kern_sig.c revision 1.319 1 /* $NetBSD: kern_sig.c,v 1.319 2013/11/22 21:04:11 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.319 2013/11/22 21:04:11 christos Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_compat_sunos.h"
77 #include "opt_compat_netbsd.h"
78 #include "opt_compat_netbsd32.h"
79 #include "opt_pax.h"
80
81 #define SIGPROP /* include signal properties table */
82 #include <sys/param.h>
83 #include <sys/signalvar.h>
84 #include <sys/proc.h>
85 #include <sys/systm.h>
86 #include <sys/wait.h>
87 #include <sys/ktrace.h>
88 #include <sys/syslog.h>
89 #include <sys/filedesc.h>
90 #include <sys/file.h>
91 #include <sys/pool.h>
92 #include <sys/ucontext.h>
93 #include <sys/exec.h>
94 #include <sys/kauth.h>
95 #include <sys/acct.h>
96 #include <sys/callout.h>
97 #include <sys/atomic.h>
98 #include <sys/cpu.h>
99 #include <sys/module.h>
100 #include <sys/sdt.h>
101
102 #ifdef PAX_SEGVGUARD
103 #include <sys/pax.h>
104 #endif /* PAX_SEGVGUARD */
105
106 #include <uvm/uvm_extern.h>
107
108 static pool_cache_t sigacts_cache __read_mostly;
109 static pool_cache_t ksiginfo_cache __read_mostly;
110 static callout_t proc_stop_ch __cacheline_aligned;
111
112 sigset_t contsigmask __cacheline_aligned;
113 static sigset_t stopsigmask __cacheline_aligned;
114 sigset_t sigcantmask __cacheline_aligned;
115
116 static void ksiginfo_exechook(struct proc *, void *);
117 static void proc_stop_callout(void *);
118 static int sigchecktrace(void);
119 static int sigpost(struct lwp *, sig_t, int, int);
120 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
121 static int sigunwait(struct proc *, const ksiginfo_t *);
122 static void sigswitch(bool, int, int);
123
124 static void sigacts_poolpage_free(struct pool *, void *);
125 static void *sigacts_poolpage_alloc(struct pool *, int);
126
127 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
128 int (*coredump_vec)(struct lwp *, const char *) =
129 (int (*)(struct lwp *, const char *))enosys;
130
131 /*
132 * DTrace SDT provider definitions
133 */
134 SDT_PROBE_DEFINE(proc,,,signal_send,signal-send,
135 "struct lwp *", NULL, /* target thread */
136 "struct proc *", NULL, /* target process */
137 "int", NULL, /* signal */
138 NULL, NULL, NULL, NULL);
139 SDT_PROBE_DEFINE(proc,,,signal_discard,signal-discard,
140 "struct lwp *", NULL, /* target thread */
141 "struct proc *", NULL, /* target process */
142 "int", NULL, /* signal */
143 NULL, NULL, NULL, NULL);
144 SDT_PROBE_DEFINE(proc,,,signal_clear,signal-clear,
145 "int", NULL, /* signal */
146 NULL, NULL, NULL, NULL,
147 NULL, NULL, NULL, NULL);
148 SDT_PROBE_DEFINE(proc,,,signal_handle,signal-handle,
149 "int", NULL, /* signal */
150 "ksiginfo_t *", NULL,
151 "void (*)(void)", NULL, /* handler address */
152 NULL, NULL, NULL, NULL);
153
154
155 static struct pool_allocator sigactspool_allocator = {
156 .pa_alloc = sigacts_poolpage_alloc,
157 .pa_free = sigacts_poolpage_free
158 };
159
160 #ifdef DEBUG
161 int kern_logsigexit = 1;
162 #else
163 int kern_logsigexit = 0;
164 #endif
165
166 static const char logcoredump[] =
167 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
168 static const char lognocoredump[] =
169 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
170
171 static kauth_listener_t signal_listener;
172
173 static int
174 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
175 void *arg0, void *arg1, void *arg2, void *arg3)
176 {
177 struct proc *p;
178 int result, signum;
179
180 result = KAUTH_RESULT_DEFER;
181 p = arg0;
182 signum = (int)(unsigned long)arg1;
183
184 if (action != KAUTH_PROCESS_SIGNAL)
185 return result;
186
187 if (kauth_cred_uidmatch(cred, p->p_cred) ||
188 (signum == SIGCONT && (curproc->p_session == p->p_session)))
189 result = KAUTH_RESULT_ALLOW;
190
191 return result;
192 }
193
194 /*
195 * signal_init:
196 *
197 * Initialize global signal-related data structures.
198 */
199 void
200 signal_init(void)
201 {
202
203 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
204
205 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
206 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
207 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
208 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
209 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
210
211 exechook_establish(ksiginfo_exechook, NULL);
212
213 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
214 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
215
216 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
217 signal_listener_cb, NULL);
218 }
219
220 /*
221 * sigacts_poolpage_alloc:
222 *
223 * Allocate a page for the sigacts memory pool.
224 */
225 static void *
226 sigacts_poolpage_alloc(struct pool *pp, int flags)
227 {
228
229 return (void *)uvm_km_alloc(kernel_map,
230 PAGE_SIZE * 2, PAGE_SIZE * 2,
231 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
232 | UVM_KMF_WIRED);
233 }
234
235 /*
236 * sigacts_poolpage_free:
237 *
238 * Free a page on behalf of the sigacts memory pool.
239 */
240 static void
241 sigacts_poolpage_free(struct pool *pp, void *v)
242 {
243
244 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
245 }
246
247 /*
248 * sigactsinit:
249 *
250 * Create an initial sigacts structure, using the same signal state
251 * as of specified process. If 'share' is set, share the sigacts by
252 * holding a reference, otherwise just copy it from parent.
253 */
254 struct sigacts *
255 sigactsinit(struct proc *pp, int share)
256 {
257 struct sigacts *ps = pp->p_sigacts, *ps2;
258
259 if (__predict_false(share)) {
260 atomic_inc_uint(&ps->sa_refcnt);
261 return ps;
262 }
263 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
264 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
265 ps2->sa_refcnt = 1;
266
267 mutex_enter(&ps->sa_mutex);
268 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
269 mutex_exit(&ps->sa_mutex);
270 return ps2;
271 }
272
273 /*
274 * sigactsunshare:
275 *
276 * Make this process not share its sigacts, maintaining all signal state.
277 */
278 void
279 sigactsunshare(struct proc *p)
280 {
281 struct sigacts *ps, *oldps = p->p_sigacts;
282
283 if (__predict_true(oldps->sa_refcnt == 1))
284 return;
285
286 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
287 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
288 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
289 ps->sa_refcnt = 1;
290
291 p->p_sigacts = ps;
292 sigactsfree(oldps);
293 }
294
295 /*
296 * sigactsfree;
297 *
298 * Release a sigacts structure.
299 */
300 void
301 sigactsfree(struct sigacts *ps)
302 {
303
304 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
305 mutex_destroy(&ps->sa_mutex);
306 pool_cache_put(sigacts_cache, ps);
307 }
308 }
309
310 /*
311 * siginit:
312 *
313 * Initialize signal state for process 0; set to ignore signals that
314 * are ignored by default and disable the signal stack. Locking not
315 * required as the system is still cold.
316 */
317 void
318 siginit(struct proc *p)
319 {
320 struct lwp *l;
321 struct sigacts *ps;
322 int signo, prop;
323
324 ps = p->p_sigacts;
325 sigemptyset(&contsigmask);
326 sigemptyset(&stopsigmask);
327 sigemptyset(&sigcantmask);
328 for (signo = 1; signo < NSIG; signo++) {
329 prop = sigprop[signo];
330 if (prop & SA_CONT)
331 sigaddset(&contsigmask, signo);
332 if (prop & SA_STOP)
333 sigaddset(&stopsigmask, signo);
334 if (prop & SA_CANTMASK)
335 sigaddset(&sigcantmask, signo);
336 if (prop & SA_IGNORE && signo != SIGCONT)
337 sigaddset(&p->p_sigctx.ps_sigignore, signo);
338 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
339 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
340 }
341 sigemptyset(&p->p_sigctx.ps_sigcatch);
342 p->p_sflag &= ~PS_NOCLDSTOP;
343
344 ksiginfo_queue_init(&p->p_sigpend.sp_info);
345 sigemptyset(&p->p_sigpend.sp_set);
346
347 /*
348 * Reset per LWP state.
349 */
350 l = LIST_FIRST(&p->p_lwps);
351 l->l_sigwaited = NULL;
352 l->l_sigstk.ss_flags = SS_DISABLE;
353 l->l_sigstk.ss_size = 0;
354 l->l_sigstk.ss_sp = 0;
355 ksiginfo_queue_init(&l->l_sigpend.sp_info);
356 sigemptyset(&l->l_sigpend.sp_set);
357
358 /* One reference. */
359 ps->sa_refcnt = 1;
360 }
361
362 /*
363 * execsigs:
364 *
365 * Reset signals for an exec of the specified process.
366 */
367 void
368 execsigs(struct proc *p)
369 {
370 struct sigacts *ps;
371 struct lwp *l;
372 int signo, prop;
373 sigset_t tset;
374 ksiginfoq_t kq;
375
376 KASSERT(p->p_nlwps == 1);
377
378 sigactsunshare(p);
379 ps = p->p_sigacts;
380
381 /*
382 * Reset caught signals. Held signals remain held through
383 * l->l_sigmask (unless they were caught, and are now ignored
384 * by default).
385 *
386 * No need to lock yet, the process has only one LWP and
387 * at this point the sigacts are private to the process.
388 */
389 sigemptyset(&tset);
390 for (signo = 1; signo < NSIG; signo++) {
391 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
392 prop = sigprop[signo];
393 if (prop & SA_IGNORE) {
394 if ((prop & SA_CONT) == 0)
395 sigaddset(&p->p_sigctx.ps_sigignore,
396 signo);
397 sigaddset(&tset, signo);
398 }
399 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
400 }
401 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
402 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
403 }
404 ksiginfo_queue_init(&kq);
405
406 mutex_enter(p->p_lock);
407 sigclearall(p, &tset, &kq);
408 sigemptyset(&p->p_sigctx.ps_sigcatch);
409
410 /*
411 * Reset no zombies if child dies flag as Solaris does.
412 */
413 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
414 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
415 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
416
417 /*
418 * Reset per-LWP state.
419 */
420 l = LIST_FIRST(&p->p_lwps);
421 l->l_sigwaited = NULL;
422 l->l_sigstk.ss_flags = SS_DISABLE;
423 l->l_sigstk.ss_size = 0;
424 l->l_sigstk.ss_sp = 0;
425 ksiginfo_queue_init(&l->l_sigpend.sp_info);
426 sigemptyset(&l->l_sigpend.sp_set);
427 mutex_exit(p->p_lock);
428
429 ksiginfo_queue_drain(&kq);
430 }
431
432 /*
433 * ksiginfo_exechook:
434 *
435 * Free all pending ksiginfo entries from a process on exec.
436 * Additionally, drain any unused ksiginfo structures in the
437 * system back to the pool.
438 *
439 * XXX This should not be a hook, every process has signals.
440 */
441 static void
442 ksiginfo_exechook(struct proc *p, void *v)
443 {
444 ksiginfoq_t kq;
445
446 ksiginfo_queue_init(&kq);
447
448 mutex_enter(p->p_lock);
449 sigclearall(p, NULL, &kq);
450 mutex_exit(p->p_lock);
451
452 ksiginfo_queue_drain(&kq);
453 }
454
455 /*
456 * ksiginfo_alloc:
457 *
458 * Allocate a new ksiginfo structure from the pool, and optionally copy
459 * an existing one. If the existing ksiginfo_t is from the pool, and
460 * has not been queued somewhere, then just return it. Additionally,
461 * if the existing ksiginfo_t does not contain any information beyond
462 * the signal number, then just return it.
463 */
464 ksiginfo_t *
465 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
466 {
467 ksiginfo_t *kp;
468
469 if (ok != NULL) {
470 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
471 KSI_FROMPOOL)
472 return ok;
473 if (KSI_EMPTY_P(ok))
474 return ok;
475 }
476
477 kp = pool_cache_get(ksiginfo_cache, flags);
478 if (kp == NULL) {
479 #ifdef DIAGNOSTIC
480 printf("Out of memory allocating ksiginfo for pid %d\n",
481 p->p_pid);
482 #endif
483 return NULL;
484 }
485
486 if (ok != NULL) {
487 memcpy(kp, ok, sizeof(*kp));
488 kp->ksi_flags &= ~KSI_QUEUED;
489 } else
490 KSI_INIT_EMPTY(kp);
491
492 kp->ksi_flags |= KSI_FROMPOOL;
493
494 return kp;
495 }
496
497 /*
498 * ksiginfo_free:
499 *
500 * If the given ksiginfo_t is from the pool and has not been queued,
501 * then free it.
502 */
503 void
504 ksiginfo_free(ksiginfo_t *kp)
505 {
506
507 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
508 return;
509 pool_cache_put(ksiginfo_cache, kp);
510 }
511
512 /*
513 * ksiginfo_queue_drain:
514 *
515 * Drain a non-empty ksiginfo_t queue.
516 */
517 void
518 ksiginfo_queue_drain0(ksiginfoq_t *kq)
519 {
520 ksiginfo_t *ksi;
521
522 KASSERT(!TAILQ_EMPTY(kq));
523
524 while (!TAILQ_EMPTY(kq)) {
525 ksi = TAILQ_FIRST(kq);
526 TAILQ_REMOVE(kq, ksi, ksi_list);
527 pool_cache_put(ksiginfo_cache, ksi);
528 }
529 }
530
531 static bool
532 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
533 {
534 ksiginfo_t *ksi;
535
536 if (sp == NULL)
537 goto out;
538
539 /* Find siginfo and copy it out. */
540 TAILQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
541 if (ksi->ksi_signo != signo)
542 continue;
543 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
544 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
545 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
546 ksi->ksi_flags &= ~KSI_QUEUED;
547 if (out != NULL) {
548 memcpy(out, ksi, sizeof(*out));
549 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
550 }
551 ksiginfo_free(ksi); /* XXXSMP */
552 return true;
553 }
554
555 out:
556 /* If there is no siginfo, then manufacture it. */
557 if (out != NULL) {
558 KSI_INIT(out);
559 out->ksi_info._signo = signo;
560 out->ksi_info._code = SI_NOINFO;
561 }
562 return false;
563 }
564
565 /*
566 * sigget:
567 *
568 * Fetch the first pending signal from a set. Optionally, also fetch
569 * or manufacture a ksiginfo element. Returns the number of the first
570 * pending signal, or zero.
571 */
572 int
573 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
574 {
575 sigset_t tset;
576
577 /* If there's no pending set, the signal is from the debugger. */
578 if (sp == NULL)
579 goto out;
580
581 /* Construct mask from signo, and 'mask'. */
582 if (signo == 0) {
583 if (mask != NULL) {
584 tset = *mask;
585 __sigandset(&sp->sp_set, &tset);
586 } else
587 tset = sp->sp_set;
588
589 /* If there are no signals pending - return. */
590 if ((signo = firstsig(&tset)) == 0)
591 goto out;
592 } else {
593 KASSERT(sigismember(&sp->sp_set, signo));
594 }
595
596 sigdelset(&sp->sp_set, signo);
597 out:
598 (void)siggetinfo(sp, out, signo);
599 return signo;
600 }
601
602 /*
603 * sigput:
604 *
605 * Append a new ksiginfo element to the list of pending ksiginfo's.
606 */
607 static void
608 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
609 {
610 ksiginfo_t *kp;
611
612 KASSERT(mutex_owned(p->p_lock));
613 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
614
615 sigaddset(&sp->sp_set, ksi->ksi_signo);
616
617 /*
618 * If there is no siginfo, we are done.
619 */
620 if (KSI_EMPTY_P(ksi))
621 return;
622
623 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
624
625 #ifdef notyet /* XXX: QUEUING */
626 if (ksi->ksi_signo < SIGRTMIN)
627 #endif
628 {
629 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
630 if (kp->ksi_signo == ksi->ksi_signo) {
631 KSI_COPY(ksi, kp);
632 kp->ksi_flags |= KSI_QUEUED;
633 return;
634 }
635 }
636 }
637
638 ksi->ksi_flags |= KSI_QUEUED;
639 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
640 }
641
642 /*
643 * sigclear:
644 *
645 * Clear all pending signals in the specified set.
646 */
647 void
648 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
649 {
650 ksiginfo_t *ksi, *next;
651
652 if (mask == NULL)
653 sigemptyset(&sp->sp_set);
654 else
655 sigminusset(mask, &sp->sp_set);
656
657 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
658 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
659 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
660 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
661 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
662 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
663 }
664 }
665 }
666
667 /*
668 * sigclearall:
669 *
670 * Clear all pending signals in the specified set from a process and
671 * its LWPs.
672 */
673 void
674 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
675 {
676 struct lwp *l;
677
678 KASSERT(mutex_owned(p->p_lock));
679
680 sigclear(&p->p_sigpend, mask, kq);
681
682 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
683 sigclear(&l->l_sigpend, mask, kq);
684 }
685 }
686
687 /*
688 * sigispending:
689 *
690 * Return the first signal number if there are pending signals for the
691 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
692 * and that the signal has been posted to the appopriate queue before
693 * LW_PENDSIG is set.
694 */
695 int
696 sigispending(struct lwp *l, int signo)
697 {
698 struct proc *p = l->l_proc;
699 sigset_t tset;
700
701 membar_consumer();
702
703 tset = l->l_sigpend.sp_set;
704 sigplusset(&p->p_sigpend.sp_set, &tset);
705 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
706 sigminusset(&l->l_sigmask, &tset);
707
708 if (signo == 0) {
709 return firstsig(&tset);
710 }
711 return sigismember(&tset, signo) ? signo : 0;
712 }
713
714 void
715 getucontext(struct lwp *l, ucontext_t *ucp)
716 {
717 struct proc *p = l->l_proc;
718
719 KASSERT(mutex_owned(p->p_lock));
720
721 ucp->uc_flags = 0;
722 ucp->uc_link = l->l_ctxlink;
723 ucp->uc_sigmask = l->l_sigmask;
724 ucp->uc_flags |= _UC_SIGMASK;
725
726 /*
727 * The (unsupplied) definition of the `current execution stack'
728 * in the System V Interface Definition appears to allow returning
729 * the main context stack.
730 */
731 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
732 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
733 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
734 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
735 } else {
736 /* Simply copy alternate signal execution stack. */
737 ucp->uc_stack = l->l_sigstk;
738 }
739 ucp->uc_flags |= _UC_STACK;
740 mutex_exit(p->p_lock);
741 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
742 mutex_enter(p->p_lock);
743 }
744
745 int
746 setucontext(struct lwp *l, const ucontext_t *ucp)
747 {
748 struct proc *p = l->l_proc;
749 int error;
750
751 KASSERT(mutex_owned(p->p_lock));
752
753 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
754 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
755 if (error != 0)
756 return error;
757 }
758
759 mutex_exit(p->p_lock);
760 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
761 mutex_enter(p->p_lock);
762 if (error != 0)
763 return (error);
764
765 l->l_ctxlink = ucp->uc_link;
766
767 /*
768 * If there was stack information, update whether or not we are
769 * still running on an alternate signal stack.
770 */
771 if ((ucp->uc_flags & _UC_STACK) != 0) {
772 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
773 l->l_sigstk.ss_flags |= SS_ONSTACK;
774 else
775 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
776 }
777
778 return 0;
779 }
780
781 /*
782 * killpg1: common code for kill process group/broadcast kill.
783 */
784 int
785 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
786 {
787 struct proc *p, *cp;
788 kauth_cred_t pc;
789 struct pgrp *pgrp;
790 int nfound;
791 int signo = ksi->ksi_signo;
792
793 cp = l->l_proc;
794 pc = l->l_cred;
795 nfound = 0;
796
797 mutex_enter(proc_lock);
798 if (all) {
799 /*
800 * Broadcast.
801 */
802 PROCLIST_FOREACH(p, &allproc) {
803 if (p->p_pid <= 1 || p == cp ||
804 (p->p_flag & PK_SYSTEM) != 0)
805 continue;
806 mutex_enter(p->p_lock);
807 if (kauth_authorize_process(pc,
808 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
809 NULL) == 0) {
810 nfound++;
811 if (signo)
812 kpsignal2(p, ksi);
813 }
814 mutex_exit(p->p_lock);
815 }
816 } else {
817 if (pgid == 0)
818 /* Zero pgid means send to my process group. */
819 pgrp = cp->p_pgrp;
820 else {
821 pgrp = pgrp_find(pgid);
822 if (pgrp == NULL)
823 goto out;
824 }
825 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
826 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
827 continue;
828 mutex_enter(p->p_lock);
829 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
830 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
831 nfound++;
832 if (signo && P_ZOMBIE(p) == 0)
833 kpsignal2(p, ksi);
834 }
835 mutex_exit(p->p_lock);
836 }
837 }
838 out:
839 mutex_exit(proc_lock);
840 return nfound ? 0 : ESRCH;
841 }
842
843 /*
844 * Send a signal to a process group. If checktty is set, limit to members
845 * which have a controlling terminal.
846 */
847 void
848 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
849 {
850 ksiginfo_t ksi;
851
852 KASSERT(!cpu_intr_p());
853 KASSERT(mutex_owned(proc_lock));
854
855 KSI_INIT_EMPTY(&ksi);
856 ksi.ksi_signo = sig;
857 kpgsignal(pgrp, &ksi, NULL, checkctty);
858 }
859
860 void
861 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
862 {
863 struct proc *p;
864
865 KASSERT(!cpu_intr_p());
866 KASSERT(mutex_owned(proc_lock));
867 KASSERT(pgrp != NULL);
868
869 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
870 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
871 kpsignal(p, ksi, data);
872 }
873
874 /*
875 * Send a signal caused by a trap to the current LWP. If it will be caught
876 * immediately, deliver it with correct code. Otherwise, post it normally.
877 */
878 void
879 trapsignal(struct lwp *l, ksiginfo_t *ksi)
880 {
881 struct proc *p;
882 struct sigacts *ps;
883 int signo = ksi->ksi_signo;
884 sigset_t *mask;
885
886 KASSERT(KSI_TRAP_P(ksi));
887
888 ksi->ksi_lid = l->l_lid;
889 p = l->l_proc;
890
891 KASSERT(!cpu_intr_p());
892 mutex_enter(proc_lock);
893 mutex_enter(p->p_lock);
894 mask = &l->l_sigmask;
895 ps = p->p_sigacts;
896
897 if ((p->p_slflag & PSL_TRACED) == 0 &&
898 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
899 !sigismember(mask, signo)) {
900 mutex_exit(proc_lock);
901 l->l_ru.ru_nsignals++;
902 kpsendsig(l, ksi, mask);
903 mutex_exit(p->p_lock);
904 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
905 } else {
906 /* XXX for core dump/debugger */
907 p->p_sigctx.ps_lwp = l->l_lid;
908 p->p_sigctx.ps_signo = ksi->ksi_signo;
909 p->p_sigctx.ps_code = ksi->ksi_trap;
910 kpsignal2(p, ksi);
911 mutex_exit(p->p_lock);
912 mutex_exit(proc_lock);
913 }
914 }
915
916 /*
917 * Fill in signal information and signal the parent for a child status change.
918 */
919 void
920 child_psignal(struct proc *p, int mask)
921 {
922 ksiginfo_t ksi;
923 struct proc *q;
924 int xstat;
925
926 KASSERT(mutex_owned(proc_lock));
927 KASSERT(mutex_owned(p->p_lock));
928
929 xstat = p->p_xstat;
930
931 KSI_INIT(&ksi);
932 ksi.ksi_signo = SIGCHLD;
933 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
934 ksi.ksi_pid = p->p_pid;
935 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
936 ksi.ksi_status = xstat;
937 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
938 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
939
940 q = p->p_pptr;
941
942 mutex_exit(p->p_lock);
943 mutex_enter(q->p_lock);
944
945 if ((q->p_sflag & mask) == 0)
946 kpsignal2(q, &ksi);
947
948 mutex_exit(q->p_lock);
949 mutex_enter(p->p_lock);
950 }
951
952 void
953 psignal(struct proc *p, int signo)
954 {
955 ksiginfo_t ksi;
956
957 KASSERT(!cpu_intr_p());
958 KASSERT(mutex_owned(proc_lock));
959
960 KSI_INIT_EMPTY(&ksi);
961 ksi.ksi_signo = signo;
962 mutex_enter(p->p_lock);
963 kpsignal2(p, &ksi);
964 mutex_exit(p->p_lock);
965 }
966
967 void
968 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
969 {
970 fdfile_t *ff;
971 file_t *fp;
972 fdtab_t *dt;
973
974 KASSERT(!cpu_intr_p());
975 KASSERT(mutex_owned(proc_lock));
976
977 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
978 size_t fd;
979 filedesc_t *fdp = p->p_fd;
980
981 /* XXXSMP locking */
982 ksi->ksi_fd = -1;
983 dt = fdp->fd_dt;
984 for (fd = 0; fd < dt->dt_nfiles; fd++) {
985 if ((ff = dt->dt_ff[fd]) == NULL)
986 continue;
987 if ((fp = ff->ff_file) == NULL)
988 continue;
989 if (fp->f_data == data) {
990 ksi->ksi_fd = fd;
991 break;
992 }
993 }
994 }
995 mutex_enter(p->p_lock);
996 kpsignal2(p, ksi);
997 mutex_exit(p->p_lock);
998 }
999
1000 /*
1001 * sigismasked:
1002 *
1003 * Returns true if signal is ignored or masked for the specified LWP.
1004 */
1005 int
1006 sigismasked(struct lwp *l, int sig)
1007 {
1008 struct proc *p = l->l_proc;
1009
1010 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1011 sigismember(&l->l_sigmask, sig);
1012 }
1013
1014 /*
1015 * sigpost:
1016 *
1017 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1018 * be able to take the signal.
1019 */
1020 static int
1021 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1022 {
1023 int rv, masked;
1024 struct proc *p = l->l_proc;
1025
1026 KASSERT(mutex_owned(p->p_lock));
1027
1028 /*
1029 * If the LWP is on the way out, sigclear() will be busy draining all
1030 * pending signals. Don't give it more.
1031 */
1032 if (l->l_refcnt == 0)
1033 return 0;
1034
1035 SDT_PROBE(proc,,,signal_send, l, p, sig, 0, 0);
1036
1037 /*
1038 * Have the LWP check for signals. This ensures that even if no LWP
1039 * is found to take the signal immediately, it should be taken soon.
1040 */
1041 lwp_lock(l);
1042 l->l_flag |= LW_PENDSIG;
1043
1044 /*
1045 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1046 * Note: SIGKILL and SIGSTOP cannot be masked.
1047 */
1048 masked = sigismember(&l->l_sigmask, sig);
1049 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1050 lwp_unlock(l);
1051 return 0;
1052 }
1053
1054 /*
1055 * If killing the process, make it run fast.
1056 */
1057 if (__predict_false((prop & SA_KILL) != 0) &&
1058 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1059 KASSERT(l->l_class == SCHED_OTHER);
1060 lwp_changepri(l, MAXPRI_USER);
1061 }
1062
1063 /*
1064 * If the LWP is running or on a run queue, then we win. If it's
1065 * sleeping interruptably, wake it and make it take the signal. If
1066 * the sleep isn't interruptable, then the chances are it will get
1067 * to see the signal soon anyhow. If suspended, it can't take the
1068 * signal right now. If it's LWP private or for all LWPs, save it
1069 * for later; otherwise punt.
1070 */
1071 rv = 0;
1072
1073 switch (l->l_stat) {
1074 case LSRUN:
1075 case LSONPROC:
1076 lwp_need_userret(l);
1077 rv = 1;
1078 break;
1079
1080 case LSSLEEP:
1081 if ((l->l_flag & LW_SINTR) != 0) {
1082 /* setrunnable() will release the lock. */
1083 setrunnable(l);
1084 return 1;
1085 }
1086 break;
1087
1088 case LSSUSPENDED:
1089 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1090 /* lwp_continue() will release the lock. */
1091 lwp_continue(l);
1092 return 1;
1093 }
1094 break;
1095
1096 case LSSTOP:
1097 if ((prop & SA_STOP) != 0)
1098 break;
1099
1100 /*
1101 * If the LWP is stopped and we are sending a continue
1102 * signal, then start it again.
1103 */
1104 if ((prop & SA_CONT) != 0) {
1105 if (l->l_wchan != NULL) {
1106 l->l_stat = LSSLEEP;
1107 p->p_nrlwps++;
1108 rv = 1;
1109 break;
1110 }
1111 /* setrunnable() will release the lock. */
1112 setrunnable(l);
1113 return 1;
1114 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1115 /* setrunnable() will release the lock. */
1116 setrunnable(l);
1117 return 1;
1118 }
1119 break;
1120
1121 default:
1122 break;
1123 }
1124
1125 lwp_unlock(l);
1126 return rv;
1127 }
1128
1129 /*
1130 * Notify an LWP that it has a pending signal.
1131 */
1132 void
1133 signotify(struct lwp *l)
1134 {
1135 KASSERT(lwp_locked(l, NULL));
1136
1137 l->l_flag |= LW_PENDSIG;
1138 lwp_need_userret(l);
1139 }
1140
1141 /*
1142 * Find an LWP within process p that is waiting on signal ksi, and hand
1143 * it on.
1144 */
1145 static int
1146 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1147 {
1148 struct lwp *l;
1149 int signo;
1150
1151 KASSERT(mutex_owned(p->p_lock));
1152
1153 signo = ksi->ksi_signo;
1154
1155 if (ksi->ksi_lid != 0) {
1156 /*
1157 * Signal came via _lwp_kill(). Find the LWP and see if
1158 * it's interested.
1159 */
1160 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1161 return 0;
1162 if (l->l_sigwaited == NULL ||
1163 !sigismember(&l->l_sigwaitset, signo))
1164 return 0;
1165 } else {
1166 /*
1167 * Look for any LWP that may be interested.
1168 */
1169 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1170 KASSERT(l->l_sigwaited != NULL);
1171 if (sigismember(&l->l_sigwaitset, signo))
1172 break;
1173 }
1174 }
1175
1176 if (l != NULL) {
1177 l->l_sigwaited->ksi_info = ksi->ksi_info;
1178 l->l_sigwaited = NULL;
1179 LIST_REMOVE(l, l_sigwaiter);
1180 cv_signal(&l->l_sigcv);
1181 return 1;
1182 }
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * Send the signal to the process. If the signal has an action, the action
1189 * is usually performed by the target process rather than the caller; we add
1190 * the signal to the set of pending signals for the process.
1191 *
1192 * Exceptions:
1193 * o When a stop signal is sent to a sleeping process that takes the
1194 * default action, the process is stopped without awakening it.
1195 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1196 * regardless of the signal action (eg, blocked or ignored).
1197 *
1198 * Other ignored signals are discarded immediately.
1199 */
1200 void
1201 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1202 {
1203 int prop, signo = ksi->ksi_signo;
1204 struct sigacts *sa;
1205 struct lwp *l;
1206 ksiginfo_t *kp;
1207 lwpid_t lid;
1208 sig_t action;
1209 bool toall;
1210
1211 KASSERT(!cpu_intr_p());
1212 KASSERT(mutex_owned(proc_lock));
1213 KASSERT(mutex_owned(p->p_lock));
1214 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1215 KASSERT(signo > 0 && signo < NSIG);
1216
1217 /*
1218 * If the process is being created by fork, is a zombie or is
1219 * exiting, then just drop the signal here and bail out.
1220 */
1221 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1222 return;
1223
1224 /*
1225 * Notify any interested parties of the signal.
1226 */
1227 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1228
1229 /*
1230 * Some signals including SIGKILL must act on the entire process.
1231 */
1232 kp = NULL;
1233 prop = sigprop[signo];
1234 toall = ((prop & SA_TOALL) != 0);
1235 lid = toall ? 0 : ksi->ksi_lid;
1236
1237 /*
1238 * If proc is traced, always give parent a chance.
1239 */
1240 if (p->p_slflag & PSL_TRACED) {
1241 action = SIG_DFL;
1242
1243 if (lid == 0) {
1244 /*
1245 * If the process is being traced and the signal
1246 * is being caught, make sure to save any ksiginfo.
1247 */
1248 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1249 return;
1250 sigput(&p->p_sigpend, p, kp);
1251 }
1252 } else {
1253 /*
1254 * If the signal was the result of a trap and is not being
1255 * caught, then reset it to default action so that the
1256 * process dumps core immediately.
1257 */
1258 if (KSI_TRAP_P(ksi)) {
1259 sa = p->p_sigacts;
1260 mutex_enter(&sa->sa_mutex);
1261 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1262 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1263 SIGACTION(p, signo).sa_handler = SIG_DFL;
1264 }
1265 mutex_exit(&sa->sa_mutex);
1266 }
1267
1268 /*
1269 * If the signal is being ignored, then drop it. Note: we
1270 * don't set SIGCONT in ps_sigignore, and if it is set to
1271 * SIG_IGN, action will be SIG_DFL here.
1272 */
1273 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1274 return;
1275
1276 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1277 action = SIG_CATCH;
1278 else {
1279 action = SIG_DFL;
1280
1281 /*
1282 * If sending a tty stop signal to a member of an
1283 * orphaned process group, discard the signal here if
1284 * the action is default; don't stop the process below
1285 * if sleeping, and don't clear any pending SIGCONT.
1286 */
1287 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1288 return;
1289
1290 if (prop & SA_KILL && p->p_nice > NZERO)
1291 p->p_nice = NZERO;
1292 }
1293 }
1294
1295 /*
1296 * If stopping or continuing a process, discard any pending
1297 * signals that would do the inverse.
1298 */
1299 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1300 ksiginfoq_t kq;
1301
1302 ksiginfo_queue_init(&kq);
1303 if ((prop & SA_CONT) != 0)
1304 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1305 if ((prop & SA_STOP) != 0)
1306 sigclear(&p->p_sigpend, &contsigmask, &kq);
1307 ksiginfo_queue_drain(&kq); /* XXXSMP */
1308 }
1309
1310 /*
1311 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1312 * please!), check if any LWPs are waiting on it. If yes, pass on
1313 * the signal info. The signal won't be processed further here.
1314 */
1315 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1316 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1317 sigunwait(p, ksi))
1318 return;
1319
1320 /*
1321 * XXXSMP Should be allocated by the caller, we're holding locks
1322 * here.
1323 */
1324 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1325 return;
1326
1327 /*
1328 * LWP private signals are easy - just find the LWP and post
1329 * the signal to it.
1330 */
1331 if (lid != 0) {
1332 l = lwp_find(p, lid);
1333 if (l != NULL) {
1334 sigput(&l->l_sigpend, p, kp);
1335 membar_producer();
1336 (void)sigpost(l, action, prop, kp->ksi_signo);
1337 }
1338 goto out;
1339 }
1340
1341 /*
1342 * Some signals go to all LWPs, even if posted with _lwp_kill()
1343 * or for an SA process.
1344 */
1345 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1346 if ((p->p_slflag & PSL_TRACED) != 0)
1347 goto deliver;
1348
1349 /*
1350 * If SIGCONT is default (or ignored) and process is
1351 * asleep, we are finished; the process should not
1352 * be awakened.
1353 */
1354 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1355 goto out;
1356 } else {
1357 /*
1358 * Process is stopped or stopping.
1359 * - If traced, then no action is needed, unless killing.
1360 * - Run the process only if sending SIGCONT or SIGKILL.
1361 */
1362 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1363 goto out;
1364 }
1365 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1366 /*
1367 * Re-adjust p_nstopchild if the process wasn't
1368 * collected by its parent.
1369 */
1370 p->p_stat = SACTIVE;
1371 p->p_sflag &= ~PS_STOPPING;
1372 if (!p->p_waited) {
1373 p->p_pptr->p_nstopchild--;
1374 }
1375 if (p->p_slflag & PSL_TRACED) {
1376 KASSERT(signo == SIGKILL);
1377 goto deliver;
1378 }
1379 /*
1380 * Do not make signal pending if SIGCONT is default.
1381 *
1382 * If the process catches SIGCONT, let it handle the
1383 * signal itself (if waiting on event - process runs,
1384 * otherwise continues sleeping).
1385 */
1386 if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1387 KASSERT(signo != SIGKILL);
1388 goto deliver;
1389 }
1390 } else if ((prop & SA_STOP) != 0) {
1391 /*
1392 * Already stopped, don't need to stop again.
1393 * (If we did the shell could get confused.)
1394 */
1395 goto out;
1396 }
1397 }
1398 /*
1399 * Make signal pending.
1400 */
1401 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1402 sigput(&p->p_sigpend, p, kp);
1403
1404 deliver:
1405 /*
1406 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1407 * visible on the per process list (for sigispending()). This
1408 * is unlikely to be needed in practice, but...
1409 */
1410 membar_producer();
1411
1412 /*
1413 * Try to find an LWP that can take the signal.
1414 */
1415 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1416 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1417 break;
1418 }
1419 out:
1420 /*
1421 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1422 * with locks held. The caller should take care of this.
1423 */
1424 ksiginfo_free(kp);
1425 }
1426
1427 void
1428 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1429 {
1430 struct proc *p = l->l_proc;
1431
1432 KASSERT(mutex_owned(p->p_lock));
1433 (*p->p_emul->e_sendsig)(ksi, mask);
1434 }
1435
1436 /*
1437 * Stop any LWPs sleeping interruptably.
1438 */
1439 static void
1440 proc_stop_lwps(struct proc *p)
1441 {
1442 struct lwp *l;
1443
1444 KASSERT(mutex_owned(p->p_lock));
1445 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1446
1447 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1448 lwp_lock(l);
1449 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1450 l->l_stat = LSSTOP;
1451 p->p_nrlwps--;
1452 }
1453 lwp_unlock(l);
1454 }
1455 }
1456
1457 /*
1458 * Finish stopping of a process. Mark it stopped and notify the parent.
1459 *
1460 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1461 */
1462 static void
1463 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1464 {
1465
1466 KASSERT(mutex_owned(proc_lock));
1467 KASSERT(mutex_owned(p->p_lock));
1468 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1469 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1470
1471 p->p_sflag &= ~PS_STOPPING;
1472 p->p_stat = SSTOP;
1473 p->p_waited = 0;
1474 p->p_pptr->p_nstopchild++;
1475 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1476 if (ppsig) {
1477 /* child_psignal drops p_lock briefly. */
1478 child_psignal(p, ppmask);
1479 }
1480 cv_broadcast(&p->p_pptr->p_waitcv);
1481 }
1482 }
1483
1484 /*
1485 * Stop the current process and switch away when being stopped or traced.
1486 */
1487 static void
1488 sigswitch(bool ppsig, int ppmask, int signo)
1489 {
1490 struct lwp *l = curlwp;
1491 struct proc *p = l->l_proc;
1492 int biglocks;
1493
1494 KASSERT(mutex_owned(p->p_lock));
1495 KASSERT(l->l_stat == LSONPROC);
1496 KASSERT(p->p_nrlwps > 0);
1497
1498 /*
1499 * On entry we know that the process needs to stop. If it's
1500 * the result of a 'sideways' stop signal that has been sourced
1501 * through issignal(), then stop other LWPs in the process too.
1502 */
1503 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1504 KASSERT(signo != 0);
1505 proc_stop(p, 1, signo);
1506 KASSERT(p->p_nrlwps > 0);
1507 }
1508
1509 /*
1510 * If we are the last live LWP, and the stop was a result of
1511 * a new signal, then signal the parent.
1512 */
1513 if ((p->p_sflag & PS_STOPPING) != 0) {
1514 if (!mutex_tryenter(proc_lock)) {
1515 mutex_exit(p->p_lock);
1516 mutex_enter(proc_lock);
1517 mutex_enter(p->p_lock);
1518 }
1519
1520 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1521 /*
1522 * Note that proc_stop_done() can drop
1523 * p->p_lock briefly.
1524 */
1525 proc_stop_done(p, ppsig, ppmask);
1526 }
1527
1528 mutex_exit(proc_lock);
1529 }
1530
1531 /*
1532 * Unlock and switch away.
1533 */
1534 KERNEL_UNLOCK_ALL(l, &biglocks);
1535 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1536 p->p_nrlwps--;
1537 lwp_lock(l);
1538 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1539 l->l_stat = LSSTOP;
1540 lwp_unlock(l);
1541 }
1542
1543 mutex_exit(p->p_lock);
1544 lwp_lock(l);
1545 mi_switch(l);
1546 KERNEL_LOCK(biglocks, l);
1547 mutex_enter(p->p_lock);
1548 }
1549
1550 /*
1551 * Check for a signal from the debugger.
1552 */
1553 static int
1554 sigchecktrace(void)
1555 {
1556 struct lwp *l = curlwp;
1557 struct proc *p = l->l_proc;
1558 int signo;
1559
1560 KASSERT(mutex_owned(p->p_lock));
1561
1562 /* If there's a pending SIGKILL, process it immediately. */
1563 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1564 return 0;
1565
1566 /*
1567 * If we are no longer being traced, or the parent didn't
1568 * give us a signal, or we're stopping, look for more signals.
1569 */
1570 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0 ||
1571 (p->p_sflag & PS_STOPPING) != 0)
1572 return 0;
1573
1574 /*
1575 * If the new signal is being masked, look for other signals.
1576 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1577 */
1578 signo = p->p_xstat;
1579 p->p_xstat = 0;
1580 if (sigismember(&l->l_sigmask, signo)) {
1581 signo = 0;
1582 }
1583 return signo;
1584 }
1585
1586 /*
1587 * If the current process has received a signal (should be caught or cause
1588 * termination, should interrupt current syscall), return the signal number.
1589 *
1590 * Stop signals with default action are processed immediately, then cleared;
1591 * they aren't returned. This is checked after each entry to the system for
1592 * a syscall or trap.
1593 *
1594 * We will also return -1 if the process is exiting and the current LWP must
1595 * follow suit.
1596 */
1597 int
1598 issignal(struct lwp *l)
1599 {
1600 struct proc *p;
1601 int signo, prop;
1602 sigpend_t *sp;
1603 sigset_t ss;
1604
1605 p = l->l_proc;
1606 sp = NULL;
1607 signo = 0;
1608
1609 KASSERT(p == curproc);
1610 KASSERT(mutex_owned(p->p_lock));
1611
1612 for (;;) {
1613 /* Discard any signals that we have decided not to take. */
1614 if (signo != 0) {
1615 (void)sigget(sp, NULL, signo, NULL);
1616 }
1617
1618 /*
1619 * If the process is stopped/stopping, then stop ourselves
1620 * now that we're on the kernel/userspace boundary. When
1621 * we awaken, check for a signal from the debugger.
1622 */
1623 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1624 sigswitch(true, PS_NOCLDSTOP, 0);
1625 signo = sigchecktrace();
1626 } else
1627 signo = 0;
1628
1629 /* Signals from the debugger are "out of band". */
1630 sp = NULL;
1631
1632 /*
1633 * If the debugger didn't provide a signal, find a pending
1634 * signal from our set. Check per-LWP signals first, and
1635 * then per-process.
1636 */
1637 if (signo == 0) {
1638 sp = &l->l_sigpend;
1639 ss = sp->sp_set;
1640 if ((p->p_lflag & PL_PPWAIT) != 0)
1641 sigminusset(&stopsigmask, &ss);
1642 sigminusset(&l->l_sigmask, &ss);
1643
1644 if ((signo = firstsig(&ss)) == 0) {
1645 sp = &p->p_sigpend;
1646 ss = sp->sp_set;
1647 if ((p->p_lflag & PL_PPWAIT) != 0)
1648 sigminusset(&stopsigmask, &ss);
1649 sigminusset(&l->l_sigmask, &ss);
1650
1651 if ((signo = firstsig(&ss)) == 0) {
1652 /*
1653 * No signal pending - clear the
1654 * indicator and bail out.
1655 */
1656 lwp_lock(l);
1657 l->l_flag &= ~LW_PENDSIG;
1658 lwp_unlock(l);
1659 sp = NULL;
1660 break;
1661 }
1662 }
1663 }
1664
1665 /*
1666 * We should see pending but ignored signals only if
1667 * we are being traced.
1668 */
1669 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1670 (p->p_slflag & PSL_TRACED) == 0) {
1671 /* Discard the signal. */
1672 continue;
1673 }
1674
1675 /*
1676 * If traced, always stop, and stay stopped until released
1677 * by the debugger. If the our parent process is waiting
1678 * for us, don't hang as we could deadlock.
1679 */
1680 if ((p->p_slflag & PSL_TRACED) != 0 &&
1681 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1682 /*
1683 * Take the signal, but don't remove it from the
1684 * siginfo queue, because the debugger can send
1685 * it later.
1686 */
1687 if (sp)
1688 sigdelset(&sp->sp_set, signo);
1689 p->p_xstat = signo;
1690
1691 /* Emulation-specific handling of signal trace */
1692 if (p->p_emul->e_tracesig == NULL ||
1693 (*p->p_emul->e_tracesig)(p, signo) == 0)
1694 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1695 signo);
1696
1697 /* Check for a signal from the debugger. */
1698 if ((signo = sigchecktrace()) == 0)
1699 continue;
1700
1701 /* Signals from the debugger are "out of band". */
1702 sp = NULL;
1703 }
1704
1705 prop = sigprop[signo];
1706
1707 /* XXX no siginfo? */
1708 SDT_PROBE(proc,,,signal_handle, signo, 0,
1709 SIGACTION(p, signo).sa_handler, 0, 0);
1710
1711 /*
1712 * Decide whether the signal should be returned.
1713 */
1714 switch ((long)SIGACTION(p, signo).sa_handler) {
1715 case (long)SIG_DFL:
1716 /*
1717 * Don't take default actions on system processes.
1718 */
1719 if (p->p_pid <= 1) {
1720 #ifdef DIAGNOSTIC
1721 /*
1722 * Are you sure you want to ignore SIGSEGV
1723 * in init? XXX
1724 */
1725 printf_nolog("Process (pid %d) got sig %d\n",
1726 p->p_pid, signo);
1727 #endif
1728 continue;
1729 }
1730
1731 /*
1732 * If there is a pending stop signal to process with
1733 * default action, stop here, then clear the signal.
1734 * However, if process is member of an orphaned
1735 * process group, ignore tty stop signals.
1736 */
1737 if (prop & SA_STOP) {
1738 /*
1739 * XXX Don't hold proc_lock for p_lflag,
1740 * but it's not a big deal.
1741 */
1742 if (p->p_slflag & PSL_TRACED ||
1743 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1744 prop & SA_TTYSTOP)) {
1745 /* Ignore the signal. */
1746 continue;
1747 }
1748 /* Take the signal. */
1749 (void)sigget(sp, NULL, signo, NULL);
1750 p->p_xstat = signo;
1751 signo = 0;
1752 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1753 } else if (prop & SA_IGNORE) {
1754 /*
1755 * Except for SIGCONT, shouldn't get here.
1756 * Default action is to ignore; drop it.
1757 */
1758 continue;
1759 }
1760 break;
1761
1762 case (long)SIG_IGN:
1763 #ifdef DEBUG_ISSIGNAL
1764 /*
1765 * Masking above should prevent us ever trying
1766 * to take action on an ignored signal other
1767 * than SIGCONT, unless process is traced.
1768 */
1769 if ((prop & SA_CONT) == 0 &&
1770 (p->p_slflag & PSL_TRACED) == 0)
1771 printf_nolog("issignal\n");
1772 #endif
1773 continue;
1774
1775 default:
1776 /*
1777 * This signal has an action, let postsig() process
1778 * it.
1779 */
1780 break;
1781 }
1782
1783 break;
1784 }
1785
1786 l->l_sigpendset = sp;
1787 return signo;
1788 }
1789
1790 /*
1791 * Take the action for the specified signal
1792 * from the current set of pending signals.
1793 */
1794 void
1795 postsig(int signo)
1796 {
1797 struct lwp *l;
1798 struct proc *p;
1799 struct sigacts *ps;
1800 sig_t action;
1801 sigset_t *returnmask;
1802 ksiginfo_t ksi;
1803
1804 l = curlwp;
1805 p = l->l_proc;
1806 ps = p->p_sigacts;
1807
1808 KASSERT(mutex_owned(p->p_lock));
1809 KASSERT(signo > 0);
1810
1811 /*
1812 * Set the new mask value and also defer further occurrences of this
1813 * signal.
1814 *
1815 * Special case: user has done a sigsuspend. Here the current mask is
1816 * not of interest, but rather the mask from before the sigsuspend is
1817 * what we want restored after the signal processing is completed.
1818 */
1819 if (l->l_sigrestore) {
1820 returnmask = &l->l_sigoldmask;
1821 l->l_sigrestore = 0;
1822 } else
1823 returnmask = &l->l_sigmask;
1824
1825 /*
1826 * Commit to taking the signal before releasing the mutex.
1827 */
1828 action = SIGACTION_PS(ps, signo).sa_handler;
1829 l->l_ru.ru_nsignals++;
1830 if (l->l_sigpendset == NULL) {
1831 /* From the debugger */
1832 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1833 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1834 } else
1835 sigget(l->l_sigpendset, &ksi, signo, NULL);
1836
1837 if (ktrpoint(KTR_PSIG)) {
1838 mutex_exit(p->p_lock);
1839 ktrpsig(signo, action, returnmask, &ksi);
1840 mutex_enter(p->p_lock);
1841 }
1842
1843 if (action == SIG_DFL) {
1844 /*
1845 * Default action, where the default is to kill
1846 * the process. (Other cases were ignored above.)
1847 */
1848 sigexit(l, signo);
1849 return;
1850 }
1851
1852 /*
1853 * If we get here, the signal must be caught.
1854 */
1855 #ifdef DIAGNOSTIC
1856 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1857 panic("postsig action");
1858 #endif
1859
1860 kpsendsig(l, &ksi, returnmask);
1861 }
1862
1863 /*
1864 * sendsig:
1865 *
1866 * Default signal delivery method for NetBSD.
1867 */
1868 void
1869 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1870 {
1871 struct sigacts *sa;
1872 int sig;
1873
1874 sig = ksi->ksi_signo;
1875 sa = curproc->p_sigacts;
1876
1877 switch (sa->sa_sigdesc[sig].sd_vers) {
1878 case 0:
1879 case 1:
1880 /* Compat for 1.6 and earlier. */
1881 if (sendsig_sigcontext_vec == NULL) {
1882 break;
1883 }
1884 (*sendsig_sigcontext_vec)(ksi, mask);
1885 return;
1886 case 2:
1887 case 3:
1888 sendsig_siginfo(ksi, mask);
1889 return;
1890 default:
1891 break;
1892 }
1893
1894 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1895 sigexit(curlwp, SIGILL);
1896 }
1897
1898 /*
1899 * sendsig_reset:
1900 *
1901 * Reset the signal action. Called from emulation specific sendsig()
1902 * before unlocking to deliver the signal.
1903 */
1904 void
1905 sendsig_reset(struct lwp *l, int signo)
1906 {
1907 struct proc *p = l->l_proc;
1908 struct sigacts *ps = p->p_sigacts;
1909
1910 KASSERT(mutex_owned(p->p_lock));
1911
1912 p->p_sigctx.ps_lwp = 0;
1913 p->p_sigctx.ps_code = 0;
1914 p->p_sigctx.ps_signo = 0;
1915
1916 mutex_enter(&ps->sa_mutex);
1917 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1918 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1919 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1920 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1921 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1922 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1923 }
1924 mutex_exit(&ps->sa_mutex);
1925 }
1926
1927 /*
1928 * Kill the current process for stated reason.
1929 */
1930 void
1931 killproc(struct proc *p, const char *why)
1932 {
1933
1934 KASSERT(mutex_owned(proc_lock));
1935
1936 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1937 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1938 psignal(p, SIGKILL);
1939 }
1940
1941 /*
1942 * Force the current process to exit with the specified signal, dumping core
1943 * if appropriate. We bypass the normal tests for masked and caught
1944 * signals, allowing unrecoverable failures to terminate the process without
1945 * changing signal state. Mark the accounting record with the signal
1946 * termination. If dumping core, save the signal number for the debugger.
1947 * Calls exit and does not return.
1948 */
1949 void
1950 sigexit(struct lwp *l, int signo)
1951 {
1952 int exitsig, error, docore;
1953 struct proc *p;
1954 struct lwp *t;
1955
1956 p = l->l_proc;
1957
1958 KASSERT(mutex_owned(p->p_lock));
1959 KERNEL_UNLOCK_ALL(l, NULL);
1960
1961 /*
1962 * Don't permit coredump() multiple times in the same process.
1963 * Call back into sigexit, where we will be suspended until
1964 * the deed is done. Note that this is a recursive call, but
1965 * LW_WCORE will prevent us from coming back this way.
1966 */
1967 if ((p->p_sflag & PS_WCORE) != 0) {
1968 lwp_lock(l);
1969 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1970 lwp_unlock(l);
1971 mutex_exit(p->p_lock);
1972 lwp_userret(l);
1973 panic("sigexit 1");
1974 /* NOTREACHED */
1975 }
1976
1977 /* If process is already on the way out, then bail now. */
1978 if ((p->p_sflag & PS_WEXIT) != 0) {
1979 mutex_exit(p->p_lock);
1980 lwp_exit(l);
1981 panic("sigexit 2");
1982 /* NOTREACHED */
1983 }
1984
1985 /*
1986 * Prepare all other LWPs for exit. If dumping core, suspend them
1987 * so that their registers are available long enough to be dumped.
1988 */
1989 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
1990 p->p_sflag |= PS_WCORE;
1991 for (;;) {
1992 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
1993 lwp_lock(t);
1994 if (t == l) {
1995 t->l_flag &= ~LW_WSUSPEND;
1996 lwp_unlock(t);
1997 continue;
1998 }
1999 t->l_flag |= (LW_WCORE | LW_WEXIT);
2000 lwp_suspend(l, t);
2001 }
2002
2003 if (p->p_nrlwps == 1)
2004 break;
2005
2006 /*
2007 * Kick any LWPs sitting in lwp_wait1(), and wait
2008 * for everyone else to stop before proceeding.
2009 */
2010 p->p_nlwpwait++;
2011 cv_broadcast(&p->p_lwpcv);
2012 cv_wait(&p->p_lwpcv, p->p_lock);
2013 p->p_nlwpwait--;
2014 }
2015 }
2016
2017 exitsig = signo;
2018 p->p_acflag |= AXSIG;
2019 p->p_sigctx.ps_signo = signo;
2020
2021 if (docore) {
2022 mutex_exit(p->p_lock);
2023 if ((error = (*coredump_vec)(l, NULL)) == 0)
2024 exitsig |= WCOREFLAG;
2025
2026 if (kern_logsigexit) {
2027 int uid = l->l_cred ?
2028 (int)kauth_cred_geteuid(l->l_cred) : -1;
2029
2030 if (error)
2031 log(LOG_INFO, lognocoredump, p->p_pid,
2032 p->p_comm, uid, signo, error);
2033 else
2034 log(LOG_INFO, logcoredump, p->p_pid,
2035 p->p_comm, uid, signo);
2036 }
2037
2038 #ifdef PAX_SEGVGUARD
2039 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2040 #endif /* PAX_SEGVGUARD */
2041 /* Acquire the sched state mutex. exit1() will release it. */
2042 mutex_enter(p->p_lock);
2043 }
2044
2045 /* No longer dumping core. */
2046 p->p_sflag &= ~PS_WCORE;
2047
2048 exit1(l, W_EXITCODE(0, exitsig));
2049 /* NOTREACHED */
2050 }
2051
2052 /*
2053 * Put process 'p' into the stopped state and optionally, notify the parent.
2054 */
2055 void
2056 proc_stop(struct proc *p, int notify, int signo)
2057 {
2058 struct lwp *l;
2059
2060 KASSERT(mutex_owned(p->p_lock));
2061
2062 /*
2063 * First off, set the stopping indicator and bring all sleeping
2064 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2065 * unlock between here and the p->p_nrlwps check below.
2066 */
2067 p->p_sflag |= PS_STOPPING;
2068 if (notify)
2069 p->p_sflag |= PS_NOTIFYSTOP;
2070 else
2071 p->p_sflag &= ~PS_NOTIFYSTOP;
2072 membar_producer();
2073
2074 proc_stop_lwps(p);
2075
2076 /*
2077 * If there are no LWPs available to take the signal, then we
2078 * signal the parent process immediately. Otherwise, the last
2079 * LWP to stop will take care of it.
2080 */
2081
2082 if (p->p_nrlwps == 0) {
2083 proc_stop_done(p, true, PS_NOCLDSTOP);
2084 } else {
2085 /*
2086 * Have the remaining LWPs come to a halt, and trigger
2087 * proc_stop_callout() to ensure that they do.
2088 */
2089 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2090 sigpost(l, SIG_DFL, SA_STOP, signo);
2091 }
2092 callout_schedule(&proc_stop_ch, 1);
2093 }
2094 }
2095
2096 /*
2097 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2098 * but wait for them to come to a halt at the kernel-user boundary. This is
2099 * to allow LWPs to release any locks that they may hold before stopping.
2100 *
2101 * Non-interruptable sleeps can be long, and there is the potential for an
2102 * LWP to begin sleeping interruptably soon after the process has been set
2103 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2104 * stopping, and so complete halt of the process and the return of status
2105 * information to the parent could be delayed indefinitely.
2106 *
2107 * To handle this race, proc_stop_callout() runs once per tick while there
2108 * are stopping processes in the system. It sets LWPs that are sleeping
2109 * interruptably into the LSSTOP state.
2110 *
2111 * Note that we are not concerned about keeping all LWPs stopped while the
2112 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2113 * What we do need to ensure is that all LWPs in a stopping process have
2114 * stopped at least once, so that notification can be sent to the parent
2115 * process.
2116 */
2117 static void
2118 proc_stop_callout(void *cookie)
2119 {
2120 bool more, restart;
2121 struct proc *p;
2122
2123 (void)cookie;
2124
2125 do {
2126 restart = false;
2127 more = false;
2128
2129 mutex_enter(proc_lock);
2130 PROCLIST_FOREACH(p, &allproc) {
2131 mutex_enter(p->p_lock);
2132
2133 if ((p->p_sflag & PS_STOPPING) == 0) {
2134 mutex_exit(p->p_lock);
2135 continue;
2136 }
2137
2138 /* Stop any LWPs sleeping interruptably. */
2139 proc_stop_lwps(p);
2140 if (p->p_nrlwps == 0) {
2141 /*
2142 * We brought the process to a halt.
2143 * Mark it as stopped and notify the
2144 * parent.
2145 */
2146 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2147 /*
2148 * Note that proc_stop_done() will
2149 * drop p->p_lock briefly.
2150 * Arrange to restart and check
2151 * all processes again.
2152 */
2153 restart = true;
2154 }
2155 proc_stop_done(p, true, PS_NOCLDSTOP);
2156 } else
2157 more = true;
2158
2159 mutex_exit(p->p_lock);
2160 if (restart)
2161 break;
2162 }
2163 mutex_exit(proc_lock);
2164 } while (restart);
2165
2166 /*
2167 * If we noted processes that are stopping but still have
2168 * running LWPs, then arrange to check again in 1 tick.
2169 */
2170 if (more)
2171 callout_schedule(&proc_stop_ch, 1);
2172 }
2173
2174 /*
2175 * Given a process in state SSTOP, set the state back to SACTIVE and
2176 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2177 */
2178 void
2179 proc_unstop(struct proc *p)
2180 {
2181 struct lwp *l;
2182 int sig;
2183
2184 KASSERT(mutex_owned(proc_lock));
2185 KASSERT(mutex_owned(p->p_lock));
2186
2187 p->p_stat = SACTIVE;
2188 p->p_sflag &= ~PS_STOPPING;
2189 sig = p->p_xstat;
2190
2191 if (!p->p_waited)
2192 p->p_pptr->p_nstopchild--;
2193
2194 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2195 lwp_lock(l);
2196 if (l->l_stat != LSSTOP) {
2197 lwp_unlock(l);
2198 continue;
2199 }
2200 if (l->l_wchan == NULL) {
2201 setrunnable(l);
2202 continue;
2203 }
2204 if (sig && (l->l_flag & LW_SINTR) != 0) {
2205 setrunnable(l);
2206 sig = 0;
2207 } else {
2208 l->l_stat = LSSLEEP;
2209 p->p_nrlwps++;
2210 lwp_unlock(l);
2211 }
2212 }
2213 }
2214
2215 static int
2216 filt_sigattach(struct knote *kn)
2217 {
2218 struct proc *p = curproc;
2219
2220 kn->kn_obj = p;
2221 kn->kn_flags |= EV_CLEAR; /* automatically set */
2222
2223 mutex_enter(p->p_lock);
2224 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2225 mutex_exit(p->p_lock);
2226
2227 return 0;
2228 }
2229
2230 static void
2231 filt_sigdetach(struct knote *kn)
2232 {
2233 struct proc *p = kn->kn_obj;
2234
2235 mutex_enter(p->p_lock);
2236 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2237 mutex_exit(p->p_lock);
2238 }
2239
2240 /*
2241 * Signal knotes are shared with proc knotes, so we apply a mask to
2242 * the hint in order to differentiate them from process hints. This
2243 * could be avoided by using a signal-specific knote list, but probably
2244 * isn't worth the trouble.
2245 */
2246 static int
2247 filt_signal(struct knote *kn, long hint)
2248 {
2249
2250 if (hint & NOTE_SIGNAL) {
2251 hint &= ~NOTE_SIGNAL;
2252
2253 if (kn->kn_id == hint)
2254 kn->kn_data++;
2255 }
2256 return (kn->kn_data != 0);
2257 }
2258
2259 const struct filterops sig_filtops = {
2260 0, filt_sigattach, filt_sigdetach, filt_signal
2261 };
2262