Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.323
      1 /*	$NetBSD: kern_sig.c,v 1.323 2016/04/04 23:07:06 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.323 2016/04/04 23:07:06 christos Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/systm.h>
     87 #include <sys/wait.h>
     88 #include <sys/ktrace.h>
     89 #include <sys/syslog.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/file.h>
     92 #include <sys/pool.h>
     93 #include <sys/ucontext.h>
     94 #include <sys/exec.h>
     95 #include <sys/kauth.h>
     96 #include <sys/acct.h>
     97 #include <sys/callout.h>
     98 #include <sys/atomic.h>
     99 #include <sys/cpu.h>
    100 #include <sys/module.h>
    101 #include <sys/sdt.h>
    102 
    103 #ifdef PAX_SEGVGUARD
    104 #include <sys/pax.h>
    105 #endif /* PAX_SEGVGUARD */
    106 
    107 #include <uvm/uvm_extern.h>
    108 
    109 static pool_cache_t	sigacts_cache	__read_mostly;
    110 static pool_cache_t	ksiginfo_cache	__read_mostly;
    111 static callout_t	proc_stop_ch	__cacheline_aligned;
    112 
    113 sigset_t		contsigmask	__cacheline_aligned;
    114 static sigset_t		stopsigmask	__cacheline_aligned;
    115 sigset_t		sigcantmask	__cacheline_aligned;
    116 
    117 static void	ksiginfo_exechook(struct proc *, void *);
    118 static void	proc_stop_callout(void *);
    119 static int	sigchecktrace(void);
    120 static int	sigpost(struct lwp *, sig_t, int, int);
    121 static void	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    122 static int	sigunwait(struct proc *, const ksiginfo_t *);
    123 static void	sigswitch(bool, int, int);
    124 
    125 static void	sigacts_poolpage_free(struct pool *, void *);
    126 static void	*sigacts_poolpage_alloc(struct pool *, int);
    127 
    128 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    129 int (*coredump_vec)(struct lwp *, const char *) =
    130     (int (*)(struct lwp *, const char *))enosys;
    131 
    132 /*
    133  * DTrace SDT provider definitions
    134  */
    135 SDT_PROVIDER_DECLARE(proc);
    136 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    137     "struct lwp *", 	/* target thread */
    138     "struct proc *", 	/* target process */
    139     "int");		/* signal */
    140 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    141     "struct lwp *",	/* target thread */
    142     "struct proc *",	/* target process */
    143     "int");  		/* signal */
    144 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    145     "int", 		/* signal */
    146     "ksiginfo_t *", 	/* signal info */
    147     "void (*)(void)");	/* handler address */
    148 
    149 
    150 static struct pool_allocator sigactspool_allocator = {
    151 	.pa_alloc = sigacts_poolpage_alloc,
    152 	.pa_free = sigacts_poolpage_free
    153 };
    154 
    155 #ifdef DEBUG
    156 int	kern_logsigexit = 1;
    157 #else
    158 int	kern_logsigexit = 0;
    159 #endif
    160 
    161 static const char logcoredump[] =
    162     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    163 static const char lognocoredump[] =
    164     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    165 
    166 static kauth_listener_t signal_listener;
    167 
    168 static int
    169 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    170     void *arg0, void *arg1, void *arg2, void *arg3)
    171 {
    172 	struct proc *p;
    173 	int result, signum;
    174 
    175 	result = KAUTH_RESULT_DEFER;
    176 	p = arg0;
    177 	signum = (int)(unsigned long)arg1;
    178 
    179 	if (action != KAUTH_PROCESS_SIGNAL)
    180 		return result;
    181 
    182 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    183 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    184 		result = KAUTH_RESULT_ALLOW;
    185 
    186 	return result;
    187 }
    188 
    189 /*
    190  * signal_init:
    191  *
    192  *	Initialize global signal-related data structures.
    193  */
    194 void
    195 signal_init(void)
    196 {
    197 
    198 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    199 
    200 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    201 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    202 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    203 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    204 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    205 
    206 	exechook_establish(ksiginfo_exechook, NULL);
    207 
    208 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    209 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    210 
    211 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    212 	    signal_listener_cb, NULL);
    213 }
    214 
    215 /*
    216  * sigacts_poolpage_alloc:
    217  *
    218  *	Allocate a page for the sigacts memory pool.
    219  */
    220 static void *
    221 sigacts_poolpage_alloc(struct pool *pp, int flags)
    222 {
    223 
    224 	return (void *)uvm_km_alloc(kernel_map,
    225 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    226 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    227 	    | UVM_KMF_WIRED);
    228 }
    229 
    230 /*
    231  * sigacts_poolpage_free:
    232  *
    233  *	Free a page on behalf of the sigacts memory pool.
    234  */
    235 static void
    236 sigacts_poolpage_free(struct pool *pp, void *v)
    237 {
    238 
    239 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    240 }
    241 
    242 /*
    243  * sigactsinit:
    244  *
    245  *	Create an initial sigacts structure, using the same signal state
    246  *	as of specified process.  If 'share' is set, share the sigacts by
    247  *	holding a reference, otherwise just copy it from parent.
    248  */
    249 struct sigacts *
    250 sigactsinit(struct proc *pp, int share)
    251 {
    252 	struct sigacts *ps = pp->p_sigacts, *ps2;
    253 
    254 	if (__predict_false(share)) {
    255 		atomic_inc_uint(&ps->sa_refcnt);
    256 		return ps;
    257 	}
    258 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    259 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    260 	ps2->sa_refcnt = 1;
    261 
    262 	mutex_enter(&ps->sa_mutex);
    263 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    264 	mutex_exit(&ps->sa_mutex);
    265 	return ps2;
    266 }
    267 
    268 /*
    269  * sigactsunshare:
    270  *
    271  *	Make this process not share its sigacts, maintaining all signal state.
    272  */
    273 void
    274 sigactsunshare(struct proc *p)
    275 {
    276 	struct sigacts *ps, *oldps = p->p_sigacts;
    277 
    278 	if (__predict_true(oldps->sa_refcnt == 1))
    279 		return;
    280 
    281 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    282 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    283 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    284 	ps->sa_refcnt = 1;
    285 
    286 	p->p_sigacts = ps;
    287 	sigactsfree(oldps);
    288 }
    289 
    290 /*
    291  * sigactsfree;
    292  *
    293  *	Release a sigacts structure.
    294  */
    295 void
    296 sigactsfree(struct sigacts *ps)
    297 {
    298 
    299 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    300 		mutex_destroy(&ps->sa_mutex);
    301 		pool_cache_put(sigacts_cache, ps);
    302 	}
    303 }
    304 
    305 /*
    306  * siginit:
    307  *
    308  *	Initialize signal state for process 0; set to ignore signals that
    309  *	are ignored by default and disable the signal stack.  Locking not
    310  *	required as the system is still cold.
    311  */
    312 void
    313 siginit(struct proc *p)
    314 {
    315 	struct lwp *l;
    316 	struct sigacts *ps;
    317 	int signo, prop;
    318 
    319 	ps = p->p_sigacts;
    320 	sigemptyset(&contsigmask);
    321 	sigemptyset(&stopsigmask);
    322 	sigemptyset(&sigcantmask);
    323 	for (signo = 1; signo < NSIG; signo++) {
    324 		prop = sigprop[signo];
    325 		if (prop & SA_CONT)
    326 			sigaddset(&contsigmask, signo);
    327 		if (prop & SA_STOP)
    328 			sigaddset(&stopsigmask, signo);
    329 		if (prop & SA_CANTMASK)
    330 			sigaddset(&sigcantmask, signo);
    331 		if (prop & SA_IGNORE && signo != SIGCONT)
    332 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    333 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    334 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    335 	}
    336 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    337 	p->p_sflag &= ~PS_NOCLDSTOP;
    338 
    339 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    340 	sigemptyset(&p->p_sigpend.sp_set);
    341 
    342 	/*
    343 	 * Reset per LWP state.
    344 	 */
    345 	l = LIST_FIRST(&p->p_lwps);
    346 	l->l_sigwaited = NULL;
    347 	l->l_sigstk.ss_flags = SS_DISABLE;
    348 	l->l_sigstk.ss_size = 0;
    349 	l->l_sigstk.ss_sp = 0;
    350 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    351 	sigemptyset(&l->l_sigpend.sp_set);
    352 
    353 	/* One reference. */
    354 	ps->sa_refcnt = 1;
    355 }
    356 
    357 /*
    358  * execsigs:
    359  *
    360  *	Reset signals for an exec of the specified process.
    361  */
    362 void
    363 execsigs(struct proc *p)
    364 {
    365 	struct sigacts *ps;
    366 	struct lwp *l;
    367 	int signo, prop;
    368 	sigset_t tset;
    369 	ksiginfoq_t kq;
    370 
    371 	KASSERT(p->p_nlwps == 1);
    372 
    373 	sigactsunshare(p);
    374 	ps = p->p_sigacts;
    375 
    376 	/*
    377 	 * Reset caught signals.  Held signals remain held through
    378 	 * l->l_sigmask (unless they were caught, and are now ignored
    379 	 * by default).
    380 	 *
    381 	 * No need to lock yet, the process has only one LWP and
    382 	 * at this point the sigacts are private to the process.
    383 	 */
    384 	sigemptyset(&tset);
    385 	for (signo = 1; signo < NSIG; signo++) {
    386 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    387 			prop = sigprop[signo];
    388 			if (prop & SA_IGNORE) {
    389 				if ((prop & SA_CONT) == 0)
    390 					sigaddset(&p->p_sigctx.ps_sigignore,
    391 					    signo);
    392 				sigaddset(&tset, signo);
    393 			}
    394 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    395 		}
    396 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    397 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    398 	}
    399 	ksiginfo_queue_init(&kq);
    400 
    401 	mutex_enter(p->p_lock);
    402 	sigclearall(p, &tset, &kq);
    403 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    404 
    405 	/*
    406 	 * Reset no zombies if child dies flag as Solaris does.
    407 	 */
    408 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    409 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    410 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    411 
    412 	/*
    413 	 * Reset per-LWP state.
    414 	 */
    415 	l = LIST_FIRST(&p->p_lwps);
    416 	l->l_sigwaited = NULL;
    417 	l->l_sigstk.ss_flags = SS_DISABLE;
    418 	l->l_sigstk.ss_size = 0;
    419 	l->l_sigstk.ss_sp = 0;
    420 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    421 	sigemptyset(&l->l_sigpend.sp_set);
    422 	mutex_exit(p->p_lock);
    423 
    424 	ksiginfo_queue_drain(&kq);
    425 }
    426 
    427 /*
    428  * ksiginfo_exechook:
    429  *
    430  *	Free all pending ksiginfo entries from a process on exec.
    431  *	Additionally, drain any unused ksiginfo structures in the
    432  *	system back to the pool.
    433  *
    434  *	XXX This should not be a hook, every process has signals.
    435  */
    436 static void
    437 ksiginfo_exechook(struct proc *p, void *v)
    438 {
    439 	ksiginfoq_t kq;
    440 
    441 	ksiginfo_queue_init(&kq);
    442 
    443 	mutex_enter(p->p_lock);
    444 	sigclearall(p, NULL, &kq);
    445 	mutex_exit(p->p_lock);
    446 
    447 	ksiginfo_queue_drain(&kq);
    448 }
    449 
    450 /*
    451  * ksiginfo_alloc:
    452  *
    453  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    454  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    455  *	has not been queued somewhere, then just return it.  Additionally,
    456  *	if the existing ksiginfo_t does not contain any information beyond
    457  *	the signal number, then just return it.
    458  */
    459 ksiginfo_t *
    460 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    461 {
    462 	ksiginfo_t *kp;
    463 
    464 	if (ok != NULL) {
    465 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    466 		    KSI_FROMPOOL)
    467 			return ok;
    468 		if (KSI_EMPTY_P(ok))
    469 			return ok;
    470 	}
    471 
    472 	kp = pool_cache_get(ksiginfo_cache, flags);
    473 	if (kp == NULL) {
    474 #ifdef DIAGNOSTIC
    475 		printf("Out of memory allocating ksiginfo for pid %d\n",
    476 		    p->p_pid);
    477 #endif
    478 		return NULL;
    479 	}
    480 
    481 	if (ok != NULL) {
    482 		memcpy(kp, ok, sizeof(*kp));
    483 		kp->ksi_flags &= ~KSI_QUEUED;
    484 	} else
    485 		KSI_INIT_EMPTY(kp);
    486 
    487 	kp->ksi_flags |= KSI_FROMPOOL;
    488 
    489 	return kp;
    490 }
    491 
    492 /*
    493  * ksiginfo_free:
    494  *
    495  *	If the given ksiginfo_t is from the pool and has not been queued,
    496  *	then free it.
    497  */
    498 void
    499 ksiginfo_free(ksiginfo_t *kp)
    500 {
    501 
    502 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    503 		return;
    504 	pool_cache_put(ksiginfo_cache, kp);
    505 }
    506 
    507 /*
    508  * ksiginfo_queue_drain:
    509  *
    510  *	Drain a non-empty ksiginfo_t queue.
    511  */
    512 void
    513 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    514 {
    515 	ksiginfo_t *ksi;
    516 
    517 	KASSERT(!TAILQ_EMPTY(kq));
    518 
    519 	while (!TAILQ_EMPTY(kq)) {
    520 		ksi = TAILQ_FIRST(kq);
    521 		TAILQ_REMOVE(kq, ksi, ksi_list);
    522 		pool_cache_put(ksiginfo_cache, ksi);
    523 	}
    524 }
    525 
    526 static bool
    527 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    528 {
    529 	ksiginfo_t *ksi;
    530 
    531 	if (sp == NULL)
    532 		goto out;
    533 
    534 	/* Find siginfo and copy it out. */
    535 	TAILQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
    536 		if (ksi->ksi_signo != signo)
    537 			continue;
    538 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    539 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    540 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    541 		ksi->ksi_flags &= ~KSI_QUEUED;
    542 		if (out != NULL) {
    543 			memcpy(out, ksi, sizeof(*out));
    544 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    545 		}
    546 		ksiginfo_free(ksi);	/* XXXSMP */
    547 		return true;
    548 	}
    549 
    550 out:
    551 	/* If there is no siginfo, then manufacture it. */
    552 	if (out != NULL) {
    553 		KSI_INIT(out);
    554 		out->ksi_info._signo = signo;
    555 		out->ksi_info._code = SI_NOINFO;
    556 	}
    557 	return false;
    558 }
    559 
    560 /*
    561  * sigget:
    562  *
    563  *	Fetch the first pending signal from a set.  Optionally, also fetch
    564  *	or manufacture a ksiginfo element.  Returns the number of the first
    565  *	pending signal, or zero.
    566  */
    567 int
    568 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    569 {
    570 	sigset_t tset;
    571 
    572 	/* If there's no pending set, the signal is from the debugger. */
    573 	if (sp == NULL)
    574 		goto out;
    575 
    576 	/* Construct mask from signo, and 'mask'. */
    577 	if (signo == 0) {
    578 		if (mask != NULL) {
    579 			tset = *mask;
    580 			__sigandset(&sp->sp_set, &tset);
    581 		} else
    582 			tset = sp->sp_set;
    583 
    584 		/* If there are no signals pending - return. */
    585 		if ((signo = firstsig(&tset)) == 0)
    586 			goto out;
    587 	} else {
    588 		KASSERT(sigismember(&sp->sp_set, signo));
    589 	}
    590 
    591 	sigdelset(&sp->sp_set, signo);
    592 out:
    593 	(void)siggetinfo(sp, out, signo);
    594 	return signo;
    595 }
    596 
    597 /*
    598  * sigput:
    599  *
    600  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    601  */
    602 static void
    603 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    604 {
    605 	ksiginfo_t *kp;
    606 
    607 	KASSERT(mutex_owned(p->p_lock));
    608 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    609 
    610 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    611 
    612 	/*
    613 	 * If there is no siginfo, we are done.
    614 	 */
    615 	if (KSI_EMPTY_P(ksi))
    616 		return;
    617 
    618 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    619 
    620 #ifdef notyet	/* XXX: QUEUING */
    621 	if (ksi->ksi_signo < SIGRTMIN)
    622 #endif
    623 	{
    624 		TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    625 			if (kp->ksi_signo == ksi->ksi_signo) {
    626 				KSI_COPY(ksi, kp);
    627 				kp->ksi_flags |= KSI_QUEUED;
    628 				return;
    629 			}
    630 		}
    631 	}
    632 
    633 	ksi->ksi_flags |= KSI_QUEUED;
    634 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    635 }
    636 
    637 /*
    638  * sigclear:
    639  *
    640  *	Clear all pending signals in the specified set.
    641  */
    642 void
    643 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    644 {
    645 	ksiginfo_t *ksi, *next;
    646 
    647 	if (mask == NULL)
    648 		sigemptyset(&sp->sp_set);
    649 	else
    650 		sigminusset(mask, &sp->sp_set);
    651 
    652 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    653 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    654 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    655 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    656 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    657 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    658 		}
    659 	}
    660 }
    661 
    662 /*
    663  * sigclearall:
    664  *
    665  *	Clear all pending signals in the specified set from a process and
    666  *	its LWPs.
    667  */
    668 void
    669 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    670 {
    671 	struct lwp *l;
    672 
    673 	KASSERT(mutex_owned(p->p_lock));
    674 
    675 	sigclear(&p->p_sigpend, mask, kq);
    676 
    677 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    678 		sigclear(&l->l_sigpend, mask, kq);
    679 	}
    680 }
    681 
    682 /*
    683  * sigispending:
    684  *
    685  *	Return the first signal number if there are pending signals for the
    686  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    687  *	and that the signal has been posted to the appopriate queue before
    688  *	LW_PENDSIG is set.
    689  */
    690 int
    691 sigispending(struct lwp *l, int signo)
    692 {
    693 	struct proc *p = l->l_proc;
    694 	sigset_t tset;
    695 
    696 	membar_consumer();
    697 
    698 	tset = l->l_sigpend.sp_set;
    699 	sigplusset(&p->p_sigpend.sp_set, &tset);
    700 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    701 	sigminusset(&l->l_sigmask, &tset);
    702 
    703 	if (signo == 0) {
    704 		return firstsig(&tset);
    705 	}
    706 	return sigismember(&tset, signo) ? signo : 0;
    707 }
    708 
    709 void
    710 getucontext(struct lwp *l, ucontext_t *ucp)
    711 {
    712 	struct proc *p = l->l_proc;
    713 
    714 	KASSERT(mutex_owned(p->p_lock));
    715 
    716 	ucp->uc_flags = 0;
    717 	ucp->uc_link = l->l_ctxlink;
    718 	ucp->uc_sigmask = l->l_sigmask;
    719 	ucp->uc_flags |= _UC_SIGMASK;
    720 
    721 	/*
    722 	 * The (unsupplied) definition of the `current execution stack'
    723 	 * in the System V Interface Definition appears to allow returning
    724 	 * the main context stack.
    725 	 */
    726 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    727 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    728 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    729 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    730 	} else {
    731 		/* Simply copy alternate signal execution stack. */
    732 		ucp->uc_stack = l->l_sigstk;
    733 	}
    734 	ucp->uc_flags |= _UC_STACK;
    735 	mutex_exit(p->p_lock);
    736 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    737 	mutex_enter(p->p_lock);
    738 }
    739 
    740 int
    741 setucontext(struct lwp *l, const ucontext_t *ucp)
    742 {
    743 	struct proc *p = l->l_proc;
    744 	int error;
    745 
    746 	KASSERT(mutex_owned(p->p_lock));
    747 
    748 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    749 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    750 		if (error != 0)
    751 			return error;
    752 	}
    753 
    754 	mutex_exit(p->p_lock);
    755 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    756 	mutex_enter(p->p_lock);
    757 	if (error != 0)
    758 		return (error);
    759 
    760 	l->l_ctxlink = ucp->uc_link;
    761 
    762 	/*
    763 	 * If there was stack information, update whether or not we are
    764 	 * still running on an alternate signal stack.
    765 	 */
    766 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    767 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    768 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    769 		else
    770 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    771 	}
    772 
    773 	return 0;
    774 }
    775 
    776 /*
    777  * killpg1: common code for kill process group/broadcast kill.
    778  */
    779 int
    780 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    781 {
    782 	struct proc	*p, *cp;
    783 	kauth_cred_t	pc;
    784 	struct pgrp	*pgrp;
    785 	int		nfound;
    786 	int		signo = ksi->ksi_signo;
    787 
    788 	cp = l->l_proc;
    789 	pc = l->l_cred;
    790 	nfound = 0;
    791 
    792 	mutex_enter(proc_lock);
    793 	if (all) {
    794 		/*
    795 		 * Broadcast.
    796 		 */
    797 		PROCLIST_FOREACH(p, &allproc) {
    798 			if (p->p_pid <= 1 || p == cp ||
    799 			    (p->p_flag & PK_SYSTEM) != 0)
    800 				continue;
    801 			mutex_enter(p->p_lock);
    802 			if (kauth_authorize_process(pc,
    803 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    804 			    NULL) == 0) {
    805 				nfound++;
    806 				if (signo)
    807 					kpsignal2(p, ksi);
    808 			}
    809 			mutex_exit(p->p_lock);
    810 		}
    811 	} else {
    812 		if (pgid == 0)
    813 			/* Zero pgid means send to my process group. */
    814 			pgrp = cp->p_pgrp;
    815 		else {
    816 			pgrp = pgrp_find(pgid);
    817 			if (pgrp == NULL)
    818 				goto out;
    819 		}
    820 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    821 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    822 				continue;
    823 			mutex_enter(p->p_lock);
    824 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    825 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    826 				nfound++;
    827 				if (signo && P_ZOMBIE(p) == 0)
    828 					kpsignal2(p, ksi);
    829 			}
    830 			mutex_exit(p->p_lock);
    831 		}
    832 	}
    833 out:
    834 	mutex_exit(proc_lock);
    835 	return nfound ? 0 : ESRCH;
    836 }
    837 
    838 /*
    839  * Send a signal to a process group.  If checktty is set, limit to members
    840  * which have a controlling terminal.
    841  */
    842 void
    843 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    844 {
    845 	ksiginfo_t ksi;
    846 
    847 	KASSERT(!cpu_intr_p());
    848 	KASSERT(mutex_owned(proc_lock));
    849 
    850 	KSI_INIT_EMPTY(&ksi);
    851 	ksi.ksi_signo = sig;
    852 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    853 }
    854 
    855 void
    856 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    857 {
    858 	struct proc *p;
    859 
    860 	KASSERT(!cpu_intr_p());
    861 	KASSERT(mutex_owned(proc_lock));
    862 	KASSERT(pgrp != NULL);
    863 
    864 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    865 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    866 			kpsignal(p, ksi, data);
    867 }
    868 
    869 /*
    870  * Send a signal caused by a trap to the current LWP.  If it will be caught
    871  * immediately, deliver it with correct code.  Otherwise, post it normally.
    872  */
    873 void
    874 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    875 {
    876 	struct proc	*p;
    877 	struct sigacts	*ps;
    878 	int signo = ksi->ksi_signo;
    879 	sigset_t *mask;
    880 
    881 	KASSERT(KSI_TRAP_P(ksi));
    882 
    883 	ksi->ksi_lid = l->l_lid;
    884 	p = l->l_proc;
    885 
    886 	KASSERT(!cpu_intr_p());
    887 	mutex_enter(proc_lock);
    888 	mutex_enter(p->p_lock);
    889 	mask = &l->l_sigmask;
    890 	ps = p->p_sigacts;
    891 
    892 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    893 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    894 	    !sigismember(mask, signo)) {
    895 		mutex_exit(proc_lock);
    896 		l->l_ru.ru_nsignals++;
    897 		kpsendsig(l, ksi, mask);
    898 		mutex_exit(p->p_lock);
    899 		ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
    900 	} else {
    901 		/* XXX for core dump/debugger */
    902 		p->p_sigctx.ps_lwp = l->l_lid;
    903 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    904 		p->p_sigctx.ps_code = ksi->ksi_trap;
    905 		kpsignal2(p, ksi);
    906 		mutex_exit(p->p_lock);
    907 		mutex_exit(proc_lock);
    908 	}
    909 }
    910 
    911 /*
    912  * Fill in signal information and signal the parent for a child status change.
    913  */
    914 void
    915 child_psignal(struct proc *p, int mask)
    916 {
    917 	ksiginfo_t ksi;
    918 	struct proc *q;
    919 	int xsig;
    920 
    921 	KASSERT(mutex_owned(proc_lock));
    922 	KASSERT(mutex_owned(p->p_lock));
    923 
    924 	xsig = p->p_xsig;
    925 
    926 	KSI_INIT(&ksi);
    927 	ksi.ksi_signo = SIGCHLD;
    928 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    929 	ksi.ksi_pid = p->p_pid;
    930 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    931 	ksi.ksi_status = xsig;
    932 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    933 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    934 
    935 	q = p->p_pptr;
    936 
    937 	mutex_exit(p->p_lock);
    938 	mutex_enter(q->p_lock);
    939 
    940 	if ((q->p_sflag & mask) == 0)
    941 		kpsignal2(q, &ksi);
    942 
    943 	mutex_exit(q->p_lock);
    944 	mutex_enter(p->p_lock);
    945 }
    946 
    947 void
    948 psignal(struct proc *p, int signo)
    949 {
    950 	ksiginfo_t ksi;
    951 
    952 	KASSERT(!cpu_intr_p());
    953 	KASSERT(mutex_owned(proc_lock));
    954 
    955 	KSI_INIT_EMPTY(&ksi);
    956 	ksi.ksi_signo = signo;
    957 	mutex_enter(p->p_lock);
    958 	kpsignal2(p, &ksi);
    959 	mutex_exit(p->p_lock);
    960 }
    961 
    962 void
    963 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    964 {
    965 	fdfile_t *ff;
    966 	file_t *fp;
    967 	fdtab_t *dt;
    968 
    969 	KASSERT(!cpu_intr_p());
    970 	KASSERT(mutex_owned(proc_lock));
    971 
    972 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    973 		size_t fd;
    974 		filedesc_t *fdp = p->p_fd;
    975 
    976 		/* XXXSMP locking */
    977 		ksi->ksi_fd = -1;
    978 		dt = fdp->fd_dt;
    979 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
    980 			if ((ff = dt->dt_ff[fd]) == NULL)
    981 				continue;
    982 			if ((fp = ff->ff_file) == NULL)
    983 				continue;
    984 			if (fp->f_data == data) {
    985 				ksi->ksi_fd = fd;
    986 				break;
    987 			}
    988 		}
    989 	}
    990 	mutex_enter(p->p_lock);
    991 	kpsignal2(p, ksi);
    992 	mutex_exit(p->p_lock);
    993 }
    994 
    995 /*
    996  * sigismasked:
    997  *
    998  *	Returns true if signal is ignored or masked for the specified LWP.
    999  */
   1000 int
   1001 sigismasked(struct lwp *l, int sig)
   1002 {
   1003 	struct proc *p = l->l_proc;
   1004 
   1005 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1006 	    sigismember(&l->l_sigmask, sig);
   1007 }
   1008 
   1009 /*
   1010  * sigpost:
   1011  *
   1012  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1013  *	be able to take the signal.
   1014  */
   1015 static int
   1016 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1017 {
   1018 	int rv, masked;
   1019 	struct proc *p = l->l_proc;
   1020 
   1021 	KASSERT(mutex_owned(p->p_lock));
   1022 
   1023 	/*
   1024 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1025 	 * pending signals.  Don't give it more.
   1026 	 */
   1027 	if (l->l_refcnt == 0)
   1028 		return 0;
   1029 
   1030 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1031 
   1032 	/*
   1033 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1034 	 * is found to take the signal immediately, it should be taken soon.
   1035 	 */
   1036 	lwp_lock(l);
   1037 	l->l_flag |= LW_PENDSIG;
   1038 
   1039 	/*
   1040 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1041 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1042 	 */
   1043 	masked = sigismember(&l->l_sigmask, sig);
   1044 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1045 		lwp_unlock(l);
   1046 		return 0;
   1047 	}
   1048 
   1049 	/*
   1050 	 * If killing the process, make it run fast.
   1051 	 */
   1052 	if (__predict_false((prop & SA_KILL) != 0) &&
   1053 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1054 		KASSERT(l->l_class == SCHED_OTHER);
   1055 		lwp_changepri(l, MAXPRI_USER);
   1056 	}
   1057 
   1058 	/*
   1059 	 * If the LWP is running or on a run queue, then we win.  If it's
   1060 	 * sleeping interruptably, wake it and make it take the signal.  If
   1061 	 * the sleep isn't interruptable, then the chances are it will get
   1062 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1063 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1064 	 * for later; otherwise punt.
   1065 	 */
   1066 	rv = 0;
   1067 
   1068 	switch (l->l_stat) {
   1069 	case LSRUN:
   1070 	case LSONPROC:
   1071 		lwp_need_userret(l);
   1072 		rv = 1;
   1073 		break;
   1074 
   1075 	case LSSLEEP:
   1076 		if ((l->l_flag & LW_SINTR) != 0) {
   1077 			/* setrunnable() will release the lock. */
   1078 			setrunnable(l);
   1079 			return 1;
   1080 		}
   1081 		break;
   1082 
   1083 	case LSSUSPENDED:
   1084 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1085 			/* lwp_continue() will release the lock. */
   1086 			lwp_continue(l);
   1087 			return 1;
   1088 		}
   1089 		break;
   1090 
   1091 	case LSSTOP:
   1092 		if ((prop & SA_STOP) != 0)
   1093 			break;
   1094 
   1095 		/*
   1096 		 * If the LWP is stopped and we are sending a continue
   1097 		 * signal, then start it again.
   1098 		 */
   1099 		if ((prop & SA_CONT) != 0) {
   1100 			if (l->l_wchan != NULL) {
   1101 				l->l_stat = LSSLEEP;
   1102 				p->p_nrlwps++;
   1103 				rv = 1;
   1104 				break;
   1105 			}
   1106 			/* setrunnable() will release the lock. */
   1107 			setrunnable(l);
   1108 			return 1;
   1109 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1110 			/* setrunnable() will release the lock. */
   1111 			setrunnable(l);
   1112 			return 1;
   1113 		}
   1114 		break;
   1115 
   1116 	default:
   1117 		break;
   1118 	}
   1119 
   1120 	lwp_unlock(l);
   1121 	return rv;
   1122 }
   1123 
   1124 /*
   1125  * Notify an LWP that it has a pending signal.
   1126  */
   1127 void
   1128 signotify(struct lwp *l)
   1129 {
   1130 	KASSERT(lwp_locked(l, NULL));
   1131 
   1132 	l->l_flag |= LW_PENDSIG;
   1133 	lwp_need_userret(l);
   1134 }
   1135 
   1136 /*
   1137  * Find an LWP within process p that is waiting on signal ksi, and hand
   1138  * it on.
   1139  */
   1140 static int
   1141 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1142 {
   1143 	struct lwp *l;
   1144 	int signo;
   1145 
   1146 	KASSERT(mutex_owned(p->p_lock));
   1147 
   1148 	signo = ksi->ksi_signo;
   1149 
   1150 	if (ksi->ksi_lid != 0) {
   1151 		/*
   1152 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1153 		 * it's interested.
   1154 		 */
   1155 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1156 			return 0;
   1157 		if (l->l_sigwaited == NULL ||
   1158 		    !sigismember(&l->l_sigwaitset, signo))
   1159 			return 0;
   1160 	} else {
   1161 		/*
   1162 		 * Look for any LWP that may be interested.
   1163 		 */
   1164 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1165 			KASSERT(l->l_sigwaited != NULL);
   1166 			if (sigismember(&l->l_sigwaitset, signo))
   1167 				break;
   1168 		}
   1169 	}
   1170 
   1171 	if (l != NULL) {
   1172 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1173 		l->l_sigwaited = NULL;
   1174 		LIST_REMOVE(l, l_sigwaiter);
   1175 		cv_signal(&l->l_sigcv);
   1176 		return 1;
   1177 	}
   1178 
   1179 	return 0;
   1180 }
   1181 
   1182 /*
   1183  * Send the signal to the process.  If the signal has an action, the action
   1184  * is usually performed by the target process rather than the caller; we add
   1185  * the signal to the set of pending signals for the process.
   1186  *
   1187  * Exceptions:
   1188  *   o When a stop signal is sent to a sleeping process that takes the
   1189  *     default action, the process is stopped without awakening it.
   1190  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1191  *     regardless of the signal action (eg, blocked or ignored).
   1192  *
   1193  * Other ignored signals are discarded immediately.
   1194  */
   1195 void
   1196 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1197 {
   1198 	int prop, signo = ksi->ksi_signo;
   1199 	struct sigacts *sa;
   1200 	struct lwp *l = NULL;
   1201 	ksiginfo_t *kp;
   1202 	lwpid_t lid;
   1203 	sig_t action;
   1204 	bool toall;
   1205 
   1206 	KASSERT(!cpu_intr_p());
   1207 	KASSERT(mutex_owned(proc_lock));
   1208 	KASSERT(mutex_owned(p->p_lock));
   1209 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1210 	KASSERT(signo > 0 && signo < NSIG);
   1211 
   1212 	/*
   1213 	 * If the process is being created by fork, is a zombie or is
   1214 	 * exiting, then just drop the signal here and bail out.
   1215 	 */
   1216 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1217 		return;
   1218 
   1219 	/*
   1220 	 * Notify any interested parties of the signal.
   1221 	 */
   1222 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1223 
   1224 	/*
   1225 	 * Some signals including SIGKILL must act on the entire process.
   1226 	 */
   1227 	kp = NULL;
   1228 	prop = sigprop[signo];
   1229 	toall = ((prop & SA_TOALL) != 0);
   1230 	lid = toall ? 0 : ksi->ksi_lid;
   1231 
   1232 	/*
   1233 	 * If proc is traced, always give parent a chance.
   1234 	 */
   1235 	if (p->p_slflag & PSL_TRACED) {
   1236 		action = SIG_DFL;
   1237 
   1238 		if (lid == 0) {
   1239 			/*
   1240 			 * If the process is being traced and the signal
   1241 			 * is being caught, make sure to save any ksiginfo.
   1242 			 */
   1243 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1244 				goto discard;
   1245 			sigput(&p->p_sigpend, p, kp);
   1246 		}
   1247 	} else {
   1248 		/*
   1249 		 * If the signal was the result of a trap and is not being
   1250 		 * caught, then reset it to default action so that the
   1251 		 * process dumps core immediately.
   1252 		 */
   1253 		if (KSI_TRAP_P(ksi)) {
   1254 			sa = p->p_sigacts;
   1255 			mutex_enter(&sa->sa_mutex);
   1256 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1257 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1258 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1259 			}
   1260 			mutex_exit(&sa->sa_mutex);
   1261 		}
   1262 
   1263 		/*
   1264 		 * If the signal is being ignored, then drop it.  Note: we
   1265 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1266 		 * SIG_IGN, action will be SIG_DFL here.
   1267 		 */
   1268 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1269 			goto discard;
   1270 
   1271 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1272 			action = SIG_CATCH;
   1273 		else {
   1274 			action = SIG_DFL;
   1275 
   1276 			/*
   1277 			 * If sending a tty stop signal to a member of an
   1278 			 * orphaned process group, discard the signal here if
   1279 			 * the action is default; don't stop the process below
   1280 			 * if sleeping, and don't clear any pending SIGCONT.
   1281 			 */
   1282 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1283 				goto discard;
   1284 
   1285 			if (prop & SA_KILL && p->p_nice > NZERO)
   1286 				p->p_nice = NZERO;
   1287 		}
   1288 	}
   1289 
   1290 	/*
   1291 	 * If stopping or continuing a process, discard any pending
   1292 	 * signals that would do the inverse.
   1293 	 */
   1294 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1295 		ksiginfoq_t kq;
   1296 
   1297 		ksiginfo_queue_init(&kq);
   1298 		if ((prop & SA_CONT) != 0)
   1299 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1300 		if ((prop & SA_STOP) != 0)
   1301 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1302 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1303 	}
   1304 
   1305 	/*
   1306 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1307 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1308 	 * the signal info.  The signal won't be processed further here.
   1309 	 */
   1310 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1311 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1312 	    sigunwait(p, ksi))
   1313 		goto discard;
   1314 
   1315 	/*
   1316 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1317 	 * here.
   1318 	 */
   1319 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1320 		goto discard;
   1321 
   1322 	/*
   1323 	 * LWP private signals are easy - just find the LWP and post
   1324 	 * the signal to it.
   1325 	 */
   1326 	if (lid != 0) {
   1327 		l = lwp_find(p, lid);
   1328 		if (l != NULL) {
   1329 			sigput(&l->l_sigpend, p, kp);
   1330 			membar_producer();
   1331 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1332 		}
   1333 		goto out;
   1334 	}
   1335 
   1336 	/*
   1337 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1338 	 * or for an SA process.
   1339 	 */
   1340 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1341 		if ((p->p_slflag & PSL_TRACED) != 0)
   1342 			goto deliver;
   1343 
   1344 		/*
   1345 		 * If SIGCONT is default (or ignored) and process is
   1346 		 * asleep, we are finished; the process should not
   1347 		 * be awakened.
   1348 		 */
   1349 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1350 			goto out;
   1351 	} else {
   1352 		/*
   1353 		 * Process is stopped or stopping.
   1354 		 * - If traced, then no action is needed, unless killing.
   1355 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1356 		 */
   1357 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1358 			goto out;
   1359 		}
   1360 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1361 			/*
   1362 			 * Re-adjust p_nstopchild if the process was
   1363 			 * stopped but not yet collected by its parent.
   1364 			 */
   1365 			if (p->p_stat == SSTOP && !p->p_waited)
   1366 				p->p_pptr->p_nstopchild--;
   1367 			p->p_stat = SACTIVE;
   1368 			p->p_sflag &= ~PS_STOPPING;
   1369 			if (p->p_slflag & PSL_TRACED) {
   1370 				KASSERT(signo == SIGKILL);
   1371 				goto deliver;
   1372 			}
   1373 			/*
   1374 			 * Do not make signal pending if SIGCONT is default.
   1375 			 *
   1376 			 * If the process catches SIGCONT, let it handle the
   1377 			 * signal itself (if waiting on event - process runs,
   1378 			 * otherwise continues sleeping).
   1379 			 */
   1380 			if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
   1381 				KASSERT(signo != SIGKILL);
   1382 				goto deliver;
   1383 			}
   1384 		} else if ((prop & SA_STOP) != 0) {
   1385 			/*
   1386 			 * Already stopped, don't need to stop again.
   1387 			 * (If we did the shell could get confused.)
   1388 			 */
   1389 			goto out;
   1390 		}
   1391 	}
   1392 	/*
   1393 	 * Make signal pending.
   1394 	 */
   1395 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1396 	sigput(&p->p_sigpend, p, kp);
   1397 
   1398 deliver:
   1399 	/*
   1400 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1401 	 * visible on the per process list (for sigispending()).  This
   1402 	 * is unlikely to be needed in practice, but...
   1403 	 */
   1404 	membar_producer();
   1405 
   1406 	/*
   1407 	 * Try to find an LWP that can take the signal.
   1408 	 */
   1409 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1410 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1411 			break;
   1412 	}
   1413 	signo = -1;
   1414 out:
   1415 	/*
   1416 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1417 	 * with locks held.  The caller should take care of this.
   1418 	 */
   1419 	ksiginfo_free(kp);
   1420 	if (signo == -1)
   1421 		return;
   1422 discard:
   1423 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1424 }
   1425 
   1426 void
   1427 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1428 {
   1429 	struct proc *p = l->l_proc;
   1430 
   1431 	KASSERT(mutex_owned(p->p_lock));
   1432 	(*p->p_emul->e_sendsig)(ksi, mask);
   1433 }
   1434 
   1435 /*
   1436  * Stop any LWPs sleeping interruptably.
   1437  */
   1438 static void
   1439 proc_stop_lwps(struct proc *p)
   1440 {
   1441 	struct lwp *l;
   1442 
   1443 	KASSERT(mutex_owned(p->p_lock));
   1444 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1445 
   1446 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1447 		lwp_lock(l);
   1448 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1449 			l->l_stat = LSSTOP;
   1450 			p->p_nrlwps--;
   1451 		}
   1452 		lwp_unlock(l);
   1453 	}
   1454 }
   1455 
   1456 /*
   1457  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1458  *
   1459  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1460  */
   1461 static void
   1462 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1463 {
   1464 
   1465 	KASSERT(mutex_owned(proc_lock));
   1466 	KASSERT(mutex_owned(p->p_lock));
   1467 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1468 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1469 
   1470 	p->p_sflag &= ~PS_STOPPING;
   1471 	p->p_stat = SSTOP;
   1472 	p->p_waited = 0;
   1473 	p->p_pptr->p_nstopchild++;
   1474 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1475 		if (ppsig) {
   1476 			/* child_psignal drops p_lock briefly. */
   1477 			child_psignal(p, ppmask);
   1478 		}
   1479 		cv_broadcast(&p->p_pptr->p_waitcv);
   1480 	}
   1481 }
   1482 
   1483 /*
   1484  * Stop the current process and switch away when being stopped or traced.
   1485  */
   1486 static void
   1487 sigswitch(bool ppsig, int ppmask, int signo)
   1488 {
   1489 	struct lwp *l = curlwp;
   1490 	struct proc *p = l->l_proc;
   1491 	int biglocks;
   1492 
   1493 	KASSERT(mutex_owned(p->p_lock));
   1494 	KASSERT(l->l_stat == LSONPROC);
   1495 	KASSERT(p->p_nrlwps > 0);
   1496 
   1497 	/*
   1498 	 * On entry we know that the process needs to stop.  If it's
   1499 	 * the result of a 'sideways' stop signal that has been sourced
   1500 	 * through issignal(), then stop other LWPs in the process too.
   1501 	 */
   1502 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1503 		KASSERT(signo != 0);
   1504 		proc_stop(p, 1, signo);
   1505 		KASSERT(p->p_nrlwps > 0);
   1506 	}
   1507 
   1508 	/*
   1509 	 * If we are the last live LWP, and the stop was a result of
   1510 	 * a new signal, then signal the parent.
   1511 	 */
   1512 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1513 		if (!mutex_tryenter(proc_lock)) {
   1514 			mutex_exit(p->p_lock);
   1515 			mutex_enter(proc_lock);
   1516 			mutex_enter(p->p_lock);
   1517 		}
   1518 
   1519 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1520 			/*
   1521 			 * Note that proc_stop_done() can drop
   1522 			 * p->p_lock briefly.
   1523 			 */
   1524 			proc_stop_done(p, ppsig, ppmask);
   1525 		}
   1526 
   1527 		mutex_exit(proc_lock);
   1528 	}
   1529 
   1530 	/*
   1531 	 * Unlock and switch away.
   1532 	 */
   1533 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1534 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1535 		p->p_nrlwps--;
   1536 		lwp_lock(l);
   1537 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1538 		l->l_stat = LSSTOP;
   1539 		lwp_unlock(l);
   1540 	}
   1541 
   1542 	mutex_exit(p->p_lock);
   1543 	lwp_lock(l);
   1544 	mi_switch(l);
   1545 	KERNEL_LOCK(biglocks, l);
   1546 	mutex_enter(p->p_lock);
   1547 }
   1548 
   1549 /*
   1550  * Check for a signal from the debugger.
   1551  */
   1552 static int
   1553 sigchecktrace(void)
   1554 {
   1555 	struct lwp *l = curlwp;
   1556 	struct proc *p = l->l_proc;
   1557 	int signo;
   1558 
   1559 	KASSERT(mutex_owned(p->p_lock));
   1560 
   1561 	/* If there's a pending SIGKILL, process it immediately. */
   1562 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1563 		return 0;
   1564 
   1565 	/*
   1566 	 * If we are no longer being traced, or the parent didn't
   1567 	 * give us a signal, or we're stopping, look for more signals.
   1568 	 */
   1569 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1570 	    (p->p_sflag & PS_STOPPING) != 0)
   1571 		return 0;
   1572 
   1573 	/*
   1574 	 * If the new signal is being masked, look for other signals.
   1575 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1576 	 */
   1577 	signo = p->p_xsig;
   1578 	p->p_xsig = 0;
   1579 	if (sigismember(&l->l_sigmask, signo)) {
   1580 		signo = 0;
   1581 	}
   1582 	return signo;
   1583 }
   1584 
   1585 /*
   1586  * If the current process has received a signal (should be caught or cause
   1587  * termination, should interrupt current syscall), return the signal number.
   1588  *
   1589  * Stop signals with default action are processed immediately, then cleared;
   1590  * they aren't returned.  This is checked after each entry to the system for
   1591  * a syscall or trap.
   1592  *
   1593  * We will also return -1 if the process is exiting and the current LWP must
   1594  * follow suit.
   1595  */
   1596 int
   1597 issignal(struct lwp *l)
   1598 {
   1599 	struct proc *p;
   1600 	int signo, prop;
   1601 	sigpend_t *sp;
   1602 	sigset_t ss;
   1603 
   1604 	p = l->l_proc;
   1605 	sp = NULL;
   1606 	signo = 0;
   1607 
   1608 	KASSERT(p == curproc);
   1609 	KASSERT(mutex_owned(p->p_lock));
   1610 
   1611 	for (;;) {
   1612 		/* Discard any signals that we have decided not to take. */
   1613 		if (signo != 0) {
   1614 			(void)sigget(sp, NULL, signo, NULL);
   1615 		}
   1616 
   1617 		/*
   1618 		 * If the process is stopped/stopping, then stop ourselves
   1619 		 * now that we're on the kernel/userspace boundary.  When
   1620 		 * we awaken, check for a signal from the debugger.
   1621 		 */
   1622 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1623 			sigswitch(true, PS_NOCLDSTOP, 0);
   1624 			signo = sigchecktrace();
   1625 		} else
   1626 			signo = 0;
   1627 
   1628 		/* Signals from the debugger are "out of band". */
   1629 		sp = NULL;
   1630 
   1631 		/*
   1632 		 * If the debugger didn't provide a signal, find a pending
   1633 		 * signal from our set.  Check per-LWP signals first, and
   1634 		 * then per-process.
   1635 		 */
   1636 		if (signo == 0) {
   1637 			sp = &l->l_sigpend;
   1638 			ss = sp->sp_set;
   1639 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1640 				sigminusset(&stopsigmask, &ss);
   1641 			sigminusset(&l->l_sigmask, &ss);
   1642 
   1643 			if ((signo = firstsig(&ss)) == 0) {
   1644 				sp = &p->p_sigpend;
   1645 				ss = sp->sp_set;
   1646 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1647 					sigminusset(&stopsigmask, &ss);
   1648 				sigminusset(&l->l_sigmask, &ss);
   1649 
   1650 				if ((signo = firstsig(&ss)) == 0) {
   1651 					/*
   1652 					 * No signal pending - clear the
   1653 					 * indicator and bail out.
   1654 					 */
   1655 					lwp_lock(l);
   1656 					l->l_flag &= ~LW_PENDSIG;
   1657 					lwp_unlock(l);
   1658 					sp = NULL;
   1659 					break;
   1660 				}
   1661 			}
   1662 		}
   1663 
   1664 		/*
   1665 		 * We should see pending but ignored signals only if
   1666 		 * we are being traced.
   1667 		 */
   1668 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1669 		    (p->p_slflag & PSL_TRACED) == 0) {
   1670 			/* Discard the signal. */
   1671 			continue;
   1672 		}
   1673 
   1674 		/*
   1675 		 * If traced, always stop, and stay stopped until released
   1676 		 * by the debugger.  If the our parent process is waiting
   1677 		 * for us, don't hang as we could deadlock.
   1678 		 */
   1679 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1680 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1681 			/*
   1682 			 * Take the signal, but don't remove it from the
   1683 			 * siginfo queue, because the debugger can send
   1684 			 * it later.
   1685 			 */
   1686 			if (sp)
   1687 				sigdelset(&sp->sp_set, signo);
   1688 			p->p_xsig = signo;
   1689 
   1690 			/* Emulation-specific handling of signal trace */
   1691 			if (p->p_emul->e_tracesig == NULL ||
   1692 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1693 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1694 				    signo);
   1695 
   1696 			/* Check for a signal from the debugger. */
   1697 			if ((signo = sigchecktrace()) == 0)
   1698 				continue;
   1699 
   1700 			/* Signals from the debugger are "out of band". */
   1701 			sp = NULL;
   1702 		}
   1703 
   1704 		prop = sigprop[signo];
   1705 
   1706 		/*
   1707 		 * Decide whether the signal should be returned.
   1708 		 */
   1709 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1710 		case (long)SIG_DFL:
   1711 			/*
   1712 			 * Don't take default actions on system processes.
   1713 			 */
   1714 			if (p->p_pid <= 1) {
   1715 #ifdef DIAGNOSTIC
   1716 				/*
   1717 				 * Are you sure you want to ignore SIGSEGV
   1718 				 * in init? XXX
   1719 				 */
   1720 				printf_nolog("Process (pid %d) got sig %d\n",
   1721 				    p->p_pid, signo);
   1722 #endif
   1723 				continue;
   1724 			}
   1725 
   1726 			/*
   1727 			 * If there is a pending stop signal to process with
   1728 			 * default action, stop here, then clear the signal.
   1729 			 * However, if process is member of an orphaned
   1730 			 * process group, ignore tty stop signals.
   1731 			 */
   1732 			if (prop & SA_STOP) {
   1733 				/*
   1734 				 * XXX Don't hold proc_lock for p_lflag,
   1735 				 * but it's not a big deal.
   1736 				 */
   1737 				if (p->p_slflag & PSL_TRACED ||
   1738 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1739 				    prop & SA_TTYSTOP)) {
   1740 					/* Ignore the signal. */
   1741 					continue;
   1742 				}
   1743 				/* Take the signal. */
   1744 				(void)sigget(sp, NULL, signo, NULL);
   1745 				p->p_xsig = signo;
   1746 				signo = 0;
   1747 				sigswitch(true, PS_NOCLDSTOP, p->p_xsig);
   1748 			} else if (prop & SA_IGNORE) {
   1749 				/*
   1750 				 * Except for SIGCONT, shouldn't get here.
   1751 				 * Default action is to ignore; drop it.
   1752 				 */
   1753 				continue;
   1754 			}
   1755 			break;
   1756 
   1757 		case (long)SIG_IGN:
   1758 #ifdef DEBUG_ISSIGNAL
   1759 			/*
   1760 			 * Masking above should prevent us ever trying
   1761 			 * to take action on an ignored signal other
   1762 			 * than SIGCONT, unless process is traced.
   1763 			 */
   1764 			if ((prop & SA_CONT) == 0 &&
   1765 			    (p->p_slflag & PSL_TRACED) == 0)
   1766 				printf_nolog("issignal\n");
   1767 #endif
   1768 			continue;
   1769 
   1770 		default:
   1771 			/*
   1772 			 * This signal has an action, let postsig() process
   1773 			 * it.
   1774 			 */
   1775 			break;
   1776 		}
   1777 
   1778 		break;
   1779 	}
   1780 
   1781 	l->l_sigpendset = sp;
   1782 	return signo;
   1783 }
   1784 
   1785 /*
   1786  * Take the action for the specified signal
   1787  * from the current set of pending signals.
   1788  */
   1789 void
   1790 postsig(int signo)
   1791 {
   1792 	struct lwp	*l;
   1793 	struct proc	*p;
   1794 	struct sigacts	*ps;
   1795 	sig_t		action;
   1796 	sigset_t	*returnmask;
   1797 	ksiginfo_t	ksi;
   1798 
   1799 	l = curlwp;
   1800 	p = l->l_proc;
   1801 	ps = p->p_sigacts;
   1802 
   1803 	KASSERT(mutex_owned(p->p_lock));
   1804 	KASSERT(signo > 0);
   1805 
   1806 	/*
   1807 	 * Set the new mask value and also defer further occurrences of this
   1808 	 * signal.
   1809 	 *
   1810 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1811 	 * not of interest, but rather the mask from before the sigsuspend is
   1812 	 * what we want restored after the signal processing is completed.
   1813 	 */
   1814 	if (l->l_sigrestore) {
   1815 		returnmask = &l->l_sigoldmask;
   1816 		l->l_sigrestore = 0;
   1817 	} else
   1818 		returnmask = &l->l_sigmask;
   1819 
   1820 	/*
   1821 	 * Commit to taking the signal before releasing the mutex.
   1822 	 */
   1823 	action = SIGACTION_PS(ps, signo).sa_handler;
   1824 	l->l_ru.ru_nsignals++;
   1825 	if (l->l_sigpendset == NULL) {
   1826 		/* From the debugger */
   1827 		if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   1828 			(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   1829 	} else
   1830 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   1831 
   1832 	if (ktrpoint(KTR_PSIG)) {
   1833 		mutex_exit(p->p_lock);
   1834 		ktrpsig(signo, action, returnmask, &ksi);
   1835 		mutex_enter(p->p_lock);
   1836 	}
   1837 
   1838 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   1839 
   1840 	if (action == SIG_DFL) {
   1841 		/*
   1842 		 * Default action, where the default is to kill
   1843 		 * the process.  (Other cases were ignored above.)
   1844 		 */
   1845 		sigexit(l, signo);
   1846 		return;
   1847 	}
   1848 
   1849 	/*
   1850 	 * If we get here, the signal must be caught.
   1851 	 */
   1852 #ifdef DIAGNOSTIC
   1853 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1854 		panic("postsig action");
   1855 #endif
   1856 
   1857 	kpsendsig(l, &ksi, returnmask);
   1858 }
   1859 
   1860 /*
   1861  * sendsig:
   1862  *
   1863  *	Default signal delivery method for NetBSD.
   1864  */
   1865 void
   1866 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1867 {
   1868 	struct sigacts *sa;
   1869 	int sig;
   1870 
   1871 	sig = ksi->ksi_signo;
   1872 	sa = curproc->p_sigacts;
   1873 
   1874 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1875 	case 0:
   1876 	case 1:
   1877 		/* Compat for 1.6 and earlier. */
   1878 		if (sendsig_sigcontext_vec == NULL) {
   1879 			break;
   1880 		}
   1881 		(*sendsig_sigcontext_vec)(ksi, mask);
   1882 		return;
   1883 	case 2:
   1884 	case 3:
   1885 		sendsig_siginfo(ksi, mask);
   1886 		return;
   1887 	default:
   1888 		break;
   1889 	}
   1890 
   1891 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1892 	sigexit(curlwp, SIGILL);
   1893 }
   1894 
   1895 /*
   1896  * sendsig_reset:
   1897  *
   1898  *	Reset the signal action.  Called from emulation specific sendsig()
   1899  *	before unlocking to deliver the signal.
   1900  */
   1901 void
   1902 sendsig_reset(struct lwp *l, int signo)
   1903 {
   1904 	struct proc *p = l->l_proc;
   1905 	struct sigacts *ps = p->p_sigacts;
   1906 
   1907 	KASSERT(mutex_owned(p->p_lock));
   1908 
   1909 	p->p_sigctx.ps_lwp = 0;
   1910 	p->p_sigctx.ps_code = 0;
   1911 	p->p_sigctx.ps_signo = 0;
   1912 
   1913 	mutex_enter(&ps->sa_mutex);
   1914 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1915 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1916 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1917 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1918 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1919 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1920 	}
   1921 	mutex_exit(&ps->sa_mutex);
   1922 }
   1923 
   1924 /*
   1925  * Kill the current process for stated reason.
   1926  */
   1927 void
   1928 killproc(struct proc *p, const char *why)
   1929 {
   1930 
   1931 	KASSERT(mutex_owned(proc_lock));
   1932 
   1933 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1934 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1935 	psignal(p, SIGKILL);
   1936 }
   1937 
   1938 /*
   1939  * Force the current process to exit with the specified signal, dumping core
   1940  * if appropriate.  We bypass the normal tests for masked and caught
   1941  * signals, allowing unrecoverable failures to terminate the process without
   1942  * changing signal state.  Mark the accounting record with the signal
   1943  * termination.  If dumping core, save the signal number for the debugger.
   1944  * Calls exit and does not return.
   1945  */
   1946 void
   1947 sigexit(struct lwp *l, int signo)
   1948 {
   1949 	int exitsig, error, docore;
   1950 	struct proc *p;
   1951 	struct lwp *t;
   1952 
   1953 	p = l->l_proc;
   1954 
   1955 	KASSERT(mutex_owned(p->p_lock));
   1956 	KERNEL_UNLOCK_ALL(l, NULL);
   1957 
   1958 	/*
   1959 	 * Don't permit coredump() multiple times in the same process.
   1960 	 * Call back into sigexit, where we will be suspended until
   1961 	 * the deed is done.  Note that this is a recursive call, but
   1962 	 * LW_WCORE will prevent us from coming back this way.
   1963 	 */
   1964 	if ((p->p_sflag & PS_WCORE) != 0) {
   1965 		lwp_lock(l);
   1966 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   1967 		lwp_unlock(l);
   1968 		mutex_exit(p->p_lock);
   1969 		lwp_userret(l);
   1970 		panic("sigexit 1");
   1971 		/* NOTREACHED */
   1972 	}
   1973 
   1974 	/* If process is already on the way out, then bail now. */
   1975 	if ((p->p_sflag & PS_WEXIT) != 0) {
   1976 		mutex_exit(p->p_lock);
   1977 		lwp_exit(l);
   1978 		panic("sigexit 2");
   1979 		/* NOTREACHED */
   1980 	}
   1981 
   1982 	/*
   1983 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   1984 	 * so that their registers are available long enough to be dumped.
   1985  	 */
   1986 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   1987 		p->p_sflag |= PS_WCORE;
   1988 		for (;;) {
   1989 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   1990 				lwp_lock(t);
   1991 				if (t == l) {
   1992 					t->l_flag &= ~LW_WSUSPEND;
   1993 					lwp_unlock(t);
   1994 					continue;
   1995 				}
   1996 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   1997 				lwp_suspend(l, t);
   1998 			}
   1999 
   2000 			if (p->p_nrlwps == 1)
   2001 				break;
   2002 
   2003 			/*
   2004 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2005 			 * for everyone else to stop before proceeding.
   2006 			 */
   2007 			p->p_nlwpwait++;
   2008 			cv_broadcast(&p->p_lwpcv);
   2009 			cv_wait(&p->p_lwpcv, p->p_lock);
   2010 			p->p_nlwpwait--;
   2011 		}
   2012 	}
   2013 
   2014 	exitsig = signo;
   2015 	p->p_acflag |= AXSIG;
   2016 	p->p_sigctx.ps_signo = signo;
   2017 
   2018 	if (docore) {
   2019 		mutex_exit(p->p_lock);
   2020 		error = (*coredump_vec)(l, NULL);
   2021 
   2022 		if (kern_logsigexit) {
   2023 			int uid = l->l_cred ?
   2024 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2025 
   2026 			if (error)
   2027 				log(LOG_INFO, lognocoredump, p->p_pid,
   2028 				    p->p_comm, uid, signo, error);
   2029 			else
   2030 				log(LOG_INFO, logcoredump, p->p_pid,
   2031 				    p->p_comm, uid, signo);
   2032 		}
   2033 
   2034 #ifdef PAX_SEGVGUARD
   2035 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2036 #endif /* PAX_SEGVGUARD */
   2037 		/* Acquire the sched state mutex.  exit1() will release it. */
   2038 		mutex_enter(p->p_lock);
   2039 		if (error == 0)
   2040 			p->p_sflag |= PS_COREDUMP;
   2041 	}
   2042 
   2043 	/* No longer dumping core. */
   2044 	p->p_sflag &= ~PS_WCORE;
   2045 
   2046 	exit1(l, 0, exitsig);
   2047 	/* NOTREACHED */
   2048 }
   2049 
   2050 /*
   2051  * Put process 'p' into the stopped state and optionally, notify the parent.
   2052  */
   2053 void
   2054 proc_stop(struct proc *p, int notify, int signo)
   2055 {
   2056 	struct lwp *l;
   2057 
   2058 	KASSERT(mutex_owned(p->p_lock));
   2059 
   2060 	/*
   2061 	 * First off, set the stopping indicator and bring all sleeping
   2062 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2063 	 * unlock between here and the p->p_nrlwps check below.
   2064 	 */
   2065 	p->p_sflag |= PS_STOPPING;
   2066 	if (notify)
   2067 		p->p_sflag |= PS_NOTIFYSTOP;
   2068 	else
   2069 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2070 	membar_producer();
   2071 
   2072 	proc_stop_lwps(p);
   2073 
   2074 	/*
   2075 	 * If there are no LWPs available to take the signal, then we
   2076 	 * signal the parent process immediately.  Otherwise, the last
   2077 	 * LWP to stop will take care of it.
   2078 	 */
   2079 
   2080 	if (p->p_nrlwps == 0) {
   2081 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2082 	} else {
   2083 		/*
   2084 		 * Have the remaining LWPs come to a halt, and trigger
   2085 		 * proc_stop_callout() to ensure that they do.
   2086 		 */
   2087 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2088 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2089 		}
   2090 		callout_schedule(&proc_stop_ch, 1);
   2091 	}
   2092 }
   2093 
   2094 /*
   2095  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2096  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2097  * to allow LWPs to release any locks that they may hold before stopping.
   2098  *
   2099  * Non-interruptable sleeps can be long, and there is the potential for an
   2100  * LWP to begin sleeping interruptably soon after the process has been set
   2101  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2102  * stopping, and so complete halt of the process and the return of status
   2103  * information to the parent could be delayed indefinitely.
   2104  *
   2105  * To handle this race, proc_stop_callout() runs once per tick while there
   2106  * are stopping processes in the system.  It sets LWPs that are sleeping
   2107  * interruptably into the LSSTOP state.
   2108  *
   2109  * Note that we are not concerned about keeping all LWPs stopped while the
   2110  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2111  * What we do need to ensure is that all LWPs in a stopping process have
   2112  * stopped at least once, so that notification can be sent to the parent
   2113  * process.
   2114  */
   2115 static void
   2116 proc_stop_callout(void *cookie)
   2117 {
   2118 	bool more, restart;
   2119 	struct proc *p;
   2120 
   2121 	(void)cookie;
   2122 
   2123 	do {
   2124 		restart = false;
   2125 		more = false;
   2126 
   2127 		mutex_enter(proc_lock);
   2128 		PROCLIST_FOREACH(p, &allproc) {
   2129 			mutex_enter(p->p_lock);
   2130 
   2131 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2132 				mutex_exit(p->p_lock);
   2133 				continue;
   2134 			}
   2135 
   2136 			/* Stop any LWPs sleeping interruptably. */
   2137 			proc_stop_lwps(p);
   2138 			if (p->p_nrlwps == 0) {
   2139 				/*
   2140 				 * We brought the process to a halt.
   2141 				 * Mark it as stopped and notify the
   2142 				 * parent.
   2143 				 */
   2144 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2145 					/*
   2146 					 * Note that proc_stop_done() will
   2147 					 * drop p->p_lock briefly.
   2148 					 * Arrange to restart and check
   2149 					 * all processes again.
   2150 					 */
   2151 					restart = true;
   2152 				}
   2153 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2154 			} else
   2155 				more = true;
   2156 
   2157 			mutex_exit(p->p_lock);
   2158 			if (restart)
   2159 				break;
   2160 		}
   2161 		mutex_exit(proc_lock);
   2162 	} while (restart);
   2163 
   2164 	/*
   2165 	 * If we noted processes that are stopping but still have
   2166 	 * running LWPs, then arrange to check again in 1 tick.
   2167 	 */
   2168 	if (more)
   2169 		callout_schedule(&proc_stop_ch, 1);
   2170 }
   2171 
   2172 /*
   2173  * Given a process in state SSTOP, set the state back to SACTIVE and
   2174  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2175  */
   2176 void
   2177 proc_unstop(struct proc *p)
   2178 {
   2179 	struct lwp *l;
   2180 	int sig;
   2181 
   2182 	KASSERT(mutex_owned(proc_lock));
   2183 	KASSERT(mutex_owned(p->p_lock));
   2184 
   2185 	p->p_stat = SACTIVE;
   2186 	p->p_sflag &= ~PS_STOPPING;
   2187 	sig = p->p_xsig;
   2188 
   2189 	if (!p->p_waited)
   2190 		p->p_pptr->p_nstopchild--;
   2191 
   2192 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2193 		lwp_lock(l);
   2194 		if (l->l_stat != LSSTOP) {
   2195 			lwp_unlock(l);
   2196 			continue;
   2197 		}
   2198 		if (l->l_wchan == NULL) {
   2199 			setrunnable(l);
   2200 			continue;
   2201 		}
   2202 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2203 			setrunnable(l);
   2204 			sig = 0;
   2205 		} else {
   2206 			l->l_stat = LSSLEEP;
   2207 			p->p_nrlwps++;
   2208 			lwp_unlock(l);
   2209 		}
   2210 	}
   2211 }
   2212 
   2213 static int
   2214 filt_sigattach(struct knote *kn)
   2215 {
   2216 	struct proc *p = curproc;
   2217 
   2218 	kn->kn_obj = p;
   2219 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2220 
   2221 	mutex_enter(p->p_lock);
   2222 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2223 	mutex_exit(p->p_lock);
   2224 
   2225 	return 0;
   2226 }
   2227 
   2228 static void
   2229 filt_sigdetach(struct knote *kn)
   2230 {
   2231 	struct proc *p = kn->kn_obj;
   2232 
   2233 	mutex_enter(p->p_lock);
   2234 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2235 	mutex_exit(p->p_lock);
   2236 }
   2237 
   2238 /*
   2239  * Signal knotes are shared with proc knotes, so we apply a mask to
   2240  * the hint in order to differentiate them from process hints.  This
   2241  * could be avoided by using a signal-specific knote list, but probably
   2242  * isn't worth the trouble.
   2243  */
   2244 static int
   2245 filt_signal(struct knote *kn, long hint)
   2246 {
   2247 
   2248 	if (hint & NOTE_SIGNAL) {
   2249 		hint &= ~NOTE_SIGNAL;
   2250 
   2251 		if (kn->kn_id == hint)
   2252 			kn->kn_data++;
   2253 	}
   2254 	return (kn->kn_data != 0);
   2255 }
   2256 
   2257 const struct filterops sig_filtops = {
   2258 	0, filt_sigattach, filt_sigdetach, filt_signal
   2259 };
   2260