Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.318
      1 /*	$NetBSD: kern_sig.c,v 1.318 2013/06/09 01:13:47 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.318 2013/06/09 01:13:47 riz Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_compat_sunos.h"
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_compat_netbsd32.h"
     79 #include "opt_pax.h"
     80 
     81 #define	SIGPROP		/* include signal properties table */
     82 #include <sys/param.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/proc.h>
     85 #include <sys/systm.h>
     86 #include <sys/wait.h>
     87 #include <sys/ktrace.h>
     88 #include <sys/syslog.h>
     89 #include <sys/filedesc.h>
     90 #include <sys/file.h>
     91 #include <sys/pool.h>
     92 #include <sys/ucontext.h>
     93 #include <sys/exec.h>
     94 #include <sys/kauth.h>
     95 #include <sys/acct.h>
     96 #include <sys/callout.h>
     97 #include <sys/atomic.h>
     98 #include <sys/cpu.h>
     99 #include <sys/module.h>
    100 #include <sys/sdt.h>
    101 
    102 #ifdef PAX_SEGVGUARD
    103 #include <sys/pax.h>
    104 #endif /* PAX_SEGVGUARD */
    105 
    106 #include <uvm/uvm_extern.h>
    107 
    108 static pool_cache_t	sigacts_cache	__read_mostly;
    109 static pool_cache_t	ksiginfo_cache	__read_mostly;
    110 static callout_t	proc_stop_ch	__cacheline_aligned;
    111 
    112 sigset_t		contsigmask	__cacheline_aligned;
    113 static sigset_t		stopsigmask	__cacheline_aligned;
    114 sigset_t		sigcantmask	__cacheline_aligned;
    115 
    116 static void	ksiginfo_exechook(struct proc *, void *);
    117 static void	proc_stop_callout(void *);
    118 static int	sigchecktrace(void);
    119 static int	sigpost(struct lwp *, sig_t, int, int);
    120 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    121 static int	sigunwait(struct proc *, const ksiginfo_t *);
    122 static void	sigswitch(bool, int, int);
    123 
    124 static void	sigacts_poolpage_free(struct pool *, void *);
    125 static void	*sigacts_poolpage_alloc(struct pool *, int);
    126 
    127 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    128 int (*coredump_vec)(struct lwp *, const char *) =
    129     (int (*)(struct lwp *, const char *))enosys;
    130 
    131 /*
    132  * DTrace SDT provider definitions
    133  */
    134 SDT_PROBE_DEFINE(proc,,,signal_send,signal-send,
    135 	    "struct lwp *", NULL,	/* target thread */
    136 	    "struct proc *", NULL,	/* target process */
    137 	    "int", NULL, 		/* signal */
    138 	    NULL, NULL, NULL, NULL);
    139 SDT_PROBE_DEFINE(proc,,,signal_discard,signal-discard,
    140 	    "struct lwp *", NULL,	/* target thread */
    141 	    "struct proc *", NULL,	/* target process */
    142 	    "int", NULL, 		/* signal */
    143 	    NULL, NULL, NULL, NULL);
    144 SDT_PROBE_DEFINE(proc,,,signal_clear,signal-clear,
    145 	    "int", NULL,		/* signal */
    146 	    NULL, NULL, NULL, NULL,
    147 	    NULL, NULL, NULL, NULL);
    148 SDT_PROBE_DEFINE(proc,,,signal_handle,signal-handle,
    149 	    "int", NULL,		/* signal */
    150 	    "ksiginfo_t *", NULL,
    151 	    "void (*)(void)", NULL,	/* handler address */
    152 	    NULL, NULL, NULL, NULL);
    153 
    154 
    155 static struct pool_allocator sigactspool_allocator = {
    156 	.pa_alloc = sigacts_poolpage_alloc,
    157 	.pa_free = sigacts_poolpage_free
    158 };
    159 
    160 #ifdef DEBUG
    161 int	kern_logsigexit = 1;
    162 #else
    163 int	kern_logsigexit = 0;
    164 #endif
    165 
    166 static const char logcoredump[] =
    167     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    168 static const char lognocoredump[] =
    169     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    170 
    171 static kauth_listener_t signal_listener;
    172 
    173 static int
    174 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    175     void *arg0, void *arg1, void *arg2, void *arg3)
    176 {
    177 	struct proc *p;
    178 	int result, signum;
    179 
    180 	result = KAUTH_RESULT_DEFER;
    181 	p = arg0;
    182 	signum = (int)(unsigned long)arg1;
    183 
    184 	if (action != KAUTH_PROCESS_SIGNAL)
    185 		return result;
    186 
    187 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    188 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    189 		result = KAUTH_RESULT_ALLOW;
    190 
    191 	return result;
    192 }
    193 
    194 /*
    195  * signal_init:
    196  *
    197  *	Initialize global signal-related data structures.
    198  */
    199 void
    200 signal_init(void)
    201 {
    202 
    203 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    204 
    205 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    206 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    207 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    208 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    209 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    210 
    211 	exechook_establish(ksiginfo_exechook, NULL);
    212 
    213 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    214 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    215 
    216 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    217 	    signal_listener_cb, NULL);
    218 }
    219 
    220 /*
    221  * sigacts_poolpage_alloc:
    222  *
    223  *	Allocate a page for the sigacts memory pool.
    224  */
    225 static void *
    226 sigacts_poolpage_alloc(struct pool *pp, int flags)
    227 {
    228 
    229 	return (void *)uvm_km_alloc(kernel_map,
    230 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    231 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    232 	    | UVM_KMF_WIRED);
    233 }
    234 
    235 /*
    236  * sigacts_poolpage_free:
    237  *
    238  *	Free a page on behalf of the sigacts memory pool.
    239  */
    240 static void
    241 sigacts_poolpage_free(struct pool *pp, void *v)
    242 {
    243 
    244 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    245 }
    246 
    247 /*
    248  * sigactsinit:
    249  *
    250  *	Create an initial sigacts structure, using the same signal state
    251  *	as of specified process.  If 'share' is set, share the sigacts by
    252  *	holding a reference, otherwise just copy it from parent.
    253  */
    254 struct sigacts *
    255 sigactsinit(struct proc *pp, int share)
    256 {
    257 	struct sigacts *ps = pp->p_sigacts, *ps2;
    258 
    259 	if (__predict_false(share)) {
    260 		atomic_inc_uint(&ps->sa_refcnt);
    261 		return ps;
    262 	}
    263 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    264 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    265 	ps2->sa_refcnt = 1;
    266 
    267 	mutex_enter(&ps->sa_mutex);
    268 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    269 	mutex_exit(&ps->sa_mutex);
    270 	return ps2;
    271 }
    272 
    273 /*
    274  * sigactsunshare:
    275  *
    276  *	Make this process not share its sigacts, maintaining all signal state.
    277  */
    278 void
    279 sigactsunshare(struct proc *p)
    280 {
    281 	struct sigacts *ps, *oldps = p->p_sigacts;
    282 
    283 	if (__predict_true(oldps->sa_refcnt == 1))
    284 		return;
    285 
    286 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    287 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    288 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    289 	ps->sa_refcnt = 1;
    290 
    291 	p->p_sigacts = ps;
    292 	sigactsfree(oldps);
    293 }
    294 
    295 /*
    296  * sigactsfree;
    297  *
    298  *	Release a sigacts structure.
    299  */
    300 void
    301 sigactsfree(struct sigacts *ps)
    302 {
    303 
    304 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    305 		mutex_destroy(&ps->sa_mutex);
    306 		pool_cache_put(sigacts_cache, ps);
    307 	}
    308 }
    309 
    310 /*
    311  * siginit:
    312  *
    313  *	Initialize signal state for process 0; set to ignore signals that
    314  *	are ignored by default and disable the signal stack.  Locking not
    315  *	required as the system is still cold.
    316  */
    317 void
    318 siginit(struct proc *p)
    319 {
    320 	struct lwp *l;
    321 	struct sigacts *ps;
    322 	int signo, prop;
    323 
    324 	ps = p->p_sigacts;
    325 	sigemptyset(&contsigmask);
    326 	sigemptyset(&stopsigmask);
    327 	sigemptyset(&sigcantmask);
    328 	for (signo = 1; signo < NSIG; signo++) {
    329 		prop = sigprop[signo];
    330 		if (prop & SA_CONT)
    331 			sigaddset(&contsigmask, signo);
    332 		if (prop & SA_STOP)
    333 			sigaddset(&stopsigmask, signo);
    334 		if (prop & SA_CANTMASK)
    335 			sigaddset(&sigcantmask, signo);
    336 		if (prop & SA_IGNORE && signo != SIGCONT)
    337 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    338 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    339 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    340 	}
    341 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    342 	p->p_sflag &= ~PS_NOCLDSTOP;
    343 
    344 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    345 	sigemptyset(&p->p_sigpend.sp_set);
    346 
    347 	/*
    348 	 * Reset per LWP state.
    349 	 */
    350 	l = LIST_FIRST(&p->p_lwps);
    351 	l->l_sigwaited = NULL;
    352 	l->l_sigstk.ss_flags = SS_DISABLE;
    353 	l->l_sigstk.ss_size = 0;
    354 	l->l_sigstk.ss_sp = 0;
    355 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    356 	sigemptyset(&l->l_sigpend.sp_set);
    357 
    358 	/* One reference. */
    359 	ps->sa_refcnt = 1;
    360 }
    361 
    362 /*
    363  * execsigs:
    364  *
    365  *	Reset signals for an exec of the specified process.
    366  */
    367 void
    368 execsigs(struct proc *p)
    369 {
    370 	struct sigacts *ps;
    371 	struct lwp *l;
    372 	int signo, prop;
    373 	sigset_t tset;
    374 	ksiginfoq_t kq;
    375 
    376 	KASSERT(p->p_nlwps == 1);
    377 
    378 	sigactsunshare(p);
    379 	ps = p->p_sigacts;
    380 
    381 	/*
    382 	 * Reset caught signals.  Held signals remain held through
    383 	 * l->l_sigmask (unless they were caught, and are now ignored
    384 	 * by default).
    385 	 *
    386 	 * No need to lock yet, the process has only one LWP and
    387 	 * at this point the sigacts are private to the process.
    388 	 */
    389 	sigemptyset(&tset);
    390 	for (signo = 1; signo < NSIG; signo++) {
    391 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    392 			prop = sigprop[signo];
    393 			if (prop & SA_IGNORE) {
    394 				if ((prop & SA_CONT) == 0)
    395 					sigaddset(&p->p_sigctx.ps_sigignore,
    396 					    signo);
    397 				sigaddset(&tset, signo);
    398 			}
    399 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    400 		}
    401 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    402 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    403 	}
    404 	ksiginfo_queue_init(&kq);
    405 
    406 	mutex_enter(p->p_lock);
    407 	sigclearall(p, &tset, &kq);
    408 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    409 
    410 	/*
    411 	 * Reset no zombies if child dies flag as Solaris does.
    412 	 */
    413 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    414 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    415 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    416 
    417 	/*
    418 	 * Reset per-LWP state.
    419 	 */
    420 	l = LIST_FIRST(&p->p_lwps);
    421 	l->l_sigwaited = NULL;
    422 	l->l_sigstk.ss_flags = SS_DISABLE;
    423 	l->l_sigstk.ss_size = 0;
    424 	l->l_sigstk.ss_sp = 0;
    425 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    426 	sigemptyset(&l->l_sigpend.sp_set);
    427 	mutex_exit(p->p_lock);
    428 
    429 	ksiginfo_queue_drain(&kq);
    430 }
    431 
    432 /*
    433  * ksiginfo_exechook:
    434  *
    435  *	Free all pending ksiginfo entries from a process on exec.
    436  *	Additionally, drain any unused ksiginfo structures in the
    437  *	system back to the pool.
    438  *
    439  *	XXX This should not be a hook, every process has signals.
    440  */
    441 static void
    442 ksiginfo_exechook(struct proc *p, void *v)
    443 {
    444 	ksiginfoq_t kq;
    445 
    446 	ksiginfo_queue_init(&kq);
    447 
    448 	mutex_enter(p->p_lock);
    449 	sigclearall(p, NULL, &kq);
    450 	mutex_exit(p->p_lock);
    451 
    452 	ksiginfo_queue_drain(&kq);
    453 }
    454 
    455 /*
    456  * ksiginfo_alloc:
    457  *
    458  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    459  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    460  *	has not been queued somewhere, then just return it.  Additionally,
    461  *	if the existing ksiginfo_t does not contain any information beyond
    462  *	the signal number, then just return it.
    463  */
    464 ksiginfo_t *
    465 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    466 {
    467 	ksiginfo_t *kp;
    468 
    469 	if (ok != NULL) {
    470 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    471 		    KSI_FROMPOOL)
    472 			return ok;
    473 		if (KSI_EMPTY_P(ok))
    474 			return ok;
    475 	}
    476 
    477 	kp = pool_cache_get(ksiginfo_cache, flags);
    478 	if (kp == NULL) {
    479 #ifdef DIAGNOSTIC
    480 		printf("Out of memory allocating ksiginfo for pid %d\n",
    481 		    p->p_pid);
    482 #endif
    483 		return NULL;
    484 	}
    485 
    486 	if (ok != NULL) {
    487 		memcpy(kp, ok, sizeof(*kp));
    488 		kp->ksi_flags &= ~KSI_QUEUED;
    489 	} else
    490 		KSI_INIT_EMPTY(kp);
    491 
    492 	kp->ksi_flags |= KSI_FROMPOOL;
    493 
    494 	return kp;
    495 }
    496 
    497 /*
    498  * ksiginfo_free:
    499  *
    500  *	If the given ksiginfo_t is from the pool and has not been queued,
    501  *	then free it.
    502  */
    503 void
    504 ksiginfo_free(ksiginfo_t *kp)
    505 {
    506 
    507 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    508 		return;
    509 	pool_cache_put(ksiginfo_cache, kp);
    510 }
    511 
    512 /*
    513  * ksiginfo_queue_drain:
    514  *
    515  *	Drain a non-empty ksiginfo_t queue.
    516  */
    517 void
    518 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    519 {
    520 	ksiginfo_t *ksi;
    521 
    522 	KASSERT(!CIRCLEQ_EMPTY(kq));
    523 
    524 	while (!CIRCLEQ_EMPTY(kq)) {
    525 		ksi = CIRCLEQ_FIRST(kq);
    526 		CIRCLEQ_REMOVE(kq, ksi, ksi_list);
    527 		pool_cache_put(ksiginfo_cache, ksi);
    528 	}
    529 }
    530 
    531 static bool
    532 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    533 {
    534 	ksiginfo_t *ksi;
    535 
    536 	if (sp == NULL)
    537 		goto out;
    538 
    539 	/* Find siginfo and copy it out. */
    540 	CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    541 		if (ksi->ksi_signo != signo)
    542 			continue;
    543 		CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    544 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    545 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    546 		ksi->ksi_flags &= ~KSI_QUEUED;
    547 		if (out != NULL) {
    548 			memcpy(out, ksi, sizeof(*out));
    549 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    550 		}
    551 		ksiginfo_free(ksi);	/* XXXSMP */
    552 		return true;
    553 	}
    554 
    555 out:
    556 	/* If there is no siginfo, then manufacture it. */
    557 	if (out != NULL) {
    558 		KSI_INIT(out);
    559 		out->ksi_info._signo = signo;
    560 		out->ksi_info._code = SI_NOINFO;
    561 	}
    562 	return false;
    563 }
    564 
    565 /*
    566  * sigget:
    567  *
    568  *	Fetch the first pending signal from a set.  Optionally, also fetch
    569  *	or manufacture a ksiginfo element.  Returns the number of the first
    570  *	pending signal, or zero.
    571  */
    572 int
    573 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    574 {
    575 	sigset_t tset;
    576 
    577 	/* If there's no pending set, the signal is from the debugger. */
    578 	if (sp == NULL)
    579 		goto out;
    580 
    581 	/* Construct mask from signo, and 'mask'. */
    582 	if (signo == 0) {
    583 		if (mask != NULL) {
    584 			tset = *mask;
    585 			__sigandset(&sp->sp_set, &tset);
    586 		} else
    587 			tset = sp->sp_set;
    588 
    589 		/* If there are no signals pending - return. */
    590 		if ((signo = firstsig(&tset)) == 0)
    591 			goto out;
    592 	} else {
    593 		KASSERT(sigismember(&sp->sp_set, signo));
    594 	}
    595 
    596 	sigdelset(&sp->sp_set, signo);
    597 out:
    598 	(void)siggetinfo(sp, out, signo);
    599 	return signo;
    600 }
    601 
    602 /*
    603  * sigput:
    604  *
    605  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    606  */
    607 static void
    608 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    609 {
    610 	ksiginfo_t *kp;
    611 
    612 	KASSERT(mutex_owned(p->p_lock));
    613 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    614 
    615 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    616 
    617 	/*
    618 	 * If there is no siginfo, we are done.
    619 	 */
    620 	if (KSI_EMPTY_P(ksi))
    621 		return;
    622 
    623 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    624 
    625 #ifdef notyet	/* XXX: QUEUING */
    626 	if (ksi->ksi_signo < SIGRTMIN)
    627 #endif
    628 	{
    629 		CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    630 			if (kp->ksi_signo == ksi->ksi_signo) {
    631 				KSI_COPY(ksi, kp);
    632 				kp->ksi_flags |= KSI_QUEUED;
    633 				return;
    634 			}
    635 		}
    636 	}
    637 
    638 	ksi->ksi_flags |= KSI_QUEUED;
    639 	CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    640 }
    641 
    642 /*
    643  * sigclear:
    644  *
    645  *	Clear all pending signals in the specified set.
    646  */
    647 void
    648 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    649 {
    650 	ksiginfo_t *ksi, *next;
    651 
    652 	if (mask == NULL)
    653 		sigemptyset(&sp->sp_set);
    654 	else
    655 		sigminusset(mask, &sp->sp_set);
    656 
    657 	ksi = CIRCLEQ_FIRST(&sp->sp_info);
    658 	for (; ksi != (void *)&sp->sp_info; ksi = next) {
    659 		next = CIRCLEQ_NEXT(ksi, ksi_list);
    660 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    661 			CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    662 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    663 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    664 			CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
    665 		}
    666 	}
    667 }
    668 
    669 /*
    670  * sigclearall:
    671  *
    672  *	Clear all pending signals in the specified set from a process and
    673  *	its LWPs.
    674  */
    675 void
    676 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    677 {
    678 	struct lwp *l;
    679 
    680 	KASSERT(mutex_owned(p->p_lock));
    681 
    682 	sigclear(&p->p_sigpend, mask, kq);
    683 
    684 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    685 		sigclear(&l->l_sigpend, mask, kq);
    686 	}
    687 }
    688 
    689 /*
    690  * sigispending:
    691  *
    692  *	Return the first signal number if there are pending signals for the
    693  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    694  *	and that the signal has been posted to the appopriate queue before
    695  *	LW_PENDSIG is set.
    696  */
    697 int
    698 sigispending(struct lwp *l, int signo)
    699 {
    700 	struct proc *p = l->l_proc;
    701 	sigset_t tset;
    702 
    703 	membar_consumer();
    704 
    705 	tset = l->l_sigpend.sp_set;
    706 	sigplusset(&p->p_sigpend.sp_set, &tset);
    707 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    708 	sigminusset(&l->l_sigmask, &tset);
    709 
    710 	if (signo == 0) {
    711 		return firstsig(&tset);
    712 	}
    713 	return sigismember(&tset, signo) ? signo : 0;
    714 }
    715 
    716 void
    717 getucontext(struct lwp *l, ucontext_t *ucp)
    718 {
    719 	struct proc *p = l->l_proc;
    720 
    721 	KASSERT(mutex_owned(p->p_lock));
    722 
    723 	ucp->uc_flags = 0;
    724 	ucp->uc_link = l->l_ctxlink;
    725 	ucp->uc_sigmask = l->l_sigmask;
    726 	ucp->uc_flags |= _UC_SIGMASK;
    727 
    728 	/*
    729 	 * The (unsupplied) definition of the `current execution stack'
    730 	 * in the System V Interface Definition appears to allow returning
    731 	 * the main context stack.
    732 	 */
    733 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    734 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    735 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    736 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    737 	} else {
    738 		/* Simply copy alternate signal execution stack. */
    739 		ucp->uc_stack = l->l_sigstk;
    740 	}
    741 	ucp->uc_flags |= _UC_STACK;
    742 	mutex_exit(p->p_lock);
    743 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    744 	mutex_enter(p->p_lock);
    745 }
    746 
    747 int
    748 setucontext(struct lwp *l, const ucontext_t *ucp)
    749 {
    750 	struct proc *p = l->l_proc;
    751 	int error;
    752 
    753 	KASSERT(mutex_owned(p->p_lock));
    754 
    755 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    756 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    757 		if (error != 0)
    758 			return error;
    759 	}
    760 
    761 	mutex_exit(p->p_lock);
    762 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    763 	mutex_enter(p->p_lock);
    764 	if (error != 0)
    765 		return (error);
    766 
    767 	l->l_ctxlink = ucp->uc_link;
    768 
    769 	/*
    770 	 * If there was stack information, update whether or not we are
    771 	 * still running on an alternate signal stack.
    772 	 */
    773 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    774 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    775 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    776 		else
    777 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    778 	}
    779 
    780 	return 0;
    781 }
    782 
    783 /*
    784  * killpg1: common code for kill process group/broadcast kill.
    785  */
    786 int
    787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    788 {
    789 	struct proc	*p, *cp;
    790 	kauth_cred_t	pc;
    791 	struct pgrp	*pgrp;
    792 	int		nfound;
    793 	int		signo = ksi->ksi_signo;
    794 
    795 	cp = l->l_proc;
    796 	pc = l->l_cred;
    797 	nfound = 0;
    798 
    799 	mutex_enter(proc_lock);
    800 	if (all) {
    801 		/*
    802 		 * Broadcast.
    803 		 */
    804 		PROCLIST_FOREACH(p, &allproc) {
    805 			if (p->p_pid <= 1 || p == cp ||
    806 			    (p->p_flag & PK_SYSTEM) != 0)
    807 				continue;
    808 			mutex_enter(p->p_lock);
    809 			if (kauth_authorize_process(pc,
    810 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    811 			    NULL) == 0) {
    812 				nfound++;
    813 				if (signo)
    814 					kpsignal2(p, ksi);
    815 			}
    816 			mutex_exit(p->p_lock);
    817 		}
    818 	} else {
    819 		if (pgid == 0)
    820 			/* Zero pgid means send to my process group. */
    821 			pgrp = cp->p_pgrp;
    822 		else {
    823 			pgrp = pgrp_find(pgid);
    824 			if (pgrp == NULL)
    825 				goto out;
    826 		}
    827 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    828 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    829 				continue;
    830 			mutex_enter(p->p_lock);
    831 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    832 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    833 				nfound++;
    834 				if (signo && P_ZOMBIE(p) == 0)
    835 					kpsignal2(p, ksi);
    836 			}
    837 			mutex_exit(p->p_lock);
    838 		}
    839 	}
    840 out:
    841 	mutex_exit(proc_lock);
    842 	return nfound ? 0 : ESRCH;
    843 }
    844 
    845 /*
    846  * Send a signal to a process group.  If checktty is set, limit to members
    847  * which have a controlling terminal.
    848  */
    849 void
    850 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    851 {
    852 	ksiginfo_t ksi;
    853 
    854 	KASSERT(!cpu_intr_p());
    855 	KASSERT(mutex_owned(proc_lock));
    856 
    857 	KSI_INIT_EMPTY(&ksi);
    858 	ksi.ksi_signo = sig;
    859 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    860 }
    861 
    862 void
    863 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    864 {
    865 	struct proc *p;
    866 
    867 	KASSERT(!cpu_intr_p());
    868 	KASSERT(mutex_owned(proc_lock));
    869 	KASSERT(pgrp != NULL);
    870 
    871 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    872 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    873 			kpsignal(p, ksi, data);
    874 }
    875 
    876 /*
    877  * Send a signal caused by a trap to the current LWP.  If it will be caught
    878  * immediately, deliver it with correct code.  Otherwise, post it normally.
    879  */
    880 void
    881 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    882 {
    883 	struct proc	*p;
    884 	struct sigacts	*ps;
    885 	int signo = ksi->ksi_signo;
    886 	sigset_t *mask;
    887 
    888 	KASSERT(KSI_TRAP_P(ksi));
    889 
    890 	ksi->ksi_lid = l->l_lid;
    891 	p = l->l_proc;
    892 
    893 	KASSERT(!cpu_intr_p());
    894 	mutex_enter(proc_lock);
    895 	mutex_enter(p->p_lock);
    896 	mask = &l->l_sigmask;
    897 	ps = p->p_sigacts;
    898 
    899 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    900 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    901 	    !sigismember(mask, signo)) {
    902 		mutex_exit(proc_lock);
    903 		l->l_ru.ru_nsignals++;
    904 		kpsendsig(l, ksi, mask);
    905 		mutex_exit(p->p_lock);
    906 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
    907 	} else {
    908 		/* XXX for core dump/debugger */
    909 		p->p_sigctx.ps_lwp = l->l_lid;
    910 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    911 		p->p_sigctx.ps_code = ksi->ksi_trap;
    912 		kpsignal2(p, ksi);
    913 		mutex_exit(p->p_lock);
    914 		mutex_exit(proc_lock);
    915 	}
    916 }
    917 
    918 /*
    919  * Fill in signal information and signal the parent for a child status change.
    920  */
    921 void
    922 child_psignal(struct proc *p, int mask)
    923 {
    924 	ksiginfo_t ksi;
    925 	struct proc *q;
    926 	int xstat;
    927 
    928 	KASSERT(mutex_owned(proc_lock));
    929 	KASSERT(mutex_owned(p->p_lock));
    930 
    931 	xstat = p->p_xstat;
    932 
    933 	KSI_INIT(&ksi);
    934 	ksi.ksi_signo = SIGCHLD;
    935 	ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    936 	ksi.ksi_pid = p->p_pid;
    937 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    938 	ksi.ksi_status = xstat;
    939 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    940 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    941 
    942 	q = p->p_pptr;
    943 
    944 	mutex_exit(p->p_lock);
    945 	mutex_enter(q->p_lock);
    946 
    947 	if ((q->p_sflag & mask) == 0)
    948 		kpsignal2(q, &ksi);
    949 
    950 	mutex_exit(q->p_lock);
    951 	mutex_enter(p->p_lock);
    952 }
    953 
    954 void
    955 psignal(struct proc *p, int signo)
    956 {
    957 	ksiginfo_t ksi;
    958 
    959 	KASSERT(!cpu_intr_p());
    960 	KASSERT(mutex_owned(proc_lock));
    961 
    962 	KSI_INIT_EMPTY(&ksi);
    963 	ksi.ksi_signo = signo;
    964 	mutex_enter(p->p_lock);
    965 	kpsignal2(p, &ksi);
    966 	mutex_exit(p->p_lock);
    967 }
    968 
    969 void
    970 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    971 {
    972 	fdfile_t *ff;
    973 	file_t *fp;
    974 	fdtab_t *dt;
    975 
    976 	KASSERT(!cpu_intr_p());
    977 	KASSERT(mutex_owned(proc_lock));
    978 
    979 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    980 		size_t fd;
    981 		filedesc_t *fdp = p->p_fd;
    982 
    983 		/* XXXSMP locking */
    984 		ksi->ksi_fd = -1;
    985 		dt = fdp->fd_dt;
    986 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
    987 			if ((ff = dt->dt_ff[fd]) == NULL)
    988 				continue;
    989 			if ((fp = ff->ff_file) == NULL)
    990 				continue;
    991 			if (fp->f_data == data) {
    992 				ksi->ksi_fd = fd;
    993 				break;
    994 			}
    995 		}
    996 	}
    997 	mutex_enter(p->p_lock);
    998 	kpsignal2(p, ksi);
    999 	mutex_exit(p->p_lock);
   1000 }
   1001 
   1002 /*
   1003  * sigismasked:
   1004  *
   1005  *	Returns true if signal is ignored or masked for the specified LWP.
   1006  */
   1007 int
   1008 sigismasked(struct lwp *l, int sig)
   1009 {
   1010 	struct proc *p = l->l_proc;
   1011 
   1012 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1013 	    sigismember(&l->l_sigmask, sig);
   1014 }
   1015 
   1016 /*
   1017  * sigpost:
   1018  *
   1019  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1020  *	be able to take the signal.
   1021  */
   1022 static int
   1023 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1024 {
   1025 	int rv, masked;
   1026 	struct proc *p = l->l_proc;
   1027 
   1028 	KASSERT(mutex_owned(p->p_lock));
   1029 
   1030 	/*
   1031 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1032 	 * pending signals.  Don't give it more.
   1033 	 */
   1034 	if (l->l_refcnt == 0)
   1035 		return 0;
   1036 
   1037 	SDT_PROBE(proc,,,signal_send, l, p, sig,  0, 0);
   1038 
   1039 	/*
   1040 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1041 	 * is found to take the signal immediately, it should be taken soon.
   1042 	 */
   1043 	lwp_lock(l);
   1044 	l->l_flag |= LW_PENDSIG;
   1045 
   1046 	/*
   1047 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1048 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1049 	 */
   1050 	masked = sigismember(&l->l_sigmask, sig);
   1051 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1052 		lwp_unlock(l);
   1053 		return 0;
   1054 	}
   1055 
   1056 	/*
   1057 	 * If killing the process, make it run fast.
   1058 	 */
   1059 	if (__predict_false((prop & SA_KILL) != 0) &&
   1060 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1061 		KASSERT(l->l_class == SCHED_OTHER);
   1062 		lwp_changepri(l, MAXPRI_USER);
   1063 	}
   1064 
   1065 	/*
   1066 	 * If the LWP is running or on a run queue, then we win.  If it's
   1067 	 * sleeping interruptably, wake it and make it take the signal.  If
   1068 	 * the sleep isn't interruptable, then the chances are it will get
   1069 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1070 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1071 	 * for later; otherwise punt.
   1072 	 */
   1073 	rv = 0;
   1074 
   1075 	switch (l->l_stat) {
   1076 	case LSRUN:
   1077 	case LSONPROC:
   1078 		lwp_need_userret(l);
   1079 		rv = 1;
   1080 		break;
   1081 
   1082 	case LSSLEEP:
   1083 		if ((l->l_flag & LW_SINTR) != 0) {
   1084 			/* setrunnable() will release the lock. */
   1085 			setrunnable(l);
   1086 			return 1;
   1087 		}
   1088 		break;
   1089 
   1090 	case LSSUSPENDED:
   1091 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1092 			/* lwp_continue() will release the lock. */
   1093 			lwp_continue(l);
   1094 			return 1;
   1095 		}
   1096 		break;
   1097 
   1098 	case LSSTOP:
   1099 		if ((prop & SA_STOP) != 0)
   1100 			break;
   1101 
   1102 		/*
   1103 		 * If the LWP is stopped and we are sending a continue
   1104 		 * signal, then start it again.
   1105 		 */
   1106 		if ((prop & SA_CONT) != 0) {
   1107 			if (l->l_wchan != NULL) {
   1108 				l->l_stat = LSSLEEP;
   1109 				p->p_nrlwps++;
   1110 				rv = 1;
   1111 				break;
   1112 			}
   1113 			/* setrunnable() will release the lock. */
   1114 			setrunnable(l);
   1115 			return 1;
   1116 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1117 			/* setrunnable() will release the lock. */
   1118 			setrunnable(l);
   1119 			return 1;
   1120 		}
   1121 		break;
   1122 
   1123 	default:
   1124 		break;
   1125 	}
   1126 
   1127 	lwp_unlock(l);
   1128 	return rv;
   1129 }
   1130 
   1131 /*
   1132  * Notify an LWP that it has a pending signal.
   1133  */
   1134 void
   1135 signotify(struct lwp *l)
   1136 {
   1137 	KASSERT(lwp_locked(l, NULL));
   1138 
   1139 	l->l_flag |= LW_PENDSIG;
   1140 	lwp_need_userret(l);
   1141 }
   1142 
   1143 /*
   1144  * Find an LWP within process p that is waiting on signal ksi, and hand
   1145  * it on.
   1146  */
   1147 static int
   1148 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1149 {
   1150 	struct lwp *l;
   1151 	int signo;
   1152 
   1153 	KASSERT(mutex_owned(p->p_lock));
   1154 
   1155 	signo = ksi->ksi_signo;
   1156 
   1157 	if (ksi->ksi_lid != 0) {
   1158 		/*
   1159 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1160 		 * it's interested.
   1161 		 */
   1162 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1163 			return 0;
   1164 		if (l->l_sigwaited == NULL ||
   1165 		    !sigismember(&l->l_sigwaitset, signo))
   1166 			return 0;
   1167 	} else {
   1168 		/*
   1169 		 * Look for any LWP that may be interested.
   1170 		 */
   1171 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1172 			KASSERT(l->l_sigwaited != NULL);
   1173 			if (sigismember(&l->l_sigwaitset, signo))
   1174 				break;
   1175 		}
   1176 	}
   1177 
   1178 	if (l != NULL) {
   1179 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1180 		l->l_sigwaited = NULL;
   1181 		LIST_REMOVE(l, l_sigwaiter);
   1182 		cv_signal(&l->l_sigcv);
   1183 		return 1;
   1184 	}
   1185 
   1186 	return 0;
   1187 }
   1188 
   1189 /*
   1190  * Send the signal to the process.  If the signal has an action, the action
   1191  * is usually performed by the target process rather than the caller; we add
   1192  * the signal to the set of pending signals for the process.
   1193  *
   1194  * Exceptions:
   1195  *   o When a stop signal is sent to a sleeping process that takes the
   1196  *     default action, the process is stopped without awakening it.
   1197  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1198  *     regardless of the signal action (eg, blocked or ignored).
   1199  *
   1200  * Other ignored signals are discarded immediately.
   1201  */
   1202 void
   1203 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1204 {
   1205 	int prop, signo = ksi->ksi_signo;
   1206 	struct sigacts *sa;
   1207 	struct lwp *l;
   1208 	ksiginfo_t *kp;
   1209 	lwpid_t lid;
   1210 	sig_t action;
   1211 	bool toall;
   1212 
   1213 	KASSERT(!cpu_intr_p());
   1214 	KASSERT(mutex_owned(proc_lock));
   1215 	KASSERT(mutex_owned(p->p_lock));
   1216 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1217 	KASSERT(signo > 0 && signo < NSIG);
   1218 
   1219 	/*
   1220 	 * If the process is being created by fork, is a zombie or is
   1221 	 * exiting, then just drop the signal here and bail out.
   1222 	 */
   1223 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1224 		return;
   1225 
   1226 	/*
   1227 	 * Notify any interested parties of the signal.
   1228 	 */
   1229 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1230 
   1231 	/*
   1232 	 * Some signals including SIGKILL must act on the entire process.
   1233 	 */
   1234 	kp = NULL;
   1235 	prop = sigprop[signo];
   1236 	toall = ((prop & SA_TOALL) != 0);
   1237 	lid = toall ? 0 : ksi->ksi_lid;
   1238 
   1239 	/*
   1240 	 * If proc is traced, always give parent a chance.
   1241 	 */
   1242 	if (p->p_slflag & PSL_TRACED) {
   1243 		action = SIG_DFL;
   1244 
   1245 		if (lid == 0) {
   1246 			/*
   1247 			 * If the process is being traced and the signal
   1248 			 * is being caught, make sure to save any ksiginfo.
   1249 			 */
   1250 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1251 				return;
   1252 			sigput(&p->p_sigpend, p, kp);
   1253 		}
   1254 	} else {
   1255 		/*
   1256 		 * If the signal was the result of a trap and is not being
   1257 		 * caught, then reset it to default action so that the
   1258 		 * process dumps core immediately.
   1259 		 */
   1260 		if (KSI_TRAP_P(ksi)) {
   1261 			sa = p->p_sigacts;
   1262 			mutex_enter(&sa->sa_mutex);
   1263 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1264 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1265 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1266 			}
   1267 			mutex_exit(&sa->sa_mutex);
   1268 		}
   1269 
   1270 		/*
   1271 		 * If the signal is being ignored, then drop it.  Note: we
   1272 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1273 		 * SIG_IGN, action will be SIG_DFL here.
   1274 		 */
   1275 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1276 			return;
   1277 
   1278 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1279 			action = SIG_CATCH;
   1280 		else {
   1281 			action = SIG_DFL;
   1282 
   1283 			/*
   1284 			 * If sending a tty stop signal to a member of an
   1285 			 * orphaned process group, discard the signal here if
   1286 			 * the action is default; don't stop the process below
   1287 			 * if sleeping, and don't clear any pending SIGCONT.
   1288 			 */
   1289 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1290 				return;
   1291 
   1292 			if (prop & SA_KILL && p->p_nice > NZERO)
   1293 				p->p_nice = NZERO;
   1294 		}
   1295 	}
   1296 
   1297 	/*
   1298 	 * If stopping or continuing a process, discard any pending
   1299 	 * signals that would do the inverse.
   1300 	 */
   1301 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1302 		ksiginfoq_t kq;
   1303 
   1304 		ksiginfo_queue_init(&kq);
   1305 		if ((prop & SA_CONT) != 0)
   1306 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1307 		if ((prop & SA_STOP) != 0)
   1308 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1309 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1310 	}
   1311 
   1312 	/*
   1313 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1314 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1315 	 * the signal info.  The signal won't be processed further here.
   1316 	 */
   1317 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1318 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1319 	    sigunwait(p, ksi))
   1320 		return;
   1321 
   1322 	/*
   1323 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1324 	 * here.
   1325 	 */
   1326 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1327 		return;
   1328 
   1329 	/*
   1330 	 * LWP private signals are easy - just find the LWP and post
   1331 	 * the signal to it.
   1332 	 */
   1333 	if (lid != 0) {
   1334 		l = lwp_find(p, lid);
   1335 		if (l != NULL) {
   1336 			sigput(&l->l_sigpend, p, kp);
   1337 			membar_producer();
   1338 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1339 		}
   1340 		goto out;
   1341 	}
   1342 
   1343 	/*
   1344 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1345 	 * or for an SA process.
   1346 	 */
   1347 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1348 		if ((p->p_slflag & PSL_TRACED) != 0)
   1349 			goto deliver;
   1350 
   1351 		/*
   1352 		 * If SIGCONT is default (or ignored) and process is
   1353 		 * asleep, we are finished; the process should not
   1354 		 * be awakened.
   1355 		 */
   1356 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1357 			goto out;
   1358 	} else {
   1359 		/*
   1360 		 * Process is stopped or stopping.
   1361 		 * - If traced, then no action is needed, unless killing.
   1362 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1363 		 */
   1364 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1365 			goto out;
   1366 		}
   1367 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1368 			/*
   1369 			 * Re-adjust p_nstopchild if the process wasn't
   1370 			 * collected by its parent.
   1371 			 */
   1372 			p->p_stat = SACTIVE;
   1373 			p->p_sflag &= ~PS_STOPPING;
   1374 			if (!p->p_waited) {
   1375 				p->p_pptr->p_nstopchild--;
   1376 			}
   1377 			if (p->p_slflag & PSL_TRACED) {
   1378 				KASSERT(signo == SIGKILL);
   1379 				goto deliver;
   1380 			}
   1381 			/*
   1382 			 * Do not make signal pending if SIGCONT is default.
   1383 			 *
   1384 			 * If the process catches SIGCONT, let it handle the
   1385 			 * signal itself (if waiting on event - process runs,
   1386 			 * otherwise continues sleeping).
   1387 			 */
   1388 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
   1389 				KASSERT(signo != SIGKILL);
   1390 				goto deliver;
   1391 			}
   1392 		} else if ((prop & SA_STOP) != 0) {
   1393 			/*
   1394 			 * Already stopped, don't need to stop again.
   1395 			 * (If we did the shell could get confused.)
   1396 			 */
   1397 			goto out;
   1398 		}
   1399 	}
   1400 	/*
   1401 	 * Make signal pending.
   1402 	 */
   1403 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1404 	sigput(&p->p_sigpend, p, kp);
   1405 
   1406 deliver:
   1407 	/*
   1408 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1409 	 * visible on the per process list (for sigispending()).  This
   1410 	 * is unlikely to be needed in practice, but...
   1411 	 */
   1412 	membar_producer();
   1413 
   1414 	/*
   1415 	 * Try to find an LWP that can take the signal.
   1416 	 */
   1417 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1418 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1419 			break;
   1420 	}
   1421 out:
   1422 	/*
   1423 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1424 	 * with locks held.  The caller should take care of this.
   1425 	 */
   1426 	ksiginfo_free(kp);
   1427 }
   1428 
   1429 void
   1430 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1431 {
   1432 	struct proc *p = l->l_proc;
   1433 
   1434 	KASSERT(mutex_owned(p->p_lock));
   1435 	(*p->p_emul->e_sendsig)(ksi, mask);
   1436 }
   1437 
   1438 /*
   1439  * Stop any LWPs sleeping interruptably.
   1440  */
   1441 static void
   1442 proc_stop_lwps(struct proc *p)
   1443 {
   1444 	struct lwp *l;
   1445 
   1446 	KASSERT(mutex_owned(p->p_lock));
   1447 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1448 
   1449 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1450 		lwp_lock(l);
   1451 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1452 			l->l_stat = LSSTOP;
   1453 			p->p_nrlwps--;
   1454 		}
   1455 		lwp_unlock(l);
   1456 	}
   1457 }
   1458 
   1459 /*
   1460  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1461  *
   1462  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1463  */
   1464 static void
   1465 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1466 {
   1467 
   1468 	KASSERT(mutex_owned(proc_lock));
   1469 	KASSERT(mutex_owned(p->p_lock));
   1470 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1471 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1472 
   1473 	p->p_sflag &= ~PS_STOPPING;
   1474 	p->p_stat = SSTOP;
   1475 	p->p_waited = 0;
   1476 	p->p_pptr->p_nstopchild++;
   1477 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1478 		if (ppsig) {
   1479 			/* child_psignal drops p_lock briefly. */
   1480 			child_psignal(p, ppmask);
   1481 		}
   1482 		cv_broadcast(&p->p_pptr->p_waitcv);
   1483 	}
   1484 }
   1485 
   1486 /*
   1487  * Stop the current process and switch away when being stopped or traced.
   1488  */
   1489 static void
   1490 sigswitch(bool ppsig, int ppmask, int signo)
   1491 {
   1492 	struct lwp *l = curlwp;
   1493 	struct proc *p = l->l_proc;
   1494 	int biglocks;
   1495 
   1496 	KASSERT(mutex_owned(p->p_lock));
   1497 	KASSERT(l->l_stat == LSONPROC);
   1498 	KASSERT(p->p_nrlwps > 0);
   1499 
   1500 	/*
   1501 	 * On entry we know that the process needs to stop.  If it's
   1502 	 * the result of a 'sideways' stop signal that has been sourced
   1503 	 * through issignal(), then stop other LWPs in the process too.
   1504 	 */
   1505 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1506 		KASSERT(signo != 0);
   1507 		proc_stop(p, 1, signo);
   1508 		KASSERT(p->p_nrlwps > 0);
   1509 	}
   1510 
   1511 	/*
   1512 	 * If we are the last live LWP, and the stop was a result of
   1513 	 * a new signal, then signal the parent.
   1514 	 */
   1515 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1516 		if (!mutex_tryenter(proc_lock)) {
   1517 			mutex_exit(p->p_lock);
   1518 			mutex_enter(proc_lock);
   1519 			mutex_enter(p->p_lock);
   1520 		}
   1521 
   1522 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1523 			/*
   1524 			 * Note that proc_stop_done() can drop
   1525 			 * p->p_lock briefly.
   1526 			 */
   1527 			proc_stop_done(p, ppsig, ppmask);
   1528 		}
   1529 
   1530 		mutex_exit(proc_lock);
   1531 	}
   1532 
   1533 	/*
   1534 	 * Unlock and switch away.
   1535 	 */
   1536 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1537 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1538 		p->p_nrlwps--;
   1539 		lwp_lock(l);
   1540 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1541 		l->l_stat = LSSTOP;
   1542 		lwp_unlock(l);
   1543 	}
   1544 
   1545 	mutex_exit(p->p_lock);
   1546 	lwp_lock(l);
   1547 	mi_switch(l);
   1548 	KERNEL_LOCK(biglocks, l);
   1549 	mutex_enter(p->p_lock);
   1550 }
   1551 
   1552 /*
   1553  * Check for a signal from the debugger.
   1554  */
   1555 static int
   1556 sigchecktrace(void)
   1557 {
   1558 	struct lwp *l = curlwp;
   1559 	struct proc *p = l->l_proc;
   1560 	int signo;
   1561 
   1562 	KASSERT(mutex_owned(p->p_lock));
   1563 
   1564 	/* If there's a pending SIGKILL, process it immediately. */
   1565 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1566 		return 0;
   1567 
   1568 	/*
   1569 	 * If we are no longer being traced, or the parent didn't
   1570 	 * give us a signal, or we're stopping, look for more signals.
   1571 	 */
   1572 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
   1573 	    (p->p_sflag & PS_STOPPING) != 0)
   1574 		return 0;
   1575 
   1576 	/*
   1577 	 * If the new signal is being masked, look for other signals.
   1578 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1579 	 */
   1580 	signo = p->p_xstat;
   1581 	p->p_xstat = 0;
   1582 	if (sigismember(&l->l_sigmask, signo)) {
   1583 		signo = 0;
   1584 	}
   1585 	return signo;
   1586 }
   1587 
   1588 /*
   1589  * If the current process has received a signal (should be caught or cause
   1590  * termination, should interrupt current syscall), return the signal number.
   1591  *
   1592  * Stop signals with default action are processed immediately, then cleared;
   1593  * they aren't returned.  This is checked after each entry to the system for
   1594  * a syscall or trap.
   1595  *
   1596  * We will also return -1 if the process is exiting and the current LWP must
   1597  * follow suit.
   1598  */
   1599 int
   1600 issignal(struct lwp *l)
   1601 {
   1602 	struct proc *p;
   1603 	int signo, prop;
   1604 	sigpend_t *sp;
   1605 	sigset_t ss;
   1606 
   1607 	p = l->l_proc;
   1608 	sp = NULL;
   1609 	signo = 0;
   1610 
   1611 	KASSERT(p == curproc);
   1612 	KASSERT(mutex_owned(p->p_lock));
   1613 
   1614 	for (;;) {
   1615 		/* Discard any signals that we have decided not to take. */
   1616 		if (signo != 0) {
   1617 			(void)sigget(sp, NULL, signo, NULL);
   1618 		}
   1619 
   1620 		/*
   1621 		 * If the process is stopped/stopping, then stop ourselves
   1622 		 * now that we're on the kernel/userspace boundary.  When
   1623 		 * we awaken, check for a signal from the debugger.
   1624 		 */
   1625 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1626 			sigswitch(true, PS_NOCLDSTOP, 0);
   1627 			signo = sigchecktrace();
   1628 		} else
   1629 			signo = 0;
   1630 
   1631 		/* Signals from the debugger are "out of band". */
   1632 		sp = NULL;
   1633 
   1634 		/*
   1635 		 * If the debugger didn't provide a signal, find a pending
   1636 		 * signal from our set.  Check per-LWP signals first, and
   1637 		 * then per-process.
   1638 		 */
   1639 		if (signo == 0) {
   1640 			sp = &l->l_sigpend;
   1641 			ss = sp->sp_set;
   1642 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1643 				sigminusset(&stopsigmask, &ss);
   1644 			sigminusset(&l->l_sigmask, &ss);
   1645 
   1646 			if ((signo = firstsig(&ss)) == 0) {
   1647 				sp = &p->p_sigpend;
   1648 				ss = sp->sp_set;
   1649 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1650 					sigminusset(&stopsigmask, &ss);
   1651 				sigminusset(&l->l_sigmask, &ss);
   1652 
   1653 				if ((signo = firstsig(&ss)) == 0) {
   1654 					/*
   1655 					 * No signal pending - clear the
   1656 					 * indicator and bail out.
   1657 					 */
   1658 					lwp_lock(l);
   1659 					l->l_flag &= ~LW_PENDSIG;
   1660 					lwp_unlock(l);
   1661 					sp = NULL;
   1662 					break;
   1663 				}
   1664 			}
   1665 		}
   1666 
   1667 		/*
   1668 		 * We should see pending but ignored signals only if
   1669 		 * we are being traced.
   1670 		 */
   1671 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1672 		    (p->p_slflag & PSL_TRACED) == 0) {
   1673 			/* Discard the signal. */
   1674 			continue;
   1675 		}
   1676 
   1677 		/*
   1678 		 * If traced, always stop, and stay stopped until released
   1679 		 * by the debugger.  If the our parent process is waiting
   1680 		 * for us, don't hang as we could deadlock.
   1681 		 */
   1682 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1683 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1684 			/*
   1685 			 * Take the signal, but don't remove it from the
   1686 			 * siginfo queue, because the debugger can send
   1687 			 * it later.
   1688 			 */
   1689 			if (sp)
   1690 				sigdelset(&sp->sp_set, signo);
   1691 			p->p_xstat = signo;
   1692 
   1693 			/* Emulation-specific handling of signal trace */
   1694 			if (p->p_emul->e_tracesig == NULL ||
   1695 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1696 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1697 				    signo);
   1698 
   1699 			/* Check for a signal from the debugger. */
   1700 			if ((signo = sigchecktrace()) == 0)
   1701 				continue;
   1702 
   1703 			/* Signals from the debugger are "out of band". */
   1704 			sp = NULL;
   1705 		}
   1706 
   1707 		prop = sigprop[signo];
   1708 
   1709 		/* XXX no siginfo? */
   1710 		SDT_PROBE(proc,,,signal_handle, signo, 0,
   1711 			SIGACTION(p, signo).sa_handler, 0, 0);
   1712 
   1713 		/*
   1714 		 * Decide whether the signal should be returned.
   1715 		 */
   1716 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1717 		case (long)SIG_DFL:
   1718 			/*
   1719 			 * Don't take default actions on system processes.
   1720 			 */
   1721 			if (p->p_pid <= 1) {
   1722 #ifdef DIAGNOSTIC
   1723 				/*
   1724 				 * Are you sure you want to ignore SIGSEGV
   1725 				 * in init? XXX
   1726 				 */
   1727 				printf_nolog("Process (pid %d) got sig %d\n",
   1728 				    p->p_pid, signo);
   1729 #endif
   1730 				continue;
   1731 			}
   1732 
   1733 			/*
   1734 			 * If there is a pending stop signal to process with
   1735 			 * default action, stop here, then clear the signal.
   1736 			 * However, if process is member of an orphaned
   1737 			 * process group, ignore tty stop signals.
   1738 			 */
   1739 			if (prop & SA_STOP) {
   1740 				/*
   1741 				 * XXX Don't hold proc_lock for p_lflag,
   1742 				 * but it's not a big deal.
   1743 				 */
   1744 				if (p->p_slflag & PSL_TRACED ||
   1745 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1746 				    prop & SA_TTYSTOP)) {
   1747 					/* Ignore the signal. */
   1748 					continue;
   1749 				}
   1750 				/* Take the signal. */
   1751 				(void)sigget(sp, NULL, signo, NULL);
   1752 				p->p_xstat = signo;
   1753 				signo = 0;
   1754 				sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
   1755 			} else if (prop & SA_IGNORE) {
   1756 				/*
   1757 				 * Except for SIGCONT, shouldn't get here.
   1758 				 * Default action is to ignore; drop it.
   1759 				 */
   1760 				continue;
   1761 			}
   1762 			break;
   1763 
   1764 		case (long)SIG_IGN:
   1765 #ifdef DEBUG_ISSIGNAL
   1766 			/*
   1767 			 * Masking above should prevent us ever trying
   1768 			 * to take action on an ignored signal other
   1769 			 * than SIGCONT, unless process is traced.
   1770 			 */
   1771 			if ((prop & SA_CONT) == 0 &&
   1772 			    (p->p_slflag & PSL_TRACED) == 0)
   1773 				printf_nolog("issignal\n");
   1774 #endif
   1775 			continue;
   1776 
   1777 		default:
   1778 			/*
   1779 			 * This signal has an action, let postsig() process
   1780 			 * it.
   1781 			 */
   1782 			break;
   1783 		}
   1784 
   1785 		break;
   1786 	}
   1787 
   1788 	l->l_sigpendset = sp;
   1789 	return signo;
   1790 }
   1791 
   1792 /*
   1793  * Take the action for the specified signal
   1794  * from the current set of pending signals.
   1795  */
   1796 void
   1797 postsig(int signo)
   1798 {
   1799 	struct lwp	*l;
   1800 	struct proc	*p;
   1801 	struct sigacts	*ps;
   1802 	sig_t		action;
   1803 	sigset_t	*returnmask;
   1804 	ksiginfo_t	ksi;
   1805 
   1806 	l = curlwp;
   1807 	p = l->l_proc;
   1808 	ps = p->p_sigacts;
   1809 
   1810 	KASSERT(mutex_owned(p->p_lock));
   1811 	KASSERT(signo > 0);
   1812 
   1813 	/*
   1814 	 * Set the new mask value and also defer further occurrences of this
   1815 	 * signal.
   1816 	 *
   1817 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1818 	 * not of interest, but rather the mask from before the sigsuspend is
   1819 	 * what we want restored after the signal processing is completed.
   1820 	 */
   1821 	if (l->l_sigrestore) {
   1822 		returnmask = &l->l_sigoldmask;
   1823 		l->l_sigrestore = 0;
   1824 	} else
   1825 		returnmask = &l->l_sigmask;
   1826 
   1827 	/*
   1828 	 * Commit to taking the signal before releasing the mutex.
   1829 	 */
   1830 	action = SIGACTION_PS(ps, signo).sa_handler;
   1831 	l->l_ru.ru_nsignals++;
   1832 	if (l->l_sigpendset == NULL) {
   1833 		/* From the debugger */
   1834 		if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   1835 			(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   1836 	} else
   1837 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   1838 
   1839 	if (ktrpoint(KTR_PSIG)) {
   1840 		mutex_exit(p->p_lock);
   1841 		ktrpsig(signo, action, returnmask, &ksi);
   1842 		mutex_enter(p->p_lock);
   1843 	}
   1844 
   1845 	if (action == SIG_DFL) {
   1846 		/*
   1847 		 * Default action, where the default is to kill
   1848 		 * the process.  (Other cases were ignored above.)
   1849 		 */
   1850 		sigexit(l, signo);
   1851 		return;
   1852 	}
   1853 
   1854 	/*
   1855 	 * If we get here, the signal must be caught.
   1856 	 */
   1857 #ifdef DIAGNOSTIC
   1858 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1859 		panic("postsig action");
   1860 #endif
   1861 
   1862 	kpsendsig(l, &ksi, returnmask);
   1863 }
   1864 
   1865 /*
   1866  * sendsig:
   1867  *
   1868  *	Default signal delivery method for NetBSD.
   1869  */
   1870 void
   1871 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1872 {
   1873 	struct sigacts *sa;
   1874 	int sig;
   1875 
   1876 	sig = ksi->ksi_signo;
   1877 	sa = curproc->p_sigacts;
   1878 
   1879 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1880 	case 0:
   1881 	case 1:
   1882 		/* Compat for 1.6 and earlier. */
   1883 		if (sendsig_sigcontext_vec == NULL) {
   1884 			break;
   1885 		}
   1886 		(*sendsig_sigcontext_vec)(ksi, mask);
   1887 		return;
   1888 	case 2:
   1889 	case 3:
   1890 		sendsig_siginfo(ksi, mask);
   1891 		return;
   1892 	default:
   1893 		break;
   1894 	}
   1895 
   1896 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1897 	sigexit(curlwp, SIGILL);
   1898 }
   1899 
   1900 /*
   1901  * sendsig_reset:
   1902  *
   1903  *	Reset the signal action.  Called from emulation specific sendsig()
   1904  *	before unlocking to deliver the signal.
   1905  */
   1906 void
   1907 sendsig_reset(struct lwp *l, int signo)
   1908 {
   1909 	struct proc *p = l->l_proc;
   1910 	struct sigacts *ps = p->p_sigacts;
   1911 
   1912 	KASSERT(mutex_owned(p->p_lock));
   1913 
   1914 	p->p_sigctx.ps_lwp = 0;
   1915 	p->p_sigctx.ps_code = 0;
   1916 	p->p_sigctx.ps_signo = 0;
   1917 
   1918 	mutex_enter(&ps->sa_mutex);
   1919 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1920 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1921 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1922 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1923 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1924 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1925 	}
   1926 	mutex_exit(&ps->sa_mutex);
   1927 }
   1928 
   1929 /*
   1930  * Kill the current process for stated reason.
   1931  */
   1932 void
   1933 killproc(struct proc *p, const char *why)
   1934 {
   1935 
   1936 	KASSERT(mutex_owned(proc_lock));
   1937 
   1938 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1939 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1940 	psignal(p, SIGKILL);
   1941 }
   1942 
   1943 /*
   1944  * Force the current process to exit with the specified signal, dumping core
   1945  * if appropriate.  We bypass the normal tests for masked and caught
   1946  * signals, allowing unrecoverable failures to terminate the process without
   1947  * changing signal state.  Mark the accounting record with the signal
   1948  * termination.  If dumping core, save the signal number for the debugger.
   1949  * Calls exit and does not return.
   1950  */
   1951 void
   1952 sigexit(struct lwp *l, int signo)
   1953 {
   1954 	int exitsig, error, docore;
   1955 	struct proc *p;
   1956 	struct lwp *t;
   1957 
   1958 	p = l->l_proc;
   1959 
   1960 	KASSERT(mutex_owned(p->p_lock));
   1961 	KERNEL_UNLOCK_ALL(l, NULL);
   1962 
   1963 	/*
   1964 	 * Don't permit coredump() multiple times in the same process.
   1965 	 * Call back into sigexit, where we will be suspended until
   1966 	 * the deed is done.  Note that this is a recursive call, but
   1967 	 * LW_WCORE will prevent us from coming back this way.
   1968 	 */
   1969 	if ((p->p_sflag & PS_WCORE) != 0) {
   1970 		lwp_lock(l);
   1971 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1972 		lwp_unlock(l);
   1973 		mutex_exit(p->p_lock);
   1974 		lwp_userret(l);
   1975 		panic("sigexit 1");
   1976 		/* NOTREACHED */
   1977 	}
   1978 
   1979 	/* If process is already on the way out, then bail now. */
   1980 	if ((p->p_sflag & PS_WEXIT) != 0) {
   1981 		mutex_exit(p->p_lock);
   1982 		lwp_exit(l);
   1983 		panic("sigexit 2");
   1984 		/* NOTREACHED */
   1985 	}
   1986 
   1987 	/*
   1988 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1989 	 * so that their registers are available long enough to be dumped.
   1990  	 */
   1991 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1992 		p->p_sflag |= PS_WCORE;
   1993 		for (;;) {
   1994 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1995 				lwp_lock(t);
   1996 				if (t == l) {
   1997 					t->l_flag &= ~LW_WSUSPEND;
   1998 					lwp_unlock(t);
   1999 					continue;
   2000 				}
   2001 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2002 				lwp_suspend(l, t);
   2003 			}
   2004 
   2005 			if (p->p_nrlwps == 1)
   2006 				break;
   2007 
   2008 			/*
   2009 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2010 			 * for everyone else to stop before proceeding.
   2011 			 */
   2012 			p->p_nlwpwait++;
   2013 			cv_broadcast(&p->p_lwpcv);
   2014 			cv_wait(&p->p_lwpcv, p->p_lock);
   2015 			p->p_nlwpwait--;
   2016 		}
   2017 	}
   2018 
   2019 	exitsig = signo;
   2020 	p->p_acflag |= AXSIG;
   2021 	p->p_sigctx.ps_signo = signo;
   2022 
   2023 	if (docore) {
   2024 		mutex_exit(p->p_lock);
   2025 		if ((error = (*coredump_vec)(l, NULL)) == 0)
   2026 			exitsig |= WCOREFLAG;
   2027 
   2028 		if (kern_logsigexit) {
   2029 			int uid = l->l_cred ?
   2030 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2031 
   2032 			if (error)
   2033 				log(LOG_INFO, lognocoredump, p->p_pid,
   2034 				    p->p_comm, uid, signo, error);
   2035 			else
   2036 				log(LOG_INFO, logcoredump, p->p_pid,
   2037 				    p->p_comm, uid, signo);
   2038 		}
   2039 
   2040 #ifdef PAX_SEGVGUARD
   2041 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2042 #endif /* PAX_SEGVGUARD */
   2043 		/* Acquire the sched state mutex.  exit1() will release it. */
   2044 		mutex_enter(p->p_lock);
   2045 	}
   2046 
   2047 	/* No longer dumping core. */
   2048 	p->p_sflag &= ~PS_WCORE;
   2049 
   2050 	exit1(l, W_EXITCODE(0, exitsig));
   2051 	/* NOTREACHED */
   2052 }
   2053 
   2054 /*
   2055  * Put process 'p' into the stopped state and optionally, notify the parent.
   2056  */
   2057 void
   2058 proc_stop(struct proc *p, int notify, int signo)
   2059 {
   2060 	struct lwp *l;
   2061 
   2062 	KASSERT(mutex_owned(p->p_lock));
   2063 
   2064 	/*
   2065 	 * First off, set the stopping indicator and bring all sleeping
   2066 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2067 	 * unlock between here and the p->p_nrlwps check below.
   2068 	 */
   2069 	p->p_sflag |= PS_STOPPING;
   2070 	if (notify)
   2071 		p->p_sflag |= PS_NOTIFYSTOP;
   2072 	else
   2073 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2074 	membar_producer();
   2075 
   2076 	proc_stop_lwps(p);
   2077 
   2078 	/*
   2079 	 * If there are no LWPs available to take the signal, then we
   2080 	 * signal the parent process immediately.  Otherwise, the last
   2081 	 * LWP to stop will take care of it.
   2082 	 */
   2083 
   2084 	if (p->p_nrlwps == 0) {
   2085 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2086 	} else {
   2087 		/*
   2088 		 * Have the remaining LWPs come to a halt, and trigger
   2089 		 * proc_stop_callout() to ensure that they do.
   2090 		 */
   2091 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2092 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2093 		}
   2094 		callout_schedule(&proc_stop_ch, 1);
   2095 	}
   2096 }
   2097 
   2098 /*
   2099  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2100  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2101  * to allow LWPs to release any locks that they may hold before stopping.
   2102  *
   2103  * Non-interruptable sleeps can be long, and there is the potential for an
   2104  * LWP to begin sleeping interruptably soon after the process has been set
   2105  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2106  * stopping, and so complete halt of the process and the return of status
   2107  * information to the parent could be delayed indefinitely.
   2108  *
   2109  * To handle this race, proc_stop_callout() runs once per tick while there
   2110  * are stopping processes in the system.  It sets LWPs that are sleeping
   2111  * interruptably into the LSSTOP state.
   2112  *
   2113  * Note that we are not concerned about keeping all LWPs stopped while the
   2114  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2115  * What we do need to ensure is that all LWPs in a stopping process have
   2116  * stopped at least once, so that notification can be sent to the parent
   2117  * process.
   2118  */
   2119 static void
   2120 proc_stop_callout(void *cookie)
   2121 {
   2122 	bool more, restart;
   2123 	struct proc *p;
   2124 
   2125 	(void)cookie;
   2126 
   2127 	do {
   2128 		restart = false;
   2129 		more = false;
   2130 
   2131 		mutex_enter(proc_lock);
   2132 		PROCLIST_FOREACH(p, &allproc) {
   2133 			mutex_enter(p->p_lock);
   2134 
   2135 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2136 				mutex_exit(p->p_lock);
   2137 				continue;
   2138 			}
   2139 
   2140 			/* Stop any LWPs sleeping interruptably. */
   2141 			proc_stop_lwps(p);
   2142 			if (p->p_nrlwps == 0) {
   2143 				/*
   2144 				 * We brought the process to a halt.
   2145 				 * Mark it as stopped and notify the
   2146 				 * parent.
   2147 				 */
   2148 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2149 					/*
   2150 					 * Note that proc_stop_done() will
   2151 					 * drop p->p_lock briefly.
   2152 					 * Arrange to restart and check
   2153 					 * all processes again.
   2154 					 */
   2155 					restart = true;
   2156 				}
   2157 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2158 			} else
   2159 				more = true;
   2160 
   2161 			mutex_exit(p->p_lock);
   2162 			if (restart)
   2163 				break;
   2164 		}
   2165 		mutex_exit(proc_lock);
   2166 	} while (restart);
   2167 
   2168 	/*
   2169 	 * If we noted processes that are stopping but still have
   2170 	 * running LWPs, then arrange to check again in 1 tick.
   2171 	 */
   2172 	if (more)
   2173 		callout_schedule(&proc_stop_ch, 1);
   2174 }
   2175 
   2176 /*
   2177  * Given a process in state SSTOP, set the state back to SACTIVE and
   2178  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2179  */
   2180 void
   2181 proc_unstop(struct proc *p)
   2182 {
   2183 	struct lwp *l;
   2184 	int sig;
   2185 
   2186 	KASSERT(mutex_owned(proc_lock));
   2187 	KASSERT(mutex_owned(p->p_lock));
   2188 
   2189 	p->p_stat = SACTIVE;
   2190 	p->p_sflag &= ~PS_STOPPING;
   2191 	sig = p->p_xstat;
   2192 
   2193 	if (!p->p_waited)
   2194 		p->p_pptr->p_nstopchild--;
   2195 
   2196 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2197 		lwp_lock(l);
   2198 		if (l->l_stat != LSSTOP) {
   2199 			lwp_unlock(l);
   2200 			continue;
   2201 		}
   2202 		if (l->l_wchan == NULL) {
   2203 			setrunnable(l);
   2204 			continue;
   2205 		}
   2206 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2207 			setrunnable(l);
   2208 			sig = 0;
   2209 		} else {
   2210 			l->l_stat = LSSLEEP;
   2211 			p->p_nrlwps++;
   2212 			lwp_unlock(l);
   2213 		}
   2214 	}
   2215 }
   2216 
   2217 static int
   2218 filt_sigattach(struct knote *kn)
   2219 {
   2220 	struct proc *p = curproc;
   2221 
   2222 	kn->kn_obj = p;
   2223 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2224 
   2225 	mutex_enter(p->p_lock);
   2226 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2227 	mutex_exit(p->p_lock);
   2228 
   2229 	return 0;
   2230 }
   2231 
   2232 static void
   2233 filt_sigdetach(struct knote *kn)
   2234 {
   2235 	struct proc *p = kn->kn_obj;
   2236 
   2237 	mutex_enter(p->p_lock);
   2238 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2239 	mutex_exit(p->p_lock);
   2240 }
   2241 
   2242 /*
   2243  * Signal knotes are shared with proc knotes, so we apply a mask to
   2244  * the hint in order to differentiate them from process hints.  This
   2245  * could be avoided by using a signal-specific knote list, but probably
   2246  * isn't worth the trouble.
   2247  */
   2248 static int
   2249 filt_signal(struct knote *kn, long hint)
   2250 {
   2251 
   2252 	if (hint & NOTE_SIGNAL) {
   2253 		hint &= ~NOTE_SIGNAL;
   2254 
   2255 		if (kn->kn_id == hint)
   2256 			kn->kn_data++;
   2257 	}
   2258 	return (kn->kn_data != 0);
   2259 }
   2260 
   2261 const struct filterops sig_filtops = {
   2262 	0, filt_sigattach, filt_sigdetach, filt_signal
   2263 };
   2264