Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.316
      1 /*	$NetBSD: kern_sig.c,v 1.316 2011/09/16 22:07:17 reinoud Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.316 2011/09/16 22:07:17 reinoud Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_compat_sunos.h"
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_compat_netbsd32.h"
     79 #include "opt_pax.h"
     80 #include "opt_sa.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/systm.h>
     87 #include <sys/wait.h>
     88 #include <sys/ktrace.h>
     89 #include <sys/syslog.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/file.h>
     92 #include <sys/pool.h>
     93 #include <sys/ucontext.h>
     94 #include <sys/sa.h>
     95 #include <sys/savar.h>
     96 #include <sys/exec.h>
     97 #include <sys/kauth.h>
     98 #include <sys/acct.h>
     99 #include <sys/callout.h>
    100 #include <sys/atomic.h>
    101 #include <sys/cpu.h>
    102 #include <sys/module.h>
    103 #include <sys/sdt.h>
    104 
    105 #ifdef PAX_SEGVGUARD
    106 #include <sys/pax.h>
    107 #endif /* PAX_SEGVGUARD */
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 static pool_cache_t	sigacts_cache	__read_mostly;
    112 static pool_cache_t	ksiginfo_cache	__read_mostly;
    113 static callout_t	proc_stop_ch	__cacheline_aligned;
    114 
    115 #ifdef KERN_SA
    116 static pool_cache_t	siginfo_cache;
    117 #endif
    118 
    119 sigset_t		contsigmask	__cacheline_aligned;
    120 static sigset_t		stopsigmask	__cacheline_aligned;
    121 sigset_t		sigcantmask	__cacheline_aligned;
    122 
    123 static void	ksiginfo_exechook(struct proc *, void *);
    124 static void	proc_stop_callout(void *);
    125 static int	sigchecktrace(void);
    126 static int	sigpost(struct lwp *, sig_t, int, int, int);
    127 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    128 static int	sigunwait(struct proc *, const ksiginfo_t *);
    129 static void	sigswitch(bool, int, int);
    130 
    131 static void	sigacts_poolpage_free(struct pool *, void *);
    132 static void	*sigacts_poolpage_alloc(struct pool *, int);
    133 
    134 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    135 int (*coredump_vec)(struct lwp *, const char *) =
    136     (int (*)(struct lwp *, const char *))enosys;
    137 
    138 /*
    139  * DTrace SDT provider definitions
    140  */
    141 SDT_PROBE_DEFINE(proc,,,signal_send,
    142 	    "struct lwp *", NULL,	/* target thread */
    143 	    "struct proc *", NULL,	/* target process */
    144 	    "int", NULL, 		/* signal */
    145 	    NULL, NULL, NULL, NULL);
    146 SDT_PROBE_DEFINE(proc,,,signal_discard,
    147 	    "struct lwp *", NULL,	/* target thread */
    148 	    "struct proc *", NULL,	/* target process */
    149 	    "int", NULL, 		/* signal */
    150 	    NULL, NULL, NULL, NULL);
    151 SDT_PROBE_DEFINE(proc,,,signal_clear,
    152 	    "int", NULL,		/* signal */
    153 	    NULL, NULL, NULL, NULL,
    154 	    NULL, NULL, NULL, NULL);
    155 SDT_PROBE_DEFINE(proc,,,signal_handle,
    156 	    "int", NULL,		/* signal */
    157 	    "ksiginfo_t *", NULL,
    158 	    "void (*)(void)", NULL,	/* handler address */
    159 	    NULL, NULL, NULL, NULL);
    160 
    161 
    162 static struct pool_allocator sigactspool_allocator = {
    163 	.pa_alloc = sigacts_poolpage_alloc,
    164 	.pa_free = sigacts_poolpage_free
    165 };
    166 
    167 #ifdef DEBUG
    168 int	kern_logsigexit = 1;
    169 #else
    170 int	kern_logsigexit = 0;
    171 #endif
    172 
    173 static const char logcoredump[] =
    174     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    175 static const char lognocoredump[] =
    176     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    177 
    178 static kauth_listener_t signal_listener;
    179 
    180 static int
    181 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    182     void *arg0, void *arg1, void *arg2, void *arg3)
    183 {
    184 	struct proc *p;
    185 	int result, signum;
    186 
    187 	result = KAUTH_RESULT_DEFER;
    188 	p = arg0;
    189 	signum = (int)(unsigned long)arg1;
    190 
    191 	if (action != KAUTH_PROCESS_SIGNAL)
    192 		return result;
    193 
    194 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    195 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    196 		result = KAUTH_RESULT_ALLOW;
    197 
    198 	return result;
    199 }
    200 
    201 /*
    202  * signal_init:
    203  *
    204  *	Initialize global signal-related data structures.
    205  */
    206 void
    207 signal_init(void)
    208 {
    209 
    210 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    211 
    212 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    213 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    214 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    215 #ifdef KERN_SA
    216 	siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
    217 	    "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
    218 #endif
    219 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    220 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    221 
    222 	exechook_establish(ksiginfo_exechook, NULL);
    223 
    224 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    225 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    226 
    227 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    228 	    signal_listener_cb, NULL);
    229 }
    230 
    231 /*
    232  * sigacts_poolpage_alloc:
    233  *
    234  *	Allocate a page for the sigacts memory pool.
    235  */
    236 static void *
    237 sigacts_poolpage_alloc(struct pool *pp, int flags)
    238 {
    239 
    240 	return (void *)uvm_km_alloc(kernel_map,
    241 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    242 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    243 	    | UVM_KMF_WIRED);
    244 }
    245 
    246 /*
    247  * sigacts_poolpage_free:
    248  *
    249  *	Free a page on behalf of the sigacts memory pool.
    250  */
    251 static void
    252 sigacts_poolpage_free(struct pool *pp, void *v)
    253 {
    254 
    255 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    256 }
    257 
    258 /*
    259  * sigactsinit:
    260  *
    261  *	Create an initial sigacts structure, using the same signal state
    262  *	as of specified process.  If 'share' is set, share the sigacts by
    263  *	holding a reference, otherwise just copy it from parent.
    264  */
    265 struct sigacts *
    266 sigactsinit(struct proc *pp, int share)
    267 {
    268 	struct sigacts *ps = pp->p_sigacts, *ps2;
    269 
    270 	if (__predict_false(share)) {
    271 		atomic_inc_uint(&ps->sa_refcnt);
    272 		return ps;
    273 	}
    274 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    275 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    276 	ps2->sa_refcnt = 1;
    277 
    278 	mutex_enter(&ps->sa_mutex);
    279 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    280 	mutex_exit(&ps->sa_mutex);
    281 	return ps2;
    282 }
    283 
    284 /*
    285  * sigactsunshare:
    286  *
    287  *	Make this process not share its sigacts, maintaining all signal state.
    288  */
    289 void
    290 sigactsunshare(struct proc *p)
    291 {
    292 	struct sigacts *ps, *oldps = p->p_sigacts;
    293 
    294 	if (__predict_true(oldps->sa_refcnt == 1))
    295 		return;
    296 
    297 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    298 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    299 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    300 	ps->sa_refcnt = 1;
    301 
    302 	p->p_sigacts = ps;
    303 	sigactsfree(oldps);
    304 }
    305 
    306 /*
    307  * sigactsfree;
    308  *
    309  *	Release a sigacts structure.
    310  */
    311 void
    312 sigactsfree(struct sigacts *ps)
    313 {
    314 
    315 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    316 		mutex_destroy(&ps->sa_mutex);
    317 		pool_cache_put(sigacts_cache, ps);
    318 	}
    319 }
    320 
    321 /*
    322  * siginit:
    323  *
    324  *	Initialize signal state for process 0; set to ignore signals that
    325  *	are ignored by default and disable the signal stack.  Locking not
    326  *	required as the system is still cold.
    327  */
    328 void
    329 siginit(struct proc *p)
    330 {
    331 	struct lwp *l;
    332 	struct sigacts *ps;
    333 	int signo, prop;
    334 
    335 	ps = p->p_sigacts;
    336 	sigemptyset(&contsigmask);
    337 	sigemptyset(&stopsigmask);
    338 	sigemptyset(&sigcantmask);
    339 	for (signo = 1; signo < NSIG; signo++) {
    340 		prop = sigprop[signo];
    341 		if (prop & SA_CONT)
    342 			sigaddset(&contsigmask, signo);
    343 		if (prop & SA_STOP)
    344 			sigaddset(&stopsigmask, signo);
    345 		if (prop & SA_CANTMASK)
    346 			sigaddset(&sigcantmask, signo);
    347 		if (prop & SA_IGNORE && signo != SIGCONT)
    348 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    349 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    350 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    351 	}
    352 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    353 	p->p_sflag &= ~PS_NOCLDSTOP;
    354 
    355 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    356 	sigemptyset(&p->p_sigpend.sp_set);
    357 
    358 	/*
    359 	 * Reset per LWP state.
    360 	 */
    361 	l = LIST_FIRST(&p->p_lwps);
    362 	l->l_sigwaited = NULL;
    363 	l->l_sigstk.ss_flags = SS_DISABLE;
    364 	l->l_sigstk.ss_size = 0;
    365 	l->l_sigstk.ss_sp = 0;
    366 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    367 	sigemptyset(&l->l_sigpend.sp_set);
    368 
    369 	/* One reference. */
    370 	ps->sa_refcnt = 1;
    371 }
    372 
    373 /*
    374  * execsigs:
    375  *
    376  *	Reset signals for an exec of the specified process.
    377  */
    378 void
    379 execsigs(struct proc *p)
    380 {
    381 	struct sigacts *ps;
    382 	struct lwp *l;
    383 	int signo, prop;
    384 	sigset_t tset;
    385 	ksiginfoq_t kq;
    386 
    387 	KASSERT(p->p_nlwps == 1);
    388 
    389 	sigactsunshare(p);
    390 	ps = p->p_sigacts;
    391 
    392 	/*
    393 	 * Reset caught signals.  Held signals remain held through
    394 	 * l->l_sigmask (unless they were caught, and are now ignored
    395 	 * by default).
    396 	 *
    397 	 * No need to lock yet, the process has only one LWP and
    398 	 * at this point the sigacts are private to the process.
    399 	 */
    400 	sigemptyset(&tset);
    401 	for (signo = 1; signo < NSIG; signo++) {
    402 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    403 			prop = sigprop[signo];
    404 			if (prop & SA_IGNORE) {
    405 				if ((prop & SA_CONT) == 0)
    406 					sigaddset(&p->p_sigctx.ps_sigignore,
    407 					    signo);
    408 				sigaddset(&tset, signo);
    409 			}
    410 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    411 		}
    412 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    413 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    414 	}
    415 	ksiginfo_queue_init(&kq);
    416 
    417 	mutex_enter(p->p_lock);
    418 	sigclearall(p, &tset, &kq);
    419 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    420 
    421 	/*
    422 	 * Reset no zombies if child dies flag as Solaris does.
    423 	 */
    424 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    425 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    426 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    427 
    428 	/*
    429 	 * Reset per-LWP state.
    430 	 */
    431 	l = LIST_FIRST(&p->p_lwps);
    432 	l->l_sigwaited = NULL;
    433 	l->l_sigstk.ss_flags = SS_DISABLE;
    434 	l->l_sigstk.ss_size = 0;
    435 	l->l_sigstk.ss_sp = 0;
    436 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    437 	sigemptyset(&l->l_sigpend.sp_set);
    438 	mutex_exit(p->p_lock);
    439 
    440 	ksiginfo_queue_drain(&kq);
    441 }
    442 
    443 /*
    444  * ksiginfo_exechook:
    445  *
    446  *	Free all pending ksiginfo entries from a process on exec.
    447  *	Additionally, drain any unused ksiginfo structures in the
    448  *	system back to the pool.
    449  *
    450  *	XXX This should not be a hook, every process has signals.
    451  */
    452 static void
    453 ksiginfo_exechook(struct proc *p, void *v)
    454 {
    455 	ksiginfoq_t kq;
    456 
    457 	ksiginfo_queue_init(&kq);
    458 
    459 	mutex_enter(p->p_lock);
    460 	sigclearall(p, NULL, &kq);
    461 	mutex_exit(p->p_lock);
    462 
    463 	ksiginfo_queue_drain(&kq);
    464 }
    465 
    466 /*
    467  * ksiginfo_alloc:
    468  *
    469  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    470  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    471  *	has not been queued somewhere, then just return it.  Additionally,
    472  *	if the existing ksiginfo_t does not contain any information beyond
    473  *	the signal number, then just return it.
    474  */
    475 ksiginfo_t *
    476 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    477 {
    478 	ksiginfo_t *kp;
    479 
    480 	if (ok != NULL) {
    481 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    482 		    KSI_FROMPOOL)
    483 			return ok;
    484 		if (KSI_EMPTY_P(ok))
    485 			return ok;
    486 	}
    487 
    488 	kp = pool_cache_get(ksiginfo_cache, flags);
    489 	if (kp == NULL) {
    490 #ifdef DIAGNOSTIC
    491 		printf("Out of memory allocating ksiginfo for pid %d\n",
    492 		    p->p_pid);
    493 #endif
    494 		return NULL;
    495 	}
    496 
    497 	if (ok != NULL) {
    498 		memcpy(kp, ok, sizeof(*kp));
    499 		kp->ksi_flags &= ~KSI_QUEUED;
    500 	} else
    501 		KSI_INIT_EMPTY(kp);
    502 
    503 	kp->ksi_flags |= KSI_FROMPOOL;
    504 
    505 	return kp;
    506 }
    507 
    508 /*
    509  * ksiginfo_free:
    510  *
    511  *	If the given ksiginfo_t is from the pool and has not been queued,
    512  *	then free it.
    513  */
    514 void
    515 ksiginfo_free(ksiginfo_t *kp)
    516 {
    517 
    518 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    519 		return;
    520 	pool_cache_put(ksiginfo_cache, kp);
    521 }
    522 
    523 /*
    524  * ksiginfo_queue_drain:
    525  *
    526  *	Drain a non-empty ksiginfo_t queue.
    527  */
    528 void
    529 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    530 {
    531 	ksiginfo_t *ksi;
    532 
    533 	KASSERT(!CIRCLEQ_EMPTY(kq));
    534 
    535 	while (!CIRCLEQ_EMPTY(kq)) {
    536 		ksi = CIRCLEQ_FIRST(kq);
    537 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    538 		pool_cache_put(ksiginfo_cache, ksi);
    539 	}
    540 }
    541 
    542 static bool
    543 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    544 {
    545 	ksiginfo_t *ksi;
    546 
    547 	if (sp == NULL)
    548 		goto out;
    549 
    550 	/* Find siginfo and copy it out. */
    551 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    552 		if (ksi->ksi_signo != signo)
    553 			continue;
    554 		CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    555 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    556 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    557 		ksi->ksi_flags &= ~KSI_QUEUED;
    558 		if (out != NULL) {
    559 			memcpy(out, ksi, sizeof(*out));
    560 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    561 		}
    562 		ksiginfo_free(ksi);	/* XXXSMP */
    563 		return true;
    564 	}
    565 
    566 out:
    567 	/* If there is no siginfo, then manufacture it. */
    568 	if (out != NULL) {
    569 		KSI_INIT(out);
    570 		out->ksi_info._signo = signo;
    571 		out->ksi_info._code = SI_NOINFO;
    572 	}
    573 	return false;
    574 }
    575 
    576 /*
    577  * sigget:
    578  *
    579  *	Fetch the first pending signal from a set.  Optionally, also fetch
    580  *	or manufacture a ksiginfo element.  Returns the number of the first
    581  *	pending signal, or zero.
    582  */
    583 int
    584 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    585 {
    586 	sigset_t tset;
    587 
    588 	/* If there's no pending set, the signal is from the debugger. */
    589 	if (sp == NULL)
    590 		goto out;
    591 
    592 	/* Construct mask from signo, and 'mask'. */
    593 	if (signo == 0) {
    594 		if (mask != NULL) {
    595 			tset = *mask;
    596 			__sigandset(&sp->sp_set, &tset);
    597 		} else
    598 			tset = sp->sp_set;
    599 
    600 		/* If there are no signals pending - return. */
    601 		if ((signo = firstsig(&tset)) == 0)
    602 			goto out;
    603 	} else {
    604 		KASSERT(sigismember(&sp->sp_set, signo));
    605 	}
    606 
    607 	sigdelset(&sp->sp_set, signo);
    608 out:
    609 	(void)siggetinfo(sp, out, signo);
    610 	return signo;
    611 }
    612 
    613 /*
    614  * sigput:
    615  *
    616  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    617  */
    618 static void
    619 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    620 {
    621 	ksiginfo_t *kp;
    622 
    623 	KASSERT(mutex_owned(p->p_lock));
    624 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    625 
    626 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    627 
    628 	/*
    629 	 * If there is no siginfo, we are done.
    630 	 */
    631 	if (KSI_EMPTY_P(ksi))
    632 		return;
    633 
    634 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    635 
    636 #ifdef notyet	/* XXX: QUEUING */
    637 	if (ksi->ksi_signo < SIGRTMIN)
    638 #endif
    639 	{
    640 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    641 			if (kp->ksi_signo == ksi->ksi_signo) {
    642 				KSI_COPY(ksi, kp);
    643 				kp->ksi_flags |= KSI_QUEUED;
    644 				return;
    645 			}
    646 		}
    647 	}
    648 
    649 	ksi->ksi_flags |= KSI_QUEUED;
    650 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    651 }
    652 
    653 /*
    654  * sigclear:
    655  *
    656  *	Clear all pending signals in the specified set.
    657  */
    658 void
    659 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    660 {
    661 	ksiginfo_t *ksi, *next;
    662 
    663 	if (mask == NULL)
    664 		sigemptyset(&sp->sp_set);
    665 	else
    666 		sigminusset(mask, &sp->sp_set);
    667 
    668 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    669 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    670 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    671 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    672 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    673 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    674 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    675 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    676 		}
    677 	}
    678 }
    679 
    680 /*
    681  * sigclearall:
    682  *
    683  *	Clear all pending signals in the specified set from a process and
    684  *	its LWPs.
    685  */
    686 void
    687 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    688 {
    689 	struct lwp *l;
    690 
    691 	KASSERT(mutex_owned(p->p_lock));
    692 
    693 	sigclear(&p->p_sigpend, mask, kq);
    694 
    695 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    696 		sigclear(&l->l_sigpend, mask, kq);
    697 	}
    698 }
    699 
    700 /*
    701  * sigispending:
    702  *
    703  *	Return the first signal number if there are pending signals for the
    704  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    705  *	and that the signal has been posted to the appopriate queue before
    706  *	LW_PENDSIG is set.
    707  */
    708 int
    709 sigispending(struct lwp *l, int signo)
    710 {
    711 	struct proc *p = l->l_proc;
    712 	sigset_t tset;
    713 
    714 	membar_consumer();
    715 
    716 	tset = l->l_sigpend.sp_set;
    717 	sigplusset(&p->p_sigpend.sp_set, &tset);
    718 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    719 	sigminusset(&l->l_sigmask, &tset);
    720 
    721 	if (signo == 0) {
    722 		return firstsig(&tset);
    723 	}
    724 	return sigismember(&tset, signo) ? signo : 0;
    725 }
    726 
    727 #ifdef KERN_SA
    728 
    729 /*
    730  * siginfo_alloc:
    731  *
    732  *	Allocate a new siginfo_t structure from the pool.
    733  */
    734 siginfo_t *
    735 siginfo_alloc(int flags)
    736 {
    737 
    738 	return pool_cache_get(siginfo_cache, flags);
    739 }
    740 
    741 /*
    742  * siginfo_free:
    743  *
    744  *	Return a siginfo_t structure to the pool.
    745  */
    746 void
    747 siginfo_free(void *arg)
    748 {
    749 
    750 	pool_cache_put(siginfo_cache, arg);
    751 }
    752 
    753 #endif
    754 
    755 void
    756 getucontext(struct lwp *l, ucontext_t *ucp)
    757 {
    758 	struct proc *p = l->l_proc;
    759 
    760 	KASSERT(mutex_owned(p->p_lock));
    761 
    762 	ucp->uc_flags = 0;
    763 	ucp->uc_link = l->l_ctxlink;
    764 
    765 #if KERN_SA
    766 	if (p->p_sa != NULL)
    767 		ucp->uc_sigmask = p->p_sa->sa_sigmask;
    768 	else
    769 #endif /* KERN_SA */
    770 		ucp->uc_sigmask = l->l_sigmask;
    771 	ucp->uc_flags |= _UC_SIGMASK;
    772 
    773 	/*
    774 	 * The (unsupplied) definition of the `current execution stack'
    775 	 * in the System V Interface Definition appears to allow returning
    776 	 * the main context stack.
    777 	 */
    778 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    779 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    780 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    781 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    782 	} else {
    783 		/* Simply copy alternate signal execution stack. */
    784 		ucp->uc_stack = l->l_sigstk;
    785 	}
    786 	ucp->uc_flags |= _UC_STACK;
    787 	mutex_exit(p->p_lock);
    788 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    789 	mutex_enter(p->p_lock);
    790 }
    791 
    792 /*
    793  * getucontext_sa:
    794  *      Get a ucontext_t for use in SA upcall generation.
    795  * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
    796  * fudge things with uc_link (which is usually NULL for libpthread
    797  * code), and 3) we report an empty signal mask.
    798  */
    799 void
    800 getucontext_sa(struct lwp *l, ucontext_t *ucp)
    801 {
    802 	ucp->uc_flags = 0;
    803 	ucp->uc_link = l->l_ctxlink;
    804 
    805 	sigemptyset(&ucp->uc_sigmask);
    806 	ucp->uc_flags |= _UC_SIGMASK;
    807 
    808 	/*
    809 	 * The (unsupplied) definition of the `current execution stack'
    810 	 * in the System V Interface Definition appears to allow returning
    811 	 * the main context stack.
    812 	 */
    813 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    814 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    815 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    816 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    817 	} else {
    818 		/* Simply copy alternate signal execution stack. */
    819 		ucp->uc_stack = l->l_sigstk;
    820 	}
    821 	ucp->uc_flags |= _UC_STACK;
    822 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    823 }
    824 
    825 int
    826 setucontext(struct lwp *l, const ucontext_t *ucp)
    827 {
    828 	struct proc *p = l->l_proc;
    829 	int error;
    830 
    831 	KASSERT(mutex_owned(p->p_lock));
    832 
    833 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    834 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    835 		if (error != 0)
    836 			return error;
    837 	}
    838 
    839 	mutex_exit(p->p_lock);
    840 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    841 	mutex_enter(p->p_lock);
    842 	if (error != 0)
    843 		return (error);
    844 
    845 	l->l_ctxlink = ucp->uc_link;
    846 
    847 	/*
    848 	 * If there was stack information, update whether or not we are
    849 	 * still running on an alternate signal stack.
    850 	 */
    851 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    852 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    853 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    854 		else
    855 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    856 	}
    857 
    858 	return 0;
    859 }
    860 
    861 /*
    862  * killpg1: common code for kill process group/broadcast kill.
    863  */
    864 int
    865 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    866 {
    867 	struct proc	*p, *cp;
    868 	kauth_cred_t	pc;
    869 	struct pgrp	*pgrp;
    870 	int		nfound;
    871 	int		signo = ksi->ksi_signo;
    872 
    873 	cp = l->l_proc;
    874 	pc = l->l_cred;
    875 	nfound = 0;
    876 
    877 	mutex_enter(proc_lock);
    878 	if (all) {
    879 		/*
    880 		 * Broadcast.
    881 		 */
    882 		PROCLIST_FOREACH(p, &allproc) {
    883 			if (p->p_pid <= 1 || p == cp ||
    884 			    (p->p_flag & PK_SYSTEM) != 0)
    885 				continue;
    886 			mutex_enter(p->p_lock);
    887 			if (kauth_authorize_process(pc,
    888 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    889 			    NULL) == 0) {
    890 				nfound++;
    891 				if (signo)
    892 					kpsignal2(p, ksi);
    893 			}
    894 			mutex_exit(p->p_lock);
    895 		}
    896 	} else {
    897 		if (pgid == 0)
    898 			/* Zero pgid means send to my process group. */
    899 			pgrp = cp->p_pgrp;
    900 		else {
    901 			pgrp = pgrp_find(pgid);
    902 			if (pgrp == NULL)
    903 				goto out;
    904 		}
    905 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    906 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    907 				continue;
    908 			mutex_enter(p->p_lock);
    909 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    910 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    911 				nfound++;
    912 				if (signo && P_ZOMBIE(p) == 0)
    913 					kpsignal2(p, ksi);
    914 			}
    915 			mutex_exit(p->p_lock);
    916 		}
    917 	}
    918 out:
    919 	mutex_exit(proc_lock);
    920 	return nfound ? 0 : ESRCH;
    921 }
    922 
    923 /*
    924  * Send a signal to a process group.  If checktty is set, limit to members
    925  * which have a controlling terminal.
    926  */
    927 void
    928 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    929 {
    930 	ksiginfo_t ksi;
    931 
    932 	KASSERT(!cpu_intr_p());
    933 	KASSERT(mutex_owned(proc_lock));
    934 
    935 	KSI_INIT_EMPTY(&ksi);
    936 	ksi.ksi_signo = sig;
    937 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    938 }
    939 
    940 void
    941 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    942 {
    943 	struct proc *p;
    944 
    945 	KASSERT(!cpu_intr_p());
    946 	KASSERT(mutex_owned(proc_lock));
    947 	KASSERT(pgrp != NULL);
    948 
    949 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    950 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    951 			kpsignal(p, ksi, data);
    952 }
    953 
    954 /*
    955  * Send a signal caused by a trap to the current LWP.  If it will be caught
    956  * immediately, deliver it with correct code.  Otherwise, post it normally.
    957  */
    958 void
    959 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    960 {
    961 	struct proc	*p;
    962 	struct sigacts	*ps;
    963 	int signo = ksi->ksi_signo;
    964 	sigset_t *mask;
    965 
    966 	KASSERT(KSI_TRAP_P(ksi));
    967 
    968 	ksi->ksi_lid = l->l_lid;
    969 	p = l->l_proc;
    970 
    971 	KASSERT(!cpu_intr_p());
    972 	mutex_enter(proc_lock);
    973 	mutex_enter(p->p_lock);
    974 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
    975 	ps = p->p_sigacts;
    976 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    977 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    978 	    !sigismember(mask, signo)) {
    979 		mutex_exit(proc_lock);
    980 		l->l_ru.ru_nsignals++;
    981 		kpsendsig(l, ksi, mask);
    982 		mutex_exit(p->p_lock);
    983 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
    984 	} else {
    985 		/* XXX for core dump/debugger */
    986 		p->p_sigctx.ps_lwp = l->l_lid;
    987 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    988 		p->p_sigctx.ps_code = ksi->ksi_trap;
    989 		kpsignal2(p, ksi);
    990 		mutex_exit(p->p_lock);
    991 		mutex_exit(proc_lock);
    992 	}
    993 }
    994 
    995 /*
    996  * Fill in signal information and signal the parent for a child status change.
    997  */
    998 void
    999 child_psignal(struct proc *p, int mask)
   1000 {
   1001 	ksiginfo_t ksi;
   1002 	struct proc *q;
   1003 	int xstat;
   1004 
   1005 	KASSERT(mutex_owned(proc_lock));
   1006 	KASSERT(mutex_owned(p->p_lock));
   1007 
   1008 	xstat = p->p_xstat;
   1009 
   1010 	KSI_INIT(&ksi);
   1011 	ksi.ksi_signo = SIGCHLD;
   1012 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
   1013 	ksi.ksi_pid = p->p_pid;
   1014 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
   1015 	ksi.ksi_status = xstat;
   1016 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
   1017 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
   1018 
   1019 	q = p->p_pptr;
   1020 
   1021 	mutex_exit(p->p_lock);
   1022 	mutex_enter(q->p_lock);
   1023 
   1024 	if ((q->p_sflag & mask) == 0)
   1025 		kpsignal2(q, &ksi);
   1026 
   1027 	mutex_exit(q->p_lock);
   1028 	mutex_enter(p->p_lock);
   1029 }
   1030 
   1031 void
   1032 psignal(struct proc *p, int signo)
   1033 {
   1034 	ksiginfo_t ksi;
   1035 
   1036 	KASSERT(!cpu_intr_p());
   1037 	KASSERT(mutex_owned(proc_lock));
   1038 
   1039 	KSI_INIT_EMPTY(&ksi);
   1040 	ksi.ksi_signo = signo;
   1041 	mutex_enter(p->p_lock);
   1042 	kpsignal2(p, &ksi);
   1043 	mutex_exit(p->p_lock);
   1044 }
   1045 
   1046 void
   1047 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
   1048 {
   1049 	fdfile_t *ff;
   1050 	file_t *fp;
   1051 	fdtab_t *dt;
   1052 
   1053 	KASSERT(!cpu_intr_p());
   1054 	KASSERT(mutex_owned(proc_lock));
   1055 
   1056 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
   1057 		size_t fd;
   1058 		filedesc_t *fdp = p->p_fd;
   1059 
   1060 		/* XXXSMP locking */
   1061 		ksi->ksi_fd = -1;
   1062 		dt = fdp->fd_dt;
   1063 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1064 			if ((ff = dt->dt_ff[fd]) == NULL)
   1065 				continue;
   1066 			if ((fp = ff->ff_file) == NULL)
   1067 				continue;
   1068 			if (fp->f_data == data) {
   1069 				ksi->ksi_fd = fd;
   1070 				break;
   1071 			}
   1072 		}
   1073 	}
   1074 	mutex_enter(p->p_lock);
   1075 	kpsignal2(p, ksi);
   1076 	mutex_exit(p->p_lock);
   1077 }
   1078 
   1079 /*
   1080  * sigismasked:
   1081  *
   1082  *	Returns true if signal is ignored or masked for the specified LWP.
   1083  */
   1084 int
   1085 sigismasked(struct lwp *l, int sig)
   1086 {
   1087 	struct proc *p = l->l_proc;
   1088 
   1089 	return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1090 	    sigismember(&l->l_sigmask, sig)
   1091 #if KERN_SA
   1092 	    || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
   1093 #endif /* KERN_SA */
   1094 	    );
   1095 }
   1096 
   1097 /*
   1098  * sigpost:
   1099  *
   1100  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1101  *	be able to take the signal.
   1102  */
   1103 static int
   1104 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
   1105 {
   1106 	int rv, masked;
   1107 	struct proc *p = l->l_proc;
   1108 
   1109 	KASSERT(mutex_owned(p->p_lock));
   1110 
   1111 	/*
   1112 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1113 	 * pending signals.  Don't give it more.
   1114 	 */
   1115 	if (l->l_refcnt == 0)
   1116 		return 0;
   1117 
   1118 	SDT_PROBE(proc,,,signal_send, l, p, sig,  0, 0);
   1119 
   1120 	/*
   1121 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1122 	 * is found to take the signal immediately, it should be taken soon.
   1123 	 */
   1124 	lwp_lock(l);
   1125 	l->l_flag |= LW_PENDSIG;
   1126 
   1127 	/*
   1128 	 * When sending signals to SA processes, we first try to find an
   1129 	 * idle VP to take it.
   1130 	 */
   1131 	if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
   1132 		lwp_unlock(l);
   1133 		return 0;
   1134 	}
   1135 
   1136 	/*
   1137 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1138 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1139 	 */
   1140 #if KERN_SA
   1141 	if (p->p_sa != NULL)
   1142 		masked = sigismember(&p->p_sa->sa_sigmask, sig);
   1143 	else
   1144 #endif
   1145 		masked = sigismember(&l->l_sigmask, sig);
   1146 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1147 		lwp_unlock(l);
   1148 		return 0;
   1149 	}
   1150 
   1151 	/*
   1152 	 * If killing the process, make it run fast.
   1153 	 */
   1154 	if (__predict_false((prop & SA_KILL) != 0) &&
   1155 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1156 		KASSERT(l->l_class == SCHED_OTHER);
   1157 		lwp_changepri(l, MAXPRI_USER);
   1158 	}
   1159 
   1160 	/*
   1161 	 * If the LWP is running or on a run queue, then we win.  If it's
   1162 	 * sleeping interruptably, wake it and make it take the signal.  If
   1163 	 * the sleep isn't interruptable, then the chances are it will get
   1164 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1165 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1166 	 * for later; otherwise punt.
   1167 	 */
   1168 	rv = 0;
   1169 
   1170 	switch (l->l_stat) {
   1171 	case LSRUN:
   1172 	case LSONPROC:
   1173 		lwp_need_userret(l);
   1174 		rv = 1;
   1175 		break;
   1176 
   1177 	case LSSLEEP:
   1178 		if ((l->l_flag & LW_SINTR) != 0) {
   1179 			/* setrunnable() will release the lock. */
   1180 			setrunnable(l);
   1181 			return 1;
   1182 		}
   1183 		break;
   1184 
   1185 	case LSSUSPENDED:
   1186 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1187 			/* lwp_continue() will release the lock. */
   1188 			lwp_continue(l);
   1189 			return 1;
   1190 		}
   1191 		break;
   1192 
   1193 	case LSSTOP:
   1194 		if ((prop & SA_STOP) != 0)
   1195 			break;
   1196 
   1197 		/*
   1198 		 * If the LWP is stopped and we are sending a continue
   1199 		 * signal, then start it again.
   1200 		 */
   1201 		if ((prop & SA_CONT) != 0) {
   1202 			if (l->l_wchan != NULL) {
   1203 				l->l_stat = LSSLEEP;
   1204 				p->p_nrlwps++;
   1205 				rv = 1;
   1206 				break;
   1207 			}
   1208 			/* setrunnable() will release the lock. */
   1209 			setrunnable(l);
   1210 			return 1;
   1211 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1212 			/* setrunnable() will release the lock. */
   1213 			setrunnable(l);
   1214 			return 1;
   1215 		}
   1216 		break;
   1217 
   1218 	default:
   1219 		break;
   1220 	}
   1221 
   1222 	lwp_unlock(l);
   1223 	return rv;
   1224 }
   1225 
   1226 /*
   1227  * Notify an LWP that it has a pending signal.
   1228  */
   1229 void
   1230 signotify(struct lwp *l)
   1231 {
   1232 	KASSERT(lwp_locked(l, NULL));
   1233 
   1234 	l->l_flag |= LW_PENDSIG;
   1235 	lwp_need_userret(l);
   1236 }
   1237 
   1238 /*
   1239  * Find an LWP within process p that is waiting on signal ksi, and hand
   1240  * it on.
   1241  */
   1242 static int
   1243 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1244 {
   1245 	struct lwp *l;
   1246 	int signo;
   1247 
   1248 	KASSERT(mutex_owned(p->p_lock));
   1249 
   1250 	signo = ksi->ksi_signo;
   1251 
   1252 	if (ksi->ksi_lid != 0) {
   1253 		/*
   1254 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1255 		 * it's interested.
   1256 		 */
   1257 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1258 			return 0;
   1259 		if (l->l_sigwaited == NULL ||
   1260 		    !sigismember(&l->l_sigwaitset, signo))
   1261 			return 0;
   1262 	} else {
   1263 		/*
   1264 		 * Look for any LWP that may be interested.
   1265 		 */
   1266 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1267 			KASSERT(l->l_sigwaited != NULL);
   1268 			if (sigismember(&l->l_sigwaitset, signo))
   1269 				break;
   1270 		}
   1271 	}
   1272 
   1273 	if (l != NULL) {
   1274 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1275 		l->l_sigwaited = NULL;
   1276 		LIST_REMOVE(l, l_sigwaiter);
   1277 		cv_signal(&l->l_sigcv);
   1278 		return 1;
   1279 	}
   1280 
   1281 	return 0;
   1282 }
   1283 
   1284 /*
   1285  * Send the signal to the process.  If the signal has an action, the action
   1286  * is usually performed by the target process rather than the caller; we add
   1287  * the signal to the set of pending signals for the process.
   1288  *
   1289  * Exceptions:
   1290  *   o When a stop signal is sent to a sleeping process that takes the
   1291  *     default action, the process is stopped without awakening it.
   1292  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1293  *     regardless of the signal action (eg, blocked or ignored).
   1294  *
   1295  * Other ignored signals are discarded immediately.
   1296  */
   1297 void
   1298 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1299 {
   1300 	int prop, signo = ksi->ksi_signo;
   1301 	struct sigacts *sa;
   1302 	struct lwp *l;
   1303 	ksiginfo_t *kp;
   1304 	lwpid_t lid;
   1305 	sig_t action;
   1306 	bool toall;
   1307 
   1308 	KASSERT(!cpu_intr_p());
   1309 	KASSERT(mutex_owned(proc_lock));
   1310 	KASSERT(mutex_owned(p->p_lock));
   1311 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1312 	KASSERT(signo > 0 && signo < NSIG);
   1313 
   1314 	/*
   1315 	 * If the process is being created by fork, is a zombie or is
   1316 	 * exiting, then just drop the signal here and bail out.
   1317 	 */
   1318 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1319 		return;
   1320 
   1321 	/*
   1322 	 * Notify any interested parties of the signal.
   1323 	 */
   1324 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1325 
   1326 	/*
   1327 	 * Some signals including SIGKILL must act on the entire process.
   1328 	 */
   1329 	kp = NULL;
   1330 	prop = sigprop[signo];
   1331 	toall = ((prop & SA_TOALL) != 0);
   1332 	lid = toall ? 0 : ksi->ksi_lid;
   1333 
   1334 	/*
   1335 	 * If proc is traced, always give parent a chance.
   1336 	 */
   1337 	if (p->p_slflag & PSL_TRACED) {
   1338 		action = SIG_DFL;
   1339 
   1340 		if (lid == 0) {
   1341 			/*
   1342 			 * If the process is being traced and the signal
   1343 			 * is being caught, make sure to save any ksiginfo.
   1344 			 */
   1345 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1346 				return;
   1347 			sigput(&p->p_sigpend, p, kp);
   1348 		}
   1349 	} else {
   1350 		/*
   1351 		 * If the signal was the result of a trap and is not being
   1352 		 * caught, then reset it to default action so that the
   1353 		 * process dumps core immediately.
   1354 		 */
   1355 		if (KSI_TRAP_P(ksi)) {
   1356 			sa = p->p_sigacts;
   1357 			mutex_enter(&sa->sa_mutex);
   1358 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1359 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1360 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1361 			}
   1362 			mutex_exit(&sa->sa_mutex);
   1363 		}
   1364 
   1365 		/*
   1366 		 * If the signal is being ignored, then drop it.  Note: we
   1367 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1368 		 * SIG_IGN, action will be SIG_DFL here.
   1369 		 */
   1370 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1371 			return;
   1372 
   1373 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1374 			action = SIG_CATCH;
   1375 		else {
   1376 			action = SIG_DFL;
   1377 
   1378 			/*
   1379 			 * If sending a tty stop signal to a member of an
   1380 			 * orphaned process group, discard the signal here if
   1381 			 * the action is default; don't stop the process below
   1382 			 * if sleeping, and don't clear any pending SIGCONT.
   1383 			 */
   1384 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1385 				return;
   1386 
   1387 			if (prop & SA_KILL && p->p_nice > NZERO)
   1388 				p->p_nice = NZERO;
   1389 		}
   1390 	}
   1391 
   1392 	/*
   1393 	 * If stopping or continuing a process, discard any pending
   1394 	 * signals that would do the inverse.
   1395 	 */
   1396 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1397 		ksiginfoq_t kq;
   1398 
   1399 		ksiginfo_queue_init(&kq);
   1400 		if ((prop & SA_CONT) != 0)
   1401 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1402 		if ((prop & SA_STOP) != 0)
   1403 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1404 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1405 	}
   1406 
   1407 	/*
   1408 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1409 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1410 	 * the signal info.  The signal won't be processed further here.
   1411 	 */
   1412 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1413 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1414 	    sigunwait(p, ksi))
   1415 		return;
   1416 
   1417 	/*
   1418 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1419 	 * here.
   1420 	 */
   1421 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1422 		return;
   1423 
   1424 	/*
   1425 	 * LWP private signals are easy - just find the LWP and post
   1426 	 * the signal to it.
   1427 	 */
   1428 	if (lid != 0) {
   1429 		l = lwp_find(p, lid);
   1430 		if (l != NULL) {
   1431 			sigput(&l->l_sigpend, p, kp);
   1432 			membar_producer();
   1433 			(void)sigpost(l, action, prop, kp->ksi_signo, 0);
   1434 		}
   1435 		goto out;
   1436 	}
   1437 
   1438 	/*
   1439 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1440 	 * or for an SA process.
   1441 	 */
   1442 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1443 		if ((p->p_slflag & PSL_TRACED) != 0)
   1444 			goto deliver;
   1445 
   1446 		/*
   1447 		 * If SIGCONT is default (or ignored) and process is
   1448 		 * asleep, we are finished; the process should not
   1449 		 * be awakened.
   1450 		 */
   1451 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1452 			goto out;
   1453 	} else {
   1454 		/*
   1455 		 * Process is stopped or stopping.
   1456 		 * - If traced, then no action is needed, unless killing.
   1457 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1458 		 */
   1459 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1460 			goto out;
   1461 		}
   1462 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1463 			/*
   1464 			 * Re-adjust p_nstopchild if the process wasn't
   1465 			 * collected by its parent.
   1466 			 */
   1467 			p->p_stat = SACTIVE;
   1468 			p->p_sflag &= ~PS_STOPPING;
   1469 			if (!p->p_waited) {
   1470 				p->p_pptr->p_nstopchild--;
   1471 			}
   1472 			if (p->p_slflag & PSL_TRACED) {
   1473 				KASSERT(signo == SIGKILL);
   1474 				goto deliver;
   1475 			}
   1476 			/*
   1477 			 * Do not make signal pending if SIGCONT is default.
   1478 			 *
   1479 			 * If the process catches SIGCONT, let it handle the
   1480 			 * signal itself (if waiting on event - process runs,
   1481 			 * otherwise continues sleeping).
   1482 			 */
   1483 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
   1484 				KASSERT(signo != SIGKILL);
   1485 				goto deliver;
   1486 			}
   1487 		} else if ((prop & SA_STOP) != 0) {
   1488 			/*
   1489 			 * Already stopped, don't need to stop again.
   1490 			 * (If we did the shell could get confused.)
   1491 			 */
   1492 			goto out;
   1493 		}
   1494 	}
   1495 	/*
   1496 	 * Make signal pending.
   1497 	 */
   1498 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1499 	sigput(&p->p_sigpend, p, kp);
   1500 
   1501 deliver:
   1502 	/*
   1503 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1504 	 * visible on the per process list (for sigispending()).  This
   1505 	 * is unlikely to be needed in practice, but...
   1506 	 */
   1507 	membar_producer();
   1508 
   1509 	/*
   1510 	 * Try to find an LWP that can take the signal.
   1511 	 */
   1512 #if KERN_SA
   1513 	if ((p->p_sa != NULL) && !toall) {
   1514 		struct sadata_vp *vp;
   1515 		/*
   1516 		 * If we're in this delivery path, we are delivering a
   1517 		 * signal that needs to go to one thread in the process.
   1518 		 *
   1519 		 * In the SA case, we try to find an idle LWP that can take
   1520 		 * the signal.  If that fails, only then do we consider
   1521 		 * interrupting active LWPs. Since the signal's going to
   1522 		 * just one thread, we need only look at "blessed" lwps,
   1523 		 * so scan the vps for them.
   1524 		 */
   1525 		l = NULL;
   1526 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1527 			l = vp->savp_lwp;
   1528 			if (sigpost(l, action, prop, kp->ksi_signo, 1))
   1529 				break;
   1530 		}
   1531 
   1532 		if (l == NULL) {
   1533 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1534 				l = vp->savp_lwp;
   1535 				if (sigpost(l, action, prop, kp->ksi_signo, 0))
   1536 					break;
   1537 			}
   1538 		}
   1539 		/* Delivered, skip next. */
   1540 		goto out;
   1541 	}
   1542 #endif
   1543 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1544 		if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
   1545 			break;
   1546 	}
   1547 out:
   1548 	/*
   1549 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1550 	 * with locks held.  The caller should take care of this.
   1551 	 */
   1552 	ksiginfo_free(kp);
   1553 }
   1554 
   1555 void
   1556 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1557 {
   1558 	struct proc *p = l->l_proc;
   1559 #ifdef KERN_SA
   1560 	struct lwp *le, *li;
   1561 	siginfo_t *si;
   1562 	int f;
   1563 #endif /* KERN_SA */
   1564 
   1565 	KASSERT(mutex_owned(p->p_lock));
   1566 
   1567 #ifdef KERN_SA
   1568 	if (p->p_sflag & PS_SA) {
   1569 		/* f indicates if we should clear LP_SA_NOBLOCK */
   1570 		f = ~l->l_pflag & LP_SA_NOBLOCK;
   1571 		l->l_pflag |= LP_SA_NOBLOCK;
   1572 
   1573 		mutex_exit(p->p_lock);
   1574 		/* XXXUPSXXX What if not on sa_vp? */
   1575 		/*
   1576 		 * WRS: I think it won't matter, beyond the
   1577 		 * question of what exactly we do with a signal
   1578 		 * to a blocked user thread. Also, we try hard to always
   1579 		 * send signals to blessed lwps, so we would only send
   1580 		 * to a non-blessed lwp under special circumstances.
   1581 		 */
   1582 		si = siginfo_alloc(PR_WAITOK);
   1583 
   1584 		si->_info = ksi->ksi_info;
   1585 
   1586 		/*
   1587 		 * Figure out if we're the innocent victim or the main
   1588 		 * perpitrator.
   1589 		 */
   1590 		le = li = NULL;
   1591 		if (KSI_TRAP_P(ksi))
   1592 			le = l;
   1593 		else
   1594 			li = l;
   1595 		if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
   1596 		    sizeof(*si), si, siginfo_free) != 0) {
   1597 			siginfo_free(si);
   1598 #if 0
   1599 			if (KSI_TRAP_P(ksi))
   1600 				/* XXX What dowe do here? The signal
   1601 				 * didn't make it
   1602 				 */;
   1603 #endif
   1604 		}
   1605 		l->l_pflag ^= f;
   1606 		mutex_enter(p->p_lock);
   1607 		return;
   1608 	}
   1609 #endif /* KERN_SA */
   1610 
   1611 	(*p->p_emul->e_sendsig)(ksi, mask);
   1612 }
   1613 
   1614 /*
   1615  * Stop any LWPs sleeping interruptably.
   1616  */
   1617 static void
   1618 proc_stop_lwps(struct proc *p)
   1619 {
   1620 	struct lwp *l;
   1621 
   1622 	KASSERT(mutex_owned(p->p_lock));
   1623 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1624 
   1625 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1626 		lwp_lock(l);
   1627 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1628 			l->l_stat = LSSTOP;
   1629 			p->p_nrlwps--;
   1630 		}
   1631 		lwp_unlock(l);
   1632 	}
   1633 }
   1634 
   1635 /*
   1636  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1637  *
   1638  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1639  */
   1640 static void
   1641 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1642 {
   1643 
   1644 	KASSERT(mutex_owned(proc_lock));
   1645 	KASSERT(mutex_owned(p->p_lock));
   1646 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1647 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1648 
   1649 	p->p_sflag &= ~PS_STOPPING;
   1650 	p->p_stat = SSTOP;
   1651 	p->p_waited = 0;
   1652 	p->p_pptr->p_nstopchild++;
   1653 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1654 		if (ppsig) {
   1655 			/* child_psignal drops p_lock briefly. */
   1656 			child_psignal(p, ppmask);
   1657 		}
   1658 		cv_broadcast(&p->p_pptr->p_waitcv);
   1659 	}
   1660 }
   1661 
   1662 /*
   1663  * Stop the current process and switch away when being stopped or traced.
   1664  */
   1665 static void
   1666 sigswitch(bool ppsig, int ppmask, int signo)
   1667 {
   1668 	struct lwp *l = curlwp;
   1669 	struct proc *p = l->l_proc;
   1670 	int biglocks;
   1671 
   1672 	KASSERT(mutex_owned(p->p_lock));
   1673 	KASSERT(l->l_stat == LSONPROC);
   1674 	KASSERT(p->p_nrlwps > 0);
   1675 
   1676 	/*
   1677 	 * On entry we know that the process needs to stop.  If it's
   1678 	 * the result of a 'sideways' stop signal that has been sourced
   1679 	 * through issignal(), then stop other LWPs in the process too.
   1680 	 */
   1681 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1682 		KASSERT(signo != 0);
   1683 		proc_stop(p, 1, signo);
   1684 		KASSERT(p->p_nrlwps > 0);
   1685 	}
   1686 
   1687 	/*
   1688 	 * If we are the last live LWP, and the stop was a result of
   1689 	 * a new signal, then signal the parent.
   1690 	 */
   1691 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1692 		if (!mutex_tryenter(proc_lock)) {
   1693 			mutex_exit(p->p_lock);
   1694 			mutex_enter(proc_lock);
   1695 			mutex_enter(p->p_lock);
   1696 		}
   1697 
   1698 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1699 			/*
   1700 			 * Note that proc_stop_done() can drop
   1701 			 * p->p_lock briefly.
   1702 			 */
   1703 			proc_stop_done(p, ppsig, ppmask);
   1704 		}
   1705 
   1706 		mutex_exit(proc_lock);
   1707 	}
   1708 
   1709 	/*
   1710 	 * Unlock and switch away.
   1711 	 */
   1712 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1713 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1714 		p->p_nrlwps--;
   1715 		lwp_lock(l);
   1716 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1717 		l->l_stat = LSSTOP;
   1718 		lwp_unlock(l);
   1719 	}
   1720 
   1721 	mutex_exit(p->p_lock);
   1722 	lwp_lock(l);
   1723 	mi_switch(l);
   1724 	KERNEL_LOCK(biglocks, l);
   1725 	mutex_enter(p->p_lock);
   1726 }
   1727 
   1728 /*
   1729  * Check for a signal from the debugger.
   1730  */
   1731 static int
   1732 sigchecktrace(void)
   1733 {
   1734 	struct lwp *l = curlwp;
   1735 	struct proc *p = l->l_proc;
   1736 	sigset_t *mask;
   1737 	int signo;
   1738 
   1739 	KASSERT(mutex_owned(p->p_lock));
   1740 
   1741 	/* If there's a pending SIGKILL, process it immediately. */
   1742 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1743 		return 0;
   1744 
   1745 	/*
   1746 	 * If we are no longer being traced, or the parent didn't
   1747 	 * give us a signal, or we're stopping, look for more signals.
   1748 	 */
   1749 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
   1750 	    (p->p_sflag & PS_STOPPING) != 0)
   1751 		return 0;
   1752 
   1753 	/*
   1754 	 * If the new signal is being masked, look for other signals.
   1755 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1756 	 */
   1757 	signo = p->p_xstat;
   1758 	p->p_xstat = 0;
   1759 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   1760 	if (sigismember(mask, signo))
   1761 		signo = 0;
   1762 
   1763 	return signo;
   1764 }
   1765 
   1766 /*
   1767  * If the current process has received a signal (should be caught or cause
   1768  * termination, should interrupt current syscall), return the signal number.
   1769  *
   1770  * Stop signals with default action are processed immediately, then cleared;
   1771  * they aren't returned.  This is checked after each entry to the system for
   1772  * a syscall or trap.
   1773  *
   1774  * We will also return -1 if the process is exiting and the current LWP must
   1775  * follow suit.
   1776  */
   1777 int
   1778 issignal(struct lwp *l)
   1779 {
   1780 	struct proc *p;
   1781 	int signo, prop;
   1782 	sigpend_t *sp;
   1783 	sigset_t ss;
   1784 
   1785 	p = l->l_proc;
   1786 	sp = NULL;
   1787 	signo = 0;
   1788 
   1789 	KASSERT(p == curproc);
   1790 	KASSERT(mutex_owned(p->p_lock));
   1791 
   1792 	for (;;) {
   1793 		/* Discard any signals that we have decided not to take. */
   1794 		if (signo != 0) {
   1795 			(void)sigget(sp, NULL, signo, NULL);
   1796 		}
   1797 
   1798 		/* Bail out if we do not own the virtual processor */
   1799 		if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
   1800 			break;
   1801 
   1802 		/*
   1803 		 * If the process is stopped/stopping, then stop ourselves
   1804 		 * now that we're on the kernel/userspace boundary.  When
   1805 		 * we awaken, check for a signal from the debugger.
   1806 		 */
   1807 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1808 			sigswitch(true, PS_NOCLDSTOP, 0);
   1809 			signo = sigchecktrace();
   1810 		} else
   1811 			signo = 0;
   1812 
   1813 		/* Signals from the debugger are "out of band". */
   1814 		sp = NULL;
   1815 
   1816 		/*
   1817 		 * If the debugger didn't provide a signal, find a pending
   1818 		 * signal from our set.  Check per-LWP signals first, and
   1819 		 * then per-process.
   1820 		 */
   1821 		if (signo == 0) {
   1822 			sp = &l->l_sigpend;
   1823 			ss = sp->sp_set;
   1824 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1825 				sigminusset(&stopsigmask, &ss);
   1826 			sigminusset(&l->l_sigmask, &ss);
   1827 
   1828 			if ((signo = firstsig(&ss)) == 0) {
   1829 				sp = &p->p_sigpend;
   1830 				ss = sp->sp_set;
   1831 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1832 					sigminusset(&stopsigmask, &ss);
   1833 				sigminusset(&l->l_sigmask, &ss);
   1834 
   1835 				if ((signo = firstsig(&ss)) == 0) {
   1836 					/*
   1837 					 * No signal pending - clear the
   1838 					 * indicator and bail out.
   1839 					 */
   1840 					lwp_lock(l);
   1841 					l->l_flag &= ~LW_PENDSIG;
   1842 					lwp_unlock(l);
   1843 					sp = NULL;
   1844 					break;
   1845 				}
   1846 			}
   1847 		}
   1848 
   1849 		/*
   1850 		 * We should see pending but ignored signals only if
   1851 		 * we are being traced.
   1852 		 */
   1853 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1854 		    (p->p_slflag & PSL_TRACED) == 0) {
   1855 			/* Discard the signal. */
   1856 			continue;
   1857 		}
   1858 
   1859 		/*
   1860 		 * If traced, always stop, and stay stopped until released
   1861 		 * by the debugger.  If the our parent process is waiting
   1862 		 * for us, don't hang as we could deadlock.
   1863 		 */
   1864 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1865 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1866 			/*
   1867 			 * Take the signal, but don't remove it from the
   1868 			 * siginfo queue, because the debugger can send
   1869 			 * it later.
   1870 			 */
   1871 			if (sp)
   1872 				sigdelset(&sp->sp_set, signo);
   1873 			p->p_xstat = signo;
   1874 
   1875 			/* Emulation-specific handling of signal trace */
   1876 			if (p->p_emul->e_tracesig == NULL ||
   1877 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1878 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1879 				    signo);
   1880 
   1881 			/* Check for a signal from the debugger. */
   1882 			if ((signo = sigchecktrace()) == 0)
   1883 				continue;
   1884 
   1885 			/* Signals from the debugger are "out of band". */
   1886 			sp = NULL;
   1887 		}
   1888 
   1889 		prop = sigprop[signo];
   1890 
   1891 		/* XXX no siginfo? */
   1892 		SDT_PROBE(proc,,,signal_handle, signo, 0,
   1893 			SIGACTION(p, signo).sa_handler, 0, 0);
   1894 
   1895 		/*
   1896 		 * Decide whether the signal should be returned.
   1897 		 */
   1898 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1899 		case (long)SIG_DFL:
   1900 			/*
   1901 			 * Don't take default actions on system processes.
   1902 			 */
   1903 			if (p->p_pid <= 1) {
   1904 #ifdef DIAGNOSTIC
   1905 				/*
   1906 				 * Are you sure you want to ignore SIGSEGV
   1907 				 * in init? XXX
   1908 				 */
   1909 				printf_nolog("Process (pid %d) got sig %d\n",
   1910 				    p->p_pid, signo);
   1911 #endif
   1912 				continue;
   1913 			}
   1914 
   1915 			/*
   1916 			 * If there is a pending stop signal to process with
   1917 			 * default action, stop here, then clear the signal.
   1918 			 * However, if process is member of an orphaned
   1919 			 * process group, ignore tty stop signals.
   1920 			 */
   1921 			if (prop & SA_STOP) {
   1922 				/*
   1923 				 * XXX Don't hold proc_lock for p_lflag,
   1924 				 * but it's not a big deal.
   1925 				 */
   1926 				if (p->p_slflag & PSL_TRACED ||
   1927 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1928 				    prop & SA_TTYSTOP)) {
   1929 					/* Ignore the signal. */
   1930 					continue;
   1931 				}
   1932 				/* Take the signal. */
   1933 				(void)sigget(sp, NULL, signo, NULL);
   1934 				p->p_xstat = signo;
   1935 				signo = 0;
   1936 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1937 			} else if (prop & SA_IGNORE) {
   1938 				/*
   1939 				 * Except for SIGCONT, shouldn't get here.
   1940 				 * Default action is to ignore; drop it.
   1941 				 */
   1942 				continue;
   1943 			}
   1944 			break;
   1945 
   1946 		case (long)SIG_IGN:
   1947 #ifdef DEBUG_ISSIGNAL
   1948 			/*
   1949 			 * Masking above should prevent us ever trying
   1950 			 * to take action on an ignored signal other
   1951 			 * than SIGCONT, unless process is traced.
   1952 			 */
   1953 			if ((prop & SA_CONT) == 0 &&
   1954 			    (p->p_slflag & PSL_TRACED) == 0)
   1955 				printf_nolog("issignal\n");
   1956 #endif
   1957 			continue;
   1958 
   1959 		default:
   1960 			/*
   1961 			 * This signal has an action, let postsig() process
   1962 			 * it.
   1963 			 */
   1964 			break;
   1965 		}
   1966 
   1967 		break;
   1968 	}
   1969 
   1970 	l->l_sigpendset = sp;
   1971 	return signo;
   1972 }
   1973 
   1974 /*
   1975  * Take the action for the specified signal
   1976  * from the current set of pending signals.
   1977  */
   1978 void
   1979 postsig(int signo)
   1980 {
   1981 	struct lwp	*l;
   1982 	struct proc	*p;
   1983 	struct sigacts	*ps;
   1984 	sig_t		action;
   1985 	sigset_t	*returnmask;
   1986 	ksiginfo_t	ksi;
   1987 
   1988 	l = curlwp;
   1989 	p = l->l_proc;
   1990 	ps = p->p_sigacts;
   1991 
   1992 	KASSERT(mutex_owned(p->p_lock));
   1993 	KASSERT(signo > 0);
   1994 
   1995 	/*
   1996 	 * Set the new mask value and also defer further occurrences of this
   1997 	 * signal.
   1998 	 *
   1999 	 * Special case: user has done a sigsuspend.  Here the current mask is
   2000 	 * not of interest, but rather the mask from before the sigsuspend is
   2001 	 * what we want restored after the signal processing is completed.
   2002 	 */
   2003 	if (l->l_sigrestore) {
   2004 		returnmask = &l->l_sigoldmask;
   2005 		l->l_sigrestore = 0;
   2006 	} else
   2007 		returnmask = &l->l_sigmask;
   2008 
   2009 	/*
   2010 	 * Commit to taking the signal before releasing the mutex.
   2011 	 */
   2012 	action = SIGACTION_PS(ps, signo).sa_handler;
   2013 	l->l_ru.ru_nsignals++;
   2014 	if (l->l_sigpendset == NULL) {
   2015 		/* From the debugger */
   2016 		if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   2017 			(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   2018 	} else
   2019 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   2020 
   2021 	if (ktrpoint(KTR_PSIG)) {
   2022 		mutex_exit(p->p_lock);
   2023 		ktrpsig(signo, action, returnmask, &ksi);
   2024 		mutex_enter(p->p_lock);
   2025 	}
   2026 
   2027 	if (action == SIG_DFL) {
   2028 		/*
   2029 		 * Default action, where the default is to kill
   2030 		 * the process.  (Other cases were ignored above.)
   2031 		 */
   2032 		sigexit(l, signo);
   2033 		return;
   2034 	}
   2035 
   2036 	/*
   2037 	 * If we get here, the signal must be caught.
   2038 	 */
   2039 #ifdef DIAGNOSTIC
   2040 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   2041 		panic("postsig action");
   2042 #endif
   2043 
   2044 	kpsendsig(l, &ksi, returnmask);
   2045 }
   2046 
   2047 /*
   2048  * sendsig:
   2049  *
   2050  *	Default signal delivery method for NetBSD.
   2051  */
   2052 void
   2053 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   2054 {
   2055 	struct sigacts *sa;
   2056 	int sig;
   2057 
   2058 	sig = ksi->ksi_signo;
   2059 	sa = curproc->p_sigacts;
   2060 
   2061 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   2062 	case 0:
   2063 	case 1:
   2064 		/* Compat for 1.6 and earlier. */
   2065 		if (sendsig_sigcontext_vec == NULL) {
   2066 			break;
   2067 		}
   2068 		(*sendsig_sigcontext_vec)(ksi, mask);
   2069 		return;
   2070 	case 2:
   2071 	case 3:
   2072 		sendsig_siginfo(ksi, mask);
   2073 		return;
   2074 	default:
   2075 		break;
   2076 	}
   2077 
   2078 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   2079 	sigexit(curlwp, SIGILL);
   2080 }
   2081 
   2082 /*
   2083  * sendsig_reset:
   2084  *
   2085  *	Reset the signal action.  Called from emulation specific sendsig()
   2086  *	before unlocking to deliver the signal.
   2087  */
   2088 void
   2089 sendsig_reset(struct lwp *l, int signo)
   2090 {
   2091 	struct proc *p = l->l_proc;
   2092 	struct sigacts *ps = p->p_sigacts;
   2093 	sigset_t *mask;
   2094 
   2095 	KASSERT(mutex_owned(p->p_lock));
   2096 
   2097 	p->p_sigctx.ps_lwp = 0;
   2098 	p->p_sigctx.ps_code = 0;
   2099 	p->p_sigctx.ps_signo = 0;
   2100 
   2101 	mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
   2102 
   2103 	mutex_enter(&ps->sa_mutex);
   2104 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
   2105 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   2106 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   2107 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   2108 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   2109 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   2110 	}
   2111 	mutex_exit(&ps->sa_mutex);
   2112 }
   2113 
   2114 /*
   2115  * Kill the current process for stated reason.
   2116  */
   2117 void
   2118 killproc(struct proc *p, const char *why)
   2119 {
   2120 
   2121 	KASSERT(mutex_owned(proc_lock));
   2122 
   2123 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   2124 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   2125 	psignal(p, SIGKILL);
   2126 }
   2127 
   2128 /*
   2129  * Force the current process to exit with the specified signal, dumping core
   2130  * if appropriate.  We bypass the normal tests for masked and caught
   2131  * signals, allowing unrecoverable failures to terminate the process without
   2132  * changing signal state.  Mark the accounting record with the signal
   2133  * termination.  If dumping core, save the signal number for the debugger.
   2134  * Calls exit and does not return.
   2135  */
   2136 void
   2137 sigexit(struct lwp *l, int signo)
   2138 {
   2139 	int exitsig, error, docore;
   2140 	struct proc *p;
   2141 	struct lwp *t;
   2142 
   2143 	p = l->l_proc;
   2144 
   2145 	KASSERT(mutex_owned(p->p_lock));
   2146 	KERNEL_UNLOCK_ALL(l, NULL);
   2147 
   2148 	/*
   2149 	 * Don't permit coredump() multiple times in the same process.
   2150 	 * Call back into sigexit, where we will be suspended until
   2151 	 * the deed is done.  Note that this is a recursive call, but
   2152 	 * LW_WCORE will prevent us from coming back this way.
   2153 	 */
   2154 	if ((p->p_sflag & PS_WCORE) != 0) {
   2155 		lwp_lock(l);
   2156 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2157 		lwp_unlock(l);
   2158 		mutex_exit(p->p_lock);
   2159 		lwp_userret(l);
   2160 		panic("sigexit 1");
   2161 		/* NOTREACHED */
   2162 	}
   2163 
   2164 	/* If process is already on the way out, then bail now. */
   2165 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2166 		mutex_exit(p->p_lock);
   2167 		lwp_exit(l);
   2168 		panic("sigexit 2");
   2169 		/* NOTREACHED */
   2170 	}
   2171 
   2172 	/*
   2173 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2174 	 * so that their registers are available long enough to be dumped.
   2175  	 */
   2176 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2177 		p->p_sflag |= PS_WCORE;
   2178 		for (;;) {
   2179 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2180 				lwp_lock(t);
   2181 				if (t == l) {
   2182 					t->l_flag &= ~LW_WSUSPEND;
   2183 					lwp_unlock(t);
   2184 					continue;
   2185 				}
   2186 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2187 				lwp_suspend(l, t);
   2188 			}
   2189 
   2190 			if (p->p_nrlwps == 1)
   2191 				break;
   2192 
   2193 			/*
   2194 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2195 			 * for everyone else to stop before proceeding.
   2196 			 */
   2197 			p->p_nlwpwait++;
   2198 			cv_broadcast(&p->p_lwpcv);
   2199 			cv_wait(&p->p_lwpcv, p->p_lock);
   2200 			p->p_nlwpwait--;
   2201 		}
   2202 	}
   2203 
   2204 	exitsig = signo;
   2205 	p->p_acflag |= AXSIG;
   2206 	p->p_sigctx.ps_signo = signo;
   2207 
   2208 	if (docore) {
   2209 		mutex_exit(p->p_lock);
   2210 		if ((error = (*coredump_vec)(l, NULL)) == 0)
   2211 			exitsig |= WCOREFLAG;
   2212 
   2213 		if (kern_logsigexit) {
   2214 			int uid = l->l_cred ?
   2215 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2216 
   2217 			if (error)
   2218 				log(LOG_INFO, lognocoredump, p->p_pid,
   2219 				    p->p_comm, uid, signo, error);
   2220 			else
   2221 				log(LOG_INFO, logcoredump, p->p_pid,
   2222 				    p->p_comm, uid, signo);
   2223 		}
   2224 
   2225 #ifdef PAX_SEGVGUARD
   2226 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2227 #endif /* PAX_SEGVGUARD */
   2228 		/* Acquire the sched state mutex.  exit1() will release it. */
   2229 		mutex_enter(p->p_lock);
   2230 	}
   2231 
   2232 	/* No longer dumping core. */
   2233 	p->p_sflag &= ~PS_WCORE;
   2234 
   2235 	exit1(l, W_EXITCODE(0, exitsig));
   2236 	/* NOTREACHED */
   2237 }
   2238 
   2239 /*
   2240  * Put process 'p' into the stopped state and optionally, notify the parent.
   2241  */
   2242 void
   2243 proc_stop(struct proc *p, int notify, int signo)
   2244 {
   2245 	struct lwp *l;
   2246 
   2247 	KASSERT(mutex_owned(p->p_lock));
   2248 
   2249 	/*
   2250 	 * First off, set the stopping indicator and bring all sleeping
   2251 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2252 	 * unlock between here and the p->p_nrlwps check below.
   2253 	 */
   2254 	p->p_sflag |= PS_STOPPING;
   2255 	if (notify)
   2256 		p->p_sflag |= PS_NOTIFYSTOP;
   2257 	else
   2258 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2259 	membar_producer();
   2260 
   2261 	proc_stop_lwps(p);
   2262 
   2263 	/*
   2264 	 * If there are no LWPs available to take the signal, then we
   2265 	 * signal the parent process immediately.  Otherwise, the last
   2266 	 * LWP to stop will take care of it.
   2267 	 */
   2268 
   2269 	if (p->p_nrlwps == 0) {
   2270 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2271 	} else {
   2272 		/*
   2273 		 * Have the remaining LWPs come to a halt, and trigger
   2274 		 * proc_stop_callout() to ensure that they do.
   2275 		 */
   2276 		LIST_FOREACH(l, &p->p_lwps, l_sibling)
   2277 			sigpost(l, SIG_DFL, SA_STOP, signo, 0);
   2278 		callout_schedule(&proc_stop_ch, 1);
   2279 	}
   2280 }
   2281 
   2282 /*
   2283  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2284  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2285  * to allow LWPs to release any locks that they may hold before stopping.
   2286  *
   2287  * Non-interruptable sleeps can be long, and there is the potential for an
   2288  * LWP to begin sleeping interruptably soon after the process has been set
   2289  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2290  * stopping, and so complete halt of the process and the return of status
   2291  * information to the parent could be delayed indefinitely.
   2292  *
   2293  * To handle this race, proc_stop_callout() runs once per tick while there
   2294  * are stopping processes in the system.  It sets LWPs that are sleeping
   2295  * interruptably into the LSSTOP state.
   2296  *
   2297  * Note that we are not concerned about keeping all LWPs stopped while the
   2298  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2299  * What we do need to ensure is that all LWPs in a stopping process have
   2300  * stopped at least once, so that notification can be sent to the parent
   2301  * process.
   2302  */
   2303 static void
   2304 proc_stop_callout(void *cookie)
   2305 {
   2306 	bool more, restart;
   2307 	struct proc *p;
   2308 
   2309 	(void)cookie;
   2310 
   2311 	do {
   2312 		restart = false;
   2313 		more = false;
   2314 
   2315 		mutex_enter(proc_lock);
   2316 		PROCLIST_FOREACH(p, &allproc) {
   2317 			mutex_enter(p->p_lock);
   2318 
   2319 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2320 				mutex_exit(p->p_lock);
   2321 				continue;
   2322 			}
   2323 
   2324 			/* Stop any LWPs sleeping interruptably. */
   2325 			proc_stop_lwps(p);
   2326 			if (p->p_nrlwps == 0) {
   2327 				/*
   2328 				 * We brought the process to a halt.
   2329 				 * Mark it as stopped and notify the
   2330 				 * parent.
   2331 				 */
   2332 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2333 					/*
   2334 					 * Note that proc_stop_done() will
   2335 					 * drop p->p_lock briefly.
   2336 					 * Arrange to restart and check
   2337 					 * all processes again.
   2338 					 */
   2339 					restart = true;
   2340 				}
   2341 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2342 			} else
   2343 				more = true;
   2344 
   2345 			mutex_exit(p->p_lock);
   2346 			if (restart)
   2347 				break;
   2348 		}
   2349 		mutex_exit(proc_lock);
   2350 	} while (restart);
   2351 
   2352 	/*
   2353 	 * If we noted processes that are stopping but still have
   2354 	 * running LWPs, then arrange to check again in 1 tick.
   2355 	 */
   2356 	if (more)
   2357 		callout_schedule(&proc_stop_ch, 1);
   2358 }
   2359 
   2360 /*
   2361  * Given a process in state SSTOP, set the state back to SACTIVE and
   2362  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2363  */
   2364 void
   2365 proc_unstop(struct proc *p)
   2366 {
   2367 	struct lwp *l;
   2368 	int sig;
   2369 
   2370 	KASSERT(mutex_owned(proc_lock));
   2371 	KASSERT(mutex_owned(p->p_lock));
   2372 
   2373 	p->p_stat = SACTIVE;
   2374 	p->p_sflag &= ~PS_STOPPING;
   2375 	sig = p->p_xstat;
   2376 
   2377 	if (!p->p_waited)
   2378 		p->p_pptr->p_nstopchild--;
   2379 
   2380 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2381 		lwp_lock(l);
   2382 		if (l->l_stat != LSSTOP) {
   2383 			lwp_unlock(l);
   2384 			continue;
   2385 		}
   2386 		if (l->l_wchan == NULL) {
   2387 			setrunnable(l);
   2388 			continue;
   2389 		}
   2390 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2391 			setrunnable(l);
   2392 			sig = 0;
   2393 		} else {
   2394 			l->l_stat = LSSLEEP;
   2395 			p->p_nrlwps++;
   2396 			lwp_unlock(l);
   2397 		}
   2398 	}
   2399 }
   2400 
   2401 static int
   2402 filt_sigattach(struct knote *kn)
   2403 {
   2404 	struct proc *p = curproc;
   2405 
   2406 	kn->kn_obj = p;
   2407 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2408 
   2409 	mutex_enter(p->p_lock);
   2410 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2411 	mutex_exit(p->p_lock);
   2412 
   2413 	return 0;
   2414 }
   2415 
   2416 static void
   2417 filt_sigdetach(struct knote *kn)
   2418 {
   2419 	struct proc *p = kn->kn_obj;
   2420 
   2421 	mutex_enter(p->p_lock);
   2422 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2423 	mutex_exit(p->p_lock);
   2424 }
   2425 
   2426 /*
   2427  * Signal knotes are shared with proc knotes, so we apply a mask to
   2428  * the hint in order to differentiate them from process hints.  This
   2429  * could be avoided by using a signal-specific knote list, but probably
   2430  * isn't worth the trouble.
   2431  */
   2432 static int
   2433 filt_signal(struct knote *kn, long hint)
   2434 {
   2435 
   2436 	if (hint & NOTE_SIGNAL) {
   2437 		hint &= ~NOTE_SIGNAL;
   2438 
   2439 		if (kn->kn_id == hint)
   2440 			kn->kn_data++;
   2441 	}
   2442 	return (kn->kn_data != 0);
   2443 }
   2444 
   2445 const struct filterops sig_filtops = {
   2446 	0, filt_sigattach, filt_sigdetach, filt_signal
   2447 };
   2448