kern_sig.c revision 1.318 1 /* $NetBSD: kern_sig.c,v 1.318 2013/06/09 01:13:47 riz Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.318 2013/06/09 01:13:47 riz Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_compat_sunos.h"
77 #include "opt_compat_netbsd.h"
78 #include "opt_compat_netbsd32.h"
79 #include "opt_pax.h"
80
81 #define SIGPROP /* include signal properties table */
82 #include <sys/param.h>
83 #include <sys/signalvar.h>
84 #include <sys/proc.h>
85 #include <sys/systm.h>
86 #include <sys/wait.h>
87 #include <sys/ktrace.h>
88 #include <sys/syslog.h>
89 #include <sys/filedesc.h>
90 #include <sys/file.h>
91 #include <sys/pool.h>
92 #include <sys/ucontext.h>
93 #include <sys/exec.h>
94 #include <sys/kauth.h>
95 #include <sys/acct.h>
96 #include <sys/callout.h>
97 #include <sys/atomic.h>
98 #include <sys/cpu.h>
99 #include <sys/module.h>
100 #include <sys/sdt.h>
101
102 #ifdef PAX_SEGVGUARD
103 #include <sys/pax.h>
104 #endif /* PAX_SEGVGUARD */
105
106 #include <uvm/uvm_extern.h>
107
108 static pool_cache_t sigacts_cache __read_mostly;
109 static pool_cache_t ksiginfo_cache __read_mostly;
110 static callout_t proc_stop_ch __cacheline_aligned;
111
112 sigset_t contsigmask __cacheline_aligned;
113 static sigset_t stopsigmask __cacheline_aligned;
114 sigset_t sigcantmask __cacheline_aligned;
115
116 static void ksiginfo_exechook(struct proc *, void *);
117 static void proc_stop_callout(void *);
118 static int sigchecktrace(void);
119 static int sigpost(struct lwp *, sig_t, int, int);
120 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
121 static int sigunwait(struct proc *, const ksiginfo_t *);
122 static void sigswitch(bool, int, int);
123
124 static void sigacts_poolpage_free(struct pool *, void *);
125 static void *sigacts_poolpage_alloc(struct pool *, int);
126
127 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
128 int (*coredump_vec)(struct lwp *, const char *) =
129 (int (*)(struct lwp *, const char *))enosys;
130
131 /*
132 * DTrace SDT provider definitions
133 */
134 SDT_PROBE_DEFINE(proc,,,signal_send,signal-send,
135 "struct lwp *", NULL, /* target thread */
136 "struct proc *", NULL, /* target process */
137 "int", NULL, /* signal */
138 NULL, NULL, NULL, NULL);
139 SDT_PROBE_DEFINE(proc,,,signal_discard,signal-discard,
140 "struct lwp *", NULL, /* target thread */
141 "struct proc *", NULL, /* target process */
142 "int", NULL, /* signal */
143 NULL, NULL, NULL, NULL);
144 SDT_PROBE_DEFINE(proc,,,signal_clear,signal-clear,
145 "int", NULL, /* signal */
146 NULL, NULL, NULL, NULL,
147 NULL, NULL, NULL, NULL);
148 SDT_PROBE_DEFINE(proc,,,signal_handle,signal-handle,
149 "int", NULL, /* signal */
150 "ksiginfo_t *", NULL,
151 "void (*)(void)", NULL, /* handler address */
152 NULL, NULL, NULL, NULL);
153
154
155 static struct pool_allocator sigactspool_allocator = {
156 .pa_alloc = sigacts_poolpage_alloc,
157 .pa_free = sigacts_poolpage_free
158 };
159
160 #ifdef DEBUG
161 int kern_logsigexit = 1;
162 #else
163 int kern_logsigexit = 0;
164 #endif
165
166 static const char logcoredump[] =
167 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
168 static const char lognocoredump[] =
169 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
170
171 static kauth_listener_t signal_listener;
172
173 static int
174 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
175 void *arg0, void *arg1, void *arg2, void *arg3)
176 {
177 struct proc *p;
178 int result, signum;
179
180 result = KAUTH_RESULT_DEFER;
181 p = arg0;
182 signum = (int)(unsigned long)arg1;
183
184 if (action != KAUTH_PROCESS_SIGNAL)
185 return result;
186
187 if (kauth_cred_uidmatch(cred, p->p_cred) ||
188 (signum == SIGCONT && (curproc->p_session == p->p_session)))
189 result = KAUTH_RESULT_ALLOW;
190
191 return result;
192 }
193
194 /*
195 * signal_init:
196 *
197 * Initialize global signal-related data structures.
198 */
199 void
200 signal_init(void)
201 {
202
203 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
204
205 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
206 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
207 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
208 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
209 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
210
211 exechook_establish(ksiginfo_exechook, NULL);
212
213 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
214 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
215
216 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
217 signal_listener_cb, NULL);
218 }
219
220 /*
221 * sigacts_poolpage_alloc:
222 *
223 * Allocate a page for the sigacts memory pool.
224 */
225 static void *
226 sigacts_poolpage_alloc(struct pool *pp, int flags)
227 {
228
229 return (void *)uvm_km_alloc(kernel_map,
230 PAGE_SIZE * 2, PAGE_SIZE * 2,
231 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
232 | UVM_KMF_WIRED);
233 }
234
235 /*
236 * sigacts_poolpage_free:
237 *
238 * Free a page on behalf of the sigacts memory pool.
239 */
240 static void
241 sigacts_poolpage_free(struct pool *pp, void *v)
242 {
243
244 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
245 }
246
247 /*
248 * sigactsinit:
249 *
250 * Create an initial sigacts structure, using the same signal state
251 * as of specified process. If 'share' is set, share the sigacts by
252 * holding a reference, otherwise just copy it from parent.
253 */
254 struct sigacts *
255 sigactsinit(struct proc *pp, int share)
256 {
257 struct sigacts *ps = pp->p_sigacts, *ps2;
258
259 if (__predict_false(share)) {
260 atomic_inc_uint(&ps->sa_refcnt);
261 return ps;
262 }
263 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
264 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
265 ps2->sa_refcnt = 1;
266
267 mutex_enter(&ps->sa_mutex);
268 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
269 mutex_exit(&ps->sa_mutex);
270 return ps2;
271 }
272
273 /*
274 * sigactsunshare:
275 *
276 * Make this process not share its sigacts, maintaining all signal state.
277 */
278 void
279 sigactsunshare(struct proc *p)
280 {
281 struct sigacts *ps, *oldps = p->p_sigacts;
282
283 if (__predict_true(oldps->sa_refcnt == 1))
284 return;
285
286 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
287 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
288 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
289 ps->sa_refcnt = 1;
290
291 p->p_sigacts = ps;
292 sigactsfree(oldps);
293 }
294
295 /*
296 * sigactsfree;
297 *
298 * Release a sigacts structure.
299 */
300 void
301 sigactsfree(struct sigacts *ps)
302 {
303
304 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
305 mutex_destroy(&ps->sa_mutex);
306 pool_cache_put(sigacts_cache, ps);
307 }
308 }
309
310 /*
311 * siginit:
312 *
313 * Initialize signal state for process 0; set to ignore signals that
314 * are ignored by default and disable the signal stack. Locking not
315 * required as the system is still cold.
316 */
317 void
318 siginit(struct proc *p)
319 {
320 struct lwp *l;
321 struct sigacts *ps;
322 int signo, prop;
323
324 ps = p->p_sigacts;
325 sigemptyset(&contsigmask);
326 sigemptyset(&stopsigmask);
327 sigemptyset(&sigcantmask);
328 for (signo = 1; signo < NSIG; signo++) {
329 prop = sigprop[signo];
330 if (prop & SA_CONT)
331 sigaddset(&contsigmask, signo);
332 if (prop & SA_STOP)
333 sigaddset(&stopsigmask, signo);
334 if (prop & SA_CANTMASK)
335 sigaddset(&sigcantmask, signo);
336 if (prop & SA_IGNORE && signo != SIGCONT)
337 sigaddset(&p->p_sigctx.ps_sigignore, signo);
338 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
339 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
340 }
341 sigemptyset(&p->p_sigctx.ps_sigcatch);
342 p->p_sflag &= ~PS_NOCLDSTOP;
343
344 ksiginfo_queue_init(&p->p_sigpend.sp_info);
345 sigemptyset(&p->p_sigpend.sp_set);
346
347 /*
348 * Reset per LWP state.
349 */
350 l = LIST_FIRST(&p->p_lwps);
351 l->l_sigwaited = NULL;
352 l->l_sigstk.ss_flags = SS_DISABLE;
353 l->l_sigstk.ss_size = 0;
354 l->l_sigstk.ss_sp = 0;
355 ksiginfo_queue_init(&l->l_sigpend.sp_info);
356 sigemptyset(&l->l_sigpend.sp_set);
357
358 /* One reference. */
359 ps->sa_refcnt = 1;
360 }
361
362 /*
363 * execsigs:
364 *
365 * Reset signals for an exec of the specified process.
366 */
367 void
368 execsigs(struct proc *p)
369 {
370 struct sigacts *ps;
371 struct lwp *l;
372 int signo, prop;
373 sigset_t tset;
374 ksiginfoq_t kq;
375
376 KASSERT(p->p_nlwps == 1);
377
378 sigactsunshare(p);
379 ps = p->p_sigacts;
380
381 /*
382 * Reset caught signals. Held signals remain held through
383 * l->l_sigmask (unless they were caught, and are now ignored
384 * by default).
385 *
386 * No need to lock yet, the process has only one LWP and
387 * at this point the sigacts are private to the process.
388 */
389 sigemptyset(&tset);
390 for (signo = 1; signo < NSIG; signo++) {
391 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
392 prop = sigprop[signo];
393 if (prop & SA_IGNORE) {
394 if ((prop & SA_CONT) == 0)
395 sigaddset(&p->p_sigctx.ps_sigignore,
396 signo);
397 sigaddset(&tset, signo);
398 }
399 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
400 }
401 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
402 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
403 }
404 ksiginfo_queue_init(&kq);
405
406 mutex_enter(p->p_lock);
407 sigclearall(p, &tset, &kq);
408 sigemptyset(&p->p_sigctx.ps_sigcatch);
409
410 /*
411 * Reset no zombies if child dies flag as Solaris does.
412 */
413 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
414 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
415 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
416
417 /*
418 * Reset per-LWP state.
419 */
420 l = LIST_FIRST(&p->p_lwps);
421 l->l_sigwaited = NULL;
422 l->l_sigstk.ss_flags = SS_DISABLE;
423 l->l_sigstk.ss_size = 0;
424 l->l_sigstk.ss_sp = 0;
425 ksiginfo_queue_init(&l->l_sigpend.sp_info);
426 sigemptyset(&l->l_sigpend.sp_set);
427 mutex_exit(p->p_lock);
428
429 ksiginfo_queue_drain(&kq);
430 }
431
432 /*
433 * ksiginfo_exechook:
434 *
435 * Free all pending ksiginfo entries from a process on exec.
436 * Additionally, drain any unused ksiginfo structures in the
437 * system back to the pool.
438 *
439 * XXX This should not be a hook, every process has signals.
440 */
441 static void
442 ksiginfo_exechook(struct proc *p, void *v)
443 {
444 ksiginfoq_t kq;
445
446 ksiginfo_queue_init(&kq);
447
448 mutex_enter(p->p_lock);
449 sigclearall(p, NULL, &kq);
450 mutex_exit(p->p_lock);
451
452 ksiginfo_queue_drain(&kq);
453 }
454
455 /*
456 * ksiginfo_alloc:
457 *
458 * Allocate a new ksiginfo structure from the pool, and optionally copy
459 * an existing one. If the existing ksiginfo_t is from the pool, and
460 * has not been queued somewhere, then just return it. Additionally,
461 * if the existing ksiginfo_t does not contain any information beyond
462 * the signal number, then just return it.
463 */
464 ksiginfo_t *
465 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
466 {
467 ksiginfo_t *kp;
468
469 if (ok != NULL) {
470 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
471 KSI_FROMPOOL)
472 return ok;
473 if (KSI_EMPTY_P(ok))
474 return ok;
475 }
476
477 kp = pool_cache_get(ksiginfo_cache, flags);
478 if (kp == NULL) {
479 #ifdef DIAGNOSTIC
480 printf("Out of memory allocating ksiginfo for pid %d\n",
481 p->p_pid);
482 #endif
483 return NULL;
484 }
485
486 if (ok != NULL) {
487 memcpy(kp, ok, sizeof(*kp));
488 kp->ksi_flags &= ~KSI_QUEUED;
489 } else
490 KSI_INIT_EMPTY(kp);
491
492 kp->ksi_flags |= KSI_FROMPOOL;
493
494 return kp;
495 }
496
497 /*
498 * ksiginfo_free:
499 *
500 * If the given ksiginfo_t is from the pool and has not been queued,
501 * then free it.
502 */
503 void
504 ksiginfo_free(ksiginfo_t *kp)
505 {
506
507 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
508 return;
509 pool_cache_put(ksiginfo_cache, kp);
510 }
511
512 /*
513 * ksiginfo_queue_drain:
514 *
515 * Drain a non-empty ksiginfo_t queue.
516 */
517 void
518 ksiginfo_queue_drain0(ksiginfoq_t *kq)
519 {
520 ksiginfo_t *ksi;
521
522 KASSERT(!CIRCLEQ_EMPTY(kq));
523
524 while (!CIRCLEQ_EMPTY(kq)) {
525 ksi = CIRCLEQ_FIRST(kq);
526 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
527 pool_cache_put(ksiginfo_cache, ksi);
528 }
529 }
530
531 static bool
532 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
533 {
534 ksiginfo_t *ksi;
535
536 if (sp == NULL)
537 goto out;
538
539 /* Find siginfo and copy it out. */
540 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
541 if (ksi->ksi_signo != signo)
542 continue;
543 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
544 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
545 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
546 ksi->ksi_flags &= ~KSI_QUEUED;
547 if (out != NULL) {
548 memcpy(out, ksi, sizeof(*out));
549 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
550 }
551 ksiginfo_free(ksi); /* XXXSMP */
552 return true;
553 }
554
555 out:
556 /* If there is no siginfo, then manufacture it. */
557 if (out != NULL) {
558 KSI_INIT(out);
559 out->ksi_info._signo = signo;
560 out->ksi_info._code = SI_NOINFO;
561 }
562 return false;
563 }
564
565 /*
566 * sigget:
567 *
568 * Fetch the first pending signal from a set. Optionally, also fetch
569 * or manufacture a ksiginfo element. Returns the number of the first
570 * pending signal, or zero.
571 */
572 int
573 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
574 {
575 sigset_t tset;
576
577 /* If there's no pending set, the signal is from the debugger. */
578 if (sp == NULL)
579 goto out;
580
581 /* Construct mask from signo, and 'mask'. */
582 if (signo == 0) {
583 if (mask != NULL) {
584 tset = *mask;
585 __sigandset(&sp->sp_set, &tset);
586 } else
587 tset = sp->sp_set;
588
589 /* If there are no signals pending - return. */
590 if ((signo = firstsig(&tset)) == 0)
591 goto out;
592 } else {
593 KASSERT(sigismember(&sp->sp_set, signo));
594 }
595
596 sigdelset(&sp->sp_set, signo);
597 out:
598 (void)siggetinfo(sp, out, signo);
599 return signo;
600 }
601
602 /*
603 * sigput:
604 *
605 * Append a new ksiginfo element to the list of pending ksiginfo's.
606 */
607 static void
608 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
609 {
610 ksiginfo_t *kp;
611
612 KASSERT(mutex_owned(p->p_lock));
613 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
614
615 sigaddset(&sp->sp_set, ksi->ksi_signo);
616
617 /*
618 * If there is no siginfo, we are done.
619 */
620 if (KSI_EMPTY_P(ksi))
621 return;
622
623 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
624
625 #ifdef notyet /* XXX: QUEUING */
626 if (ksi->ksi_signo < SIGRTMIN)
627 #endif
628 {
629 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
630 if (kp->ksi_signo == ksi->ksi_signo) {
631 KSI_COPY(ksi, kp);
632 kp->ksi_flags |= KSI_QUEUED;
633 return;
634 }
635 }
636 }
637
638 ksi->ksi_flags |= KSI_QUEUED;
639 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
640 }
641
642 /*
643 * sigclear:
644 *
645 * Clear all pending signals in the specified set.
646 */
647 void
648 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
649 {
650 ksiginfo_t *ksi, *next;
651
652 if (mask == NULL)
653 sigemptyset(&sp->sp_set);
654 else
655 sigminusset(mask, &sp->sp_set);
656
657 ksi = CIRCLEQ_FIRST(&sp->sp_info);
658 for (; ksi != (void *)&sp->sp_info; ksi = next) {
659 next = CIRCLEQ_NEXT(ksi, ksi_list);
660 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
661 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
662 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
663 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
664 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
665 }
666 }
667 }
668
669 /*
670 * sigclearall:
671 *
672 * Clear all pending signals in the specified set from a process and
673 * its LWPs.
674 */
675 void
676 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
677 {
678 struct lwp *l;
679
680 KASSERT(mutex_owned(p->p_lock));
681
682 sigclear(&p->p_sigpend, mask, kq);
683
684 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
685 sigclear(&l->l_sigpend, mask, kq);
686 }
687 }
688
689 /*
690 * sigispending:
691 *
692 * Return the first signal number if there are pending signals for the
693 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
694 * and that the signal has been posted to the appopriate queue before
695 * LW_PENDSIG is set.
696 */
697 int
698 sigispending(struct lwp *l, int signo)
699 {
700 struct proc *p = l->l_proc;
701 sigset_t tset;
702
703 membar_consumer();
704
705 tset = l->l_sigpend.sp_set;
706 sigplusset(&p->p_sigpend.sp_set, &tset);
707 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
708 sigminusset(&l->l_sigmask, &tset);
709
710 if (signo == 0) {
711 return firstsig(&tset);
712 }
713 return sigismember(&tset, signo) ? signo : 0;
714 }
715
716 void
717 getucontext(struct lwp *l, ucontext_t *ucp)
718 {
719 struct proc *p = l->l_proc;
720
721 KASSERT(mutex_owned(p->p_lock));
722
723 ucp->uc_flags = 0;
724 ucp->uc_link = l->l_ctxlink;
725 ucp->uc_sigmask = l->l_sigmask;
726 ucp->uc_flags |= _UC_SIGMASK;
727
728 /*
729 * The (unsupplied) definition of the `current execution stack'
730 * in the System V Interface Definition appears to allow returning
731 * the main context stack.
732 */
733 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
734 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
735 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
736 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
737 } else {
738 /* Simply copy alternate signal execution stack. */
739 ucp->uc_stack = l->l_sigstk;
740 }
741 ucp->uc_flags |= _UC_STACK;
742 mutex_exit(p->p_lock);
743 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
744 mutex_enter(p->p_lock);
745 }
746
747 int
748 setucontext(struct lwp *l, const ucontext_t *ucp)
749 {
750 struct proc *p = l->l_proc;
751 int error;
752
753 KASSERT(mutex_owned(p->p_lock));
754
755 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
756 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
757 if (error != 0)
758 return error;
759 }
760
761 mutex_exit(p->p_lock);
762 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
763 mutex_enter(p->p_lock);
764 if (error != 0)
765 return (error);
766
767 l->l_ctxlink = ucp->uc_link;
768
769 /*
770 * If there was stack information, update whether or not we are
771 * still running on an alternate signal stack.
772 */
773 if ((ucp->uc_flags & _UC_STACK) != 0) {
774 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
775 l->l_sigstk.ss_flags |= SS_ONSTACK;
776 else
777 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
778 }
779
780 return 0;
781 }
782
783 /*
784 * killpg1: common code for kill process group/broadcast kill.
785 */
786 int
787 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
788 {
789 struct proc *p, *cp;
790 kauth_cred_t pc;
791 struct pgrp *pgrp;
792 int nfound;
793 int signo = ksi->ksi_signo;
794
795 cp = l->l_proc;
796 pc = l->l_cred;
797 nfound = 0;
798
799 mutex_enter(proc_lock);
800 if (all) {
801 /*
802 * Broadcast.
803 */
804 PROCLIST_FOREACH(p, &allproc) {
805 if (p->p_pid <= 1 || p == cp ||
806 (p->p_flag & PK_SYSTEM) != 0)
807 continue;
808 mutex_enter(p->p_lock);
809 if (kauth_authorize_process(pc,
810 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
811 NULL) == 0) {
812 nfound++;
813 if (signo)
814 kpsignal2(p, ksi);
815 }
816 mutex_exit(p->p_lock);
817 }
818 } else {
819 if (pgid == 0)
820 /* Zero pgid means send to my process group. */
821 pgrp = cp->p_pgrp;
822 else {
823 pgrp = pgrp_find(pgid);
824 if (pgrp == NULL)
825 goto out;
826 }
827 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
828 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
829 continue;
830 mutex_enter(p->p_lock);
831 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
832 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
833 nfound++;
834 if (signo && P_ZOMBIE(p) == 0)
835 kpsignal2(p, ksi);
836 }
837 mutex_exit(p->p_lock);
838 }
839 }
840 out:
841 mutex_exit(proc_lock);
842 return nfound ? 0 : ESRCH;
843 }
844
845 /*
846 * Send a signal to a process group. If checktty is set, limit to members
847 * which have a controlling terminal.
848 */
849 void
850 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
851 {
852 ksiginfo_t ksi;
853
854 KASSERT(!cpu_intr_p());
855 KASSERT(mutex_owned(proc_lock));
856
857 KSI_INIT_EMPTY(&ksi);
858 ksi.ksi_signo = sig;
859 kpgsignal(pgrp, &ksi, NULL, checkctty);
860 }
861
862 void
863 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
864 {
865 struct proc *p;
866
867 KASSERT(!cpu_intr_p());
868 KASSERT(mutex_owned(proc_lock));
869 KASSERT(pgrp != NULL);
870
871 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
872 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
873 kpsignal(p, ksi, data);
874 }
875
876 /*
877 * Send a signal caused by a trap to the current LWP. If it will be caught
878 * immediately, deliver it with correct code. Otherwise, post it normally.
879 */
880 void
881 trapsignal(struct lwp *l, ksiginfo_t *ksi)
882 {
883 struct proc *p;
884 struct sigacts *ps;
885 int signo = ksi->ksi_signo;
886 sigset_t *mask;
887
888 KASSERT(KSI_TRAP_P(ksi));
889
890 ksi->ksi_lid = l->l_lid;
891 p = l->l_proc;
892
893 KASSERT(!cpu_intr_p());
894 mutex_enter(proc_lock);
895 mutex_enter(p->p_lock);
896 mask = &l->l_sigmask;
897 ps = p->p_sigacts;
898
899 if ((p->p_slflag & PSL_TRACED) == 0 &&
900 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
901 !sigismember(mask, signo)) {
902 mutex_exit(proc_lock);
903 l->l_ru.ru_nsignals++;
904 kpsendsig(l, ksi, mask);
905 mutex_exit(p->p_lock);
906 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
907 } else {
908 /* XXX for core dump/debugger */
909 p->p_sigctx.ps_lwp = l->l_lid;
910 p->p_sigctx.ps_signo = ksi->ksi_signo;
911 p->p_sigctx.ps_code = ksi->ksi_trap;
912 kpsignal2(p, ksi);
913 mutex_exit(p->p_lock);
914 mutex_exit(proc_lock);
915 }
916 }
917
918 /*
919 * Fill in signal information and signal the parent for a child status change.
920 */
921 void
922 child_psignal(struct proc *p, int mask)
923 {
924 ksiginfo_t ksi;
925 struct proc *q;
926 int xstat;
927
928 KASSERT(mutex_owned(proc_lock));
929 KASSERT(mutex_owned(p->p_lock));
930
931 xstat = p->p_xstat;
932
933 KSI_INIT(&ksi);
934 ksi.ksi_signo = SIGCHLD;
935 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
936 ksi.ksi_pid = p->p_pid;
937 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
938 ksi.ksi_status = xstat;
939 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
940 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
941
942 q = p->p_pptr;
943
944 mutex_exit(p->p_lock);
945 mutex_enter(q->p_lock);
946
947 if ((q->p_sflag & mask) == 0)
948 kpsignal2(q, &ksi);
949
950 mutex_exit(q->p_lock);
951 mutex_enter(p->p_lock);
952 }
953
954 void
955 psignal(struct proc *p, int signo)
956 {
957 ksiginfo_t ksi;
958
959 KASSERT(!cpu_intr_p());
960 KASSERT(mutex_owned(proc_lock));
961
962 KSI_INIT_EMPTY(&ksi);
963 ksi.ksi_signo = signo;
964 mutex_enter(p->p_lock);
965 kpsignal2(p, &ksi);
966 mutex_exit(p->p_lock);
967 }
968
969 void
970 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
971 {
972 fdfile_t *ff;
973 file_t *fp;
974 fdtab_t *dt;
975
976 KASSERT(!cpu_intr_p());
977 KASSERT(mutex_owned(proc_lock));
978
979 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
980 size_t fd;
981 filedesc_t *fdp = p->p_fd;
982
983 /* XXXSMP locking */
984 ksi->ksi_fd = -1;
985 dt = fdp->fd_dt;
986 for (fd = 0; fd < dt->dt_nfiles; fd++) {
987 if ((ff = dt->dt_ff[fd]) == NULL)
988 continue;
989 if ((fp = ff->ff_file) == NULL)
990 continue;
991 if (fp->f_data == data) {
992 ksi->ksi_fd = fd;
993 break;
994 }
995 }
996 }
997 mutex_enter(p->p_lock);
998 kpsignal2(p, ksi);
999 mutex_exit(p->p_lock);
1000 }
1001
1002 /*
1003 * sigismasked:
1004 *
1005 * Returns true if signal is ignored or masked for the specified LWP.
1006 */
1007 int
1008 sigismasked(struct lwp *l, int sig)
1009 {
1010 struct proc *p = l->l_proc;
1011
1012 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1013 sigismember(&l->l_sigmask, sig);
1014 }
1015
1016 /*
1017 * sigpost:
1018 *
1019 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1020 * be able to take the signal.
1021 */
1022 static int
1023 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1024 {
1025 int rv, masked;
1026 struct proc *p = l->l_proc;
1027
1028 KASSERT(mutex_owned(p->p_lock));
1029
1030 /*
1031 * If the LWP is on the way out, sigclear() will be busy draining all
1032 * pending signals. Don't give it more.
1033 */
1034 if (l->l_refcnt == 0)
1035 return 0;
1036
1037 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0);
1038
1039 /*
1040 * Have the LWP check for signals. This ensures that even if no LWP
1041 * is found to take the signal immediately, it should be taken soon.
1042 */
1043 lwp_lock(l);
1044 l->l_flag |= LW_PENDSIG;
1045
1046 /*
1047 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1048 * Note: SIGKILL and SIGSTOP cannot be masked.
1049 */
1050 masked = sigismember(&l->l_sigmask, sig);
1051 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1052 lwp_unlock(l);
1053 return 0;
1054 }
1055
1056 /*
1057 * If killing the process, make it run fast.
1058 */
1059 if (__predict_false((prop & SA_KILL) != 0) &&
1060 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1061 KASSERT(l->l_class == SCHED_OTHER);
1062 lwp_changepri(l, MAXPRI_USER);
1063 }
1064
1065 /*
1066 * If the LWP is running or on a run queue, then we win. If it's
1067 * sleeping interruptably, wake it and make it take the signal. If
1068 * the sleep isn't interruptable, then the chances are it will get
1069 * to see the signal soon anyhow. If suspended, it can't take the
1070 * signal right now. If it's LWP private or for all LWPs, save it
1071 * for later; otherwise punt.
1072 */
1073 rv = 0;
1074
1075 switch (l->l_stat) {
1076 case LSRUN:
1077 case LSONPROC:
1078 lwp_need_userret(l);
1079 rv = 1;
1080 break;
1081
1082 case LSSLEEP:
1083 if ((l->l_flag & LW_SINTR) != 0) {
1084 /* setrunnable() will release the lock. */
1085 setrunnable(l);
1086 return 1;
1087 }
1088 break;
1089
1090 case LSSUSPENDED:
1091 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1092 /* lwp_continue() will release the lock. */
1093 lwp_continue(l);
1094 return 1;
1095 }
1096 break;
1097
1098 case LSSTOP:
1099 if ((prop & SA_STOP) != 0)
1100 break;
1101
1102 /*
1103 * If the LWP is stopped and we are sending a continue
1104 * signal, then start it again.
1105 */
1106 if ((prop & SA_CONT) != 0) {
1107 if (l->l_wchan != NULL) {
1108 l->l_stat = LSSLEEP;
1109 p->p_nrlwps++;
1110 rv = 1;
1111 break;
1112 }
1113 /* setrunnable() will release the lock. */
1114 setrunnable(l);
1115 return 1;
1116 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1117 /* setrunnable() will release the lock. */
1118 setrunnable(l);
1119 return 1;
1120 }
1121 break;
1122
1123 default:
1124 break;
1125 }
1126
1127 lwp_unlock(l);
1128 return rv;
1129 }
1130
1131 /*
1132 * Notify an LWP that it has a pending signal.
1133 */
1134 void
1135 signotify(struct lwp *l)
1136 {
1137 KASSERT(lwp_locked(l, NULL));
1138
1139 l->l_flag |= LW_PENDSIG;
1140 lwp_need_userret(l);
1141 }
1142
1143 /*
1144 * Find an LWP within process p that is waiting on signal ksi, and hand
1145 * it on.
1146 */
1147 static int
1148 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1149 {
1150 struct lwp *l;
1151 int signo;
1152
1153 KASSERT(mutex_owned(p->p_lock));
1154
1155 signo = ksi->ksi_signo;
1156
1157 if (ksi->ksi_lid != 0) {
1158 /*
1159 * Signal came via _lwp_kill(). Find the LWP and see if
1160 * it's interested.
1161 */
1162 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1163 return 0;
1164 if (l->l_sigwaited == NULL ||
1165 !sigismember(&l->l_sigwaitset, signo))
1166 return 0;
1167 } else {
1168 /*
1169 * Look for any LWP that may be interested.
1170 */
1171 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1172 KASSERT(l->l_sigwaited != NULL);
1173 if (sigismember(&l->l_sigwaitset, signo))
1174 break;
1175 }
1176 }
1177
1178 if (l != NULL) {
1179 l->l_sigwaited->ksi_info = ksi->ksi_info;
1180 l->l_sigwaited = NULL;
1181 LIST_REMOVE(l, l_sigwaiter);
1182 cv_signal(&l->l_sigcv);
1183 return 1;
1184 }
1185
1186 return 0;
1187 }
1188
1189 /*
1190 * Send the signal to the process. If the signal has an action, the action
1191 * is usually performed by the target process rather than the caller; we add
1192 * the signal to the set of pending signals for the process.
1193 *
1194 * Exceptions:
1195 * o When a stop signal is sent to a sleeping process that takes the
1196 * default action, the process is stopped without awakening it.
1197 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1198 * regardless of the signal action (eg, blocked or ignored).
1199 *
1200 * Other ignored signals are discarded immediately.
1201 */
1202 void
1203 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1204 {
1205 int prop, signo = ksi->ksi_signo;
1206 struct sigacts *sa;
1207 struct lwp *l;
1208 ksiginfo_t *kp;
1209 lwpid_t lid;
1210 sig_t action;
1211 bool toall;
1212
1213 KASSERT(!cpu_intr_p());
1214 KASSERT(mutex_owned(proc_lock));
1215 KASSERT(mutex_owned(p->p_lock));
1216 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1217 KASSERT(signo > 0 && signo < NSIG);
1218
1219 /*
1220 * If the process is being created by fork, is a zombie or is
1221 * exiting, then just drop the signal here and bail out.
1222 */
1223 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1224 return;
1225
1226 /*
1227 * Notify any interested parties of the signal.
1228 */
1229 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1230
1231 /*
1232 * Some signals including SIGKILL must act on the entire process.
1233 */
1234 kp = NULL;
1235 prop = sigprop[signo];
1236 toall = ((prop & SA_TOALL) != 0);
1237 lid = toall ? 0 : ksi->ksi_lid;
1238
1239 /*
1240 * If proc is traced, always give parent a chance.
1241 */
1242 if (p->p_slflag & PSL_TRACED) {
1243 action = SIG_DFL;
1244
1245 if (lid == 0) {
1246 /*
1247 * If the process is being traced and the signal
1248 * is being caught, make sure to save any ksiginfo.
1249 */
1250 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1251 return;
1252 sigput(&p->p_sigpend, p, kp);
1253 }
1254 } else {
1255 /*
1256 * If the signal was the result of a trap and is not being
1257 * caught, then reset it to default action so that the
1258 * process dumps core immediately.
1259 */
1260 if (KSI_TRAP_P(ksi)) {
1261 sa = p->p_sigacts;
1262 mutex_enter(&sa->sa_mutex);
1263 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1264 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1265 SIGACTION(p, signo).sa_handler = SIG_DFL;
1266 }
1267 mutex_exit(&sa->sa_mutex);
1268 }
1269
1270 /*
1271 * If the signal is being ignored, then drop it. Note: we
1272 * don't set SIGCONT in ps_sigignore, and if it is set to
1273 * SIG_IGN, action will be SIG_DFL here.
1274 */
1275 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1276 return;
1277
1278 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1279 action = SIG_CATCH;
1280 else {
1281 action = SIG_DFL;
1282
1283 /*
1284 * If sending a tty stop signal to a member of an
1285 * orphaned process group, discard the signal here if
1286 * the action is default; don't stop the process below
1287 * if sleeping, and don't clear any pending SIGCONT.
1288 */
1289 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1290 return;
1291
1292 if (prop & SA_KILL && p->p_nice > NZERO)
1293 p->p_nice = NZERO;
1294 }
1295 }
1296
1297 /*
1298 * If stopping or continuing a process, discard any pending
1299 * signals that would do the inverse.
1300 */
1301 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1302 ksiginfoq_t kq;
1303
1304 ksiginfo_queue_init(&kq);
1305 if ((prop & SA_CONT) != 0)
1306 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1307 if ((prop & SA_STOP) != 0)
1308 sigclear(&p->p_sigpend, &contsigmask, &kq);
1309 ksiginfo_queue_drain(&kq); /* XXXSMP */
1310 }
1311
1312 /*
1313 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1314 * please!), check if any LWPs are waiting on it. If yes, pass on
1315 * the signal info. The signal won't be processed further here.
1316 */
1317 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1318 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1319 sigunwait(p, ksi))
1320 return;
1321
1322 /*
1323 * XXXSMP Should be allocated by the caller, we're holding locks
1324 * here.
1325 */
1326 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1327 return;
1328
1329 /*
1330 * LWP private signals are easy - just find the LWP and post
1331 * the signal to it.
1332 */
1333 if (lid != 0) {
1334 l = lwp_find(p, lid);
1335 if (l != NULL) {
1336 sigput(&l->l_sigpend, p, kp);
1337 membar_producer();
1338 (void)sigpost(l, action, prop, kp->ksi_signo);
1339 }
1340 goto out;
1341 }
1342
1343 /*
1344 * Some signals go to all LWPs, even if posted with _lwp_kill()
1345 * or for an SA process.
1346 */
1347 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1348 if ((p->p_slflag & PSL_TRACED) != 0)
1349 goto deliver;
1350
1351 /*
1352 * If SIGCONT is default (or ignored) and process is
1353 * asleep, we are finished; the process should not
1354 * be awakened.
1355 */
1356 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1357 goto out;
1358 } else {
1359 /*
1360 * Process is stopped or stopping.
1361 * - If traced, then no action is needed, unless killing.
1362 * - Run the process only if sending SIGCONT or SIGKILL.
1363 */
1364 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1365 goto out;
1366 }
1367 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1368 /*
1369 * Re-adjust p_nstopchild if the process wasn't
1370 * collected by its parent.
1371 */
1372 p->p_stat = SACTIVE;
1373 p->p_sflag &= ~PS_STOPPING;
1374 if (!p->p_waited) {
1375 p->p_pptr->p_nstopchild--;
1376 }
1377 if (p->p_slflag & PSL_TRACED) {
1378 KASSERT(signo == SIGKILL);
1379 goto deliver;
1380 }
1381 /*
1382 * Do not make signal pending if SIGCONT is default.
1383 *
1384 * If the process catches SIGCONT, let it handle the
1385 * signal itself (if waiting on event - process runs,
1386 * otherwise continues sleeping).
1387 */
1388 if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1389 KASSERT(signo != SIGKILL);
1390 goto deliver;
1391 }
1392 } else if ((prop & SA_STOP) != 0) {
1393 /*
1394 * Already stopped, don't need to stop again.
1395 * (If we did the shell could get confused.)
1396 */
1397 goto out;
1398 }
1399 }
1400 /*
1401 * Make signal pending.
1402 */
1403 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1404 sigput(&p->p_sigpend, p, kp);
1405
1406 deliver:
1407 /*
1408 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1409 * visible on the per process list (for sigispending()). This
1410 * is unlikely to be needed in practice, but...
1411 */
1412 membar_producer();
1413
1414 /*
1415 * Try to find an LWP that can take the signal.
1416 */
1417 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1418 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1419 break;
1420 }
1421 out:
1422 /*
1423 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1424 * with locks held. The caller should take care of this.
1425 */
1426 ksiginfo_free(kp);
1427 }
1428
1429 void
1430 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1431 {
1432 struct proc *p = l->l_proc;
1433
1434 KASSERT(mutex_owned(p->p_lock));
1435 (*p->p_emul->e_sendsig)(ksi, mask);
1436 }
1437
1438 /*
1439 * Stop any LWPs sleeping interruptably.
1440 */
1441 static void
1442 proc_stop_lwps(struct proc *p)
1443 {
1444 struct lwp *l;
1445
1446 KASSERT(mutex_owned(p->p_lock));
1447 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1448
1449 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1450 lwp_lock(l);
1451 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1452 l->l_stat = LSSTOP;
1453 p->p_nrlwps--;
1454 }
1455 lwp_unlock(l);
1456 }
1457 }
1458
1459 /*
1460 * Finish stopping of a process. Mark it stopped and notify the parent.
1461 *
1462 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1463 */
1464 static void
1465 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1466 {
1467
1468 KASSERT(mutex_owned(proc_lock));
1469 KASSERT(mutex_owned(p->p_lock));
1470 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1471 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1472
1473 p->p_sflag &= ~PS_STOPPING;
1474 p->p_stat = SSTOP;
1475 p->p_waited = 0;
1476 p->p_pptr->p_nstopchild++;
1477 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1478 if (ppsig) {
1479 /* child_psignal drops p_lock briefly. */
1480 child_psignal(p, ppmask);
1481 }
1482 cv_broadcast(&p->p_pptr->p_waitcv);
1483 }
1484 }
1485
1486 /*
1487 * Stop the current process and switch away when being stopped or traced.
1488 */
1489 static void
1490 sigswitch(bool ppsig, int ppmask, int signo)
1491 {
1492 struct lwp *l = curlwp;
1493 struct proc *p = l->l_proc;
1494 int biglocks;
1495
1496 KASSERT(mutex_owned(p->p_lock));
1497 KASSERT(l->l_stat == LSONPROC);
1498 KASSERT(p->p_nrlwps > 0);
1499
1500 /*
1501 * On entry we know that the process needs to stop. If it's
1502 * the result of a 'sideways' stop signal that has been sourced
1503 * through issignal(), then stop other LWPs in the process too.
1504 */
1505 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1506 KASSERT(signo != 0);
1507 proc_stop(p, 1, signo);
1508 KASSERT(p->p_nrlwps > 0);
1509 }
1510
1511 /*
1512 * If we are the last live LWP, and the stop was a result of
1513 * a new signal, then signal the parent.
1514 */
1515 if ((p->p_sflag & PS_STOPPING) != 0) {
1516 if (!mutex_tryenter(proc_lock)) {
1517 mutex_exit(p->p_lock);
1518 mutex_enter(proc_lock);
1519 mutex_enter(p->p_lock);
1520 }
1521
1522 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1523 /*
1524 * Note that proc_stop_done() can drop
1525 * p->p_lock briefly.
1526 */
1527 proc_stop_done(p, ppsig, ppmask);
1528 }
1529
1530 mutex_exit(proc_lock);
1531 }
1532
1533 /*
1534 * Unlock and switch away.
1535 */
1536 KERNEL_UNLOCK_ALL(l, &biglocks);
1537 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1538 p->p_nrlwps--;
1539 lwp_lock(l);
1540 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1541 l->l_stat = LSSTOP;
1542 lwp_unlock(l);
1543 }
1544
1545 mutex_exit(p->p_lock);
1546 lwp_lock(l);
1547 mi_switch(l);
1548 KERNEL_LOCK(biglocks, l);
1549 mutex_enter(p->p_lock);
1550 }
1551
1552 /*
1553 * Check for a signal from the debugger.
1554 */
1555 static int
1556 sigchecktrace(void)
1557 {
1558 struct lwp *l = curlwp;
1559 struct proc *p = l->l_proc;
1560 int signo;
1561
1562 KASSERT(mutex_owned(p->p_lock));
1563
1564 /* If there's a pending SIGKILL, process it immediately. */
1565 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1566 return 0;
1567
1568 /*
1569 * If we are no longer being traced, or the parent didn't
1570 * give us a signal, or we're stopping, look for more signals.
1571 */
1572 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
1573 (p->p_sflag & PS_STOPPING) != 0)
1574 return 0;
1575
1576 /*
1577 * If the new signal is being masked, look for other signals.
1578 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1579 */
1580 signo = p->p_xstat;
1581 p->p_xstat = 0;
1582 if (sigismember(&l->l_sigmask, signo)) {
1583 signo = 0;
1584 }
1585 return signo;
1586 }
1587
1588 /*
1589 * If the current process has received a signal (should be caught or cause
1590 * termination, should interrupt current syscall), return the signal number.
1591 *
1592 * Stop signals with default action are processed immediately, then cleared;
1593 * they aren't returned. This is checked after each entry to the system for
1594 * a syscall or trap.
1595 *
1596 * We will also return -1 if the process is exiting and the current LWP must
1597 * follow suit.
1598 */
1599 int
1600 issignal(struct lwp *l)
1601 {
1602 struct proc *p;
1603 int signo, prop;
1604 sigpend_t *sp;
1605 sigset_t ss;
1606
1607 p = l->l_proc;
1608 sp = NULL;
1609 signo = 0;
1610
1611 KASSERT(p == curproc);
1612 KASSERT(mutex_owned(p->p_lock));
1613
1614 for (;;) {
1615 /* Discard any signals that we have decided not to take. */
1616 if (signo != 0) {
1617 (void)sigget(sp, NULL, signo, NULL);
1618 }
1619
1620 /*
1621 * If the process is stopped/stopping, then stop ourselves
1622 * now that we're on the kernel/userspace boundary. When
1623 * we awaken, check for a signal from the debugger.
1624 */
1625 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1626 sigswitch(true, PS_NOCLDSTOP, 0);
1627 signo = sigchecktrace();
1628 } else
1629 signo = 0;
1630
1631 /* Signals from the debugger are "out of band". */
1632 sp = NULL;
1633
1634 /*
1635 * If the debugger didn't provide a signal, find a pending
1636 * signal from our set. Check per-LWP signals first, and
1637 * then per-process.
1638 */
1639 if (signo == 0) {
1640 sp = &l->l_sigpend;
1641 ss = sp->sp_set;
1642 if ((p->p_lflag & PL_PPWAIT) != 0)
1643 sigminusset(&stopsigmask, &ss);
1644 sigminusset(&l->l_sigmask, &ss);
1645
1646 if ((signo = firstsig(&ss)) == 0) {
1647 sp = &p->p_sigpend;
1648 ss = sp->sp_set;
1649 if ((p->p_lflag & PL_PPWAIT) != 0)
1650 sigminusset(&stopsigmask, &ss);
1651 sigminusset(&l->l_sigmask, &ss);
1652
1653 if ((signo = firstsig(&ss)) == 0) {
1654 /*
1655 * No signal pending - clear the
1656 * indicator and bail out.
1657 */
1658 lwp_lock(l);
1659 l->l_flag &= ~LW_PENDSIG;
1660 lwp_unlock(l);
1661 sp = NULL;
1662 break;
1663 }
1664 }
1665 }
1666
1667 /*
1668 * We should see pending but ignored signals only if
1669 * we are being traced.
1670 */
1671 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1672 (p->p_slflag & PSL_TRACED) == 0) {
1673 /* Discard the signal. */
1674 continue;
1675 }
1676
1677 /*
1678 * If traced, always stop, and stay stopped until released
1679 * by the debugger. If the our parent process is waiting
1680 * for us, don't hang as we could deadlock.
1681 */
1682 if ((p->p_slflag & PSL_TRACED) != 0 &&
1683 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1684 /*
1685 * Take the signal, but don't remove it from the
1686 * siginfo queue, because the debugger can send
1687 * it later.
1688 */
1689 if (sp)
1690 sigdelset(&sp->sp_set, signo);
1691 p->p_xstat = signo;
1692
1693 /* Emulation-specific handling of signal trace */
1694 if (p->p_emul->e_tracesig == NULL ||
1695 (*p->p_emul->e_tracesig)(p, signo) == 0)
1696 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1697 signo);
1698
1699 /* Check for a signal from the debugger. */
1700 if ((signo = sigchecktrace()) == 0)
1701 continue;
1702
1703 /* Signals from the debugger are "out of band". */
1704 sp = NULL;
1705 }
1706
1707 prop = sigprop[signo];
1708
1709 /* XXX no siginfo? */
1710 SDT_PROBE(proc,,,signal_handle, signo, 0,
1711 SIGACTION(p, signo).sa_handler, 0, 0);
1712
1713 /*
1714 * Decide whether the signal should be returned.
1715 */
1716 switch ((long)SIGACTION(p, signo).sa_handler) {
1717 case (long)SIG_DFL:
1718 /*
1719 * Don't take default actions on system processes.
1720 */
1721 if (p->p_pid <= 1) {
1722 #ifdef DIAGNOSTIC
1723 /*
1724 * Are you sure you want to ignore SIGSEGV
1725 * in init? XXX
1726 */
1727 printf_nolog("Process (pid %d) got sig %d\n",
1728 p->p_pid, signo);
1729 #endif
1730 continue;
1731 }
1732
1733 /*
1734 * If there is a pending stop signal to process with
1735 * default action, stop here, then clear the signal.
1736 * However, if process is member of an orphaned
1737 * process group, ignore tty stop signals.
1738 */
1739 if (prop & SA_STOP) {
1740 /*
1741 * XXX Don't hold proc_lock for p_lflag,
1742 * but it's not a big deal.
1743 */
1744 if (p->p_slflag & PSL_TRACED ||
1745 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1746 prop & SA_TTYSTOP)) {
1747 /* Ignore the signal. */
1748 continue;
1749 }
1750 /* Take the signal. */
1751 (void)sigget(sp, NULL, signo, NULL);
1752 p->p_xstat = signo;
1753 signo = 0;
1754 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1755 } else if (prop & SA_IGNORE) {
1756 /*
1757 * Except for SIGCONT, shouldn't get here.
1758 * Default action is to ignore; drop it.
1759 */
1760 continue;
1761 }
1762 break;
1763
1764 case (long)SIG_IGN:
1765 #ifdef DEBUG_ISSIGNAL
1766 /*
1767 * Masking above should prevent us ever trying
1768 * to take action on an ignored signal other
1769 * than SIGCONT, unless process is traced.
1770 */
1771 if ((prop & SA_CONT) == 0 &&
1772 (p->p_slflag & PSL_TRACED) == 0)
1773 printf_nolog("issignal\n");
1774 #endif
1775 continue;
1776
1777 default:
1778 /*
1779 * This signal has an action, let postsig() process
1780 * it.
1781 */
1782 break;
1783 }
1784
1785 break;
1786 }
1787
1788 l->l_sigpendset = sp;
1789 return signo;
1790 }
1791
1792 /*
1793 * Take the action for the specified signal
1794 * from the current set of pending signals.
1795 */
1796 void
1797 postsig(int signo)
1798 {
1799 struct lwp *l;
1800 struct proc *p;
1801 struct sigacts *ps;
1802 sig_t action;
1803 sigset_t *returnmask;
1804 ksiginfo_t ksi;
1805
1806 l = curlwp;
1807 p = l->l_proc;
1808 ps = p->p_sigacts;
1809
1810 KASSERT(mutex_owned(p->p_lock));
1811 KASSERT(signo > 0);
1812
1813 /*
1814 * Set the new mask value and also defer further occurrences of this
1815 * signal.
1816 *
1817 * Special case: user has done a sigsuspend. Here the current mask is
1818 * not of interest, but rather the mask from before the sigsuspend is
1819 * what we want restored after the signal processing is completed.
1820 */
1821 if (l->l_sigrestore) {
1822 returnmask = &l->l_sigoldmask;
1823 l->l_sigrestore = 0;
1824 } else
1825 returnmask = &l->l_sigmask;
1826
1827 /*
1828 * Commit to taking the signal before releasing the mutex.
1829 */
1830 action = SIGACTION_PS(ps, signo).sa_handler;
1831 l->l_ru.ru_nsignals++;
1832 if (l->l_sigpendset == NULL) {
1833 /* From the debugger */
1834 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1835 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1836 } else
1837 sigget(l->l_sigpendset, &ksi, signo, NULL);
1838
1839 if (ktrpoint(KTR_PSIG)) {
1840 mutex_exit(p->p_lock);
1841 ktrpsig(signo, action, returnmask, &ksi);
1842 mutex_enter(p->p_lock);
1843 }
1844
1845 if (action == SIG_DFL) {
1846 /*
1847 * Default action, where the default is to kill
1848 * the process. (Other cases were ignored above.)
1849 */
1850 sigexit(l, signo);
1851 return;
1852 }
1853
1854 /*
1855 * If we get here, the signal must be caught.
1856 */
1857 #ifdef DIAGNOSTIC
1858 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1859 panic("postsig action");
1860 #endif
1861
1862 kpsendsig(l, &ksi, returnmask);
1863 }
1864
1865 /*
1866 * sendsig:
1867 *
1868 * Default signal delivery method for NetBSD.
1869 */
1870 void
1871 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1872 {
1873 struct sigacts *sa;
1874 int sig;
1875
1876 sig = ksi->ksi_signo;
1877 sa = curproc->p_sigacts;
1878
1879 switch (sa->sa_sigdesc[sig].sd_vers) {
1880 case 0:
1881 case 1:
1882 /* Compat for 1.6 and earlier. */
1883 if (sendsig_sigcontext_vec == NULL) {
1884 break;
1885 }
1886 (*sendsig_sigcontext_vec)(ksi, mask);
1887 return;
1888 case 2:
1889 case 3:
1890 sendsig_siginfo(ksi, mask);
1891 return;
1892 default:
1893 break;
1894 }
1895
1896 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1897 sigexit(curlwp, SIGILL);
1898 }
1899
1900 /*
1901 * sendsig_reset:
1902 *
1903 * Reset the signal action. Called from emulation specific sendsig()
1904 * before unlocking to deliver the signal.
1905 */
1906 void
1907 sendsig_reset(struct lwp *l, int signo)
1908 {
1909 struct proc *p = l->l_proc;
1910 struct sigacts *ps = p->p_sigacts;
1911
1912 KASSERT(mutex_owned(p->p_lock));
1913
1914 p->p_sigctx.ps_lwp = 0;
1915 p->p_sigctx.ps_code = 0;
1916 p->p_sigctx.ps_signo = 0;
1917
1918 mutex_enter(&ps->sa_mutex);
1919 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1920 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1921 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1922 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1923 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1924 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1925 }
1926 mutex_exit(&ps->sa_mutex);
1927 }
1928
1929 /*
1930 * Kill the current process for stated reason.
1931 */
1932 void
1933 killproc(struct proc *p, const char *why)
1934 {
1935
1936 KASSERT(mutex_owned(proc_lock));
1937
1938 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1939 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1940 psignal(p, SIGKILL);
1941 }
1942
1943 /*
1944 * Force the current process to exit with the specified signal, dumping core
1945 * if appropriate. We bypass the normal tests for masked and caught
1946 * signals, allowing unrecoverable failures to terminate the process without
1947 * changing signal state. Mark the accounting record with the signal
1948 * termination. If dumping core, save the signal number for the debugger.
1949 * Calls exit and does not return.
1950 */
1951 void
1952 sigexit(struct lwp *l, int signo)
1953 {
1954 int exitsig, error, docore;
1955 struct proc *p;
1956 struct lwp *t;
1957
1958 p = l->l_proc;
1959
1960 KASSERT(mutex_owned(p->p_lock));
1961 KERNEL_UNLOCK_ALL(l, NULL);
1962
1963 /*
1964 * Don't permit coredump() multiple times in the same process.
1965 * Call back into sigexit, where we will be suspended until
1966 * the deed is done. Note that this is a recursive call, but
1967 * LW_WCORE will prevent us from coming back this way.
1968 */
1969 if ((p->p_sflag & PS_WCORE) != 0) {
1970 lwp_lock(l);
1971 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1972 lwp_unlock(l);
1973 mutex_exit(p->p_lock);
1974 lwp_userret(l);
1975 panic("sigexit 1");
1976 /* NOTREACHED */
1977 }
1978
1979 /* If process is already on the way out, then bail now. */
1980 if ((p->p_sflag & PS_WEXIT) != 0) {
1981 mutex_exit(p->p_lock);
1982 lwp_exit(l);
1983 panic("sigexit 2");
1984 /* NOTREACHED */
1985 }
1986
1987 /*
1988 * Prepare all other LWPs for exit. If dumping core, suspend them
1989 * so that their registers are available long enough to be dumped.
1990 */
1991 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1992 p->p_sflag |= PS_WCORE;
1993 for (;;) {
1994 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1995 lwp_lock(t);
1996 if (t == l) {
1997 t->l_flag &= ~LW_WSUSPEND;
1998 lwp_unlock(t);
1999 continue;
2000 }
2001 t->l_flag |= (LW_WCORE | LW_WEXIT);
2002 lwp_suspend(l, t);
2003 }
2004
2005 if (p->p_nrlwps == 1)
2006 break;
2007
2008 /*
2009 * Kick any LWPs sitting in lwp_wait1(), and wait
2010 * for everyone else to stop before proceeding.
2011 */
2012 p->p_nlwpwait++;
2013 cv_broadcast(&p->p_lwpcv);
2014 cv_wait(&p->p_lwpcv, p->p_lock);
2015 p->p_nlwpwait--;
2016 }
2017 }
2018
2019 exitsig = signo;
2020 p->p_acflag |= AXSIG;
2021 p->p_sigctx.ps_signo = signo;
2022
2023 if (docore) {
2024 mutex_exit(p->p_lock);
2025 if ((error = (*coredump_vec)(l, NULL)) == 0)
2026 exitsig |= WCOREFLAG;
2027
2028 if (kern_logsigexit) {
2029 int uid = l->l_cred ?
2030 (int)kauth_cred_geteuid(l->l_cred) : -1;
2031
2032 if (error)
2033 log(LOG_INFO, lognocoredump, p->p_pid,
2034 p->p_comm, uid, signo, error);
2035 else
2036 log(LOG_INFO, logcoredump, p->p_pid,
2037 p->p_comm, uid, signo);
2038 }
2039
2040 #ifdef PAX_SEGVGUARD
2041 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2042 #endif /* PAX_SEGVGUARD */
2043 /* Acquire the sched state mutex. exit1() will release it. */
2044 mutex_enter(p->p_lock);
2045 }
2046
2047 /* No longer dumping core. */
2048 p->p_sflag &= ~PS_WCORE;
2049
2050 exit1(l, W_EXITCODE(0, exitsig));
2051 /* NOTREACHED */
2052 }
2053
2054 /*
2055 * Put process 'p' into the stopped state and optionally, notify the parent.
2056 */
2057 void
2058 proc_stop(struct proc *p, int notify, int signo)
2059 {
2060 struct lwp *l;
2061
2062 KASSERT(mutex_owned(p->p_lock));
2063
2064 /*
2065 * First off, set the stopping indicator and bring all sleeping
2066 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2067 * unlock between here and the p->p_nrlwps check below.
2068 */
2069 p->p_sflag |= PS_STOPPING;
2070 if (notify)
2071 p->p_sflag |= PS_NOTIFYSTOP;
2072 else
2073 p->p_sflag &= ~PS_NOTIFYSTOP;
2074 membar_producer();
2075
2076 proc_stop_lwps(p);
2077
2078 /*
2079 * If there are no LWPs available to take the signal, then we
2080 * signal the parent process immediately. Otherwise, the last
2081 * LWP to stop will take care of it.
2082 */
2083
2084 if (p->p_nrlwps == 0) {
2085 proc_stop_done(p, true, PS_NOCLDSTOP);
2086 } else {
2087 /*
2088 * Have the remaining LWPs come to a halt, and trigger
2089 * proc_stop_callout() to ensure that they do.
2090 */
2091 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2092 sigpost(l, SIG_DFL, SA_STOP, signo);
2093 }
2094 callout_schedule(&proc_stop_ch, 1);
2095 }
2096 }
2097
2098 /*
2099 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2100 * but wait for them to come to a halt at the kernel-user boundary. This is
2101 * to allow LWPs to release any locks that they may hold before stopping.
2102 *
2103 * Non-interruptable sleeps can be long, and there is the potential for an
2104 * LWP to begin sleeping interruptably soon after the process has been set
2105 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2106 * stopping, and so complete halt of the process and the return of status
2107 * information to the parent could be delayed indefinitely.
2108 *
2109 * To handle this race, proc_stop_callout() runs once per tick while there
2110 * are stopping processes in the system. It sets LWPs that are sleeping
2111 * interruptably into the LSSTOP state.
2112 *
2113 * Note that we are not concerned about keeping all LWPs stopped while the
2114 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2115 * What we do need to ensure is that all LWPs in a stopping process have
2116 * stopped at least once, so that notification can be sent to the parent
2117 * process.
2118 */
2119 static void
2120 proc_stop_callout(void *cookie)
2121 {
2122 bool more, restart;
2123 struct proc *p;
2124
2125 (void)cookie;
2126
2127 do {
2128 restart = false;
2129 more = false;
2130
2131 mutex_enter(proc_lock);
2132 PROCLIST_FOREACH(p, &allproc) {
2133 mutex_enter(p->p_lock);
2134
2135 if ((p->p_sflag & PS_STOPPING) == 0) {
2136 mutex_exit(p->p_lock);
2137 continue;
2138 }
2139
2140 /* Stop any LWPs sleeping interruptably. */
2141 proc_stop_lwps(p);
2142 if (p->p_nrlwps == 0) {
2143 /*
2144 * We brought the process to a halt.
2145 * Mark it as stopped and notify the
2146 * parent.
2147 */
2148 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2149 /*
2150 * Note that proc_stop_done() will
2151 * drop p->p_lock briefly.
2152 * Arrange to restart and check
2153 * all processes again.
2154 */
2155 restart = true;
2156 }
2157 proc_stop_done(p, true, PS_NOCLDSTOP);
2158 } else
2159 more = true;
2160
2161 mutex_exit(p->p_lock);
2162 if (restart)
2163 break;
2164 }
2165 mutex_exit(proc_lock);
2166 } while (restart);
2167
2168 /*
2169 * If we noted processes that are stopping but still have
2170 * running LWPs, then arrange to check again in 1 tick.
2171 */
2172 if (more)
2173 callout_schedule(&proc_stop_ch, 1);
2174 }
2175
2176 /*
2177 * Given a process in state SSTOP, set the state back to SACTIVE and
2178 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2179 */
2180 void
2181 proc_unstop(struct proc *p)
2182 {
2183 struct lwp *l;
2184 int sig;
2185
2186 KASSERT(mutex_owned(proc_lock));
2187 KASSERT(mutex_owned(p->p_lock));
2188
2189 p->p_stat = SACTIVE;
2190 p->p_sflag &= ~PS_STOPPING;
2191 sig = p->p_xstat;
2192
2193 if (!p->p_waited)
2194 p->p_pptr->p_nstopchild--;
2195
2196 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2197 lwp_lock(l);
2198 if (l->l_stat != LSSTOP) {
2199 lwp_unlock(l);
2200 continue;
2201 }
2202 if (l->l_wchan == NULL) {
2203 setrunnable(l);
2204 continue;
2205 }
2206 if (sig && (l->l_flag & LW_SINTR) != 0) {
2207 setrunnable(l);
2208 sig = 0;
2209 } else {
2210 l->l_stat = LSSLEEP;
2211 p->p_nrlwps++;
2212 lwp_unlock(l);
2213 }
2214 }
2215 }
2216
2217 static int
2218 filt_sigattach(struct knote *kn)
2219 {
2220 struct proc *p = curproc;
2221
2222 kn->kn_obj = p;
2223 kn->kn_flags |= EV_CLEAR; /* automatically set */
2224
2225 mutex_enter(p->p_lock);
2226 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2227 mutex_exit(p->p_lock);
2228
2229 return 0;
2230 }
2231
2232 static void
2233 filt_sigdetach(struct knote *kn)
2234 {
2235 struct proc *p = kn->kn_obj;
2236
2237 mutex_enter(p->p_lock);
2238 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2239 mutex_exit(p->p_lock);
2240 }
2241
2242 /*
2243 * Signal knotes are shared with proc knotes, so we apply a mask to
2244 * the hint in order to differentiate them from process hints. This
2245 * could be avoided by using a signal-specific knote list, but probably
2246 * isn't worth the trouble.
2247 */
2248 static int
2249 filt_signal(struct knote *kn, long hint)
2250 {
2251
2252 if (hint & NOTE_SIGNAL) {
2253 hint &= ~NOTE_SIGNAL;
2254
2255 if (kn->kn_id == hint)
2256 kn->kn_data++;
2257 }
2258 return (kn->kn_data != 0);
2259 }
2260
2261 const struct filterops sig_filtops = {
2262 0, filt_sigattach, filt_sigdetach, filt_signal
2263 };
2264