kern_sig.c revision 1.309 1 /* $NetBSD: kern_sig.c,v 1.309 2011/07/26 13:33:43 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.309 2011/07/26 13:33:43 yamt Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_compat_sunos.h"
77 #include "opt_compat_netbsd.h"
78 #include "opt_compat_netbsd32.h"
79 #include "opt_pax.h"
80 #include "opt_sa.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/systm.h>
87 #include <sys/wait.h>
88 #include <sys/ktrace.h>
89 #include <sys/syslog.h>
90 #include <sys/filedesc.h>
91 #include <sys/file.h>
92 #include <sys/pool.h>
93 #include <sys/ucontext.h>
94 #include <sys/sa.h>
95 #include <sys/savar.h>
96 #include <sys/exec.h>
97 #include <sys/kauth.h>
98 #include <sys/acct.h>
99 #include <sys/callout.h>
100 #include <sys/atomic.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/sdt.h>
104
105 #ifdef PAX_SEGVGUARD
106 #include <sys/pax.h>
107 #endif /* PAX_SEGVGUARD */
108
109 #include <uvm/uvm_extern.h>
110 #include <uvm/uvm_extern.h>
111
112 static pool_cache_t sigacts_cache __read_mostly;
113 static pool_cache_t ksiginfo_cache __read_mostly;
114 static callout_t proc_stop_ch __cacheline_aligned;
115
116 #ifdef KERN_SA
117 static pool_cache_t siginfo_cache;
118 #endif
119
120 sigset_t contsigmask __cacheline_aligned;
121 static sigset_t stopsigmask __cacheline_aligned;
122 sigset_t sigcantmask __cacheline_aligned;
123
124 static void ksiginfo_exechook(struct proc *, void *);
125 static void proc_stop_callout(void *);
126 static int sigchecktrace(void);
127 static int sigpost(struct lwp *, sig_t, int, int, int);
128 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
129 static int sigunwait(struct proc *, const ksiginfo_t *);
130 static void sigswitch(bool, int, int);
131
132 static void sigacts_poolpage_free(struct pool *, void *);
133 static void *sigacts_poolpage_alloc(struct pool *, int);
134
135 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
136 int (*coredump_vec)(struct lwp *, const char *) =
137 (int (*)(struct lwp *, const char *))enosys;
138
139 /*
140 * DTrace SDT provider definitions
141 */
142 SDT_PROBE_DEFINE(proc,,,signal_send,
143 "struct lwp *", NULL, /* target thread */
144 "struct proc *", NULL, /* target process */
145 "int", NULL, /* signal */
146 NULL, NULL, NULL, NULL);
147 SDT_PROBE_DEFINE(proc,,,signal_discard,
148 "struct lwp *", NULL, /* target thread */
149 "struct proc *", NULL, /* target process */
150 "int", NULL, /* signal */
151 NULL, NULL, NULL, NULL);
152 SDT_PROBE_DEFINE(proc,,,signal_clear,
153 "int", NULL, /* signal */
154 NULL, NULL, NULL, NULL,
155 NULL, NULL, NULL, NULL);
156 SDT_PROBE_DEFINE(proc,,,signal_handle,
157 "int", NULL, /* signal */
158 "ksiginfo_t *", NULL,
159 "void (*)(void)", NULL, /* handler address */
160 NULL, NULL, NULL, NULL);
161
162
163 static struct pool_allocator sigactspool_allocator = {
164 .pa_alloc = sigacts_poolpage_alloc,
165 .pa_free = sigacts_poolpage_free
166 };
167
168 #ifdef DEBUG
169 int kern_logsigexit = 1;
170 #else
171 int kern_logsigexit = 0;
172 #endif
173
174 static const char logcoredump[] =
175 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
176 static const char lognocoredump[] =
177 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
178
179 static kauth_listener_t signal_listener;
180
181 static int
182 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
183 void *arg0, void *arg1, void *arg2, void *arg3)
184 {
185 struct proc *p;
186 int result, signum;
187
188 result = KAUTH_RESULT_DEFER;
189 p = arg0;
190 signum = (int)(unsigned long)arg1;
191
192 if (action != KAUTH_PROCESS_SIGNAL)
193 return result;
194
195 if (kauth_cred_uidmatch(cred, p->p_cred) ||
196 (signum == SIGCONT && (curproc->p_session == p->p_session)))
197 result = KAUTH_RESULT_ALLOW;
198
199 return result;
200 }
201
202 /*
203 * signal_init:
204 *
205 * Initialize global signal-related data structures.
206 */
207 void
208 signal_init(void)
209 {
210
211 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
212
213 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
214 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
215 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
216 #ifdef KERN_SA
217 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
218 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
219 #endif
220 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
221 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
222
223 exechook_establish(ksiginfo_exechook, NULL);
224
225 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
226 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
227
228 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
229 signal_listener_cb, NULL);
230 }
231
232 /*
233 * sigacts_poolpage_alloc:
234 *
235 * Allocate a page for the sigacts memory pool.
236 */
237 static void *
238 sigacts_poolpage_alloc(struct pool *pp, int flags)
239 {
240
241 return (void *)uvm_km_alloc(kernel_map,
242 PAGE_SIZE * 2, PAGE_SIZE * 2,
243 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
244 | UVM_KMF_WIRED);
245 }
246
247 /*
248 * sigacts_poolpage_free:
249 *
250 * Free a page on behalf of the sigacts memory pool.
251 */
252 static void
253 sigacts_poolpage_free(struct pool *pp, void *v)
254 {
255
256 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
257 }
258
259 /*
260 * sigactsinit:
261 *
262 * Create an initial sigacts structure, using the same signal state
263 * as of specified process. If 'share' is set, share the sigacts by
264 * holding a reference, otherwise just copy it from parent.
265 */
266 struct sigacts *
267 sigactsinit(struct proc *pp, int share)
268 {
269 struct sigacts *ps = pp->p_sigacts, *ps2;
270
271 if (__predict_false(share)) {
272 atomic_inc_uint(&ps->sa_refcnt);
273 return ps;
274 }
275 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
276 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
277 ps2->sa_refcnt = 1;
278
279 mutex_enter(&ps->sa_mutex);
280 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
281 mutex_exit(&ps->sa_mutex);
282 return ps2;
283 }
284
285 /*
286 * sigactsunshare:
287 *
288 * Make this process not share its sigacts, maintaining all signal state.
289 */
290 void
291 sigactsunshare(struct proc *p)
292 {
293 struct sigacts *ps, *oldps = p->p_sigacts;
294
295 if (__predict_true(oldps->sa_refcnt == 1))
296 return;
297
298 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
299 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
300 memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
301 ps->sa_refcnt = 1;
302
303 p->p_sigacts = ps;
304 sigactsfree(oldps);
305 }
306
307 /*
308 * sigactsfree;
309 *
310 * Release a sigacts structure.
311 */
312 void
313 sigactsfree(struct sigacts *ps)
314 {
315
316 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
317 mutex_destroy(&ps->sa_mutex);
318 pool_cache_put(sigacts_cache, ps);
319 }
320 }
321
322 /*
323 * siginit:
324 *
325 * Initialize signal state for process 0; set to ignore signals that
326 * are ignored by default and disable the signal stack. Locking not
327 * required as the system is still cold.
328 */
329 void
330 siginit(struct proc *p)
331 {
332 struct lwp *l;
333 struct sigacts *ps;
334 int signo, prop;
335
336 ps = p->p_sigacts;
337 sigemptyset(&contsigmask);
338 sigemptyset(&stopsigmask);
339 sigemptyset(&sigcantmask);
340 for (signo = 1; signo < NSIG; signo++) {
341 prop = sigprop[signo];
342 if (prop & SA_CONT)
343 sigaddset(&contsigmask, signo);
344 if (prop & SA_STOP)
345 sigaddset(&stopsigmask, signo);
346 if (prop & SA_CANTMASK)
347 sigaddset(&sigcantmask, signo);
348 if (prop & SA_IGNORE && signo != SIGCONT)
349 sigaddset(&p->p_sigctx.ps_sigignore, signo);
350 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
351 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
352 }
353 sigemptyset(&p->p_sigctx.ps_sigcatch);
354 p->p_sflag &= ~PS_NOCLDSTOP;
355
356 ksiginfo_queue_init(&p->p_sigpend.sp_info);
357 sigemptyset(&p->p_sigpend.sp_set);
358
359 /*
360 * Reset per LWP state.
361 */
362 l = LIST_FIRST(&p->p_lwps);
363 l->l_sigwaited = NULL;
364 l->l_sigstk.ss_flags = SS_DISABLE;
365 l->l_sigstk.ss_size = 0;
366 l->l_sigstk.ss_sp = 0;
367 ksiginfo_queue_init(&l->l_sigpend.sp_info);
368 sigemptyset(&l->l_sigpend.sp_set);
369
370 /* One reference. */
371 ps->sa_refcnt = 1;
372 }
373
374 /*
375 * execsigs:
376 *
377 * Reset signals for an exec of the specified process.
378 */
379 void
380 execsigs(struct proc *p)
381 {
382 struct sigacts *ps;
383 struct lwp *l;
384 int signo, prop;
385 sigset_t tset;
386 ksiginfoq_t kq;
387
388 KASSERT(p->p_nlwps == 1);
389
390 sigactsunshare(p);
391 ps = p->p_sigacts;
392
393 /*
394 * Reset caught signals. Held signals remain held through
395 * l->l_sigmask (unless they were caught, and are now ignored
396 * by default).
397 *
398 * No need to lock yet, the process has only one LWP and
399 * at this point the sigacts are private to the process.
400 */
401 sigemptyset(&tset);
402 for (signo = 1; signo < NSIG; signo++) {
403 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
404 prop = sigprop[signo];
405 if (prop & SA_IGNORE) {
406 if ((prop & SA_CONT) == 0)
407 sigaddset(&p->p_sigctx.ps_sigignore,
408 signo);
409 sigaddset(&tset, signo);
410 }
411 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
412 }
413 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
414 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
415 }
416 ksiginfo_queue_init(&kq);
417
418 mutex_enter(p->p_lock);
419 sigclearall(p, &tset, &kq);
420 sigemptyset(&p->p_sigctx.ps_sigcatch);
421
422 /*
423 * Reset no zombies if child dies flag as Solaris does.
424 */
425 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
426 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
427 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
428
429 /*
430 * Reset per-LWP state.
431 */
432 l = LIST_FIRST(&p->p_lwps);
433 l->l_sigwaited = NULL;
434 l->l_sigstk.ss_flags = SS_DISABLE;
435 l->l_sigstk.ss_size = 0;
436 l->l_sigstk.ss_sp = 0;
437 ksiginfo_queue_init(&l->l_sigpend.sp_info);
438 sigemptyset(&l->l_sigpend.sp_set);
439 mutex_exit(p->p_lock);
440
441 ksiginfo_queue_drain(&kq);
442 }
443
444 /*
445 * ksiginfo_exechook:
446 *
447 * Free all pending ksiginfo entries from a process on exec.
448 * Additionally, drain any unused ksiginfo structures in the
449 * system back to the pool.
450 *
451 * XXX This should not be a hook, every process has signals.
452 */
453 static void
454 ksiginfo_exechook(struct proc *p, void *v)
455 {
456 ksiginfoq_t kq;
457
458 ksiginfo_queue_init(&kq);
459
460 mutex_enter(p->p_lock);
461 sigclearall(p, NULL, &kq);
462 mutex_exit(p->p_lock);
463
464 ksiginfo_queue_drain(&kq);
465 }
466
467 /*
468 * ksiginfo_alloc:
469 *
470 * Allocate a new ksiginfo structure from the pool, and optionally copy
471 * an existing one. If the existing ksiginfo_t is from the pool, and
472 * has not been queued somewhere, then just return it. Additionally,
473 * if the existing ksiginfo_t does not contain any information beyond
474 * the signal number, then just return it.
475 */
476 ksiginfo_t *
477 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
478 {
479 ksiginfo_t *kp;
480
481 if (ok != NULL) {
482 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
483 KSI_FROMPOOL)
484 return ok;
485 if (KSI_EMPTY_P(ok))
486 return ok;
487 }
488
489 kp = pool_cache_get(ksiginfo_cache, flags);
490 if (kp == NULL) {
491 #ifdef DIAGNOSTIC
492 printf("Out of memory allocating ksiginfo for pid %d\n",
493 p->p_pid);
494 #endif
495 return NULL;
496 }
497
498 if (ok != NULL) {
499 memcpy(kp, ok, sizeof(*kp));
500 kp->ksi_flags &= ~KSI_QUEUED;
501 } else
502 KSI_INIT_EMPTY(kp);
503
504 kp->ksi_flags |= KSI_FROMPOOL;
505
506 return kp;
507 }
508
509 /*
510 * ksiginfo_free:
511 *
512 * If the given ksiginfo_t is from the pool and has not been queued,
513 * then free it.
514 */
515 void
516 ksiginfo_free(ksiginfo_t *kp)
517 {
518
519 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
520 return;
521 pool_cache_put(ksiginfo_cache, kp);
522 }
523
524 /*
525 * ksiginfo_queue_drain:
526 *
527 * Drain a non-empty ksiginfo_t queue.
528 */
529 void
530 ksiginfo_queue_drain0(ksiginfoq_t *kq)
531 {
532 ksiginfo_t *ksi;
533
534 KASSERT(!CIRCLEQ_EMPTY(kq));
535
536 while (!CIRCLEQ_EMPTY(kq)) {
537 ksi = CIRCLEQ_FIRST(kq);
538 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
539 pool_cache_put(ksiginfo_cache, ksi);
540 }
541 }
542
543 /*
544 * sigget:
545 *
546 * Fetch the first pending signal from a set. Optionally, also fetch
547 * or manufacture a ksiginfo element. Returns the number of the first
548 * pending signal, or zero.
549 */
550 int
551 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
552 {
553 ksiginfo_t *ksi;
554 sigset_t tset;
555
556 /* If there's no pending set, the signal is from the debugger. */
557 if (sp == NULL)
558 goto out;
559
560 /* Construct mask from signo, and 'mask'. */
561 if (signo == 0) {
562 if (mask != NULL) {
563 tset = *mask;
564 __sigandset(&sp->sp_set, &tset);
565 } else
566 tset = sp->sp_set;
567
568 /* If there are no signals pending - return. */
569 if ((signo = firstsig(&tset)) == 0)
570 goto out;
571 } else {
572 KASSERT(sigismember(&sp->sp_set, signo));
573 }
574
575 sigdelset(&sp->sp_set, signo);
576
577 /* Find siginfo and copy it out. */
578 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
579 if (ksi->ksi_signo != signo)
580 continue;
581 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
582 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
583 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
584 ksi->ksi_flags &= ~KSI_QUEUED;
585 if (out != NULL) {
586 memcpy(out, ksi, sizeof(*out));
587 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
588 }
589 ksiginfo_free(ksi); /* XXXSMP */
590 return signo;
591 }
592 out:
593 /* If there is no siginfo, then manufacture it. */
594 if (out != NULL) {
595 KSI_INIT(out);
596 out->ksi_info._signo = signo;
597 out->ksi_info._code = SI_NOINFO;
598 }
599 return signo;
600 }
601
602 /*
603 * sigput:
604 *
605 * Append a new ksiginfo element to the list of pending ksiginfo's.
606 */
607 static void
608 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
609 {
610 ksiginfo_t *kp;
611
612 KASSERT(mutex_owned(p->p_lock));
613 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
614
615 sigaddset(&sp->sp_set, ksi->ksi_signo);
616
617 /*
618 * If there is no siginfo, we are done.
619 */
620 if (KSI_EMPTY_P(ksi))
621 return;
622
623 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
624
625 #ifdef notyet /* XXX: QUEUING */
626 if (ksi->ksi_signo < SIGRTMIN)
627 #endif
628 {
629 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
630 if (kp->ksi_signo == ksi->ksi_signo) {
631 KSI_COPY(ksi, kp);
632 kp->ksi_flags |= KSI_QUEUED;
633 return;
634 }
635 }
636 }
637
638 ksi->ksi_flags |= KSI_QUEUED;
639 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
640 }
641
642 /*
643 * sigclear:
644 *
645 * Clear all pending signals in the specified set.
646 */
647 void
648 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
649 {
650 ksiginfo_t *ksi, *next;
651
652 if (mask == NULL)
653 sigemptyset(&sp->sp_set);
654 else
655 sigminusset(mask, &sp->sp_set);
656
657 ksi = CIRCLEQ_FIRST(&sp->sp_info);
658 for (; ksi != (void *)&sp->sp_info; ksi = next) {
659 next = CIRCLEQ_NEXT(ksi, ksi_list);
660 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
661 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
662 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
663 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
664 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
665 }
666 }
667 }
668
669 /*
670 * sigclearall:
671 *
672 * Clear all pending signals in the specified set from a process and
673 * its LWPs.
674 */
675 void
676 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
677 {
678 struct lwp *l;
679
680 KASSERT(mutex_owned(p->p_lock));
681
682 sigclear(&p->p_sigpend, mask, kq);
683
684 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
685 sigclear(&l->l_sigpend, mask, kq);
686 }
687 }
688
689 /*
690 * sigispending:
691 *
692 * Return true if there are pending signals for the current LWP. May
693 * be called unlocked provided that LW_PENDSIG is set, and that the
694 * signal has been posted to the appopriate queue before LW_PENDSIG is
695 * set.
696 */
697 int
698 sigispending(struct lwp *l, int signo)
699 {
700 struct proc *p = l->l_proc;
701 sigset_t tset;
702
703 membar_consumer();
704
705 tset = l->l_sigpend.sp_set;
706 sigplusset(&p->p_sigpend.sp_set, &tset);
707 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
708 sigminusset(&l->l_sigmask, &tset);
709
710 if (signo == 0) {
711 if (firstsig(&tset) != 0)
712 return EINTR;
713 } else if (sigismember(&tset, signo))
714 return EINTR;
715
716 return 0;
717 }
718
719 #ifdef KERN_SA
720
721 /*
722 * siginfo_alloc:
723 *
724 * Allocate a new siginfo_t structure from the pool.
725 */
726 siginfo_t *
727 siginfo_alloc(int flags)
728 {
729
730 return pool_cache_get(siginfo_cache, flags);
731 }
732
733 /*
734 * siginfo_free:
735 *
736 * Return a siginfo_t structure to the pool.
737 */
738 void
739 siginfo_free(void *arg)
740 {
741
742 pool_cache_put(siginfo_cache, arg);
743 }
744
745 #endif
746
747 void
748 getucontext(struct lwp *l, ucontext_t *ucp)
749 {
750 struct proc *p = l->l_proc;
751
752 KASSERT(mutex_owned(p->p_lock));
753
754 ucp->uc_flags = 0;
755 ucp->uc_link = l->l_ctxlink;
756
757 #if KERN_SA
758 if (p->p_sa != NULL)
759 ucp->uc_sigmask = p->p_sa->sa_sigmask;
760 else
761 #endif /* KERN_SA */
762 ucp->uc_sigmask = l->l_sigmask;
763 ucp->uc_flags |= _UC_SIGMASK;
764
765 /*
766 * The (unsupplied) definition of the `current execution stack'
767 * in the System V Interface Definition appears to allow returning
768 * the main context stack.
769 */
770 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
771 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
772 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
773 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
774 } else {
775 /* Simply copy alternate signal execution stack. */
776 ucp->uc_stack = l->l_sigstk;
777 }
778 ucp->uc_flags |= _UC_STACK;
779 mutex_exit(p->p_lock);
780 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
781 mutex_enter(p->p_lock);
782 }
783
784 /*
785 * getucontext_sa:
786 * Get a ucontext_t for use in SA upcall generation.
787 * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
788 * fudge things with uc_link (which is usually NULL for libpthread
789 * code), and 3) we report an empty signal mask.
790 */
791 void
792 getucontext_sa(struct lwp *l, ucontext_t *ucp)
793 {
794 ucp->uc_flags = 0;
795 ucp->uc_link = l->l_ctxlink;
796
797 sigemptyset(&ucp->uc_sigmask);
798 ucp->uc_flags |= _UC_SIGMASK;
799
800 /*
801 * The (unsupplied) definition of the `current execution stack'
802 * in the System V Interface Definition appears to allow returning
803 * the main context stack.
804 */
805 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
806 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
807 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
808 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
809 } else {
810 /* Simply copy alternate signal execution stack. */
811 ucp->uc_stack = l->l_sigstk;
812 }
813 ucp->uc_flags |= _UC_STACK;
814 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
815 }
816
817 int
818 setucontext(struct lwp *l, const ucontext_t *ucp)
819 {
820 struct proc *p = l->l_proc;
821 int error;
822
823 KASSERT(mutex_owned(p->p_lock));
824
825 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
826 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
827 if (error != 0)
828 return error;
829 }
830
831 mutex_exit(p->p_lock);
832 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
833 mutex_enter(p->p_lock);
834 if (error != 0)
835 return (error);
836
837 l->l_ctxlink = ucp->uc_link;
838
839 /*
840 * If there was stack information, update whether or not we are
841 * still running on an alternate signal stack.
842 */
843 if ((ucp->uc_flags & _UC_STACK) != 0) {
844 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
845 l->l_sigstk.ss_flags |= SS_ONSTACK;
846 else
847 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
848 }
849
850 return 0;
851 }
852
853 /*
854 * killpg1: common code for kill process group/broadcast kill.
855 */
856 int
857 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
858 {
859 struct proc *p, *cp;
860 kauth_cred_t pc;
861 struct pgrp *pgrp;
862 int nfound;
863 int signo = ksi->ksi_signo;
864
865 cp = l->l_proc;
866 pc = l->l_cred;
867 nfound = 0;
868
869 mutex_enter(proc_lock);
870 if (all) {
871 /*
872 * Broadcast.
873 */
874 PROCLIST_FOREACH(p, &allproc) {
875 if (p->p_pid <= 1 || p == cp ||
876 (p->p_flag & PK_SYSTEM) != 0)
877 continue;
878 mutex_enter(p->p_lock);
879 if (kauth_authorize_process(pc,
880 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
881 NULL) == 0) {
882 nfound++;
883 if (signo)
884 kpsignal2(p, ksi);
885 }
886 mutex_exit(p->p_lock);
887 }
888 } else {
889 if (pgid == 0)
890 /* Zero pgid means send to my process group. */
891 pgrp = cp->p_pgrp;
892 else {
893 pgrp = pgrp_find(pgid);
894 if (pgrp == NULL)
895 goto out;
896 }
897 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
898 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
899 continue;
900 mutex_enter(p->p_lock);
901 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
902 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
903 nfound++;
904 if (signo && P_ZOMBIE(p) == 0)
905 kpsignal2(p, ksi);
906 }
907 mutex_exit(p->p_lock);
908 }
909 }
910 out:
911 mutex_exit(proc_lock);
912 return nfound ? 0 : ESRCH;
913 }
914
915 /*
916 * Send a signal to a process group. If checktty is set, limit to members
917 * which have a controlling terminal.
918 */
919 void
920 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
921 {
922 ksiginfo_t ksi;
923
924 KASSERT(!cpu_intr_p());
925 KASSERT(mutex_owned(proc_lock));
926
927 KSI_INIT_EMPTY(&ksi);
928 ksi.ksi_signo = sig;
929 kpgsignal(pgrp, &ksi, NULL, checkctty);
930 }
931
932 void
933 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
934 {
935 struct proc *p;
936
937 KASSERT(!cpu_intr_p());
938 KASSERT(mutex_owned(proc_lock));
939 KASSERT(pgrp != NULL);
940
941 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
942 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
943 kpsignal(p, ksi, data);
944 }
945
946 /*
947 * Send a signal caused by a trap to the current LWP. If it will be caught
948 * immediately, deliver it with correct code. Otherwise, post it normally.
949 */
950 void
951 trapsignal(struct lwp *l, ksiginfo_t *ksi)
952 {
953 struct proc *p;
954 struct sigacts *ps;
955 int signo = ksi->ksi_signo;
956 sigset_t *mask;
957
958 KASSERT(KSI_TRAP_P(ksi));
959
960 ksi->ksi_lid = l->l_lid;
961 p = l->l_proc;
962
963 KASSERT(!cpu_intr_p());
964 mutex_enter(proc_lock);
965 mutex_enter(p->p_lock);
966 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
967 ps = p->p_sigacts;
968 if ((p->p_slflag & PSL_TRACED) == 0 &&
969 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
970 !sigismember(mask, signo)) {
971 mutex_exit(proc_lock);
972 l->l_ru.ru_nsignals++;
973 kpsendsig(l, ksi, mask);
974 mutex_exit(p->p_lock);
975 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
976 } else {
977 /* XXX for core dump/debugger */
978 p->p_sigctx.ps_lwp = l->l_lid;
979 p->p_sigctx.ps_signo = ksi->ksi_signo;
980 p->p_sigctx.ps_code = ksi->ksi_trap;
981 kpsignal2(p, ksi);
982 mutex_exit(p->p_lock);
983 mutex_exit(proc_lock);
984 }
985 }
986
987 /*
988 * Fill in signal information and signal the parent for a child status change.
989 */
990 void
991 child_psignal(struct proc *p, int mask)
992 {
993 ksiginfo_t ksi;
994 struct proc *q;
995 int xstat;
996
997 KASSERT(mutex_owned(proc_lock));
998 KASSERT(mutex_owned(p->p_lock));
999
1000 xstat = p->p_xstat;
1001
1002 KSI_INIT(&ksi);
1003 ksi.ksi_signo = SIGCHLD;
1004 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
1005 ksi.ksi_pid = p->p_pid;
1006 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
1007 ksi.ksi_status = xstat;
1008 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
1009 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
1010
1011 q = p->p_pptr;
1012
1013 mutex_exit(p->p_lock);
1014 mutex_enter(q->p_lock);
1015
1016 if ((q->p_sflag & mask) == 0)
1017 kpsignal2(q, &ksi);
1018
1019 mutex_exit(q->p_lock);
1020 mutex_enter(p->p_lock);
1021 }
1022
1023 void
1024 psignal(struct proc *p, int signo)
1025 {
1026 ksiginfo_t ksi;
1027
1028 KASSERT(!cpu_intr_p());
1029 KASSERT(mutex_owned(proc_lock));
1030
1031 KSI_INIT_EMPTY(&ksi);
1032 ksi.ksi_signo = signo;
1033 mutex_enter(p->p_lock);
1034 kpsignal2(p, &ksi);
1035 mutex_exit(p->p_lock);
1036 }
1037
1038 void
1039 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1040 {
1041 fdfile_t *ff;
1042 file_t *fp;
1043 fdtab_t *dt;
1044
1045 KASSERT(!cpu_intr_p());
1046 KASSERT(mutex_owned(proc_lock));
1047
1048 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1049 size_t fd;
1050 filedesc_t *fdp = p->p_fd;
1051
1052 /* XXXSMP locking */
1053 ksi->ksi_fd = -1;
1054 dt = fdp->fd_dt;
1055 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1056 if ((ff = dt->dt_ff[fd]) == NULL)
1057 continue;
1058 if ((fp = ff->ff_file) == NULL)
1059 continue;
1060 if (fp->f_data == data) {
1061 ksi->ksi_fd = fd;
1062 break;
1063 }
1064 }
1065 }
1066 mutex_enter(p->p_lock);
1067 kpsignal2(p, ksi);
1068 mutex_exit(p->p_lock);
1069 }
1070
1071 /*
1072 * sigismasked:
1073 *
1074 * Returns true if signal is ignored or masked for the specified LWP.
1075 */
1076 int
1077 sigismasked(struct lwp *l, int sig)
1078 {
1079 struct proc *p = l->l_proc;
1080
1081 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1082 sigismember(&l->l_sigmask, sig)
1083 #if KERN_SA
1084 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1085 #endif /* KERN_SA */
1086 );
1087 }
1088
1089 /*
1090 * sigpost:
1091 *
1092 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1093 * be able to take the signal.
1094 */
1095 static int
1096 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1097 {
1098 int rv, masked;
1099 struct proc *p = l->l_proc;
1100
1101 KASSERT(mutex_owned(p->p_lock));
1102
1103 /*
1104 * If the LWP is on the way out, sigclear() will be busy draining all
1105 * pending signals. Don't give it more.
1106 */
1107 if (l->l_refcnt == 0)
1108 return 0;
1109
1110 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0);
1111
1112 /*
1113 * Have the LWP check for signals. This ensures that even if no LWP
1114 * is found to take the signal immediately, it should be taken soon.
1115 */
1116 lwp_lock(l);
1117 l->l_flag |= LW_PENDSIG;
1118
1119 /*
1120 * When sending signals to SA processes, we first try to find an
1121 * idle VP to take it.
1122 */
1123 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1124 lwp_unlock(l);
1125 return 0;
1126 }
1127
1128 /*
1129 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1130 * Note: SIGKILL and SIGSTOP cannot be masked.
1131 */
1132 #if KERN_SA
1133 if (p->p_sa != NULL)
1134 masked = sigismember(&p->p_sa->sa_sigmask, sig);
1135 else
1136 #endif
1137 masked = sigismember(&l->l_sigmask, sig);
1138 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1139 lwp_unlock(l);
1140 return 0;
1141 }
1142
1143 /*
1144 * If killing the process, make it run fast.
1145 */
1146 if (__predict_false((prop & SA_KILL) != 0) &&
1147 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1148 KASSERT(l->l_class == SCHED_OTHER);
1149 lwp_changepri(l, MAXPRI_USER);
1150 }
1151
1152 /*
1153 * If the LWP is running or on a run queue, then we win. If it's
1154 * sleeping interruptably, wake it and make it take the signal. If
1155 * the sleep isn't interruptable, then the chances are it will get
1156 * to see the signal soon anyhow. If suspended, it can't take the
1157 * signal right now. If it's LWP private or for all LWPs, save it
1158 * for later; otherwise punt.
1159 */
1160 rv = 0;
1161
1162 switch (l->l_stat) {
1163 case LSRUN:
1164 case LSONPROC:
1165 lwp_need_userret(l);
1166 rv = 1;
1167 break;
1168
1169 case LSSLEEP:
1170 if ((l->l_flag & LW_SINTR) != 0) {
1171 /* setrunnable() will release the lock. */
1172 setrunnable(l);
1173 return 1;
1174 }
1175 break;
1176
1177 case LSSUSPENDED:
1178 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1179 /* lwp_continue() will release the lock. */
1180 lwp_continue(l);
1181 return 1;
1182 }
1183 break;
1184
1185 case LSSTOP:
1186 if ((prop & SA_STOP) != 0)
1187 break;
1188
1189 /*
1190 * If the LWP is stopped and we are sending a continue
1191 * signal, then start it again.
1192 */
1193 if ((prop & SA_CONT) != 0) {
1194 if (l->l_wchan != NULL) {
1195 l->l_stat = LSSLEEP;
1196 p->p_nrlwps++;
1197 rv = 1;
1198 break;
1199 }
1200 /* setrunnable() will release the lock. */
1201 setrunnable(l);
1202 return 1;
1203 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1204 /* setrunnable() will release the lock. */
1205 setrunnable(l);
1206 return 1;
1207 }
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 lwp_unlock(l);
1215 return rv;
1216 }
1217
1218 /*
1219 * Notify an LWP that it has a pending signal.
1220 */
1221 void
1222 signotify(struct lwp *l)
1223 {
1224 KASSERT(lwp_locked(l, NULL));
1225
1226 l->l_flag |= LW_PENDSIG;
1227 lwp_need_userret(l);
1228 }
1229
1230 /*
1231 * Find an LWP within process p that is waiting on signal ksi, and hand
1232 * it on.
1233 */
1234 static int
1235 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1236 {
1237 struct lwp *l;
1238 int signo;
1239
1240 KASSERT(mutex_owned(p->p_lock));
1241
1242 signo = ksi->ksi_signo;
1243
1244 if (ksi->ksi_lid != 0) {
1245 /*
1246 * Signal came via _lwp_kill(). Find the LWP and see if
1247 * it's interested.
1248 */
1249 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1250 return 0;
1251 if (l->l_sigwaited == NULL ||
1252 !sigismember(&l->l_sigwaitset, signo))
1253 return 0;
1254 } else {
1255 /*
1256 * Look for any LWP that may be interested.
1257 */
1258 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1259 KASSERT(l->l_sigwaited != NULL);
1260 if (sigismember(&l->l_sigwaitset, signo))
1261 break;
1262 }
1263 }
1264
1265 if (l != NULL) {
1266 l->l_sigwaited->ksi_info = ksi->ksi_info;
1267 l->l_sigwaited = NULL;
1268 LIST_REMOVE(l, l_sigwaiter);
1269 cv_signal(&l->l_sigcv);
1270 return 1;
1271 }
1272
1273 return 0;
1274 }
1275
1276 /*
1277 * Send the signal to the process. If the signal has an action, the action
1278 * is usually performed by the target process rather than the caller; we add
1279 * the signal to the set of pending signals for the process.
1280 *
1281 * Exceptions:
1282 * o When a stop signal is sent to a sleeping process that takes the
1283 * default action, the process is stopped without awakening it.
1284 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1285 * regardless of the signal action (eg, blocked or ignored).
1286 *
1287 * Other ignored signals are discarded immediately.
1288 */
1289 void
1290 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1291 {
1292 int prop, signo = ksi->ksi_signo;
1293 struct sigacts *sa;
1294 struct lwp *l;
1295 ksiginfo_t *kp;
1296 lwpid_t lid;
1297 sig_t action;
1298 bool toall;
1299
1300 KASSERT(!cpu_intr_p());
1301 KASSERT(mutex_owned(proc_lock));
1302 KASSERT(mutex_owned(p->p_lock));
1303 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1304 KASSERT(signo > 0 && signo < NSIG);
1305
1306 /*
1307 * If the process is being created by fork, is a zombie or is
1308 * exiting, then just drop the signal here and bail out.
1309 */
1310 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1311 return;
1312
1313 /*
1314 * Notify any interested parties of the signal.
1315 */
1316 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1317
1318 /*
1319 * Some signals including SIGKILL must act on the entire process.
1320 */
1321 kp = NULL;
1322 prop = sigprop[signo];
1323 toall = ((prop & SA_TOALL) != 0);
1324 lid = toall ? 0 : ksi->ksi_lid;
1325
1326 /*
1327 * If proc is traced, always give parent a chance.
1328 */
1329 if (p->p_slflag & PSL_TRACED) {
1330 action = SIG_DFL;
1331
1332 if (lid == 0) {
1333 /*
1334 * If the process is being traced and the signal
1335 * is being caught, make sure to save any ksiginfo.
1336 */
1337 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1338 return;
1339 sigput(&p->p_sigpend, p, kp);
1340 }
1341 } else {
1342 /*
1343 * If the signal was the result of a trap and is not being
1344 * caught, then reset it to default action so that the
1345 * process dumps core immediately.
1346 */
1347 if (KSI_TRAP_P(ksi)) {
1348 sa = p->p_sigacts;
1349 mutex_enter(&sa->sa_mutex);
1350 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1351 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1352 SIGACTION(p, signo).sa_handler = SIG_DFL;
1353 }
1354 mutex_exit(&sa->sa_mutex);
1355 }
1356
1357 /*
1358 * If the signal is being ignored, then drop it. Note: we
1359 * don't set SIGCONT in ps_sigignore, and if it is set to
1360 * SIG_IGN, action will be SIG_DFL here.
1361 */
1362 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1363 return;
1364
1365 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1366 action = SIG_CATCH;
1367 else {
1368 action = SIG_DFL;
1369
1370 /*
1371 * If sending a tty stop signal to a member of an
1372 * orphaned process group, discard the signal here if
1373 * the action is default; don't stop the process below
1374 * if sleeping, and don't clear any pending SIGCONT.
1375 */
1376 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1377 return;
1378
1379 if (prop & SA_KILL && p->p_nice > NZERO)
1380 p->p_nice = NZERO;
1381 }
1382 }
1383
1384 /*
1385 * If stopping or continuing a process, discard any pending
1386 * signals that would do the inverse.
1387 */
1388 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1389 ksiginfoq_t kq;
1390
1391 ksiginfo_queue_init(&kq);
1392 if ((prop & SA_CONT) != 0)
1393 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1394 if ((prop & SA_STOP) != 0)
1395 sigclear(&p->p_sigpend, &contsigmask, &kq);
1396 ksiginfo_queue_drain(&kq); /* XXXSMP */
1397 }
1398
1399 /*
1400 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1401 * please!), check if any LWPs are waiting on it. If yes, pass on
1402 * the signal info. The signal won't be processed further here.
1403 */
1404 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1405 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1406 sigunwait(p, ksi))
1407 return;
1408
1409 /*
1410 * XXXSMP Should be allocated by the caller, we're holding locks
1411 * here.
1412 */
1413 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1414 return;
1415
1416 /*
1417 * LWP private signals are easy - just find the LWP and post
1418 * the signal to it.
1419 */
1420 if (lid != 0) {
1421 l = lwp_find(p, lid);
1422 if (l != NULL) {
1423 sigput(&l->l_sigpend, p, kp);
1424 membar_producer();
1425 (void)sigpost(l, action, prop, kp->ksi_signo, 0);
1426 }
1427 goto out;
1428 }
1429
1430 /*
1431 * Some signals go to all LWPs, even if posted with _lwp_kill()
1432 * or for an SA process.
1433 */
1434 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1435 if ((p->p_slflag & PSL_TRACED) != 0)
1436 goto deliver;
1437
1438 /*
1439 * If SIGCONT is default (or ignored) and process is
1440 * asleep, we are finished; the process should not
1441 * be awakened.
1442 */
1443 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1444 goto out;
1445 } else {
1446 /*
1447 * Process is stopped or stopping.
1448 * - If traced, then no action is needed, unless killing.
1449 * - Run the process only if sending SIGCONT or SIGKILL.
1450 */
1451 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1452 goto out;
1453 }
1454 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1455 /*
1456 * Re-adjust p_nstopchild if the process wasn't
1457 * collected by its parent.
1458 */
1459 p->p_stat = SACTIVE;
1460 p->p_sflag &= ~PS_STOPPING;
1461 if (!p->p_waited) {
1462 p->p_pptr->p_nstopchild--;
1463 }
1464 if (p->p_slflag & PSL_TRACED) {
1465 KASSERT(signo == SIGKILL);
1466 goto deliver;
1467 }
1468 /*
1469 * Do not make signal pending if SIGCONT is default.
1470 *
1471 * If the process catches SIGCONT, let it handle the
1472 * signal itself (if waiting on event - process runs,
1473 * otherwise continues sleeping).
1474 */
1475 if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1476 KASSERT(signo != SIGKILL);
1477 goto deliver;
1478 }
1479 } else if ((prop & SA_STOP) != 0) {
1480 /*
1481 * Already stopped, don't need to stop again.
1482 * (If we did the shell could get confused.)
1483 */
1484 goto out;
1485 }
1486 }
1487 /*
1488 * Make signal pending.
1489 */
1490 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1491 sigput(&p->p_sigpend, p, kp);
1492
1493 deliver:
1494 /*
1495 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1496 * visible on the per process list (for sigispending()). This
1497 * is unlikely to be needed in practice, but...
1498 */
1499 membar_producer();
1500
1501 /*
1502 * Try to find an LWP that can take the signal.
1503 */
1504 #if KERN_SA
1505 if ((p->p_sa != NULL) && !toall) {
1506 struct sadata_vp *vp;
1507 /*
1508 * If we're in this delivery path, we are delivering a
1509 * signal that needs to go to one thread in the process.
1510 *
1511 * In the SA case, we try to find an idle LWP that can take
1512 * the signal. If that fails, only then do we consider
1513 * interrupting active LWPs. Since the signal's going to
1514 * just one thread, we need only look at "blessed" lwps,
1515 * so scan the vps for them.
1516 */
1517 l = NULL;
1518 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1519 l = vp->savp_lwp;
1520 if (sigpost(l, action, prop, kp->ksi_signo, 1))
1521 break;
1522 }
1523
1524 if (l == NULL) {
1525 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1526 l = vp->savp_lwp;
1527 if (sigpost(l, action, prop, kp->ksi_signo, 0))
1528 break;
1529 }
1530 }
1531 /* Delivered, skip next. */
1532 goto out;
1533 }
1534 #endif
1535 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1536 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1537 break;
1538 }
1539 out:
1540 /*
1541 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1542 * with locks held. The caller should take care of this.
1543 */
1544 ksiginfo_free(kp);
1545 }
1546
1547 void
1548 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1549 {
1550 struct proc *p = l->l_proc;
1551 #ifdef KERN_SA
1552 struct lwp *le, *li;
1553 siginfo_t *si;
1554 int f;
1555 #endif /* KERN_SA */
1556
1557 KASSERT(mutex_owned(p->p_lock));
1558
1559 #ifdef KERN_SA
1560 if (p->p_sflag & PS_SA) {
1561 /* f indicates if we should clear LP_SA_NOBLOCK */
1562 f = ~l->l_pflag & LP_SA_NOBLOCK;
1563 l->l_pflag |= LP_SA_NOBLOCK;
1564
1565 mutex_exit(p->p_lock);
1566 /* XXXUPSXXX What if not on sa_vp? */
1567 /*
1568 * WRS: I think it won't matter, beyond the
1569 * question of what exactly we do with a signal
1570 * to a blocked user thread. Also, we try hard to always
1571 * send signals to blessed lwps, so we would only send
1572 * to a non-blessed lwp under special circumstances.
1573 */
1574 si = siginfo_alloc(PR_WAITOK);
1575
1576 si->_info = ksi->ksi_info;
1577
1578 /*
1579 * Figure out if we're the innocent victim or the main
1580 * perpitrator.
1581 */
1582 le = li = NULL;
1583 if (KSI_TRAP_P(ksi))
1584 le = l;
1585 else
1586 li = l;
1587 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1588 sizeof(*si), si, siginfo_free) != 0) {
1589 siginfo_free(si);
1590 #if 0
1591 if (KSI_TRAP_P(ksi))
1592 /* XXX What dowe do here? The signal
1593 * didn't make it
1594 */;
1595 #endif
1596 }
1597 l->l_pflag ^= f;
1598 mutex_enter(p->p_lock);
1599 return;
1600 }
1601 #endif /* KERN_SA */
1602
1603 (*p->p_emul->e_sendsig)(ksi, mask);
1604 }
1605
1606 /*
1607 * Stop any LWPs sleeping interruptably.
1608 */
1609 static void
1610 proc_stop_lwps(struct proc *p)
1611 {
1612 struct lwp *l;
1613
1614 KASSERT(mutex_owned(p->p_lock));
1615 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1616
1617 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1618 lwp_lock(l);
1619 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1620 l->l_stat = LSSTOP;
1621 p->p_nrlwps--;
1622 }
1623 lwp_unlock(l);
1624 }
1625 }
1626
1627 /*
1628 * Finish stopping of a process. Mark it stopped and notify the parent.
1629 *
1630 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1631 */
1632 static void
1633 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1634 {
1635
1636 KASSERT(mutex_owned(proc_lock));
1637 KASSERT(mutex_owned(p->p_lock));
1638 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1639 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1640
1641 p->p_sflag &= ~PS_STOPPING;
1642 p->p_stat = SSTOP;
1643 p->p_waited = 0;
1644 p->p_pptr->p_nstopchild++;
1645 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1646 if (ppsig) {
1647 /* child_psignal drops p_lock briefly. */
1648 child_psignal(p, ppmask);
1649 }
1650 cv_broadcast(&p->p_pptr->p_waitcv);
1651 }
1652 }
1653
1654 /*
1655 * Stop the current process and switch away when being stopped or traced.
1656 */
1657 static void
1658 sigswitch(bool ppsig, int ppmask, int signo)
1659 {
1660 struct lwp *l = curlwp;
1661 struct proc *p = l->l_proc;
1662 int biglocks;
1663
1664 KASSERT(mutex_owned(p->p_lock));
1665 KASSERT(l->l_stat == LSONPROC);
1666 KASSERT(p->p_nrlwps > 0);
1667
1668 /*
1669 * On entry we know that the process needs to stop. If it's
1670 * the result of a 'sideways' stop signal that has been sourced
1671 * through issignal(), then stop other LWPs in the process too.
1672 */
1673 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1674 KASSERT(signo != 0);
1675 proc_stop(p, 1, signo);
1676 KASSERT(p->p_nrlwps > 0);
1677 }
1678
1679 /*
1680 * If we are the last live LWP, and the stop was a result of
1681 * a new signal, then signal the parent.
1682 */
1683 if ((p->p_sflag & PS_STOPPING) != 0) {
1684 if (!mutex_tryenter(proc_lock)) {
1685 mutex_exit(p->p_lock);
1686 mutex_enter(proc_lock);
1687 mutex_enter(p->p_lock);
1688 }
1689
1690 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1691 /*
1692 * Note that proc_stop_done() can drop
1693 * p->p_lock briefly.
1694 */
1695 proc_stop_done(p, ppsig, ppmask);
1696 }
1697
1698 mutex_exit(proc_lock);
1699 }
1700
1701 /*
1702 * Unlock and switch away.
1703 */
1704 KERNEL_UNLOCK_ALL(l, &biglocks);
1705 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1706 p->p_nrlwps--;
1707 lwp_lock(l);
1708 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1709 l->l_stat = LSSTOP;
1710 lwp_unlock(l);
1711 }
1712
1713 mutex_exit(p->p_lock);
1714 lwp_lock(l);
1715 mi_switch(l);
1716 KERNEL_LOCK(biglocks, l);
1717 mutex_enter(p->p_lock);
1718 }
1719
1720 /*
1721 * Check for a signal from the debugger.
1722 */
1723 static int
1724 sigchecktrace(void)
1725 {
1726 struct lwp *l = curlwp;
1727 struct proc *p = l->l_proc;
1728 sigset_t *mask;
1729 int signo;
1730
1731 KASSERT(mutex_owned(p->p_lock));
1732
1733 /* If there's a pending SIGKILL, process it immediately. */
1734 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1735 return 0;
1736
1737 /*
1738 * If we are no longer being traced, or the parent didn't
1739 * give us a signal, or we're stopping, look for more signals.
1740 */
1741 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
1742 (p->p_sflag & PS_STOPPING) != 0)
1743 return 0;
1744
1745 /*
1746 * If the new signal is being masked, look for other signals.
1747 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1748 */
1749 signo = p->p_xstat;
1750 p->p_xstat = 0;
1751 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1752 if (sigismember(mask, signo))
1753 signo = 0;
1754
1755 return signo;
1756 }
1757
1758 /*
1759 * If the current process has received a signal (should be caught or cause
1760 * termination, should interrupt current syscall), return the signal number.
1761 *
1762 * Stop signals with default action are processed immediately, then cleared;
1763 * they aren't returned. This is checked after each entry to the system for
1764 * a syscall or trap.
1765 *
1766 * We will also return -1 if the process is exiting and the current LWP must
1767 * follow suit.
1768 */
1769 int
1770 issignal(struct lwp *l)
1771 {
1772 struct proc *p;
1773 int signo, prop;
1774 sigpend_t *sp;
1775 sigset_t ss;
1776
1777 p = l->l_proc;
1778 sp = NULL;
1779 signo = 0;
1780
1781 KASSERT(p == curproc);
1782 KASSERT(mutex_owned(p->p_lock));
1783
1784 for (;;) {
1785 /* Discard any signals that we have decided not to take. */
1786 if (signo != 0)
1787 (void)sigget(sp, NULL, signo, NULL);
1788
1789 /* Bail out if we do not own the virtual processor */
1790 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1791 break;
1792
1793 /*
1794 * If the process is stopped/stopping, then stop ourselves
1795 * now that we're on the kernel/userspace boundary. When
1796 * we awaken, check for a signal from the debugger.
1797 */
1798 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1799 sigswitch(true, PS_NOCLDSTOP, 0);
1800 signo = sigchecktrace();
1801 } else
1802 signo = 0;
1803
1804 /* Signals from the debugger are "out of band". */
1805 sp = NULL;
1806
1807 /*
1808 * If the debugger didn't provide a signal, find a pending
1809 * signal from our set. Check per-LWP signals first, and
1810 * then per-process.
1811 */
1812 if (signo == 0) {
1813 sp = &l->l_sigpend;
1814 ss = sp->sp_set;
1815 if ((p->p_lflag & PL_PPWAIT) != 0)
1816 sigminusset(&stopsigmask, &ss);
1817 sigminusset(&l->l_sigmask, &ss);
1818
1819 if ((signo = firstsig(&ss)) == 0) {
1820 sp = &p->p_sigpend;
1821 ss = sp->sp_set;
1822 if ((p->p_lflag & PL_PPWAIT) != 0)
1823 sigminusset(&stopsigmask, &ss);
1824 sigminusset(&l->l_sigmask, &ss);
1825
1826 if ((signo = firstsig(&ss)) == 0) {
1827 /*
1828 * No signal pending - clear the
1829 * indicator and bail out.
1830 */
1831 lwp_lock(l);
1832 l->l_flag &= ~LW_PENDSIG;
1833 lwp_unlock(l);
1834 sp = NULL;
1835 break;
1836 }
1837 }
1838 }
1839
1840 /*
1841 * We should see pending but ignored signals only if
1842 * we are being traced.
1843 */
1844 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1845 (p->p_slflag & PSL_TRACED) == 0) {
1846 /* Discard the signal. */
1847 continue;
1848 }
1849
1850 /*
1851 * If traced, always stop, and stay stopped until released
1852 * by the debugger. If the our parent process is waiting
1853 * for us, don't hang as we could deadlock.
1854 */
1855 if ((p->p_slflag & PSL_TRACED) != 0 &&
1856 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1857 /* Take the signal. */
1858 (void)sigget(sp, NULL, signo, NULL);
1859 p->p_xstat = signo;
1860
1861 /* Emulation-specific handling of signal trace */
1862 if (p->p_emul->e_tracesig == NULL ||
1863 (*p->p_emul->e_tracesig)(p, signo) == 0)
1864 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1865 signo);
1866
1867 /* Check for a signal from the debugger. */
1868 if ((signo = sigchecktrace()) == 0)
1869 continue;
1870
1871 /* Signals from the debugger are "out of band". */
1872 sp = NULL;
1873 }
1874
1875 prop = sigprop[signo];
1876
1877 /* XXX no siginfo? */
1878 SDT_PROBE(proc,,,signal_handle, signo, 0,
1879 SIGACTION(p, signo).sa_handler, 0, 0);
1880
1881 /*
1882 * Decide whether the signal should be returned.
1883 */
1884 switch ((long)SIGACTION(p, signo).sa_handler) {
1885 case (long)SIG_DFL:
1886 /*
1887 * Don't take default actions on system processes.
1888 */
1889 if (p->p_pid <= 1) {
1890 #ifdef DIAGNOSTIC
1891 /*
1892 * Are you sure you want to ignore SIGSEGV
1893 * in init? XXX
1894 */
1895 printf_nolog("Process (pid %d) got sig %d\n",
1896 p->p_pid, signo);
1897 #endif
1898 continue;
1899 }
1900
1901 /*
1902 * If there is a pending stop signal to process with
1903 * default action, stop here, then clear the signal.
1904 * However, if process is member of an orphaned
1905 * process group, ignore tty stop signals.
1906 */
1907 if (prop & SA_STOP) {
1908 /*
1909 * XXX Don't hold proc_lock for p_lflag,
1910 * but it's not a big deal.
1911 */
1912 if (p->p_slflag & PSL_TRACED ||
1913 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1914 prop & SA_TTYSTOP)) {
1915 /* Ignore the signal. */
1916 continue;
1917 }
1918 /* Take the signal. */
1919 (void)sigget(sp, NULL, signo, NULL);
1920 p->p_xstat = signo;
1921 signo = 0;
1922 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1923 } else if (prop & SA_IGNORE) {
1924 /*
1925 * Except for SIGCONT, shouldn't get here.
1926 * Default action is to ignore; drop it.
1927 */
1928 continue;
1929 }
1930 break;
1931
1932 case (long)SIG_IGN:
1933 #ifdef DEBUG_ISSIGNAL
1934 /*
1935 * Masking above should prevent us ever trying
1936 * to take action on an ignored signal other
1937 * than SIGCONT, unless process is traced.
1938 */
1939 if ((prop & SA_CONT) == 0 &&
1940 (p->p_slflag & PSL_TRACED) == 0)
1941 printf_nolog("issignal\n");
1942 #endif
1943 continue;
1944
1945 default:
1946 /*
1947 * This signal has an action, let postsig() process
1948 * it.
1949 */
1950 break;
1951 }
1952
1953 break;
1954 }
1955
1956 l->l_sigpendset = sp;
1957 return signo;
1958 }
1959
1960 /*
1961 * Take the action for the specified signal
1962 * from the current set of pending signals.
1963 */
1964 void
1965 postsig(int signo)
1966 {
1967 struct lwp *l;
1968 struct proc *p;
1969 struct sigacts *ps;
1970 sig_t action;
1971 sigset_t *returnmask;
1972 ksiginfo_t ksi;
1973
1974 l = curlwp;
1975 p = l->l_proc;
1976 ps = p->p_sigacts;
1977
1978 KASSERT(mutex_owned(p->p_lock));
1979 KASSERT(signo > 0);
1980
1981 /*
1982 * Set the new mask value and also defer further occurrences of this
1983 * signal.
1984 *
1985 * Special case: user has done a sigsuspend. Here the current mask is
1986 * not of interest, but rather the mask from before the sigsuspend is
1987 * what we want restored after the signal processing is completed.
1988 */
1989 if (l->l_sigrestore) {
1990 returnmask = &l->l_sigoldmask;
1991 l->l_sigrestore = 0;
1992 } else
1993 returnmask = &l->l_sigmask;
1994
1995 /*
1996 * Commit to taking the signal before releasing the mutex.
1997 */
1998 action = SIGACTION_PS(ps, signo).sa_handler;
1999 l->l_ru.ru_nsignals++;
2000 sigget(l->l_sigpendset, &ksi, signo, NULL);
2001
2002 if (ktrpoint(KTR_PSIG)) {
2003 mutex_exit(p->p_lock);
2004 ktrpsig(signo, action, returnmask, &ksi);
2005 mutex_enter(p->p_lock);
2006 }
2007
2008 if (action == SIG_DFL) {
2009 /*
2010 * Default action, where the default is to kill
2011 * the process. (Other cases were ignored above.)
2012 */
2013 sigexit(l, signo);
2014 return;
2015 }
2016
2017 /*
2018 * If we get here, the signal must be caught.
2019 */
2020 #ifdef DIAGNOSTIC
2021 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
2022 panic("postsig action");
2023 #endif
2024
2025 kpsendsig(l, &ksi, returnmask);
2026 }
2027
2028 /*
2029 * sendsig:
2030 *
2031 * Default signal delivery method for NetBSD.
2032 */
2033 void
2034 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
2035 {
2036 struct sigacts *sa;
2037 int sig;
2038
2039 sig = ksi->ksi_signo;
2040 sa = curproc->p_sigacts;
2041
2042 switch (sa->sa_sigdesc[sig].sd_vers) {
2043 case 0:
2044 case 1:
2045 /* Compat for 1.6 and earlier. */
2046 if (sendsig_sigcontext_vec == NULL) {
2047 break;
2048 }
2049 (*sendsig_sigcontext_vec)(ksi, mask);
2050 return;
2051 case 2:
2052 case 3:
2053 sendsig_siginfo(ksi, mask);
2054 return;
2055 default:
2056 break;
2057 }
2058
2059 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2060 sigexit(curlwp, SIGILL);
2061 }
2062
2063 /*
2064 * sendsig_reset:
2065 *
2066 * Reset the signal action. Called from emulation specific sendsig()
2067 * before unlocking to deliver the signal.
2068 */
2069 void
2070 sendsig_reset(struct lwp *l, int signo)
2071 {
2072 struct proc *p = l->l_proc;
2073 struct sigacts *ps = p->p_sigacts;
2074 sigset_t *mask;
2075
2076 KASSERT(mutex_owned(p->p_lock));
2077
2078 p->p_sigctx.ps_lwp = 0;
2079 p->p_sigctx.ps_code = 0;
2080 p->p_sigctx.ps_signo = 0;
2081
2082 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2083
2084 mutex_enter(&ps->sa_mutex);
2085 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2086 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2087 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2088 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2089 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2090 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2091 }
2092 mutex_exit(&ps->sa_mutex);
2093 }
2094
2095 /*
2096 * Kill the current process for stated reason.
2097 */
2098 void
2099 killproc(struct proc *p, const char *why)
2100 {
2101
2102 KASSERT(mutex_owned(proc_lock));
2103
2104 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2105 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2106 psignal(p, SIGKILL);
2107 }
2108
2109 /*
2110 * Force the current process to exit with the specified signal, dumping core
2111 * if appropriate. We bypass the normal tests for masked and caught
2112 * signals, allowing unrecoverable failures to terminate the process without
2113 * changing signal state. Mark the accounting record with the signal
2114 * termination. If dumping core, save the signal number for the debugger.
2115 * Calls exit and does not return.
2116 */
2117 void
2118 sigexit(struct lwp *l, int signo)
2119 {
2120 int exitsig, error, docore;
2121 struct proc *p;
2122 struct lwp *t;
2123
2124 p = l->l_proc;
2125
2126 KASSERT(mutex_owned(p->p_lock));
2127 KERNEL_UNLOCK_ALL(l, NULL);
2128
2129 /*
2130 * Don't permit coredump() multiple times in the same process.
2131 * Call back into sigexit, where we will be suspended until
2132 * the deed is done. Note that this is a recursive call, but
2133 * LW_WCORE will prevent us from coming back this way.
2134 */
2135 if ((p->p_sflag & PS_WCORE) != 0) {
2136 lwp_lock(l);
2137 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2138 lwp_unlock(l);
2139 mutex_exit(p->p_lock);
2140 lwp_userret(l);
2141 panic("sigexit 1");
2142 /* NOTREACHED */
2143 }
2144
2145 /* If process is already on the way out, then bail now. */
2146 if ((p->p_sflag & PS_WEXIT) != 0) {
2147 mutex_exit(p->p_lock);
2148 lwp_exit(l);
2149 panic("sigexit 2");
2150 /* NOTREACHED */
2151 }
2152
2153 /*
2154 * Prepare all other LWPs for exit. If dumping core, suspend them
2155 * so that their registers are available long enough to be dumped.
2156 */
2157 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2158 p->p_sflag |= PS_WCORE;
2159 for (;;) {
2160 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2161 lwp_lock(t);
2162 if (t == l) {
2163 t->l_flag &= ~LW_WSUSPEND;
2164 lwp_unlock(t);
2165 continue;
2166 }
2167 t->l_flag |= (LW_WCORE | LW_WEXIT);
2168 lwp_suspend(l, t);
2169 }
2170
2171 if (p->p_nrlwps == 1)
2172 break;
2173
2174 /*
2175 * Kick any LWPs sitting in lwp_wait1(), and wait
2176 * for everyone else to stop before proceeding.
2177 */
2178 p->p_nlwpwait++;
2179 cv_broadcast(&p->p_lwpcv);
2180 cv_wait(&p->p_lwpcv, p->p_lock);
2181 p->p_nlwpwait--;
2182 }
2183 }
2184
2185 exitsig = signo;
2186 p->p_acflag |= AXSIG;
2187 p->p_sigctx.ps_signo = signo;
2188
2189 if (docore) {
2190 mutex_exit(p->p_lock);
2191 if ((error = (*coredump_vec)(l, NULL)) == 0)
2192 exitsig |= WCOREFLAG;
2193
2194 if (kern_logsigexit) {
2195 int uid = l->l_cred ?
2196 (int)kauth_cred_geteuid(l->l_cred) : -1;
2197
2198 if (error)
2199 log(LOG_INFO, lognocoredump, p->p_pid,
2200 p->p_comm, uid, signo, error);
2201 else
2202 log(LOG_INFO, logcoredump, p->p_pid,
2203 p->p_comm, uid, signo);
2204 }
2205
2206 #ifdef PAX_SEGVGUARD
2207 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2208 #endif /* PAX_SEGVGUARD */
2209 /* Acquire the sched state mutex. exit1() will release it. */
2210 mutex_enter(p->p_lock);
2211 }
2212
2213 /* No longer dumping core. */
2214 p->p_sflag &= ~PS_WCORE;
2215
2216 exit1(l, W_EXITCODE(0, exitsig));
2217 /* NOTREACHED */
2218 }
2219
2220 /*
2221 * Put process 'p' into the stopped state and optionally, notify the parent.
2222 */
2223 void
2224 proc_stop(struct proc *p, int notify, int signo)
2225 {
2226 struct lwp *l;
2227
2228 KASSERT(mutex_owned(p->p_lock));
2229
2230 /*
2231 * First off, set the stopping indicator and bring all sleeping
2232 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2233 * unlock between here and the p->p_nrlwps check below.
2234 */
2235 p->p_sflag |= PS_STOPPING;
2236 if (notify)
2237 p->p_sflag |= PS_NOTIFYSTOP;
2238 else
2239 p->p_sflag &= ~PS_NOTIFYSTOP;
2240 membar_producer();
2241
2242 proc_stop_lwps(p);
2243
2244 /*
2245 * If there are no LWPs available to take the signal, then we
2246 * signal the parent process immediately. Otherwise, the last
2247 * LWP to stop will take care of it.
2248 */
2249
2250 if (p->p_nrlwps == 0) {
2251 proc_stop_done(p, true, PS_NOCLDSTOP);
2252 } else {
2253 /*
2254 * Have the remaining LWPs come to a halt, and trigger
2255 * proc_stop_callout() to ensure that they do.
2256 */
2257 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2258 sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2259 callout_schedule(&proc_stop_ch, 1);
2260 }
2261 }
2262
2263 /*
2264 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2265 * but wait for them to come to a halt at the kernel-user boundary. This is
2266 * to allow LWPs to release any locks that they may hold before stopping.
2267 *
2268 * Non-interruptable sleeps can be long, and there is the potential for an
2269 * LWP to begin sleeping interruptably soon after the process has been set
2270 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2271 * stopping, and so complete halt of the process and the return of status
2272 * information to the parent could be delayed indefinitely.
2273 *
2274 * To handle this race, proc_stop_callout() runs once per tick while there
2275 * are stopping processes in the system. It sets LWPs that are sleeping
2276 * interruptably into the LSSTOP state.
2277 *
2278 * Note that we are not concerned about keeping all LWPs stopped while the
2279 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2280 * What we do need to ensure is that all LWPs in a stopping process have
2281 * stopped at least once, so that notification can be sent to the parent
2282 * process.
2283 */
2284 static void
2285 proc_stop_callout(void *cookie)
2286 {
2287 bool more, restart;
2288 struct proc *p;
2289
2290 (void)cookie;
2291
2292 do {
2293 restart = false;
2294 more = false;
2295
2296 mutex_enter(proc_lock);
2297 PROCLIST_FOREACH(p, &allproc) {
2298 mutex_enter(p->p_lock);
2299
2300 if ((p->p_sflag & PS_STOPPING) == 0) {
2301 mutex_exit(p->p_lock);
2302 continue;
2303 }
2304
2305 /* Stop any LWPs sleeping interruptably. */
2306 proc_stop_lwps(p);
2307 if (p->p_nrlwps == 0) {
2308 /*
2309 * We brought the process to a halt.
2310 * Mark it as stopped and notify the
2311 * parent.
2312 */
2313 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2314 /*
2315 * Note that proc_stop_done() will
2316 * drop p->p_lock briefly.
2317 * Arrange to restart and check
2318 * all processes again.
2319 */
2320 restart = true;
2321 }
2322 proc_stop_done(p, true, PS_NOCLDSTOP);
2323 } else
2324 more = true;
2325
2326 mutex_exit(p->p_lock);
2327 if (restart)
2328 break;
2329 }
2330 mutex_exit(proc_lock);
2331 } while (restart);
2332
2333 /*
2334 * If we noted processes that are stopping but still have
2335 * running LWPs, then arrange to check again in 1 tick.
2336 */
2337 if (more)
2338 callout_schedule(&proc_stop_ch, 1);
2339 }
2340
2341 /*
2342 * Given a process in state SSTOP, set the state back to SACTIVE and
2343 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2344 */
2345 void
2346 proc_unstop(struct proc *p)
2347 {
2348 struct lwp *l;
2349 int sig;
2350
2351 KASSERT(mutex_owned(proc_lock));
2352 KASSERT(mutex_owned(p->p_lock));
2353
2354 p->p_stat = SACTIVE;
2355 p->p_sflag &= ~PS_STOPPING;
2356 sig = p->p_xstat;
2357
2358 if (!p->p_waited)
2359 p->p_pptr->p_nstopchild--;
2360
2361 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2362 lwp_lock(l);
2363 if (l->l_stat != LSSTOP) {
2364 lwp_unlock(l);
2365 continue;
2366 }
2367 if (l->l_wchan == NULL) {
2368 setrunnable(l);
2369 continue;
2370 }
2371 if (sig && (l->l_flag & LW_SINTR) != 0) {
2372 setrunnable(l);
2373 sig = 0;
2374 } else {
2375 l->l_stat = LSSLEEP;
2376 p->p_nrlwps++;
2377 lwp_unlock(l);
2378 }
2379 }
2380 }
2381
2382 static int
2383 filt_sigattach(struct knote *kn)
2384 {
2385 struct proc *p = curproc;
2386
2387 kn->kn_obj = p;
2388 kn->kn_flags |= EV_CLEAR; /* automatically set */
2389
2390 mutex_enter(p->p_lock);
2391 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2392 mutex_exit(p->p_lock);
2393
2394 return 0;
2395 }
2396
2397 static void
2398 filt_sigdetach(struct knote *kn)
2399 {
2400 struct proc *p = kn->kn_obj;
2401
2402 mutex_enter(p->p_lock);
2403 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2404 mutex_exit(p->p_lock);
2405 }
2406
2407 /*
2408 * Signal knotes are shared with proc knotes, so we apply a mask to
2409 * the hint in order to differentiate them from process hints. This
2410 * could be avoided by using a signal-specific knote list, but probably
2411 * isn't worth the trouble.
2412 */
2413 static int
2414 filt_signal(struct knote *kn, long hint)
2415 {
2416
2417 if (hint & NOTE_SIGNAL) {
2418 hint &= ~NOTE_SIGNAL;
2419
2420 if (kn->kn_id == hint)
2421 kn->kn_data++;
2422 }
2423 return (kn->kn_data != 0);
2424 }
2425
2426 const struct filterops sig_filtops = {
2427 0, filt_sigattach, filt_sigdetach, filt_signal
2428 };
2429