kern_sig.c revision 1.328 1 /* $NetBSD: kern_sig.c,v 1.328 2016/08/04 06:43:43 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
66 */
67
68 /*
69 * Signal subsystem.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.328 2016/08/04 06:43:43 christos Exp $");
74
75 #include "opt_ptrace.h"
76 #include "opt_dtrace.h"
77 #include "opt_compat_sunos.h"
78 #include "opt_compat_netbsd.h"
79 #include "opt_compat_netbsd32.h"
80 #include "opt_pax.h"
81
82 #define SIGPROP /* include signal properties table */
83 #include <sys/param.h>
84 #include <sys/signalvar.h>
85 #include <sys/proc.h>
86 #include <sys/systm.h>
87 #include <sys/wait.h>
88 #include <sys/ktrace.h>
89 #include <sys/syslog.h>
90 #include <sys/filedesc.h>
91 #include <sys/file.h>
92 #include <sys/pool.h>
93 #include <sys/ucontext.h>
94 #include <sys/exec.h>
95 #include <sys/kauth.h>
96 #include <sys/acct.h>
97 #include <sys/callout.h>
98 #include <sys/atomic.h>
99 #include <sys/cpu.h>
100 #include <sys/module.h>
101 #include <sys/sdt.h>
102
103 #ifdef PAX_SEGVGUARD
104 #include <sys/pax.h>
105 #endif /* PAX_SEGVGUARD */
106
107 #include <uvm/uvm_extern.h>
108
109 #define SIGQUEUE_MAX 32
110 static pool_cache_t sigacts_cache __read_mostly;
111 static pool_cache_t ksiginfo_cache __read_mostly;
112 static callout_t proc_stop_ch __cacheline_aligned;
113
114 sigset_t contsigmask __cacheline_aligned;
115 static sigset_t stopsigmask __cacheline_aligned;
116 sigset_t sigcantmask __cacheline_aligned;
117
118 static void ksiginfo_exechook(struct proc *, void *);
119 static void proc_stop_callout(void *);
120 static int sigchecktrace(void);
121 static int sigpost(struct lwp *, sig_t, int, int);
122 static int sigput(sigpend_t *, struct proc *, ksiginfo_t *);
123 static int sigunwait(struct proc *, const ksiginfo_t *);
124 static void sigswitch(bool, int, int);
125
126 static void sigacts_poolpage_free(struct pool *, void *);
127 static void *sigacts_poolpage_alloc(struct pool *, int);
128
129 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
130 int (*coredump_vec)(struct lwp *, const char *) =
131 (int (*)(struct lwp *, const char *))enosys;
132
133 /*
134 * DTrace SDT provider definitions
135 */
136 SDT_PROVIDER_DECLARE(proc);
137 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
138 "struct lwp *", /* target thread */
139 "struct proc *", /* target process */
140 "int"); /* signal */
141 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
142 "struct lwp *", /* target thread */
143 "struct proc *", /* target process */
144 "int"); /* signal */
145 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
146 "int", /* signal */
147 "ksiginfo_t *", /* signal info */
148 "void (*)(void)"); /* handler address */
149
150
151 static struct pool_allocator sigactspool_allocator = {
152 .pa_alloc = sigacts_poolpage_alloc,
153 .pa_free = sigacts_poolpage_free
154 };
155
156 #ifdef DEBUG
157 int kern_logsigexit = 1;
158 #else
159 int kern_logsigexit = 0;
160 #endif
161
162 static const char logcoredump[] =
163 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
164 static const char lognocoredump[] =
165 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
166
167 static kauth_listener_t signal_listener;
168
169 static int
170 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
171 void *arg0, void *arg1, void *arg2, void *arg3)
172 {
173 struct proc *p;
174 int result, signum;
175
176 result = KAUTH_RESULT_DEFER;
177 p = arg0;
178 signum = (int)(unsigned long)arg1;
179
180 if (action != KAUTH_PROCESS_SIGNAL)
181 return result;
182
183 if (kauth_cred_uidmatch(cred, p->p_cred) ||
184 (signum == SIGCONT && (curproc->p_session == p->p_session)))
185 result = KAUTH_RESULT_ALLOW;
186
187 return result;
188 }
189
190 /*
191 * signal_init:
192 *
193 * Initialize global signal-related data structures.
194 */
195 void
196 signal_init(void)
197 {
198
199 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
200
201 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
202 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
203 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
204 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
205 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
206
207 exechook_establish(ksiginfo_exechook, NULL);
208
209 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
210 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
211
212 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
213 signal_listener_cb, NULL);
214 }
215
216 /*
217 * sigacts_poolpage_alloc:
218 *
219 * Allocate a page for the sigacts memory pool.
220 */
221 static void *
222 sigacts_poolpage_alloc(struct pool *pp, int flags)
223 {
224
225 return (void *)uvm_km_alloc(kernel_map,
226 PAGE_SIZE * 2, PAGE_SIZE * 2,
227 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
228 | UVM_KMF_WIRED);
229 }
230
231 /*
232 * sigacts_poolpage_free:
233 *
234 * Free a page on behalf of the sigacts memory pool.
235 */
236 static void
237 sigacts_poolpage_free(struct pool *pp, void *v)
238 {
239
240 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
241 }
242
243 /*
244 * sigactsinit:
245 *
246 * Create an initial sigacts structure, using the same signal state
247 * as of specified process. If 'share' is set, share the sigacts by
248 * holding a reference, otherwise just copy it from parent.
249 */
250 struct sigacts *
251 sigactsinit(struct proc *pp, int share)
252 {
253 struct sigacts *ps = pp->p_sigacts, *ps2;
254
255 if (__predict_false(share)) {
256 atomic_inc_uint(&ps->sa_refcnt);
257 return ps;
258 }
259 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
260 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
261 ps2->sa_refcnt = 1;
262
263 mutex_enter(&ps->sa_mutex);
264 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
265 mutex_exit(&ps->sa_mutex);
266 return ps2;
267 }
268
269 /*
270 * sigactsunshare:
271 *
272 * Make this process not share its sigacts, maintaining all signal state.
273 */
274 void
275 sigactsunshare(struct proc *p)
276 {
277 struct sigacts *ps, *oldps = p->p_sigacts;
278
279 if (__predict_true(oldps->sa_refcnt == 1))
280 return;
281
282 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
283 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
284 memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
285 ps->sa_refcnt = 1;
286
287 p->p_sigacts = ps;
288 sigactsfree(oldps);
289 }
290
291 /*
292 * sigactsfree;
293 *
294 * Release a sigacts structure.
295 */
296 void
297 sigactsfree(struct sigacts *ps)
298 {
299
300 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
301 mutex_destroy(&ps->sa_mutex);
302 pool_cache_put(sigacts_cache, ps);
303 }
304 }
305
306 /*
307 * siginit:
308 *
309 * Initialize signal state for process 0; set to ignore signals that
310 * are ignored by default and disable the signal stack. Locking not
311 * required as the system is still cold.
312 */
313 void
314 siginit(struct proc *p)
315 {
316 struct lwp *l;
317 struct sigacts *ps;
318 int signo, prop;
319
320 ps = p->p_sigacts;
321 sigemptyset(&contsigmask);
322 sigemptyset(&stopsigmask);
323 sigemptyset(&sigcantmask);
324 for (signo = 1; signo < NSIG; signo++) {
325 prop = sigprop[signo];
326 if (prop & SA_CONT)
327 sigaddset(&contsigmask, signo);
328 if (prop & SA_STOP)
329 sigaddset(&stopsigmask, signo);
330 if (prop & SA_CANTMASK)
331 sigaddset(&sigcantmask, signo);
332 if (prop & SA_IGNORE && signo != SIGCONT)
333 sigaddset(&p->p_sigctx.ps_sigignore, signo);
334 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
335 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
336 }
337 sigemptyset(&p->p_sigctx.ps_sigcatch);
338 p->p_sflag &= ~PS_NOCLDSTOP;
339
340 ksiginfo_queue_init(&p->p_sigpend.sp_info);
341 sigemptyset(&p->p_sigpend.sp_set);
342
343 /*
344 * Reset per LWP state.
345 */
346 l = LIST_FIRST(&p->p_lwps);
347 l->l_sigwaited = NULL;
348 l->l_sigstk.ss_flags = SS_DISABLE;
349 l->l_sigstk.ss_size = 0;
350 l->l_sigstk.ss_sp = 0;
351 ksiginfo_queue_init(&l->l_sigpend.sp_info);
352 sigemptyset(&l->l_sigpend.sp_set);
353
354 /* One reference. */
355 ps->sa_refcnt = 1;
356 }
357
358 /*
359 * execsigs:
360 *
361 * Reset signals for an exec of the specified process.
362 */
363 void
364 execsigs(struct proc *p)
365 {
366 struct sigacts *ps;
367 struct lwp *l;
368 int signo, prop;
369 sigset_t tset;
370 ksiginfoq_t kq;
371
372 KASSERT(p->p_nlwps == 1);
373
374 sigactsunshare(p);
375 ps = p->p_sigacts;
376
377 /*
378 * Reset caught signals. Held signals remain held through
379 * l->l_sigmask (unless they were caught, and are now ignored
380 * by default).
381 *
382 * No need to lock yet, the process has only one LWP and
383 * at this point the sigacts are private to the process.
384 */
385 sigemptyset(&tset);
386 for (signo = 1; signo < NSIG; signo++) {
387 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
388 prop = sigprop[signo];
389 if (prop & SA_IGNORE) {
390 if ((prop & SA_CONT) == 0)
391 sigaddset(&p->p_sigctx.ps_sigignore,
392 signo);
393 sigaddset(&tset, signo);
394 }
395 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
396 }
397 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
398 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
399 }
400 ksiginfo_queue_init(&kq);
401
402 mutex_enter(p->p_lock);
403 sigclearall(p, &tset, &kq);
404 sigemptyset(&p->p_sigctx.ps_sigcatch);
405
406 /*
407 * Reset no zombies if child dies flag as Solaris does.
408 */
409 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
410 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
411 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
412
413 /*
414 * Reset per-LWP state.
415 */
416 l = LIST_FIRST(&p->p_lwps);
417 l->l_sigwaited = NULL;
418 l->l_sigstk.ss_flags = SS_DISABLE;
419 l->l_sigstk.ss_size = 0;
420 l->l_sigstk.ss_sp = 0;
421 ksiginfo_queue_init(&l->l_sigpend.sp_info);
422 sigemptyset(&l->l_sigpend.sp_set);
423 mutex_exit(p->p_lock);
424
425 ksiginfo_queue_drain(&kq);
426 }
427
428 /*
429 * ksiginfo_exechook:
430 *
431 * Free all pending ksiginfo entries from a process on exec.
432 * Additionally, drain any unused ksiginfo structures in the
433 * system back to the pool.
434 *
435 * XXX This should not be a hook, every process has signals.
436 */
437 static void
438 ksiginfo_exechook(struct proc *p, void *v)
439 {
440 ksiginfoq_t kq;
441
442 ksiginfo_queue_init(&kq);
443
444 mutex_enter(p->p_lock);
445 sigclearall(p, NULL, &kq);
446 mutex_exit(p->p_lock);
447
448 ksiginfo_queue_drain(&kq);
449 }
450
451 /*
452 * ksiginfo_alloc:
453 *
454 * Allocate a new ksiginfo structure from the pool, and optionally copy
455 * an existing one. If the existing ksiginfo_t is from the pool, and
456 * has not been queued somewhere, then just return it. Additionally,
457 * if the existing ksiginfo_t does not contain any information beyond
458 * the signal number, then just return it.
459 */
460 ksiginfo_t *
461 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
462 {
463 ksiginfo_t *kp;
464
465 if (ok != NULL) {
466 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
467 KSI_FROMPOOL)
468 return ok;
469 if (KSI_EMPTY_P(ok))
470 return ok;
471 }
472
473 kp = pool_cache_get(ksiginfo_cache, flags);
474 if (kp == NULL) {
475 #ifdef DIAGNOSTIC
476 printf("Out of memory allocating ksiginfo for pid %d\n",
477 p->p_pid);
478 #endif
479 return NULL;
480 }
481
482 if (ok != NULL) {
483 memcpy(kp, ok, sizeof(*kp));
484 kp->ksi_flags &= ~KSI_QUEUED;
485 } else
486 KSI_INIT_EMPTY(kp);
487
488 kp->ksi_flags |= KSI_FROMPOOL;
489
490 return kp;
491 }
492
493 /*
494 * ksiginfo_free:
495 *
496 * If the given ksiginfo_t is from the pool and has not been queued,
497 * then free it.
498 */
499 void
500 ksiginfo_free(ksiginfo_t *kp)
501 {
502
503 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
504 return;
505 pool_cache_put(ksiginfo_cache, kp);
506 }
507
508 /*
509 * ksiginfo_queue_drain:
510 *
511 * Drain a non-empty ksiginfo_t queue.
512 */
513 void
514 ksiginfo_queue_drain0(ksiginfoq_t *kq)
515 {
516 ksiginfo_t *ksi;
517
518 KASSERT(!TAILQ_EMPTY(kq));
519
520 while (!TAILQ_EMPTY(kq)) {
521 ksi = TAILQ_FIRST(kq);
522 TAILQ_REMOVE(kq, ksi, ksi_list);
523 pool_cache_put(ksiginfo_cache, ksi);
524 }
525 }
526
527 static int
528 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
529 {
530 ksiginfo_t *ksi;
531
532 if (sp == NULL)
533 goto out;
534
535 /* Find siginfo and copy it out. */
536 int count = 0;
537 TAILQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
538 if (ksi->ksi_signo != signo)
539 continue;
540 if (count++ > 0) /* Only remove the first, count all of them */
541 continue;
542 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
543 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
544 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
545 ksi->ksi_flags &= ~KSI_QUEUED;
546 if (out != NULL) {
547 memcpy(out, ksi, sizeof(*out));
548 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
549 }
550 ksiginfo_free(ksi);
551 }
552 if (count)
553 return count;
554
555 out:
556 /* If there is no siginfo, then manufacture it. */
557 if (out != NULL) {
558 KSI_INIT(out);
559 out->ksi_info._signo = signo;
560 out->ksi_info._code = SI_NOINFO;
561 }
562 return 0;
563 }
564
565 /*
566 * sigget:
567 *
568 * Fetch the first pending signal from a set. Optionally, also fetch
569 * or manufacture a ksiginfo element. Returns the number of the first
570 * pending signal, or zero.
571 */
572 int
573 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
574 {
575 sigset_t tset;
576 int count;
577
578 /* If there's no pending set, the signal is from the debugger. */
579 if (sp == NULL)
580 goto out;
581
582 /* Construct mask from signo, and 'mask'. */
583 if (signo == 0) {
584 if (mask != NULL) {
585 tset = *mask;
586 __sigandset(&sp->sp_set, &tset);
587 } else
588 tset = sp->sp_set;
589
590 /* If there are no signals pending - return. */
591 if ((signo = firstsig(&tset)) == 0)
592 goto out;
593 } else {
594 KASSERT(sigismember(&sp->sp_set, signo));
595 }
596
597 sigdelset(&sp->sp_set, signo);
598 out:
599 count = siggetinfo(sp, out, signo);
600 if (count > 1)
601 sigaddset(&sp->sp_set, signo);
602 return signo;
603 }
604
605 /*
606 * sigput:
607 *
608 * Append a new ksiginfo element to the list of pending ksiginfo's.
609 */
610 static int
611 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
612 {
613 ksiginfo_t *kp;
614
615 KASSERT(mutex_owned(p->p_lock));
616 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
617
618 sigaddset(&sp->sp_set, ksi->ksi_signo);
619
620 /*
621 * If there is no siginfo, we are done.
622 */
623 if (KSI_EMPTY_P(ksi))
624 return 0;
625
626 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
627
628 size_t count = 0;
629 TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
630 count++;
631 if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
632 continue;
633 if (kp->ksi_signo == ksi->ksi_signo) {
634 KSI_COPY(ksi, kp);
635 kp->ksi_flags |= KSI_QUEUED;
636 return 0;
637 }
638 }
639
640 if (count >= SIGQUEUE_MAX) {
641 #ifdef DIAGNOSTIC
642 printf("%s(%d): Signal queue is full signal=%d\n",
643 p->p_comm, p->p_pid, ksi->ksi_signo);
644 #endif
645 return EAGAIN;
646 }
647 ksi->ksi_flags |= KSI_QUEUED;
648 TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
649
650 return 0;
651 }
652
653 /*
654 * sigclear:
655 *
656 * Clear all pending signals in the specified set.
657 */
658 void
659 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
660 {
661 ksiginfo_t *ksi, *next;
662
663 if (mask == NULL)
664 sigemptyset(&sp->sp_set);
665 else
666 sigminusset(mask, &sp->sp_set);
667
668 TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
669 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
670 TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
671 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
672 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
673 TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
674 }
675 }
676 }
677
678 /*
679 * sigclearall:
680 *
681 * Clear all pending signals in the specified set from a process and
682 * its LWPs.
683 */
684 void
685 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
686 {
687 struct lwp *l;
688
689 KASSERT(mutex_owned(p->p_lock));
690
691 sigclear(&p->p_sigpend, mask, kq);
692
693 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
694 sigclear(&l->l_sigpend, mask, kq);
695 }
696 }
697
698 /*
699 * sigispending:
700 *
701 * Return the first signal number if there are pending signals for the
702 * current LWP. May be called unlocked provided that LW_PENDSIG is set,
703 * and that the signal has been posted to the appopriate queue before
704 * LW_PENDSIG is set.
705 */
706 int
707 sigispending(struct lwp *l, int signo)
708 {
709 struct proc *p = l->l_proc;
710 sigset_t tset;
711
712 membar_consumer();
713
714 tset = l->l_sigpend.sp_set;
715 sigplusset(&p->p_sigpend.sp_set, &tset);
716 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
717 sigminusset(&l->l_sigmask, &tset);
718
719 if (signo == 0) {
720 return firstsig(&tset);
721 }
722 return sigismember(&tset, signo) ? signo : 0;
723 }
724
725 void
726 getucontext(struct lwp *l, ucontext_t *ucp)
727 {
728 struct proc *p = l->l_proc;
729
730 KASSERT(mutex_owned(p->p_lock));
731
732 ucp->uc_flags = 0;
733 ucp->uc_link = l->l_ctxlink;
734 ucp->uc_sigmask = l->l_sigmask;
735 ucp->uc_flags |= _UC_SIGMASK;
736
737 /*
738 * The (unsupplied) definition of the `current execution stack'
739 * in the System V Interface Definition appears to allow returning
740 * the main context stack.
741 */
742 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
743 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
744 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
745 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
746 } else {
747 /* Simply copy alternate signal execution stack. */
748 ucp->uc_stack = l->l_sigstk;
749 }
750 ucp->uc_flags |= _UC_STACK;
751 mutex_exit(p->p_lock);
752 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
753 mutex_enter(p->p_lock);
754 }
755
756 int
757 setucontext(struct lwp *l, const ucontext_t *ucp)
758 {
759 struct proc *p = l->l_proc;
760 int error;
761
762 KASSERT(mutex_owned(p->p_lock));
763
764 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
765 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
766 if (error != 0)
767 return error;
768 }
769
770 mutex_exit(p->p_lock);
771 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
772 mutex_enter(p->p_lock);
773 if (error != 0)
774 return (error);
775
776 l->l_ctxlink = ucp->uc_link;
777
778 /*
779 * If there was stack information, update whether or not we are
780 * still running on an alternate signal stack.
781 */
782 if ((ucp->uc_flags & _UC_STACK) != 0) {
783 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
784 l->l_sigstk.ss_flags |= SS_ONSTACK;
785 else
786 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
787 }
788
789 return 0;
790 }
791
792 /*
793 * killpg1: common code for kill process group/broadcast kill.
794 */
795 int
796 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
797 {
798 struct proc *p, *cp;
799 kauth_cred_t pc;
800 struct pgrp *pgrp;
801 int nfound;
802 int signo = ksi->ksi_signo;
803
804 cp = l->l_proc;
805 pc = l->l_cred;
806 nfound = 0;
807
808 mutex_enter(proc_lock);
809 if (all) {
810 /*
811 * Broadcast.
812 */
813 PROCLIST_FOREACH(p, &allproc) {
814 if (p->p_pid <= 1 || p == cp ||
815 (p->p_flag & PK_SYSTEM) != 0)
816 continue;
817 mutex_enter(p->p_lock);
818 if (kauth_authorize_process(pc,
819 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
820 NULL) == 0) {
821 nfound++;
822 if (signo)
823 kpsignal2(p, ksi);
824 }
825 mutex_exit(p->p_lock);
826 }
827 } else {
828 if (pgid == 0)
829 /* Zero pgid means send to my process group. */
830 pgrp = cp->p_pgrp;
831 else {
832 pgrp = pgrp_find(pgid);
833 if (pgrp == NULL)
834 goto out;
835 }
836 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
837 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
838 continue;
839 mutex_enter(p->p_lock);
840 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
841 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
842 nfound++;
843 if (signo && P_ZOMBIE(p) == 0)
844 kpsignal2(p, ksi);
845 }
846 mutex_exit(p->p_lock);
847 }
848 }
849 out:
850 mutex_exit(proc_lock);
851 return nfound ? 0 : ESRCH;
852 }
853
854 /*
855 * Send a signal to a process group. If checktty is set, limit to members
856 * which have a controlling terminal.
857 */
858 void
859 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
860 {
861 ksiginfo_t ksi;
862
863 KASSERT(!cpu_intr_p());
864 KASSERT(mutex_owned(proc_lock));
865
866 KSI_INIT_EMPTY(&ksi);
867 ksi.ksi_signo = sig;
868 kpgsignal(pgrp, &ksi, NULL, checkctty);
869 }
870
871 void
872 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
873 {
874 struct proc *p;
875
876 KASSERT(!cpu_intr_p());
877 KASSERT(mutex_owned(proc_lock));
878 KASSERT(pgrp != NULL);
879
880 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
881 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
882 kpsignal(p, ksi, data);
883 }
884
885 /*
886 * Send a signal caused by a trap to the current LWP. If it will be caught
887 * immediately, deliver it with correct code. Otherwise, post it normally.
888 */
889 void
890 trapsignal(struct lwp *l, ksiginfo_t *ksi)
891 {
892 struct proc *p;
893 struct sigacts *ps;
894 int signo = ksi->ksi_signo;
895 sigset_t *mask;
896
897 KASSERT(KSI_TRAP_P(ksi));
898
899 ksi->ksi_lid = l->l_lid;
900 p = l->l_proc;
901
902 KASSERT(!cpu_intr_p());
903 mutex_enter(proc_lock);
904 mutex_enter(p->p_lock);
905 mask = &l->l_sigmask;
906 ps = p->p_sigacts;
907
908 if ((p->p_slflag & PSL_TRACED) == 0 &&
909 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
910 !sigismember(mask, signo)) {
911 mutex_exit(proc_lock);
912 l->l_ru.ru_nsignals++;
913 kpsendsig(l, ksi, mask);
914 mutex_exit(p->p_lock);
915 if (ktrpoint(KTR_PSIG)) {
916 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
917 mask, ksi);
918 }
919 } else {
920 /* XXX for core dump/debugger */
921 p->p_sigctx.ps_lwp = l->l_lid;
922 p->p_sigctx.ps_signo = ksi->ksi_signo;
923 p->p_sigctx.ps_code = ksi->ksi_trap;
924 kpsignal2(p, ksi);
925 mutex_exit(p->p_lock);
926 mutex_exit(proc_lock);
927 }
928 }
929
930 /*
931 * Fill in signal information and signal the parent for a child status change.
932 */
933 void
934 child_psignal(struct proc *p, int mask)
935 {
936 ksiginfo_t ksi;
937 struct proc *q;
938 int xsig;
939
940 KASSERT(mutex_owned(proc_lock));
941 KASSERT(mutex_owned(p->p_lock));
942
943 xsig = p->p_xsig;
944
945 KSI_INIT(&ksi);
946 ksi.ksi_signo = SIGCHLD;
947 ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
948 ksi.ksi_pid = p->p_pid;
949 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
950 ksi.ksi_status = xsig;
951 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
952 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
953
954 q = p->p_pptr;
955
956 mutex_exit(p->p_lock);
957 mutex_enter(q->p_lock);
958
959 if ((q->p_sflag & mask) == 0)
960 kpsignal2(q, &ksi);
961
962 mutex_exit(q->p_lock);
963 mutex_enter(p->p_lock);
964 }
965
966 void
967 psignal(struct proc *p, int signo)
968 {
969 ksiginfo_t ksi;
970
971 KASSERT(!cpu_intr_p());
972 KASSERT(mutex_owned(proc_lock));
973
974 KSI_INIT_EMPTY(&ksi);
975 ksi.ksi_signo = signo;
976 mutex_enter(p->p_lock);
977 kpsignal2(p, &ksi);
978 mutex_exit(p->p_lock);
979 }
980
981 void
982 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
983 {
984 fdfile_t *ff;
985 file_t *fp;
986 fdtab_t *dt;
987
988 KASSERT(!cpu_intr_p());
989 KASSERT(mutex_owned(proc_lock));
990
991 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
992 size_t fd;
993 filedesc_t *fdp = p->p_fd;
994
995 /* XXXSMP locking */
996 ksi->ksi_fd = -1;
997 dt = fdp->fd_dt;
998 for (fd = 0; fd < dt->dt_nfiles; fd++) {
999 if ((ff = dt->dt_ff[fd]) == NULL)
1000 continue;
1001 if ((fp = ff->ff_file) == NULL)
1002 continue;
1003 if (fp->f_data == data) {
1004 ksi->ksi_fd = fd;
1005 break;
1006 }
1007 }
1008 }
1009 mutex_enter(p->p_lock);
1010 kpsignal2(p, ksi);
1011 mutex_exit(p->p_lock);
1012 }
1013
1014 /*
1015 * sigismasked:
1016 *
1017 * Returns true if signal is ignored or masked for the specified LWP.
1018 */
1019 int
1020 sigismasked(struct lwp *l, int sig)
1021 {
1022 struct proc *p = l->l_proc;
1023
1024 return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1025 sigismember(&l->l_sigmask, sig);
1026 }
1027
1028 /*
1029 * sigpost:
1030 *
1031 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1032 * be able to take the signal.
1033 */
1034 static int
1035 sigpost(struct lwp *l, sig_t action, int prop, int sig)
1036 {
1037 int rv, masked;
1038 struct proc *p = l->l_proc;
1039
1040 KASSERT(mutex_owned(p->p_lock));
1041
1042 /*
1043 * If the LWP is on the way out, sigclear() will be busy draining all
1044 * pending signals. Don't give it more.
1045 */
1046 if (l->l_refcnt == 0)
1047 return 0;
1048
1049 SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
1050
1051 /*
1052 * Have the LWP check for signals. This ensures that even if no LWP
1053 * is found to take the signal immediately, it should be taken soon.
1054 */
1055 lwp_lock(l);
1056 l->l_flag |= LW_PENDSIG;
1057
1058 /*
1059 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1060 * Note: SIGKILL and SIGSTOP cannot be masked.
1061 */
1062 masked = sigismember(&l->l_sigmask, sig);
1063 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1064 lwp_unlock(l);
1065 return 0;
1066 }
1067
1068 /*
1069 * If killing the process, make it run fast.
1070 */
1071 if (__predict_false((prop & SA_KILL) != 0) &&
1072 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1073 KASSERT(l->l_class == SCHED_OTHER);
1074 lwp_changepri(l, MAXPRI_USER);
1075 }
1076
1077 /*
1078 * If the LWP is running or on a run queue, then we win. If it's
1079 * sleeping interruptably, wake it and make it take the signal. If
1080 * the sleep isn't interruptable, then the chances are it will get
1081 * to see the signal soon anyhow. If suspended, it can't take the
1082 * signal right now. If it's LWP private or for all LWPs, save it
1083 * for later; otherwise punt.
1084 */
1085 rv = 0;
1086
1087 switch (l->l_stat) {
1088 case LSRUN:
1089 case LSONPROC:
1090 lwp_need_userret(l);
1091 rv = 1;
1092 break;
1093
1094 case LSSLEEP:
1095 if ((l->l_flag & LW_SINTR) != 0) {
1096 /* setrunnable() will release the lock. */
1097 setrunnable(l);
1098 return 1;
1099 }
1100 break;
1101
1102 case LSSUSPENDED:
1103 if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
1104 /* lwp_continue() will release the lock. */
1105 lwp_continue(l);
1106 return 1;
1107 }
1108 break;
1109
1110 case LSSTOP:
1111 if ((prop & SA_STOP) != 0)
1112 break;
1113
1114 /*
1115 * If the LWP is stopped and we are sending a continue
1116 * signal, then start it again.
1117 */
1118 if ((prop & SA_CONT) != 0) {
1119 if (l->l_wchan != NULL) {
1120 l->l_stat = LSSLEEP;
1121 p->p_nrlwps++;
1122 rv = 1;
1123 break;
1124 }
1125 /* setrunnable() will release the lock. */
1126 setrunnable(l);
1127 return 1;
1128 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1129 /* setrunnable() will release the lock. */
1130 setrunnable(l);
1131 return 1;
1132 }
1133 break;
1134
1135 default:
1136 break;
1137 }
1138
1139 lwp_unlock(l);
1140 return rv;
1141 }
1142
1143 /*
1144 * Notify an LWP that it has a pending signal.
1145 */
1146 void
1147 signotify(struct lwp *l)
1148 {
1149 KASSERT(lwp_locked(l, NULL));
1150
1151 l->l_flag |= LW_PENDSIG;
1152 lwp_need_userret(l);
1153 }
1154
1155 /*
1156 * Find an LWP within process p that is waiting on signal ksi, and hand
1157 * it on.
1158 */
1159 static int
1160 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1161 {
1162 struct lwp *l;
1163 int signo;
1164
1165 KASSERT(mutex_owned(p->p_lock));
1166
1167 signo = ksi->ksi_signo;
1168
1169 if (ksi->ksi_lid != 0) {
1170 /*
1171 * Signal came via _lwp_kill(). Find the LWP and see if
1172 * it's interested.
1173 */
1174 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1175 return 0;
1176 if (l->l_sigwaited == NULL ||
1177 !sigismember(&l->l_sigwaitset, signo))
1178 return 0;
1179 } else {
1180 /*
1181 * Look for any LWP that may be interested.
1182 */
1183 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1184 KASSERT(l->l_sigwaited != NULL);
1185 if (sigismember(&l->l_sigwaitset, signo))
1186 break;
1187 }
1188 }
1189
1190 if (l != NULL) {
1191 l->l_sigwaited->ksi_info = ksi->ksi_info;
1192 l->l_sigwaited = NULL;
1193 LIST_REMOVE(l, l_sigwaiter);
1194 cv_signal(&l->l_sigcv);
1195 return 1;
1196 }
1197
1198 return 0;
1199 }
1200
1201 /*
1202 * Send the signal to the process. If the signal has an action, the action
1203 * is usually performed by the target process rather than the caller; we add
1204 * the signal to the set of pending signals for the process.
1205 *
1206 * Exceptions:
1207 * o When a stop signal is sent to a sleeping process that takes the
1208 * default action, the process is stopped without awakening it.
1209 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1210 * regardless of the signal action (eg, blocked or ignored).
1211 *
1212 * Other ignored signals are discarded immediately.
1213 */
1214 int
1215 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1216 {
1217 int prop, signo = ksi->ksi_signo;
1218 struct sigacts *sa;
1219 struct lwp *l = NULL;
1220 ksiginfo_t *kp;
1221 lwpid_t lid;
1222 sig_t action;
1223 bool toall;
1224 int error = 0;
1225
1226 KASSERT(!cpu_intr_p());
1227 KASSERT(mutex_owned(proc_lock));
1228 KASSERT(mutex_owned(p->p_lock));
1229 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1230 KASSERT(signo > 0 && signo < NSIG);
1231
1232 /*
1233 * If the process is being created by fork, is a zombie or is
1234 * exiting, then just drop the signal here and bail out.
1235 */
1236 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1237 return 0;
1238
1239 /*
1240 * Notify any interested parties of the signal.
1241 */
1242 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1243
1244 /*
1245 * Some signals including SIGKILL must act on the entire process.
1246 */
1247 kp = NULL;
1248 prop = sigprop[signo];
1249 toall = ((prop & SA_TOALL) != 0);
1250 lid = toall ? 0 : ksi->ksi_lid;
1251
1252 /*
1253 * If proc is traced, always give parent a chance.
1254 */
1255 if (p->p_slflag & PSL_TRACED) {
1256 action = SIG_DFL;
1257
1258 if (lid == 0) {
1259 /*
1260 * If the process is being traced and the signal
1261 * is being caught, make sure to save any ksiginfo.
1262 */
1263 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1264 goto discard;
1265 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1266 goto out;
1267 }
1268 } else {
1269 /*
1270 * If the signal was the result of a trap and is not being
1271 * caught, then reset it to default action so that the
1272 * process dumps core immediately.
1273 */
1274 if (KSI_TRAP_P(ksi)) {
1275 sa = p->p_sigacts;
1276 mutex_enter(&sa->sa_mutex);
1277 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1278 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1279 SIGACTION(p, signo).sa_handler = SIG_DFL;
1280 }
1281 mutex_exit(&sa->sa_mutex);
1282 }
1283
1284 /*
1285 * If the signal is being ignored, then drop it. Note: we
1286 * don't set SIGCONT in ps_sigignore, and if it is set to
1287 * SIG_IGN, action will be SIG_DFL here.
1288 */
1289 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1290 goto discard;
1291
1292 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1293 action = SIG_CATCH;
1294 else {
1295 action = SIG_DFL;
1296
1297 /*
1298 * If sending a tty stop signal to a member of an
1299 * orphaned process group, discard the signal here if
1300 * the action is default; don't stop the process below
1301 * if sleeping, and don't clear any pending SIGCONT.
1302 */
1303 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1304 goto discard;
1305
1306 if (prop & SA_KILL && p->p_nice > NZERO)
1307 p->p_nice = NZERO;
1308 }
1309 }
1310
1311 /*
1312 * If stopping or continuing a process, discard any pending
1313 * signals that would do the inverse.
1314 */
1315 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1316 ksiginfoq_t kq;
1317
1318 ksiginfo_queue_init(&kq);
1319 if ((prop & SA_CONT) != 0)
1320 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1321 if ((prop & SA_STOP) != 0)
1322 sigclear(&p->p_sigpend, &contsigmask, &kq);
1323 ksiginfo_queue_drain(&kq); /* XXXSMP */
1324 }
1325
1326 /*
1327 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1328 * please!), check if any LWPs are waiting on it. If yes, pass on
1329 * the signal info. The signal won't be processed further here.
1330 */
1331 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1332 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1333 sigunwait(p, ksi))
1334 goto discard;
1335
1336 /*
1337 * XXXSMP Should be allocated by the caller, we're holding locks
1338 * here.
1339 */
1340 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1341 goto discard;
1342
1343 /*
1344 * LWP private signals are easy - just find the LWP and post
1345 * the signal to it.
1346 */
1347 if (lid != 0) {
1348 l = lwp_find(p, lid);
1349 if (l != NULL) {
1350 if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
1351 goto out;
1352 membar_producer();
1353 (void)sigpost(l, action, prop, kp->ksi_signo);
1354 }
1355 goto out;
1356 }
1357
1358 /*
1359 * Some signals go to all LWPs, even if posted with _lwp_kill()
1360 * or for an SA process.
1361 */
1362 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1363 if ((p->p_slflag & PSL_TRACED) != 0)
1364 goto deliver;
1365
1366 /*
1367 * If SIGCONT is default (or ignored) and process is
1368 * asleep, we are finished; the process should not
1369 * be awakened.
1370 */
1371 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1372 goto out;
1373 } else {
1374 /*
1375 * Process is stopped or stopping.
1376 * - If traced, then no action is needed, unless killing.
1377 * - Run the process only if sending SIGCONT or SIGKILL.
1378 */
1379 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1380 goto out;
1381 }
1382 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1383 /*
1384 * Re-adjust p_nstopchild if the process was
1385 * stopped but not yet collected by its parent.
1386 */
1387 if (p->p_stat == SSTOP && !p->p_waited)
1388 p->p_pptr->p_nstopchild--;
1389 p->p_stat = SACTIVE;
1390 p->p_sflag &= ~PS_STOPPING;
1391 if (p->p_slflag & PSL_TRACED) {
1392 KASSERT(signo == SIGKILL);
1393 goto deliver;
1394 }
1395 /*
1396 * Do not make signal pending if SIGCONT is default.
1397 *
1398 * If the process catches SIGCONT, let it handle the
1399 * signal itself (if waiting on event - process runs,
1400 * otherwise continues sleeping).
1401 */
1402 if ((prop & SA_CONT) != 0) {
1403 p->p_xsig = SIGCONT;
1404 p->p_sflag |= PS_CONTINUED;
1405 child_psignal(p, 0);
1406 if (action == SIG_DFL) {
1407 KASSERT(signo != SIGKILL);
1408 goto deliver;
1409 }
1410 }
1411 } else if ((prop & SA_STOP) != 0) {
1412 /*
1413 * Already stopped, don't need to stop again.
1414 * (If we did the shell could get confused.)
1415 */
1416 goto out;
1417 }
1418 }
1419 /*
1420 * Make signal pending.
1421 */
1422 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1423 if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
1424 goto out;
1425 deliver:
1426 /*
1427 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1428 * visible on the per process list (for sigispending()). This
1429 * is unlikely to be needed in practice, but...
1430 */
1431 membar_producer();
1432
1433 /*
1434 * Try to find an LWP that can take the signal.
1435 */
1436 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1437 if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
1438 break;
1439 }
1440 signo = -1;
1441 out:
1442 /*
1443 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1444 * with locks held. The caller should take care of this.
1445 */
1446 ksiginfo_free(kp);
1447 if (signo == -1)
1448 return error;
1449 discard:
1450 SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
1451 return error;
1452 }
1453
1454 void
1455 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1456 {
1457 struct proc *p = l->l_proc;
1458
1459 KASSERT(mutex_owned(p->p_lock));
1460 (*p->p_emul->e_sendsig)(ksi, mask);
1461 }
1462
1463 /*
1464 * Stop any LWPs sleeping interruptably.
1465 */
1466 static void
1467 proc_stop_lwps(struct proc *p)
1468 {
1469 struct lwp *l;
1470
1471 KASSERT(mutex_owned(p->p_lock));
1472 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1473
1474 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1475 lwp_lock(l);
1476 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1477 l->l_stat = LSSTOP;
1478 p->p_nrlwps--;
1479 }
1480 lwp_unlock(l);
1481 }
1482 }
1483
1484 /*
1485 * Finish stopping of a process. Mark it stopped and notify the parent.
1486 *
1487 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1488 */
1489 static void
1490 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1491 {
1492
1493 KASSERT(mutex_owned(proc_lock));
1494 KASSERT(mutex_owned(p->p_lock));
1495 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1496 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1497
1498 p->p_sflag &= ~PS_STOPPING;
1499 p->p_stat = SSTOP;
1500 p->p_waited = 0;
1501 p->p_pptr->p_nstopchild++;
1502 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1503 if (ppsig) {
1504 /* child_psignal drops p_lock briefly. */
1505 child_psignal(p, ppmask);
1506 }
1507 cv_broadcast(&p->p_pptr->p_waitcv);
1508 }
1509 }
1510
1511 /*
1512 * Stop the current process and switch away when being stopped or traced.
1513 */
1514 static void
1515 sigswitch(bool ppsig, int ppmask, int signo)
1516 {
1517 struct lwp *l = curlwp;
1518 struct proc *p = l->l_proc;
1519 int biglocks;
1520
1521 KASSERT(mutex_owned(p->p_lock));
1522 KASSERT(l->l_stat == LSONPROC);
1523 KASSERT(p->p_nrlwps > 0);
1524
1525 /*
1526 * On entry we know that the process needs to stop. If it's
1527 * the result of a 'sideways' stop signal that has been sourced
1528 * through issignal(), then stop other LWPs in the process too.
1529 */
1530 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1531 KASSERT(signo != 0);
1532 proc_stop(p, 1, signo);
1533 KASSERT(p->p_nrlwps > 0);
1534 }
1535
1536 /*
1537 * If we are the last live LWP, and the stop was a result of
1538 * a new signal, then signal the parent.
1539 */
1540 if ((p->p_sflag & PS_STOPPING) != 0) {
1541 if (!mutex_tryenter(proc_lock)) {
1542 mutex_exit(p->p_lock);
1543 mutex_enter(proc_lock);
1544 mutex_enter(p->p_lock);
1545 }
1546
1547 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1548 /*
1549 * Note that proc_stop_done() can drop
1550 * p->p_lock briefly.
1551 */
1552 proc_stop_done(p, ppsig, ppmask);
1553 }
1554
1555 mutex_exit(proc_lock);
1556 }
1557
1558 /*
1559 * Unlock and switch away.
1560 */
1561 KERNEL_UNLOCK_ALL(l, &biglocks);
1562 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1563 p->p_nrlwps--;
1564 lwp_lock(l);
1565 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1566 l->l_stat = LSSTOP;
1567 lwp_unlock(l);
1568 }
1569
1570 mutex_exit(p->p_lock);
1571 lwp_lock(l);
1572 mi_switch(l);
1573 KERNEL_LOCK(biglocks, l);
1574 mutex_enter(p->p_lock);
1575 }
1576
1577 /*
1578 * Check for a signal from the debugger.
1579 */
1580 static int
1581 sigchecktrace(void)
1582 {
1583 struct lwp *l = curlwp;
1584 struct proc *p = l->l_proc;
1585 int signo;
1586
1587 KASSERT(mutex_owned(p->p_lock));
1588
1589 /* If there's a pending SIGKILL, process it immediately. */
1590 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1591 return 0;
1592
1593 /*
1594 * If we are no longer being traced, or the parent didn't
1595 * give us a signal, or we're stopping, look for more signals.
1596 */
1597 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
1598 (p->p_sflag & PS_STOPPING) != 0)
1599 return 0;
1600
1601 /*
1602 * If the new signal is being masked, look for other signals.
1603 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1604 */
1605 signo = p->p_xsig;
1606 p->p_xsig = 0;
1607 if (sigismember(&l->l_sigmask, signo)) {
1608 signo = 0;
1609 }
1610 return signo;
1611 }
1612
1613 /*
1614 * If the current process has received a signal (should be caught or cause
1615 * termination, should interrupt current syscall), return the signal number.
1616 *
1617 * Stop signals with default action are processed immediately, then cleared;
1618 * they aren't returned. This is checked after each entry to the system for
1619 * a syscall or trap.
1620 *
1621 * We will also return -1 if the process is exiting and the current LWP must
1622 * follow suit.
1623 */
1624 int
1625 issignal(struct lwp *l)
1626 {
1627 struct proc *p;
1628 int signo, prop;
1629 sigpend_t *sp;
1630 sigset_t ss;
1631
1632 p = l->l_proc;
1633 sp = NULL;
1634 signo = 0;
1635
1636 KASSERT(p == curproc);
1637 KASSERT(mutex_owned(p->p_lock));
1638
1639 for (;;) {
1640 /* Discard any signals that we have decided not to take. */
1641 if (signo != 0) {
1642 (void)sigget(sp, NULL, signo, NULL);
1643 }
1644
1645 /*
1646 * If the process is stopped/stopping, then stop ourselves
1647 * now that we're on the kernel/userspace boundary. When
1648 * we awaken, check for a signal from the debugger.
1649 */
1650 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1651 sigswitch(true, PS_NOCLDSTOP, 0);
1652 signo = sigchecktrace();
1653 } else
1654 signo = 0;
1655
1656 /* Signals from the debugger are "out of band". */
1657 sp = NULL;
1658
1659 /*
1660 * If the debugger didn't provide a signal, find a pending
1661 * signal from our set. Check per-LWP signals first, and
1662 * then per-process.
1663 */
1664 if (signo == 0) {
1665 sp = &l->l_sigpend;
1666 ss = sp->sp_set;
1667 if ((p->p_lflag & PL_PPWAIT) != 0)
1668 sigminusset(&stopsigmask, &ss);
1669 sigminusset(&l->l_sigmask, &ss);
1670
1671 if ((signo = firstsig(&ss)) == 0) {
1672 sp = &p->p_sigpend;
1673 ss = sp->sp_set;
1674 if ((p->p_lflag & PL_PPWAIT) != 0)
1675 sigminusset(&stopsigmask, &ss);
1676 sigminusset(&l->l_sigmask, &ss);
1677
1678 if ((signo = firstsig(&ss)) == 0) {
1679 /*
1680 * No signal pending - clear the
1681 * indicator and bail out.
1682 */
1683 lwp_lock(l);
1684 l->l_flag &= ~LW_PENDSIG;
1685 lwp_unlock(l);
1686 sp = NULL;
1687 break;
1688 }
1689 }
1690 }
1691
1692 /*
1693 * We should see pending but ignored signals only if
1694 * we are being traced.
1695 */
1696 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1697 (p->p_slflag & PSL_TRACED) == 0) {
1698 /* Discard the signal. */
1699 continue;
1700 }
1701
1702 /*
1703 * If traced, always stop, and stay stopped until released
1704 * by the debugger. If the our parent process is waiting
1705 * for us, don't hang as we could deadlock.
1706 */
1707 if ((p->p_slflag & PSL_TRACED) != 0 &&
1708 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1709 /*
1710 * Take the signal, but don't remove it from the
1711 * siginfo queue, because the debugger can send
1712 * it later.
1713 */
1714 if (sp)
1715 sigdelset(&sp->sp_set, signo);
1716 p->p_xsig = signo;
1717
1718 /* Emulation-specific handling of signal trace */
1719 if (p->p_emul->e_tracesig == NULL ||
1720 (*p->p_emul->e_tracesig)(p, signo) == 0)
1721 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1722 signo);
1723
1724 /* Check for a signal from the debugger. */
1725 if ((signo = sigchecktrace()) == 0)
1726 continue;
1727
1728 /* Signals from the debugger are "out of band". */
1729 sp = NULL;
1730 }
1731
1732 prop = sigprop[signo];
1733
1734 /*
1735 * Decide whether the signal should be returned.
1736 */
1737 switch ((long)SIGACTION(p, signo).sa_handler) {
1738 case (long)SIG_DFL:
1739 /*
1740 * Don't take default actions on system processes.
1741 */
1742 if (p->p_pid <= 1) {
1743 #ifdef DIAGNOSTIC
1744 /*
1745 * Are you sure you want to ignore SIGSEGV
1746 * in init? XXX
1747 */
1748 printf_nolog("Process (pid %d) got sig %d\n",
1749 p->p_pid, signo);
1750 #endif
1751 continue;
1752 }
1753
1754 /*
1755 * If there is a pending stop signal to process with
1756 * default action, stop here, then clear the signal.
1757 * However, if process is member of an orphaned
1758 * process group, ignore tty stop signals.
1759 */
1760 if (prop & SA_STOP) {
1761 /*
1762 * XXX Don't hold proc_lock for p_lflag,
1763 * but it's not a big deal.
1764 */
1765 if (p->p_slflag & PSL_TRACED ||
1766 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1767 prop & SA_TTYSTOP)) {
1768 /* Ignore the signal. */
1769 continue;
1770 }
1771 /* Take the signal. */
1772 (void)sigget(sp, NULL, signo, NULL);
1773 p->p_xsig = signo;
1774 p->p_sflag &= ~PS_CONTINUED;
1775 signo = 0;
1776 sigswitch(true, PS_NOCLDSTOP, p->p_xsig);
1777 } else if (prop & SA_IGNORE) {
1778 /*
1779 * Except for SIGCONT, shouldn't get here.
1780 * Default action is to ignore; drop it.
1781 */
1782 continue;
1783 }
1784 break;
1785
1786 case (long)SIG_IGN:
1787 #ifdef DEBUG_ISSIGNAL
1788 /*
1789 * Masking above should prevent us ever trying
1790 * to take action on an ignored signal other
1791 * than SIGCONT, unless process is traced.
1792 */
1793 if ((prop & SA_CONT) == 0 &&
1794 (p->p_slflag & PSL_TRACED) == 0)
1795 printf_nolog("issignal\n");
1796 #endif
1797 continue;
1798
1799 default:
1800 /*
1801 * This signal has an action, let postsig() process
1802 * it.
1803 */
1804 break;
1805 }
1806
1807 break;
1808 }
1809
1810 l->l_sigpendset = sp;
1811 return signo;
1812 }
1813
1814 /*
1815 * Take the action for the specified signal
1816 * from the current set of pending signals.
1817 */
1818 void
1819 postsig(int signo)
1820 {
1821 struct lwp *l;
1822 struct proc *p;
1823 struct sigacts *ps;
1824 sig_t action;
1825 sigset_t *returnmask;
1826 ksiginfo_t ksi;
1827
1828 l = curlwp;
1829 p = l->l_proc;
1830 ps = p->p_sigacts;
1831
1832 KASSERT(mutex_owned(p->p_lock));
1833 KASSERT(signo > 0);
1834
1835 /*
1836 * Set the new mask value and also defer further occurrences of this
1837 * signal.
1838 *
1839 * Special case: user has done a sigsuspend. Here the current mask is
1840 * not of interest, but rather the mask from before the sigsuspend is
1841 * what we want restored after the signal processing is completed.
1842 */
1843 if (l->l_sigrestore) {
1844 returnmask = &l->l_sigoldmask;
1845 l->l_sigrestore = 0;
1846 } else
1847 returnmask = &l->l_sigmask;
1848
1849 /*
1850 * Commit to taking the signal before releasing the mutex.
1851 */
1852 action = SIGACTION_PS(ps, signo).sa_handler;
1853 l->l_ru.ru_nsignals++;
1854 if (l->l_sigpendset == NULL) {
1855 /* From the debugger */
1856 if (!siggetinfo(&l->l_sigpend, &ksi, signo))
1857 (void)siggetinfo(&p->p_sigpend, &ksi, signo);
1858 } else
1859 sigget(l->l_sigpendset, &ksi, signo, NULL);
1860
1861 if (ktrpoint(KTR_PSIG)) {
1862 mutex_exit(p->p_lock);
1863 ktrpsig(signo, action, returnmask, &ksi);
1864 mutex_enter(p->p_lock);
1865 }
1866
1867 SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
1868
1869 if (action == SIG_DFL) {
1870 /*
1871 * Default action, where the default is to kill
1872 * the process. (Other cases were ignored above.)
1873 */
1874 sigexit(l, signo);
1875 return;
1876 }
1877
1878 /*
1879 * If we get here, the signal must be caught.
1880 */
1881 #ifdef DIAGNOSTIC
1882 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1883 panic("postsig action");
1884 #endif
1885
1886 kpsendsig(l, &ksi, returnmask);
1887 }
1888
1889 /*
1890 * sendsig:
1891 *
1892 * Default signal delivery method for NetBSD.
1893 */
1894 void
1895 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1896 {
1897 struct sigacts *sa;
1898 int sig;
1899
1900 sig = ksi->ksi_signo;
1901 sa = curproc->p_sigacts;
1902
1903 switch (sa->sa_sigdesc[sig].sd_vers) {
1904 case 0:
1905 case 1:
1906 /* Compat for 1.6 and earlier. */
1907 if (sendsig_sigcontext_vec == NULL) {
1908 break;
1909 }
1910 (*sendsig_sigcontext_vec)(ksi, mask);
1911 return;
1912 case 2:
1913 case 3:
1914 sendsig_siginfo(ksi, mask);
1915 return;
1916 default:
1917 break;
1918 }
1919
1920 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
1921 sigexit(curlwp, SIGILL);
1922 }
1923
1924 /*
1925 * sendsig_reset:
1926 *
1927 * Reset the signal action. Called from emulation specific sendsig()
1928 * before unlocking to deliver the signal.
1929 */
1930 void
1931 sendsig_reset(struct lwp *l, int signo)
1932 {
1933 struct proc *p = l->l_proc;
1934 struct sigacts *ps = p->p_sigacts;
1935
1936 KASSERT(mutex_owned(p->p_lock));
1937
1938 p->p_sigctx.ps_lwp = 0;
1939 p->p_sigctx.ps_code = 0;
1940 p->p_sigctx.ps_signo = 0;
1941
1942 mutex_enter(&ps->sa_mutex);
1943 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
1944 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
1945 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
1946 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
1947 sigaddset(&p->p_sigctx.ps_sigignore, signo);
1948 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
1949 }
1950 mutex_exit(&ps->sa_mutex);
1951 }
1952
1953 /*
1954 * Kill the current process for stated reason.
1955 */
1956 void
1957 killproc(struct proc *p, const char *why)
1958 {
1959
1960 KASSERT(mutex_owned(proc_lock));
1961
1962 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
1963 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
1964 psignal(p, SIGKILL);
1965 }
1966
1967 /*
1968 * Force the current process to exit with the specified signal, dumping core
1969 * if appropriate. We bypass the normal tests for masked and caught
1970 * signals, allowing unrecoverable failures to terminate the process without
1971 * changing signal state. Mark the accounting record with the signal
1972 * termination. If dumping core, save the signal number for the debugger.
1973 * Calls exit and does not return.
1974 */
1975 void
1976 sigexit(struct lwp *l, int signo)
1977 {
1978 int exitsig, error, docore;
1979 struct proc *p;
1980 struct lwp *t;
1981
1982 p = l->l_proc;
1983
1984 KASSERT(mutex_owned(p->p_lock));
1985 KERNEL_UNLOCK_ALL(l, NULL);
1986
1987 /*
1988 * Don't permit coredump() multiple times in the same process.
1989 * Call back into sigexit, where we will be suspended until
1990 * the deed is done. Note that this is a recursive call, but
1991 * LW_WCORE will prevent us from coming back this way.
1992 */
1993 if ((p->p_sflag & PS_WCORE) != 0) {
1994 lwp_lock(l);
1995 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
1996 lwp_unlock(l);
1997 mutex_exit(p->p_lock);
1998 lwp_userret(l);
1999 panic("sigexit 1");
2000 /* NOTREACHED */
2001 }
2002
2003 /* If process is already on the way out, then bail now. */
2004 if ((p->p_sflag & PS_WEXIT) != 0) {
2005 mutex_exit(p->p_lock);
2006 lwp_exit(l);
2007 panic("sigexit 2");
2008 /* NOTREACHED */
2009 }
2010
2011 /*
2012 * Prepare all other LWPs for exit. If dumping core, suspend them
2013 * so that their registers are available long enough to be dumped.
2014 */
2015 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2016 p->p_sflag |= PS_WCORE;
2017 for (;;) {
2018 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2019 lwp_lock(t);
2020 if (t == l) {
2021 t->l_flag &= ~LW_WSUSPEND;
2022 lwp_unlock(t);
2023 continue;
2024 }
2025 t->l_flag |= (LW_WCORE | LW_WEXIT);
2026 lwp_suspend(l, t);
2027 }
2028
2029 if (p->p_nrlwps == 1)
2030 break;
2031
2032 /*
2033 * Kick any LWPs sitting in lwp_wait1(), and wait
2034 * for everyone else to stop before proceeding.
2035 */
2036 p->p_nlwpwait++;
2037 cv_broadcast(&p->p_lwpcv);
2038 cv_wait(&p->p_lwpcv, p->p_lock);
2039 p->p_nlwpwait--;
2040 }
2041 }
2042
2043 exitsig = signo;
2044 p->p_acflag |= AXSIG;
2045 p->p_sigctx.ps_signo = signo;
2046
2047 if (docore) {
2048 mutex_exit(p->p_lock);
2049 error = (*coredump_vec)(l, NULL);
2050
2051 if (kern_logsigexit) {
2052 int uid = l->l_cred ?
2053 (int)kauth_cred_geteuid(l->l_cred) : -1;
2054
2055 if (error)
2056 log(LOG_INFO, lognocoredump, p->p_pid,
2057 p->p_comm, uid, signo, error);
2058 else
2059 log(LOG_INFO, logcoredump, p->p_pid,
2060 p->p_comm, uid, signo);
2061 }
2062
2063 #ifdef PAX_SEGVGUARD
2064 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2065 #endif /* PAX_SEGVGUARD */
2066 /* Acquire the sched state mutex. exit1() will release it. */
2067 mutex_enter(p->p_lock);
2068 if (error == 0)
2069 p->p_sflag |= PS_COREDUMP;
2070 }
2071
2072 /* No longer dumping core. */
2073 p->p_sflag &= ~PS_WCORE;
2074
2075 exit1(l, 0, exitsig);
2076 /* NOTREACHED */
2077 }
2078
2079 /*
2080 * Put process 'p' into the stopped state and optionally, notify the parent.
2081 */
2082 void
2083 proc_stop(struct proc *p, int notify, int signo)
2084 {
2085 struct lwp *l;
2086
2087 KASSERT(mutex_owned(p->p_lock));
2088
2089 /*
2090 * First off, set the stopping indicator and bring all sleeping
2091 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2092 * unlock between here and the p->p_nrlwps check below.
2093 */
2094 p->p_sflag |= PS_STOPPING;
2095 if (notify)
2096 p->p_sflag |= PS_NOTIFYSTOP;
2097 else
2098 p->p_sflag &= ~PS_NOTIFYSTOP;
2099 membar_producer();
2100
2101 proc_stop_lwps(p);
2102
2103 /*
2104 * If there are no LWPs available to take the signal, then we
2105 * signal the parent process immediately. Otherwise, the last
2106 * LWP to stop will take care of it.
2107 */
2108
2109 if (p->p_nrlwps == 0) {
2110 proc_stop_done(p, true, PS_NOCLDSTOP);
2111 } else {
2112 /*
2113 * Have the remaining LWPs come to a halt, and trigger
2114 * proc_stop_callout() to ensure that they do.
2115 */
2116 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2117 sigpost(l, SIG_DFL, SA_STOP, signo);
2118 }
2119 callout_schedule(&proc_stop_ch, 1);
2120 }
2121 }
2122
2123 /*
2124 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2125 * but wait for them to come to a halt at the kernel-user boundary. This is
2126 * to allow LWPs to release any locks that they may hold before stopping.
2127 *
2128 * Non-interruptable sleeps can be long, and there is the potential for an
2129 * LWP to begin sleeping interruptably soon after the process has been set
2130 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2131 * stopping, and so complete halt of the process and the return of status
2132 * information to the parent could be delayed indefinitely.
2133 *
2134 * To handle this race, proc_stop_callout() runs once per tick while there
2135 * are stopping processes in the system. It sets LWPs that are sleeping
2136 * interruptably into the LSSTOP state.
2137 *
2138 * Note that we are not concerned about keeping all LWPs stopped while the
2139 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2140 * What we do need to ensure is that all LWPs in a stopping process have
2141 * stopped at least once, so that notification can be sent to the parent
2142 * process.
2143 */
2144 static void
2145 proc_stop_callout(void *cookie)
2146 {
2147 bool more, restart;
2148 struct proc *p;
2149
2150 (void)cookie;
2151
2152 do {
2153 restart = false;
2154 more = false;
2155
2156 mutex_enter(proc_lock);
2157 PROCLIST_FOREACH(p, &allproc) {
2158 mutex_enter(p->p_lock);
2159
2160 if ((p->p_sflag & PS_STOPPING) == 0) {
2161 mutex_exit(p->p_lock);
2162 continue;
2163 }
2164
2165 /* Stop any LWPs sleeping interruptably. */
2166 proc_stop_lwps(p);
2167 if (p->p_nrlwps == 0) {
2168 /*
2169 * We brought the process to a halt.
2170 * Mark it as stopped and notify the
2171 * parent.
2172 */
2173 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2174 /*
2175 * Note that proc_stop_done() will
2176 * drop p->p_lock briefly.
2177 * Arrange to restart and check
2178 * all processes again.
2179 */
2180 restart = true;
2181 }
2182 proc_stop_done(p, true, PS_NOCLDSTOP);
2183 } else
2184 more = true;
2185
2186 mutex_exit(p->p_lock);
2187 if (restart)
2188 break;
2189 }
2190 mutex_exit(proc_lock);
2191 } while (restart);
2192
2193 /*
2194 * If we noted processes that are stopping but still have
2195 * running LWPs, then arrange to check again in 1 tick.
2196 */
2197 if (more)
2198 callout_schedule(&proc_stop_ch, 1);
2199 }
2200
2201 /*
2202 * Given a process in state SSTOP, set the state back to SACTIVE and
2203 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2204 */
2205 void
2206 proc_unstop(struct proc *p)
2207 {
2208 struct lwp *l;
2209 int sig;
2210
2211 KASSERT(mutex_owned(proc_lock));
2212 KASSERT(mutex_owned(p->p_lock));
2213
2214 p->p_stat = SACTIVE;
2215 p->p_sflag &= ~PS_STOPPING;
2216 sig = p->p_xsig;
2217
2218 if (!p->p_waited)
2219 p->p_pptr->p_nstopchild--;
2220
2221 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2222 lwp_lock(l);
2223 if (l->l_stat != LSSTOP) {
2224 lwp_unlock(l);
2225 continue;
2226 }
2227 if (l->l_wchan == NULL) {
2228 setrunnable(l);
2229 continue;
2230 }
2231 if (sig && (l->l_flag & LW_SINTR) != 0) {
2232 setrunnable(l);
2233 sig = 0;
2234 } else {
2235 l->l_stat = LSSLEEP;
2236 p->p_nrlwps++;
2237 lwp_unlock(l);
2238 }
2239 }
2240 }
2241
2242 static int
2243 filt_sigattach(struct knote *kn)
2244 {
2245 struct proc *p = curproc;
2246
2247 kn->kn_obj = p;
2248 kn->kn_flags |= EV_CLEAR; /* automatically set */
2249
2250 mutex_enter(p->p_lock);
2251 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2252 mutex_exit(p->p_lock);
2253
2254 return 0;
2255 }
2256
2257 static void
2258 filt_sigdetach(struct knote *kn)
2259 {
2260 struct proc *p = kn->kn_obj;
2261
2262 mutex_enter(p->p_lock);
2263 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2264 mutex_exit(p->p_lock);
2265 }
2266
2267 /*
2268 * Signal knotes are shared with proc knotes, so we apply a mask to
2269 * the hint in order to differentiate them from process hints. This
2270 * could be avoided by using a signal-specific knote list, but probably
2271 * isn't worth the trouble.
2272 */
2273 static int
2274 filt_signal(struct knote *kn, long hint)
2275 {
2276
2277 if (hint & NOTE_SIGNAL) {
2278 hint &= ~NOTE_SIGNAL;
2279
2280 if (kn->kn_id == hint)
2281 kn->kn_data++;
2282 }
2283 return (kn->kn_data != 0);
2284 }
2285
2286 const struct filterops sig_filtops = {
2287 0, filt_sigattach, filt_sigdetach, filt_signal
2288 };
2289