	sigplusset(&p->p_sigpend.sp_set, &tset);
    696 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    697 	sigminusset(&l->l_sigmask, &tset);
    698 
    699 	if (signo == 0) {
    700 		if (firstsig(&tset) != 0)
    701 			return EINTR;
    702 	} else if (sigismember(&tset, signo))
    703 		return EINTR;
    704 
    705 	return 0;
    706 }
    707 
    708 #ifdef KERN_SA
    709 
    710 /*
    711  * siginfo_alloc:
    712  *
    713  *	Allocate a new siginfo_t structure from the pool.
    714  */
    715 siginfo_t *
    716 siginfo_alloc(int flags)
    717 {
    718 
    719 	return pool_cache_get(siginfo_cache, flags);
    720 }
    721 
    722 /*
    723  * siginfo_free:
    724  *
    725  *	Return a siginfo_t structure to the pool.
    726  */
    727 void
    728 siginfo_free(void *arg)
    729 {
    730 
    731 	pool_cache_put(siginfo_cache, arg);
    732 }
    733 
    734 #endif
    735 
    736 void
    737 getucontext(struct lwp *l, ucontext_t *ucp)
    738 {
    739 	struct proc *p = l->l_proc;
    740 
    741 	KASSERT(mutex_owned(p->p_lock));
    742 
    743 	ucp->uc_flags = 0;
    744 	ucp->uc_link = l->l_ctxlink;
    745 
    746 #if KERN_SA
    747 	if (p->p_sa != NULL)
    748 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
    749 	else
    750 #endif /* KERN_SA */
    751 		ucp->uc_sigmask = l->l_sigmask;
    752 	ucp->uc_flags |= _UC_SIGMASK;
    753 
    754 	/*
    755 	 * The (unsupplied) definition of the `current execution stack'
    756 	 * in the System V Interface Definition appears to allow returning
    757 	 * the main context stack.
    758 	 */
    759 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    760 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    761 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    762 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    763 	} else {
    764 		/* Simply copy alternate signal execution stack. */
    765 		ucp->uc_stack = l->l_sigstk;
    766 	}
    767 	ucp->uc_flags |= _UC_STACK;
    768 	mutex_exit(p->p_lock);
    769 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    770 	mutex_enter(p->p_lock);
    771 }
    772 
    773 /*
    774  * getucontext_sa:
    775  *      Get a ucontext_t for use in SA upcall generation.
    776  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
    777  * fudge things with uc_link (which is usually NULL for libpthread
    778  * code), and 3) we report an empty signal mask.
    779  */
    780 void
    781 getucontext_sa(struct lwp *l, ucontext_t *ucp)
    782 {
    783 	ucp->uc_flags = 0;
    784 	ucp->uc_link = l->l_ctxlink;
    785 
    786 	sigemptyset(&ucp->uc_sigmask);
    787 	ucp->uc_flags |= _UC_SIGMASK;
    788 
    789 	/*
    790 	 * The (unsupplied) definition of the `current execution stack'
    791 	 * in the System V Interface Definition appears to allow returning
    792 	 * the main context stack.
    793 	 */
    794 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    795 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    796 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    797 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    798 	} else {
    799 		/* Simply copy alternate signal execution stack. */
    800 		ucp->uc_stack = l->l_sigstk;
    801 	}
    802 	ucp->uc_flags |= _UC_STACK;
    803 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    804 }
    805 
    806 int
    807 setucontext(struct lwp *l, const ucontext_t *ucp)
    808 {
    809 	struct proc *p = l->l_proc;
    810 	int error;
    811 
    812 	KASSERT(mutex_owned(p->p_lock));
    813 
    814 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    815 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    816 		if (error != 0)
    817 			return error;
    818 	}
    819 
    820 	mutex_exit(p->p_lock);
    821 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    822 	mutex_enter(p->p_lock);
    823 	if (error != 0)
    824 		return (error);
    825 
    826 	l->l_ctxlink = ucp->uc_link;
    827 
    828 	/*
    829 	 * If there was stack information, update whether or not we are
    830 	 * still running on an alternate signal stack.
    831 	 */
    832 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    833 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    834 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    835 		else
    836 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    837 	}
    838 
    839 	return 0;
    840 }
    841 
    842 /*
    843  * killpg1: common code for kill process group/broadcast kill.
    844  */
    845 int
    846 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    847 {
    848 	struct proc	*p, *cp;
    849 	kauth_cred_t	pc;
    850 	struct pgrp	*pgrp;
    851 	int		nfound;
    852 	int		signo = ksi->ksi_signo;
    853 
    854 	cp = l->l_proc;
    855 	pc = l->l_cred;
    856 	nfound = 0;
    857 
    858 	mutex_enter(proc_lock);
    859 	if (all) {
    860 		/*
    861 		 * Broadcast.
    862 		 */
    863 		PROCLIST_FOREACH(p, &allproc) {
    864 			if (p->p_pid <= 1 || p == cp ||
    865 			    (p->p_flag & PK_SYSTEM) != 0)
    866 				continue;
    867 			mutex_enter(p->p_lock);
    868 			if (kauth_authorize_process(pc,
    869 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    870 			    NULL) == 0) {
    871 				nfound++;
    872 				if (signo)
    873 					kpsignal2(p, ksi);
    874 			}
    875 			mutex_exit(p->p_lock);
    876 		}
    877 	} else {
    878 		if (pgid == 0)
    879 			/* Zero pgid means send to my process group. */
    880 			pgrp = cp->p_pgrp;
    881 		else {
    882 			pgrp = pg_find(pgid, PFIND_LOCKED);
    883 			if (pgrp == NULL)
    884 				goto out;
    885 		}
    886 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    887 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    888 				continue;
    889 			mutex_enter(p->p_lock);
    890 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    891 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    892 				nfound++;
    893 				if (signo && P_ZOMBIE(p) == 0)
    894 					kpsignal2(p, ksi);
    895 			}
    896 			mutex_exit(p->p_lock);
    897 		}
    898 	}
    899 out:
    900 	mutex_exit(proc_lock);
    901 	return nfound ? 0 : ESRCH;
    902 }
    903 
    904 /*
    905  * Send a signal to a process group.  If checktty is set, limit to members
    906  * which have a controlling terminal.
    907  */
    908 void
    909 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    910 {
    911 	ksiginfo_t ksi;
    912 
    913 	KASSERT(!cpu_intr_p());
    914 	KASSERT(mutex_owned(proc_lock));
    915 
    916 	KSI_INIT_EMPTY(&ksi);
    917 	ksi.ksi_signo = sig;
    918 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    919 }
    920 
    921 void
    922 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    923 {
    924 	struct proc *p;
    925 
    926 	KASSERT(!cpu_intr_p());
    927 	KASSERT(mutex_owned(proc_lock));
    928 	KASSERT(pgrp != NULL);
    929 
    930 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    931 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    932 			kpsignal(p, ksi, data);
    933 }
    934 
    935 /*
    936  * Send a signal caused by a trap to the current LWP.  If it will be caught
    937  * immediately, deliver it with correct code.  Otherwise, post it normally.
    938  */
    939 void
    940 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    941 {
    942 	struct proc	*p;
    943 	struct sigacts	*ps;
    944 	int signo = ksi->ksi_signo;
    945 	sigset_t *mask;
    946 
    947 	KASSERT(KSI_TRAP_P(ksi));
    948 
    949 	ksi->ksi_lid = l->l_lid;
    950 	p = l->l_proc;
    951 
    952 	KASSERT(!cpu_intr_p());
    953 	mutex_enter(proc_lock);
    954 	mutex_enter(p->p_lock);
    955 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
    956 	ps = p->p_sigacts;
    957 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    958 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    959 	    !sigismember(mask, signo)) {
    960 		mutex_exit(proc_lock);
    961 		l->l_ru.ru_nsignals++;
    962 		kpsendsig(l, ksi, mask);
    963 		mutex_exit(p->p_lock);
    964 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
    965 	} else {
    966 		/* XXX for core dump/debugger */
    967 		p->p_sigctx.ps_lwp = l->l_lid;
    968 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    969 		p->p_sigctx.ps_code = ksi->ksi_trap;
    970 		kpsignal2(p, ksi);
    971 		mutex_exit(p->p_lock);
    972 		mutex_exit(proc_lock);
    973 	}
    974 }
    975 
    976 /*
    977  * Fill in signal information and signal the parent for a child status change.
    978  */
    979 void
    980 child_psignal(struct proc *p, int mask)
    981 {
    982 	ksiginfo_t ksi;
    983 	struct proc *q;
    984 	int xstat;
    985 
    986 	KASSERT(mutex_owned(proc_lock));
    987 	KASSERT(mutex_owned(p->p_lock));
    988 
    989 	xstat = p->p_xstat;
    990 
    991 	KSI_INIT(&ksi);
    992 	ksi.ksi_signo = SIGCHLD;
    993 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    994 	ksi.ksi_pid = p->p_pid;
    995 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    996 	ksi.ksi_status = xstat;
    997 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    998 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    999 
   1000 	q = p->p_pptr;
   1001 
   1002 	mutex_exit(p->p_lock);
   1003 	mutex_enter(q->p_lock);
   1004 
   1005 	if ((q->p_sflag & mask) == 0)
   1006 		kpsignal2(q, &ksi);
   1007 
   1008 	mutex_exit(q->p_lock);
   1009 	mutex_enter(p->p_lock);
   1010 }
   1011 
   1012 void
   1013 psignal(struct proc *p, int signo)
   1014 {
   1015 	ksiginfo_t ksi;
   1016 
   1017 	KASSERT(!cpu_intr_p());
   1018 	KASSERT(mutex_owned(proc_lock));
   1019 
   1020 	KSI_INIT_EMPTY(&ksi);
   1021 	ksi.ksi_signo = signo;
   1022 	mutex_enter(p->p_lock);
   1023 	kpsignal2(p, &ksi);
   1024 	mutex_exit(p->p_lock);
   1025 }
   1026 
   1027 void
   1028 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1029 {
   1030 	fdfile_t *ff;
   1031 	file_t *fp;
   1032 	fdtab_t *dt;
   1033 
   1034 	KASSERT(!cpu_intr_p());
   1035 	KASSERT(mutex_owned(proc_lock));
   1036 
   1037 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1038 		size_t fd;
   1039 		filedesc_t *fdp = p->p_fd;
   1040 
   1041 		/* XXXSMP locking */
   1042 		ksi->ksi_fd = -1;
   1043 		dt = fdp->fd_dt;
   1044 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1045 			if ((ff = dt->dt_ff[fd]) == NULL)
   1046 				continue;
   1047 			if ((fp = ff->ff_file) == NULL)
   1048 				continue;
   1049 			if (fp->f_data == data) {
   1050 				ksi->ksi_fd = fd;
   1051 				break;
   1052 			}
   1053 		}
   1054 	}
   1055 	mutex_enter(p->p_lock);
   1056 	kpsignal2(p, ksi);
   1057 	mutex_exit(p->p_lock);
   1058 }
   1059 
   1060 /*
   1061  * sigismasked:
   1062  *
   1063  *	Returns true if signal is ignored or masked for the specified LWP.
   1064  */
   1065 int
   1066 sigismasked(struct lwp *l, int sig)
   1067 {
   1068 	struct proc *p = l->l_proc;
   1069 
   1070 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1071 	    sigismember(&l->l_sigmask, sig)
   1072 #if KERN_SA
   1073 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
   1074 #endif /* KERN_SA */
   1075 	    );
   1076 }
   1077 
   1078 /*
   1079  * sigpost:
   1080  *
   1081  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1082  *	be able to take the signal.
   1083  */
   1084 static int
   1085 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
   1086 {
   1087 	int rv, masked;
   1088 	struct proc *p = l->l_proc;
   1089 
   1090 	KASSERT(mutex_owned(p->p_lock));
   1091 
   1092 	/*
   1093 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1094 	 * pending signals.  Don't give it more.
   1095 	 */
   1096 	if (l->l_refcnt == 0)
   1097 		return 0;
   1098 
   1099 	SDT_PROBE(proc,,,signal_send, l, p, sig,  0, 0);
   1100 
   1101 	/*
   1102 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1103 	 * is found to take the signal immediately, it should be taken soon.
   1104 	 */
   1105 	lwp_lock(l);
   1106 	l->l_flag |= LW_PENDSIG;
   1107 
   1108 	/*
   1109 	 * When sending signals to SA processes, we first try to find an
   1110 	 * idle VP to take it.
   1111 	 */
   1112 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
   1113 		lwp_unlock(l);
   1114 		return 0;
   1115 	}
   1116 
   1117 	/*
   1118 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1119 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1120 	 */
   1121 #if KERN_SA
   1122 	if (p->p_sa != NULL)
   1123 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
   1124 	else
   1125 #endif
   1126 		masked = sigismember(&l->l_sigmask, sig);
   1127 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1128 		lwp_unlock(l);
   1129 		return 0;
   1130 	}
   1131 
   1132 	/*
   1133 	 * If killing the process, make it run fast.
   1134 	 */
   1135 	if (__predict_false((prop & SA_KILL) != 0) &&
   1136 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1137 		KASSERT(l->l_class == SCHED_OTHER);
   1138 		lwp_changepri(l, MAXPRI_USER);
   1139 	}
   1140 
   1141 	/*
   1142 	 * If the LWP is running or on a run queue, then we win.  If it's
   1143 	 * sleeping interruptably, wake it and make it take the signal.  If
   1144 	 * the sleep isn't interruptable, then the chances are it will get
   1145 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1146 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1147 	 * for later; otherwise punt.
   1148 	 */
   1149 	rv = 0;
   1150 
   1151 	switch (l->l_stat) {
   1152 	case LSRUN:
   1153 	case LSONPROC:
   1154 		lwp_need_userret(l);
   1155 		rv = 1;
   1156 		break;
   1157 
   1158 	case LSSLEEP:
   1159 		if ((l->l_flag & LW_SINTR) != 0) {
   1160 			/* setrunnable() will release the lock. */
   1161 			setrunnable(l);
   1162 			return 1;
   1163 		}
   1164 		break;
   1165 
   1166 	case LSSUSPENDED:
   1167 		if ((prop & SA_KILL) != 0) {
   1168 			/* lwp_continue() will release the lock. */
   1169 			lwp_continue(l);
   1170 			return 1;
   1171 		}
   1172 		break;
   1173 
   1174 	case LSSTOP:
   1175 		if ((prop & SA_STOP) != 0)
   1176 			break;
   1177 
   1178 		/*
   1179 		 * If the LWP is stopped and we are sending a continue
   1180 		 * signal, then start it again.
   1181 		 */
   1182 		if ((prop & SA_CONT) != 0) {
   1183 			if (l->l_wchan != NULL) {
   1184 				l->l_stat = LSSLEEP;
   1185 				p->p_nrlwps++;
   1186 				rv = 1;
   1187 				break;
   1188 			}
   1189 			/* setrunnable() will release the lock. */
   1190 			setrunnable(l);
   1191 			return 1;
   1192 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1193 			/* setrunnable() will release the lock. */
   1194 			setrunnable(l);
   1195 			return 1;
   1196 		}
   1197 		break;
   1198 
   1199 	default:
   1200 		break;
   1201 	}
   1202 
   1203 	lwp_unlock(l);
   1204 	return rv;
   1205 }
   1206 
   1207 /*
   1208  * Notify an LWP that it has a pending signal.
   1209  */
   1210 void
   1211 signotify(struct lwp *l)
   1212 {
   1213 	KASSERT(lwp_locked(l, NULL));
   1214 
   1215 	l->l_flag |= LW_PENDSIG;
   1216 	lwp_need_userret(l);
   1217 }
   1218 
   1219 /*
   1220  * Find an LWP within process p that is waiting on signal ksi, and hand
   1221  * it on.
   1222  */
   1223 static int
   1224 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1225 {
   1226 	struct lwp *l;
   1227 	int signo;
   1228 
   1229 	KASSERT(mutex_owned(p->p_lock));
   1230 
   1231 	signo = ksi->ksi_signo;
   1232 
   1233 	if (ksi->ksi_lid != 0) {
   1234 		/*
   1235 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1236 		 * it's interested.
   1237 		 */
   1238 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1239 			return 0;
   1240 		if (l->l_sigwaited == NULL ||
   1241 		    !sigismember(&l->l_sigwaitset, signo))
   1242 			return 0;
   1243 	} else {
   1244 		/*
   1245 		 * Look for any LWP that may be interested.
   1246 		 */
   1247 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1248 			KASSERT(l->l_sigwaited != NULL);
   1249 			if (sigismember(&l->l_sigwaitset, signo))
   1250 				break;
   1251 		}
   1252 	}
   1253 
   1254 	if (l != NULL) {
   1255 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1256 		l->l_sigwaited = NULL;
   1257 		LIST_REMOVE(l, l_sigwaiter);
   1258 		cv_signal(&l->l_sigcv);
   1259 		return 1;
   1260 	}
   1261 
   1262 	return 0;
   1263 }
   1264 
   1265 /*
   1266  * Send the signal to the process.  If the signal has an action, the action
   1267  * is usually performed by the target process rather than the caller; we add
   1268  * the signal to the set of pending signals for the process.
   1269  *
   1270  * Exceptions:
   1271  *   o When a stop signal is sent to a sleeping process that takes the
   1272  *     default action, the process is stopped without awakening it.
   1273  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1274  *     regardless of the signal action (eg, blocked or ignored).
   1275  *
   1276  * Other ignored signals are discarded immediately.
   1277  */
   1278 void
   1279 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1280 {
   1281 	int prop, signo = ksi->ksi_signo;
   1282 	struct sigacts *sa;
   1283 	struct lwp *l;
   1284 	ksiginfo_t *kp;
   1285 	lwpid_t lid;
   1286 	sig_t action;
   1287 	bool toall;
   1288 
   1289 	KASSERT(!cpu_intr_p());
   1290 	KASSERT(mutex_owned(proc_lock));
   1291 	KASSERT(mutex_owned(p->p_lock));
   1292 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1293 	KASSERT(signo > 0 && signo < NSIG);
   1294 
   1295 	/*
   1296 	 * If the process is being created by fork, is a zombie or is
   1297 	 * exiting, then just drop the signal here and bail out.
   1298 	 */
   1299 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1300 		return;
   1301 
   1302 	/*
   1303 	 * Notify any interested parties of the signal.
   1304 	 */
   1305 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1306 
   1307 	/*
   1308 	 * Some signals including SIGKILL must act on the entire process.
   1309 	 */
   1310 	kp = NULL;
   1311 	prop = sigprop[signo];
   1312 	toall = ((prop & SA_TOALL) != 0);
   1313 	lid = toall ? 0 : ksi->ksi_lid;
   1314 
   1315 	/*
   1316 	 * If proc is traced, always give parent a chance.
   1317 	 */
   1318 	if (p->p_slflag & PSL_TRACED) {
   1319 		action = SIG_DFL;
   1320 
   1321 		if (lid == 0) {
   1322 			/*
   1323 			 * If the process is being traced and the signal
   1324 			 * is being caught, make sure to save any ksiginfo.
   1325 			 */
   1326 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1327 				return;
   1328 			sigput(&p->p_sigpend, p, kp);
   1329 		}
   1330 	} else {
   1331 		/*
   1332 		 * If the signal was the result of a trap and is not being
   1333 		 * caught, then reset it to default action so that the
   1334 		 * process dumps core immediately.
   1335 		 */
   1336 		if (KSI_TRAP_P(ksi)) {
   1337 			sa = p->p_sigacts;
   1338 			mutex_enter(&sa->sa_mutex);
   1339 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1340 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1341 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1342 			}
   1343 			mutex_exit(&sa->sa_mutex);
   1344 		}
   1345 
   1346 		/*
   1347 		 * If the signal is being ignored, then drop it.  Note: we
   1348 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1349 		 * SIG_IGN, action will be SIG_DFL here.
   1350 		 */
   1351 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1352 			return;
   1353 
   1354 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1355 			action = SIG_CATCH;
   1356 		else {
   1357 			action = SIG_DFL;
   1358 
   1359 			/*
   1360 			 * If sending a tty stop signal to a member of an
   1361 			 * orphaned process group, discard the signal here if
   1362 			 * the action is default; don't stop the process below
   1363 			 * if sleeping, and don't clear any pending SIGCONT.
   1364 			 */
   1365 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1366 				return;
   1367 
   1368 			if (prop & SA_KILL && p->p_nice > NZERO)
   1369 				p->p_nice = NZERO;
   1370 		}
   1371 	}
   1372 
   1373 	/*
   1374 	 * If stopping or continuing a process, discard any pending
   1375 	 * signals that would do the inverse.
   1376 	 */
   1377 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1378 		ksiginfoq_t kq;
   1379 
   1380 		ksiginfo_queue_init(&kq);
   1381 		if ((prop & SA_CONT) != 0)
   1382 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1383 		if ((prop & SA_STOP) != 0)
   1384 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1385 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1386 	}
   1387 
   1388 	/*
   1389 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1390 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1391 	 * the signal info.  The signal won't be processed further here.
   1392 	 */
   1393 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1394 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1395 	    sigunwait(p, ksi))
   1396 		return;
   1397 
   1398 	/*
   1399 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1400 	 * here.
   1401 	 */
   1402 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1403 		return;
   1404 
   1405 	/*
   1406 	 * LWP private signals are easy - just find the LWP and post
   1407 	 * the signal to it.
   1408 	 */
   1409 	if (lid != 0) {
   1410 		l = lwp_find(p, lid);
   1411 		if (l != NULL) {
   1412 			sigput(&l->l_sigpend, p, kp);
   1413 			membar_producer();
   1414 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
   1415 		}
   1416 		goto out;
   1417 	}
   1418 
   1419 	/*
   1420 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1421 	 * or for an SA process.
   1422 	 */
   1423 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1424 		if ((p->p_slflag & PSL_TRACED) != 0)
   1425 			goto deliver;
   1426 
   1427 		/*
   1428 		 * If SIGCONT is default (or ignored) and process is
   1429 		 * asleep, we are finished; the process should not
   1430 		 * be awakened.
   1431 		 */
   1432 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1433 			goto out;
   1434 	} else {
   1435 		/*
   1436 		 * Process is stopped or stopping.
   1437 		 * - If traced, then no action is needed, unless killing.
   1438 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1439 		 */
   1440 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1441 			goto out;
   1442 		}
   1443 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1444 			/*
   1445 			 * Re-adjust p_nstopchild if the process wasn't
   1446 			 * collected by its parent.
   1447 			 */
   1448 			p->p_stat = SACTIVE;
   1449 			p->p_sflag &= ~PS_STOPPING;
   1450 			if (!p->p_waited) {
   1451 				p->p_pptr->p_nstopchild--;
   1452 			}
   1453 			if (p->p_slflag & PSL_TRACED) {
   1454 				KASSERT(signo == SIGKILL);
   1455 				goto deliver;
   1456 			}
   1457 			/*
   1458 			 * Do not make signal pending if SIGCONT is default.
   1459 			 *
   1460 			 * If the process catches SIGCONT, let it handle the
   1461 			 * signal itself (if waiting on event - process runs,
   1462 			 * otherwise continues sleeping).
   1463 			 */
   1464 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
   1465 				KASSERT(signo != SIGKILL);
   1466 				goto deliver;
   1467 			}
   1468 		} else if ((prop & SA_STOP) != 0) {
   1469 			/*
   1470 			 * Already stopped, don't need to stop again.
   1471 			 * (If we did the shell could get confused.)
   1472 			 */
   1473 			goto out;
   1474 		}
   1475 	}
   1476 	/*
   1477 	 * Make signal pending.
   1478 	 */
   1479 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1480 	sigput(&p->p_sigpend, p, kp);
   1481 
   1482 deliver:
   1483 	/*
   1484 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1485 	 * visible on the per process list (for sigispending()).  This
   1486 	 * is unlikely to be needed in practice, but...
   1487 	 */
   1488 	membar_producer();
   1489 
   1490 	/*
   1491 	 * Try to find an LWP that can take the signal.
   1492 	 */
   1493 #if KERN_SA
   1494 	if ((p->p_sa != NULL) && !toall) {
   1495 		struct sadata_vp *vp;
   1496 		/*
   1497 		 * If we're in this delivery path, we are delivering a
   1498 		 * signal that needs to go to one thread in the process.
   1499 		 *
   1500 		 * In the SA case, we try to find an idle LWP that can take
   1501 		 * the signal.  If that fails, only then do we consider
   1502 		 * interrupting active LWPs. Since the signal's going to
   1503 		 * just one thread, we need only look at "blessed" lwps,
   1504 		 * so scan the vps for them.
   1505 		 */
   1506 		l = NULL;
   1507 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1508 			l = vp->savp_lwp;
   1509 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
   1510 				break;
   1511 		}
   1512 
   1513 		if (l == NULL) {
   1514 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1515 				l = vp->savp_lwp;
   1516 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
   1517 					break;
   1518 			}
   1519 		}
   1520 		/* Delivered, skip next. */
   1521 		goto out;
   1522 	}
   1523 #endif
   1524 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1525 		if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
   1526 			break;
   1527 	}
   1528 out:
   1529 	/*
   1530 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1531 	 * with locks held.  The caller should take care of this.
   1532 	 */
   1533 	ksiginfo_free(kp);
   1534 }
   1535 
   1536 void
   1537 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1538 {
   1539 	struct proc *p = l->l_proc;
   1540 #ifdef KERN_SA
   1541 	struct lwp *le, *li;
   1542 	siginfo_t *si;
   1543 	int f;
   1544 #endif /* KERN_SA */
   1545 
   1546 	KASSERT(mutex_owned(p->p_lock));
   1547 
   1548 #ifdef KERN_SA
   1549 	if (p->p_sflag & PS_SA) {
   1550 		/* f indicates if we should clear LP_SA_NOBLOCK */
   1551 		f = ~l->l_pflag & LP_SA_NOBLOCK;
   1552 		l->l_pflag |= LP_SA_NOBLOCK;
   1553 
   1554 		mutex_exit(p->p_lock);
   1555 		/* XXXUPSXXX What if not on sa_vp? */
   1556 		/*
   1557 		 * WRS: I think it won't matter, beyond the
   1558 		 * question of what exactly we do with a signal
   1559 		 * to a blocked user thread. Also, we try hard to always
   1560 		 * send signals to blessed lwps, so we would only send
   1561 		 * to a non-blessed lwp under special circumstances.
   1562 		 */
   1563 		si = siginfo_alloc(PR_WAITOK);
   1564 
   1565 		si->_info = ksi->ksi_info;
   1566 
   1567 		/*
   1568 		 * Figure out if we're the innocent victim or the main
   1569 		 * perpitrator.
   1570 		 */
   1571 		le = li = NULL;
   1572 		if (KSI_TRAP_P(ksi))
   1573 			le = l;
   1574 		else
   1575 			li = l;
   1576 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1577 		    sizeof(*si), si, siginfo_free) != 0) {
   1578 			siginfo_free(si);
   1579 #if 0
   1580 			if (KSI_TRAP_P(ksi))
   1581 				/* XXX What dowe do here? The signal
   1582 				 * didn't make it
   1583 				 */;
   1584 #endif
   1585 		}
   1586 		l->l_pflag ^= f;
   1587 		mutex_enter(p->p_lock);
   1588 		return;
   1589 	}
   1590 #endif /* KERN_SA */
   1591 
   1592 	(*p->p_emul->e_sendsig)(ksi, mask);
   1593 }
   1594 
   1595 /*
   1596  * Stop any LWPs sleeping interruptably.
   1597  */
   1598 static void
   1599 proc_stop_lwps(struct proc *p)
   1600 {
   1601 	struct lwp *l;
   1602 
   1603 	KASSERT(mutex_owned(p->p_lock));
   1604 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1605 
   1606 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1607 		lwp_lock(l);
   1608 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1609 			l->l_stat = LSSTOP;
   1610 			p->p_nrlwps--;
   1611 		}
   1612 		lwp_unlock(l);
   1613 	}
   1614 }
   1615 
   1616 /*
   1617  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1618  *
   1619  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1620  */
   1621 static void
   1622 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1623 {
   1624 
   1625 	KASSERT(mutex_owned(proc_lock));
   1626 	KASSERT(mutex_owned(p->p_lock));
   1627 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1628 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1629 
   1630 	p->p_sflag &= ~PS_STOPPING;
   1631 	p->p_stat = SSTOP;
   1632 	p->p_waited = 0;
   1633 	p->p_pptr->p_nstopchild++;
   1634 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1635 		if (ppsig) {
   1636 			/* child_psignal drops p_lock briefly. */
   1637 			child_psignal(p, ppmask);
   1638 		}
   1639 		cv_broadcast(&p->p_pptr->p_waitcv);
   1640 	}
   1641 }
   1642 
   1643 /*
   1644  * Stop the current process and switch away when being stopped or traced.
   1645  */
   1646 static void
   1647 sigswitch(bool ppsig, int ppmask, int signo)
   1648 {
   1649 	struct lwp *l = curlwp;
   1650 	struct proc *p = l->l_proc;
   1651 	int biglocks;
   1652 
   1653 	KASSERT(mutex_owned(p->p_lock));
   1654 	KASSERT(l->l_stat == LSONPROC);
   1655 	KASSERT(p->p_nrlwps > 0);
   1656 
   1657 	/*
   1658 	 * On entry we know that the process needs to stop.  If it's
   1659 	 * the result of a 'sideways' stop signal that has been sourced
   1660 	 * through issignal(), then stop other LWPs in the process too.
   1661 	 */
   1662 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1663 		KASSERT(signo != 0);
   1664 		proc_stop(p, 1, signo);
   1665 		KASSERT(p->p_nrlwps > 0);
   1666 	}
   1667 
   1668 	/*
   1669 	 * If we are the last live LWP, and the stop was a result of
   1670 	 * a new signal, then signal the parent.
   1671 	 */
   1672 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1673 		if (!mutex_tryenter(proc_lock)) {
   1674 			mutex_exit(p->p_lock);
   1675 			mutex_enter(proc_lock);
   1676 			mutex_enter(p->p_lock);
   1677 		}
   1678 
   1679 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1680 			/*
   1681 			 * Note that proc_stop_done() can drop
   1682 			 * p->p_lock briefly.
   1683 			 */
   1684 			proc_stop_done(p, ppsig, ppmask);
   1685 		}
   1686 
   1687 		mutex_exit(proc_lock);
   1688 	}
   1689 
   1690 	/*
   1691 	 * Unlock and switch away.
   1692 	 */
   1693 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1694 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1695 		p->p_nrlwps--;
   1696 		lwp_lock(l);
   1697 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1698 		l->l_stat = LSSTOP;
   1699 		lwp_unlock(l);
   1700 	}
   1701 
   1702 	mutex_exit(p->p_lock);
   1703 	lwp_lock(l);
   1704 	mi_switch(l);
   1705 	KERNEL_LOCK(biglocks, l);
   1706 	mutex_enter(p->p_lock);
   1707 }
   1708 
   1709 /*
   1710  * Check for a signal from the debugger.
   1711  */
   1712 static int
   1713 sigchecktrace(void)
   1714 {
   1715 	struct lwp *l = curlwp;
   1716 	struct proc *p = l->l_proc;
   1717 	sigset_t *mask;
   1718 	int signo;
   1719 
   1720 	KASSERT(mutex_owned(p->p_lock));
   1721 
   1722 	/* If there's a pending SIGKILL, process it immediately. */
   1723 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1724 		return 0;
   1725 
   1726 	/*
   1727 	 * If we are no longer being traced, or the parent didn't
   1728 	 * give us a signal, or we're stopping, look for more signals.
   1729 	 */
   1730 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
   1731 	    (p->p_sflag & PS_STOPPING) != 0)
   1732 		return 0;
   1733 
   1734 	/*
   1735 	 * If the new signal is being masked, look for other signals.
   1736 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1737 	 */
   1738 	signo = p->p_xstat;
   1739 	p->p_xstat = 0;
   1740 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   1741 	if (sigismember(mask, signo))
   1742 		signo = 0;
   1743 
   1744 	return signo;
   1745 }
   1746 
   1747 /*
   1748  * If the current process has received a signal (should be caught or cause
   1749  * termination, should interrupt current syscall), return the signal number.
   1750  *
   1751  * Stop signals with default action are processed immediately, then cleared;
   1752  * they aren't returned.  This is checked after each entry to the system for
   1753  * a syscall or trap.
   1754  *
   1755  * We will also return -1 if the process is exiting and the current LWP must
   1756  * follow suit.
   1757  */
   1758 int
   1759 issignal(struct lwp *l)
   1760 {
   1761 	struct proc *p;
   1762 	int signo, prop;
   1763 	sigpend_t *sp;
   1764 	sigset_t ss;
   1765 
   1766 	p = l->l_proc;
   1767 	sp = NULL;
   1768 	signo = 0;
   1769 
   1770 	KASSERT(p == curproc);
   1771 	KASSERT(mutex_owned(p->p_lock));
   1772 
   1773 	for (;;) {
   1774 		/* Discard any signals that we have decided not to take. */
   1775 		if (signo != 0)
   1776 			(void)sigget(sp, NULL, signo, NULL);
   1777 
   1778 		/* Bail out if we do not own the virtual processor */
   1779 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
   1780 			break;
   1781 
   1782 		/*
   1783 		 * If the process is stopped/stopping, then stop ourselves
   1784 		 * now that we're on the kernel/userspace boundary.  When
   1785 		 * we awaken, check for a signal from the debugger.
   1786 		 */
   1787 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1788 			sigswitch(true, PS_NOCLDSTOP, 0);
   1789 			signo = sigchecktrace();
   1790 		} else
   1791 			signo = 0;
   1792 
   1793 		/* Signals from the debugger are "out of band". */
   1794 		sp = NULL;
   1795 
   1796 		/*
   1797 		 * If the debugger didn't provide a signal, find a pending
   1798 		 * signal from our set.  Check per-LWP signals first, and
   1799 		 * then per-process.
   1800 		 */
   1801 		if (signo == 0) {
   1802 			sp = &l->l_sigpend;
   1803 			ss = sp->sp_set;
   1804 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1805 				sigminusset(&stopsigmask, &ss);
   1806 			sigminusset(&l->l_sigmask, &ss);
   1807 
   1808 			if ((signo = firstsig(&ss)) == 0) {
   1809 				sp = &p->p_sigpend;
   1810 				ss = sp->sp_set;
   1811 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1812 					sigminusset(&stopsigmask, &ss);
   1813 				sigminusset(&l->l_sigmask, &ss);
   1814 
   1815 				if ((signo = firstsig(&ss)) == 0) {
   1816 					/*
   1817 					 * No signal pending - clear the
   1818 					 * indicator and bail out.
   1819 					 */
   1820 					lwp_lock(l);
   1821 					l->l_flag &= ~LW_PENDSIG;
   1822 					lwp_unlock(l);
   1823 					sp = NULL;
   1824 					break;
   1825 				}
   1826 			}
   1827 		}
   1828 
   1829 		/*
   1830 		 * We should see pending but ignored signals only if
   1831 		 * we are being traced.
   1832 		 */
   1833 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1834 		    (p->p_slflag & PSL_TRACED) == 0) {
   1835 			/* Discard the signal. */
   1836 			continue;
   1837 		}
   1838 
   1839 		/*
   1840 		 * If traced, always stop, and stay stopped until released
   1841 		 * by the debugger.  If the our parent process is waiting
   1842 		 * for us, don't hang as we could deadlock.
   1843 		 */
   1844 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1845 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1846 			/* Take the signal. */
   1847 			(void)sigget(sp, NULL, signo, NULL);
   1848 			p->p_xstat = signo;
   1849 
   1850 			/* Emulation-specific handling of signal trace */
   1851 			if (p->p_emul->e_tracesig == NULL ||
   1852 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1853 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1854 				    signo);
   1855 
   1856 			/* Check for a signal from the debugger. */
   1857 			if ((signo = sigchecktrace()) == 0)
   1858 				continue;
   1859 
   1860 			/* Signals from the debugger are "out of band". */
   1861 			sp = NULL;
   1862 		}
   1863 
   1864 		prop = sigprop[signo];
   1865 
   1866 		/* XXX no siginfo? */
   1867 		SDT_PROBE(proc,,,signal_handle, signo, 0,
   1868 			SIGACTION(p, signo).sa_handler, 0, 0);
   1869 
   1870 		/*
   1871 		 * Decide whether the signal should be returned.
   1872 		 */
   1873 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1874 		case (long)SIG_DFL:
   1875 			/*
   1876 			 * Don't take default actions on system processes.
   1877 			 */
   1878 			if (p->p_pid <= 1) {
   1879 #ifdef DIAGNOSTIC
   1880 				/*
   1881 				 * Are you sure you want to ignore SIGSEGV
   1882 				 * in init? XXX
   1883 				 */
   1884 				printf_nolog("Process (pid %d) got sig %d\n",
   1885 				    p->p_pid, signo);
   1886 #endif
   1887 				continue;
   1888 			}
   1889 
   1890 			/*
   1891 			 * If there is a pending stop signal to process with
   1892 			 * default action, stop here, then clear the signal.
   1893 			 * However, if process is member of an orphaned
   1894 			 * process group, ignore tty stop signals.
   1895 			 */
   1896 			if (prop & SA_STOP) {
   1897 				/*
   1898 				 * XXX Don't hold proc_lock for p_lflag,
   1899 				 * but it's not a big deal.
   1900 				 */
   1901 				if (p->p_slflag & PSL_TRACED ||
   1902 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1903 				    prop & SA_TTYSTOP)) {
   1904 					/* Ignore the signal. */
   1905 					continue;
   1906 				}
   1907 				/* Take the signal. */
   1908 				(void)sigget(sp, NULL, signo, NULL);
   1909 				p->p_xstat = signo;
   1910 				signo = 0;
   1911 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1912 			} else if (prop & SA_IGNORE) {
   1913 				/*
   1914 				 * Except for SIGCONT, shouldn't get here.
   1915 				 * Default action is to ignore; drop it.
   1916 				 */
   1917 				continue;
   1918 			}
   1919 			break;
   1920 
   1921 		case (long)SIG_IGN:
   1922 #ifdef DEBUG_ISSIGNAL
   1923 			/*
   1924 			 * Masking above should prevent us ever trying
   1925 			 * to take action on an ignored signal other
   1926 			 * than SIGCONT, unless process is traced.
   1927 			 */
   1928 			if ((prop & SA_CONT) == 0 &&
   1929 			    (p->p_slflag & PSL_TRACED) == 0)
   1930 				printf_nolog("issignal\n");
   1931 #endif
   1932 			continue;
   1933 
   1934 		default:
   1935 			/*
   1936 			 * This signal has an action, let postsig() process
   1937 			 * it.
   1938 			 */
   1939 			break;
   1940 		}
   1941 
   1942 		break;
   1943 	}
   1944 
   1945 	l->l_sigpendset = sp;
   1946 	return signo;
   1947 }
   1948 
   1949 /*
   1950  * Take the action for the specified signal
   1951  * from the current set of pending signals.
   1952  */
   1953 void
   1954 postsig(int signo)
   1955 {
   1956 	struct lwp	*l;
   1957 	struct proc	*p;
   1958 	struct sigacts	*ps;
   1959 	sig_t		action;
   1960 	sigset_t	*returnmask;
   1961 	ksiginfo_t	ksi;
   1962 
   1963 	l = curlwp;
   1964 	p = l->l_proc;
   1965 	ps = p->p_sigacts;
   1966 
   1967 	KASSERT(mutex_owned(p->p_lock));
   1968 	KASSERT(signo > 0);
   1969 
   1970 	/*
   1971 	 * Set the new mask value and also defer further occurrences of this
   1972 	 * signal.
   1973 	 *
   1974 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1975 	 * not of interest, but rather the mask from before the sigsuspend is
   1976 	 * what we want restored after the signal processing is completed.
   1977 	 */
   1978 	if (l->l_sigrestore) {
   1979 		returnmask = &l->l_sigoldmask;
   1980 		l->l_sigrestore = 0;
   1981 	} else
   1982 		returnmask = &l->l_sigmask;
   1983 
   1984 	/*
   1985 	 * Commit to taking the signal before releasing the mutex.
   1986 	 */
   1987 	action = SIGACTION_PS(ps, signo).sa_handler;
   1988 	l->l_ru.ru_nsignals++;
   1989 	sigget(l->l_sigpendset, &ksi, signo, NULL);
   1990 
   1991 	if (ktrpoint(KTR_PSIG)) {
   1992 		mutex_exit(p->p_lock);
   1993 		ktrpsig(signo, action, returnmask, &ksi);
   1994 		mutex_enter(p->p_lock);
   1995 	}
   1996 
   1997 	if (action == SIG_DFL) {
   1998 		/*
   1999 		 * Default action, where the default is to kill
   2000 		 * the process.  (Other cases were ignored above.)
   2001 		 */
   2002 		sigexit(l, signo);
   2003 		return;
   2004 	}
   2005 
   2006 	/*
   2007 	 * If we get here, the signal must be caught.
   2008 	 */
   2009 #ifdef DIAGNOSTIC
   2010 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2011 		panic("postsig action");
   2012 #endif
   2013 
   2014 	kpsendsig(l, &ksi, returnmask);
   2015 }
   2016 
   2017 /*
   2018  * sendsig:
   2019  *
   2020  *	Default signal delivery method for NetBSD.
   2021  */
   2022 void
   2023 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2024 {
   2025 	struct sigacts *sa;
   2026 	int sig;
   2027 
   2028 	sig = ksi->ksi_signo;
   2029 	sa = curproc->p_sigacts;
   2030 
   2031 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2032 	case 0:
   2033 	case 1:
   2034 		/* Compat for 1.6 and earlier. */
   2035 		if (sendsig_sigcontext_vec == NULL) {
   2036 			break;
   2037 		}
   2038 		(*sendsig_sigcontext_vec)(ksi, mask);
   2039 		return;
   2040 	case 2:
   2041 	case 3:
   2042 		sendsig_siginfo(ksi, mask);
   2043 		return;
   2044 	default:
   2045 		break;
   2046 	}
   2047 
   2048 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2049 	sigexit(curlwp, SIGILL);
   2050 }
   2051 
   2052 /*
   2053  * sendsig_reset:
   2054  *
   2055  *	Reset the signal action.  Called from emulation specific sendsig()
   2056  *	before unlocking to deliver the signal.
   2057  */
   2058 void
   2059 sendsig_reset(struct lwp *l, int signo)
   2060 {
   2061 	struct proc *p = l->l_proc;
   2062 	struct sigacts *ps = p->p_sigacts;
   2063 	sigset_t *mask;
   2064 
   2065 	KASSERT(mutex_owned(p->p_lock));
   2066 
   2067 	p->p_sigctx.ps_lwp = 0;
   2068 	p->p_sigctx.ps_code = 0;
   2069 	p->p_sigctx.ps_signo = 0;
   2070 
   2071 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   2072 
   2073 	mutex_enter(&ps->sa_mutex);
   2074 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
   2075 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2076 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2077 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2078 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2079 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2080 	}
   2081 	mutex_exit(&ps->sa_mutex);
   2082 }
   2083 
   2084 /*
   2085  * Kill the current process for stated reason.
   2086  */
   2087 void
   2088 killproc(struct proc *p, const char *why)
   2089 {
   2090 
   2091 	KASSERT(mutex_owned(proc_lock));
   2092 
   2093 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2094 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2095 	psignal(p, SIGKILL);
   2096 }
   2097 
   2098 /*
   2099  * Force the current process to exit with the specified signal, dumping core
   2100  * if appropriate.  We bypass the normal tests for masked and caught
   2101  * signals, allowing unrecoverable failures to terminate the process without
   2102  * changing signal state.  Mark the accounting record with the signal
   2103  * termination.  If dumping core, save the signal number for the debugger.
   2104  * Calls exit and does not return.
   2105  */
   2106 void
   2107 sigexit(struct lwp *l, int signo)
   2108 {
   2109 	int exitsig, error, docore;
   2110 	struct proc *p;
   2111 	struct lwp *t;
   2112 
   2113 	p = l->l_proc;
   2114 
   2115 	KASSERT(mutex_owned(p->p_lock));
   2116 	KERNEL_UNLOCK_ALL(l, NULL);
   2117 
   2118 	/*
   2119 	 * Don't permit coredump() multiple times in the same process.
   2120 	 * Call back into sigexit, where we will be suspended until
   2121 	 * the deed is done.  Note that this is a recursive call, but
   2122 	 * LW_WCORE will prevent us from coming back this way.
   2123 	 */
   2124 	if ((p->p_sflag & PS_WCORE) != 0) {
   2125 		lwp_lock(l);
   2126 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2127 		lwp_unlock(l);
   2128 		mutex_exit(p->p_lock);
   2129 		lwp_userret(l);
   2130 		panic("sigexit 1");
   2131 		/* NOTREACHED */
   2132 	}
   2133 
   2134 	/* If process is already on the way out, then bail now. */
   2135 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2136 		mutex_exit(p->p_lock);
   2137 		lwp_exit(l);
   2138 		panic("sigexit 2");
   2139 		/* NOTREACHED */
   2140 	}
   2141 
   2142 	/*
   2143 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2144 	 * so that their registers are available long enough to be dumped.
   2145  	 */
   2146 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2147 		p->p_sflag |= PS_WCORE;
   2148 		for (;;) {
   2149 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2150 				lwp_lock(t);
   2151 				if (t == l) {
   2152 					t->l_flag &= ~LW_WSUSPEND;
   2153 					lwp_unlock(t);
   2154 					continue;
   2155 				}
   2156 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2157 				lwp_suspend(l, t);
   2158 			}
   2159 
   2160 			if (p->p_nrlwps == 1)
   2161 				break;
   2162 
   2163 			/*
   2164 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2165 			 * for everyone else to stop before proceeding.
   2166 			 */
   2167 			p->p_nlwpwait++;
   2168 			cv_broadcast(&p->p_lwpcv);
   2169 			cv_wait(&p->p_lwpcv, p->p_lock);
   2170 			p->p_nlwpwait--;
   2171 		}
   2172 	}
   2173 
   2174 	exitsig = signo;
   2175 	p->p_acflag |= AXSIG;
   2176 	p->p_sigctx.ps_signo = signo;
   2177 
   2178 	if (docore) {
   2179 		mutex_exit(p->p_lock);
   2180 		if ((error = (*coredump_vec)(l, NULL)) == 0)
   2181 			exitsig |= WCOREFLAG;
   2182 
   2183 		if (kern_logsigexit) {
   2184 			int uid = l->l_cred ?
   2185 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2186 
   2187 			if (error)
   2188 				log(LOG_INFO, lognocoredump, p->p_pid,
   2189 				    p->p_comm, uid, signo, error);
   2190 			else
   2191 				log(LOG_INFO, logcoredump, p->p_pid,
   2192 				    p->p_comm, uid, signo);
   2193 		}
   2194 
   2195 #ifdef PAX_SEGVGUARD
   2196 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2197 #endif /* PAX_SEGVGUARD */
   2198 		/* Acquire the sched state mutex.  exit1() will release it. */
   2199 		mutex_enter(p->p_lock);
   2200 	}
   2201 
   2202 	/* No longer dumping core. */
   2203 	p->p_sflag &= ~PS_WCORE;
   2204 
   2205 	exit1(l, W_EXITCODE(0, exitsig));
   2206 	/* NOTREACHED */
   2207 }
   2208 
   2209 /*
   2210  * Put process 'p' into the stopped state and optionally, notify the parent.
   2211  */
   2212 void
   2213 proc_stop(struct proc *p, int notify, int signo)
   2214 {
   2215 	struct lwp *l;
   2216 
   2217 	KASSERT(mutex_owned(p->p_lock));
   2218 
   2219 	/*
   2220 	 * First off, set the stopping indicator and bring all sleeping
   2221 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2222 	 * unlock between here and the p->p_nrlwps check below.
   2223 	 */
   2224 	p->p_sflag |= PS_STOPPING;
   2225 	if (notify)
   2226 		p->p_sflag |= PS_NOTIFYSTOP;
   2227 	else
   2228 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2229 	membar_producer();
   2230 
   2231 	proc_stop_lwps(p);
   2232 
   2233 	/*
   2234 	 * If there are no LWPs available to take the signal, then we
   2235 	 * signal the parent process immediately.  Otherwise, the last
   2236 	 * LWP to stop will take care of it.
   2237 	 */
   2238 
   2239 	if (p->p_nrlwps == 0) {
   2240 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2241 	} else {
   2242 		/*
   2243 		 * Have the remaining LWPs come to a halt, and trigger
   2244 		 * proc_stop_callout() to ensure that they do.
   2245 		 */
   2246 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2247 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
   2248 		callout_schedule(&proc_stop_ch, 1);
   2249 	}
   2250 }
   2251 
   2252 /*
   2253  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2254  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2255  * to allow LWPs to release any locks that they may hold before stopping.
   2256  *
   2257  * Non-interruptable sleeps can be long, and there is the potential for an
   2258  * LWP to begin sleeping interruptably soon after the process has been set
   2259  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2260  * stopping, and so complete halt of the process and the return of status
   2261  * information to the parent could be delayed indefinitely.
   2262  *
   2263  * To handle this race, proc_stop_callout() runs once per tick while there
   2264  * are stopping processes in the system.  It sets LWPs that are sleeping
   2265  * interruptably into the LSSTOP state.
   2266  *
   2267  * Note that we are not concerned about keeping all LWPs stopped while the
   2268  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2269  * What we do need to ensure is that all LWPs in a stopping process have
   2270  * stopped at least once, so that notification can be sent to the parent
   2271  * process.
   2272  */
   2273 static void
   2274 proc_stop_callout(void *cookie)
   2275 {
   2276 	bool more, restart;
   2277 	struct proc *p;
   2278 
   2279 	(void)cookie;
   2280 
   2281 	do {
   2282 		restart = false;
   2283 		more = false;
   2284 
   2285 		mutex_enter(proc_lock);
   2286 		PROCLIST_FOREACH(p, &allproc) {
   2287 			mutex_enter(p->p_lock);
   2288 
   2289 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2290 				mutex_exit(p->p_lock);
   2291 				continue;
   2292 			}
   2293 
   2294 			/* Stop any LWPs sleeping interruptably. */
   2295 			proc_stop_lwps(p);
   2296 			if (p->p_nrlwps == 0) {
   2297 				/*
   2298 				 * We brought the process to a halt.
   2299 				 * Mark it as stopped and notify the
   2300 				 * parent.
   2301 				 */
   2302 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2303 					/*
   2304 					 * Note that proc_stop_done() will
   2305 					 * drop p->p_lock briefly.
   2306 					 * Arrange to restart and check
   2307 					 * all processes again.
   2308 					 */
   2309 					restart = true;
   2310 				}
   2311 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2312 			} else
   2313 				more = true;
   2314 
   2315 			mutex_exit(p->p_lock);
   2316 			if (restart)
   2317 				break;
   2318 		}
   2319 		mutex_exit(proc_lock);
   2320 	} while (restart);
   2321 
   2322 	/*
   2323 	 * If we noted processes that are stopping but still have
   2324 	 * running LWPs, then arrange to check again in 1 tick.
   2325 	 */
   2326 	if (more)
   2327 		callout_schedule(&proc_stop_ch, 1);
   2328 }
   2329 
   2330 /*
   2331  * Given a process in state SSTOP, set the state back to SACTIVE and
   2332  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2333  */
   2334 void
   2335 proc_unstop(struct proc *p)
   2336 {
   2337 	struct lwp *l;
   2338 	int sig;
   2339 
   2340 	KASSERT(mutex_owned(proc_lock));
   2341 	KASSERT(mutex_owned(p->p_lock));
   2342 
   2343 	p->p_stat = SACTIVE;
   2344 	p->p_sflag &= ~PS_STOPPING;
   2345 	sig = p->p_xstat;
   2346 
   2347 	if (!p->p_waited)
   2348 		p->p_pptr->p_nstopchild--;
   2349 
   2350 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2351 		lwp_lock(l);
   2352 		if (l->l_stat != LSSTOP) {
   2353 			lwp_unlock(l);
   2354 			continue;
   2355 		}
   2356 		if (l->l_wchan == NULL) {
   2357 			setrunnable(l);
   2358 			continue;
   2359 		}
   2360 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2361 			setrunnable(l);
   2362 			sig = 0;
   2363 		} else {
   2364 			l->l_stat = LSSLEEP;
   2365 			p->p_nrlwps++;
   2366 			lwp_unlock(l);
   2367 		}
   2368 	}
   2369 }
   2370 
   2371 static int
   2372 filt_sigattach(struct knote *kn)
   2373 {
   2374 	struct proc *p = curproc;
   2375 
   2376 	kn->kn_obj = p;
   2377 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2378 
   2379 	mutex_enter(p->p_lock);
   2380 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2381 	mutex_exit(p->p_lock);
   2382 
   2383 	return 0;
   2384 }
   2385 
   2386 static void
   2387 filt_sigdetach(struct knote *kn)
   2388 {
   2389 	struct proc *p = kn->kn_obj;
   2390 
   2391 	mutex_enter(p->p_lock);
   2392 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2393 	mutex_exit(p->p_lock);
   2394 }
   2395 
   2396 /*
   2397  * Signal knotes are shared with proc knotes, so we apply a mask to
   2398  * the hint in order to differentiate them from process hints.  This
   2399  * could be avoided by using a signal-specific knote list, but probably
   2400  * isn't worth the trouble.
   2401  */
   2402 static int
   2403 filt_signal(struct knote *kn, long hint)
   2404 {
   2405 
   2406 	if (hint & NOTE_SIGNAL) {
   2407 		hint &= ~NOTE_SIGNAL;
   2408 
   2409 		if (kn->kn_id == hint)
   2410 			kn->kn_data++;
   2411 	}
   2412 	return (kn->kn_data != 0);
   2413 }
   2414 
   2415 const struct filterops sig_filtops = {
   2416 	0, filt_sigattach, filt_sigdetach, filt_signal
   2417 };
   2418