Home | History | Annotate | Line # | Download | only in kern
kern_sig.c revision 1.330
      1 /*	$NetBSD: kern_sig.c,v 1.330 2016/09/13 07:39:45 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_sig.c	8.14 (Berkeley) 5/14/95
     66  */
     67 
     68 /*
     69  * Signal subsystem.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.330 2016/09/13 07:39:45 martin Exp $");
     74 
     75 #include "opt_ptrace.h"
     76 #include "opt_dtrace.h"
     77 #include "opt_compat_sunos.h"
     78 #include "opt_compat_netbsd.h"
     79 #include "opt_compat_netbsd32.h"
     80 #include "opt_pax.h"
     81 
     82 #define	SIGPROP		/* include signal properties table */
     83 #include <sys/param.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/proc.h>
     86 #include <sys/systm.h>
     87 #include <sys/wait.h>
     88 #include <sys/ktrace.h>
     89 #include <sys/syslog.h>
     90 #include <sys/filedesc.h>
     91 #include <sys/file.h>
     92 #include <sys/pool.h>
     93 #include <sys/ucontext.h>
     94 #include <sys/exec.h>
     95 #include <sys/kauth.h>
     96 #include <sys/acct.h>
     97 #include <sys/callout.h>
     98 #include <sys/atomic.h>
     99 #include <sys/cpu.h>
    100 #include <sys/module.h>
    101 #include <sys/sdt.h>
    102 
    103 #ifdef PAX_SEGVGUARD
    104 #include <sys/pax.h>
    105 #endif /* PAX_SEGVGUARD */
    106 
    107 #include <uvm/uvm_extern.h>
    108 
    109 #define	SIGQUEUE_MAX	32
    110 static pool_cache_t	sigacts_cache	__read_mostly;
    111 static pool_cache_t	ksiginfo_cache	__read_mostly;
    112 static callout_t	proc_stop_ch	__cacheline_aligned;
    113 
    114 sigset_t		contsigmask	__cacheline_aligned;
    115 static sigset_t		stopsigmask	__cacheline_aligned;
    116 sigset_t		sigcantmask	__cacheline_aligned;
    117 
    118 static void	ksiginfo_exechook(struct proc *, void *);
    119 static void	proc_stop_callout(void *);
    120 static int	sigchecktrace(void);
    121 static int	sigpost(struct lwp *, sig_t, int, int);
    122 static int	sigput(sigpend_t *, struct proc *, ksiginfo_t *);
    123 static int	sigunwait(struct proc *, const ksiginfo_t *);
    124 static void	sigswitch(bool, int, int);
    125 
    126 static void	sigacts_poolpage_free(struct pool *, void *);
    127 static void	*sigacts_poolpage_alloc(struct pool *, int);
    128 
    129 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
    130 int (*coredump_vec)(struct lwp *, const char *) =
    131     (int (*)(struct lwp *, const char *))enosys;
    132 
    133 /*
    134  * DTrace SDT provider definitions
    135  */
    136 SDT_PROVIDER_DECLARE(proc);
    137 SDT_PROBE_DEFINE3(proc, kernel, , signal__send,
    138     "struct lwp *", 	/* target thread */
    139     "struct proc *", 	/* target process */
    140     "int");		/* signal */
    141 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
    142     "struct lwp *",	/* target thread */
    143     "struct proc *",	/* target process */
    144     "int");  		/* signal */
    145 SDT_PROBE_DEFINE3(proc, kernel, , signal__handle,
    146     "int", 		/* signal */
    147     "ksiginfo_t *", 	/* signal info */
    148     "void (*)(void)");	/* handler address */
    149 
    150 
    151 static struct pool_allocator sigactspool_allocator = {
    152 	.pa_alloc = sigacts_poolpage_alloc,
    153 	.pa_free = sigacts_poolpage_free
    154 };
    155 
    156 #ifdef DEBUG
    157 int	kern_logsigexit = 1;
    158 #else
    159 int	kern_logsigexit = 0;
    160 #endif
    161 
    162 static const char logcoredump[] =
    163     "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
    164 static const char lognocoredump[] =
    165     "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
    166 
    167 static kauth_listener_t signal_listener;
    168 
    169 static int
    170 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    171     void *arg0, void *arg1, void *arg2, void *arg3)
    172 {
    173 	struct proc *p;
    174 	int result, signum;
    175 
    176 	result = KAUTH_RESULT_DEFER;
    177 	p = arg0;
    178 	signum = (int)(unsigned long)arg1;
    179 
    180 	if (action != KAUTH_PROCESS_SIGNAL)
    181 		return result;
    182 
    183 	if (kauth_cred_uidmatch(cred, p->p_cred) ||
    184 	    (signum == SIGCONT && (curproc->p_session == p->p_session)))
    185 		result = KAUTH_RESULT_ALLOW;
    186 
    187 	return result;
    188 }
    189 
    190 /*
    191  * signal_init:
    192  *
    193  *	Initialize global signal-related data structures.
    194  */
    195 void
    196 signal_init(void)
    197 {
    198 
    199 	sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
    200 
    201 	sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
    202 	    "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
    203 	    &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
    204 	ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
    205 	    "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
    206 
    207 	exechook_establish(ksiginfo_exechook, NULL);
    208 
    209 	callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
    210 	callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
    211 
    212 	signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    213 	    signal_listener_cb, NULL);
    214 }
    215 
    216 /*
    217  * sigacts_poolpage_alloc:
    218  *
    219  *	Allocate a page for the sigacts memory pool.
    220  */
    221 static void *
    222 sigacts_poolpage_alloc(struct pool *pp, int flags)
    223 {
    224 
    225 	return (void *)uvm_km_alloc(kernel_map,
    226 	    PAGE_SIZE * 2, PAGE_SIZE * 2,
    227 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
    228 	    | UVM_KMF_WIRED);
    229 }
    230 
    231 /*
    232  * sigacts_poolpage_free:
    233  *
    234  *	Free a page on behalf of the sigacts memory pool.
    235  */
    236 static void
    237 sigacts_poolpage_free(struct pool *pp, void *v)
    238 {
    239 
    240 	uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
    241 }
    242 
    243 /*
    244  * sigactsinit:
    245  *
    246  *	Create an initial sigacts structure, using the same signal state
    247  *	as of specified process.  If 'share' is set, share the sigacts by
    248  *	holding a reference, otherwise just copy it from parent.
    249  */
    250 struct sigacts *
    251 sigactsinit(struct proc *pp, int share)
    252 {
    253 	struct sigacts *ps = pp->p_sigacts, *ps2;
    254 
    255 	if (__predict_false(share)) {
    256 		atomic_inc_uint(&ps->sa_refcnt);
    257 		return ps;
    258 	}
    259 	ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
    260 	mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    261 	ps2->sa_refcnt = 1;
    262 
    263 	mutex_enter(&ps->sa_mutex);
    264 	memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
    265 	mutex_exit(&ps->sa_mutex);
    266 	return ps2;
    267 }
    268 
    269 /*
    270  * sigactsunshare:
    271  *
    272  *	Make this process not share its sigacts, maintaining all signal state.
    273  */
    274 void
    275 sigactsunshare(struct proc *p)
    276 {
    277 	struct sigacts *ps, *oldps = p->p_sigacts;
    278 
    279 	if (__predict_true(oldps->sa_refcnt == 1))
    280 		return;
    281 
    282 	ps = pool_cache_get(sigacts_cache, PR_WAITOK);
    283 	mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
    284 	memcpy(ps->sa_sigdesc, oldps->sa_sigdesc, sizeof(ps->sa_sigdesc));
    285 	ps->sa_refcnt = 1;
    286 
    287 	p->p_sigacts = ps;
    288 	sigactsfree(oldps);
    289 }
    290 
    291 /*
    292  * sigactsfree;
    293  *
    294  *	Release a sigacts structure.
    295  */
    296 void
    297 sigactsfree(struct sigacts *ps)
    298 {
    299 
    300 	if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
    301 		mutex_destroy(&ps->sa_mutex);
    302 		pool_cache_put(sigacts_cache, ps);
    303 	}
    304 }
    305 
    306 /*
    307  * siginit:
    308  *
    309  *	Initialize signal state for process 0; set to ignore signals that
    310  *	are ignored by default and disable the signal stack.  Locking not
    311  *	required as the system is still cold.
    312  */
    313 void
    314 siginit(struct proc *p)
    315 {
    316 	struct lwp *l;
    317 	struct sigacts *ps;
    318 	int signo, prop;
    319 
    320 	ps = p->p_sigacts;
    321 	sigemptyset(&contsigmask);
    322 	sigemptyset(&stopsigmask);
    323 	sigemptyset(&sigcantmask);
    324 	for (signo = 1; signo < NSIG; signo++) {
    325 		prop = sigprop[signo];
    326 		if (prop & SA_CONT)
    327 			sigaddset(&contsigmask, signo);
    328 		if (prop & SA_STOP)
    329 			sigaddset(&stopsigmask, signo);
    330 		if (prop & SA_CANTMASK)
    331 			sigaddset(&sigcantmask, signo);
    332 		if (prop & SA_IGNORE && signo != SIGCONT)
    333 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
    334 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    335 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    336 	}
    337 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    338 	p->p_sflag &= ~PS_NOCLDSTOP;
    339 
    340 	ksiginfo_queue_init(&p->p_sigpend.sp_info);
    341 	sigemptyset(&p->p_sigpend.sp_set);
    342 
    343 	/*
    344 	 * Reset per LWP state.
    345 	 */
    346 	l = LIST_FIRST(&p->p_lwps);
    347 	l->l_sigwaited = NULL;
    348 	l->l_sigstk.ss_flags = SS_DISABLE;
    349 	l->l_sigstk.ss_size = 0;
    350 	l->l_sigstk.ss_sp = 0;
    351 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    352 	sigemptyset(&l->l_sigpend.sp_set);
    353 
    354 	/* One reference. */
    355 	ps->sa_refcnt = 1;
    356 }
    357 
    358 /*
    359  * execsigs:
    360  *
    361  *	Reset signals for an exec of the specified process.
    362  */
    363 void
    364 execsigs(struct proc *p)
    365 {
    366 	struct sigacts *ps;
    367 	struct lwp *l;
    368 	int signo, prop;
    369 	sigset_t tset;
    370 	ksiginfoq_t kq;
    371 
    372 	KASSERT(p->p_nlwps == 1);
    373 
    374 	sigactsunshare(p);
    375 	ps = p->p_sigacts;
    376 
    377 	/*
    378 	 * Reset caught signals.  Held signals remain held through
    379 	 * l->l_sigmask (unless they were caught, and are now ignored
    380 	 * by default).
    381 	 *
    382 	 * No need to lock yet, the process has only one LWP and
    383 	 * at this point the sigacts are private to the process.
    384 	 */
    385 	sigemptyset(&tset);
    386 	for (signo = 1; signo < NSIG; signo++) {
    387 		if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
    388 			prop = sigprop[signo];
    389 			if (prop & SA_IGNORE) {
    390 				if ((prop & SA_CONT) == 0)
    391 					sigaddset(&p->p_sigctx.ps_sigignore,
    392 					    signo);
    393 				sigaddset(&tset, signo);
    394 			}
    395 			SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
    396 		}
    397 		sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
    398 		SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
    399 	}
    400 	ksiginfo_queue_init(&kq);
    401 
    402 	mutex_enter(p->p_lock);
    403 	sigclearall(p, &tset, &kq);
    404 	sigemptyset(&p->p_sigctx.ps_sigcatch);
    405 
    406 	/*
    407 	 * Reset no zombies if child dies flag as Solaris does.
    408 	 */
    409 	p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
    410 	if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
    411 		SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
    412 
    413 	/*
    414 	 * Reset per-LWP state.
    415 	 */
    416 	l = LIST_FIRST(&p->p_lwps);
    417 	l->l_sigwaited = NULL;
    418 	l->l_sigstk.ss_flags = SS_DISABLE;
    419 	l->l_sigstk.ss_size = 0;
    420 	l->l_sigstk.ss_sp = 0;
    421 	ksiginfo_queue_init(&l->l_sigpend.sp_info);
    422 	sigemptyset(&l->l_sigpend.sp_set);
    423 	mutex_exit(p->p_lock);
    424 
    425 	ksiginfo_queue_drain(&kq);
    426 }
    427 
    428 /*
    429  * ksiginfo_exechook:
    430  *
    431  *	Free all pending ksiginfo entries from a process on exec.
    432  *	Additionally, drain any unused ksiginfo structures in the
    433  *	system back to the pool.
    434  *
    435  *	XXX This should not be a hook, every process has signals.
    436  */
    437 static void
    438 ksiginfo_exechook(struct proc *p, void *v)
    439 {
    440 	ksiginfoq_t kq;
    441 
    442 	ksiginfo_queue_init(&kq);
    443 
    444 	mutex_enter(p->p_lock);
    445 	sigclearall(p, NULL, &kq);
    446 	mutex_exit(p->p_lock);
    447 
    448 	ksiginfo_queue_drain(&kq);
    449 }
    450 
    451 /*
    452  * ksiginfo_alloc:
    453  *
    454  *	Allocate a new ksiginfo structure from the pool, and optionally copy
    455  *	an existing one.  If the existing ksiginfo_t is from the pool, and
    456  *	has not been queued somewhere, then just return it.  Additionally,
    457  *	if the existing ksiginfo_t does not contain any information beyond
    458  *	the signal number, then just return it.
    459  */
    460 ksiginfo_t *
    461 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
    462 {
    463 	ksiginfo_t *kp;
    464 
    465 	if (ok != NULL) {
    466 		if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
    467 		    KSI_FROMPOOL)
    468 			return ok;
    469 		if (KSI_EMPTY_P(ok))
    470 			return ok;
    471 	}
    472 
    473 	kp = pool_cache_get(ksiginfo_cache, flags);
    474 	if (kp == NULL) {
    475 #ifdef DIAGNOSTIC
    476 		printf("Out of memory allocating ksiginfo for pid %d\n",
    477 		    p->p_pid);
    478 #endif
    479 		return NULL;
    480 	}
    481 
    482 	if (ok != NULL) {
    483 		memcpy(kp, ok, sizeof(*kp));
    484 		kp->ksi_flags &= ~KSI_QUEUED;
    485 	} else
    486 		KSI_INIT_EMPTY(kp);
    487 
    488 	kp->ksi_flags |= KSI_FROMPOOL;
    489 
    490 	return kp;
    491 }
    492 
    493 /*
    494  * ksiginfo_free:
    495  *
    496  *	If the given ksiginfo_t is from the pool and has not been queued,
    497  *	then free it.
    498  */
    499 void
    500 ksiginfo_free(ksiginfo_t *kp)
    501 {
    502 
    503 	if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
    504 		return;
    505 	pool_cache_put(ksiginfo_cache, kp);
    506 }
    507 
    508 /*
    509  * ksiginfo_queue_drain:
    510  *
    511  *	Drain a non-empty ksiginfo_t queue.
    512  */
    513 void
    514 ksiginfo_queue_drain0(ksiginfoq_t *kq)
    515 {
    516 	ksiginfo_t *ksi;
    517 
    518 	KASSERT(!TAILQ_EMPTY(kq));
    519 
    520 	while (!TAILQ_EMPTY(kq)) {
    521 		ksi = TAILQ_FIRST(kq);
    522 		TAILQ_REMOVE(kq, ksi, ksi_list);
    523 		pool_cache_put(ksiginfo_cache, ksi);
    524 	}
    525 }
    526 
    527 static int
    528 siggetinfo(sigpend_t *sp, ksiginfo_t *out, int signo)
    529 {
    530 	ksiginfo_t *ksi, *nksi;
    531 
    532 	if (sp == NULL)
    533 		goto out;
    534 
    535 	/* Find siginfo and copy it out. */
    536 	int count = 0;
    537 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, nksi) {
    538 		if (ksi->ksi_signo != signo)
    539 			continue;
    540 		if (count++ > 0) /* Only remove the first, count all of them */
    541 			continue;
    542 		TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    543 		KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    544 		KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    545 		ksi->ksi_flags &= ~KSI_QUEUED;
    546 		if (out != NULL) {
    547 			memcpy(out, ksi, sizeof(*out));
    548 			out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
    549 		}
    550 		ksiginfo_free(ksi);
    551 	}
    552 	if (count)
    553 		return count;
    554 
    555 out:
    556 	/* If there is no siginfo, then manufacture it. */
    557 	if (out != NULL) {
    558 		KSI_INIT(out);
    559 		out->ksi_info._signo = signo;
    560 		out->ksi_info._code = SI_NOINFO;
    561 	}
    562 	return 0;
    563 }
    564 
    565 /*
    566  * sigget:
    567  *
    568  *	Fetch the first pending signal from a set.  Optionally, also fetch
    569  *	or manufacture a ksiginfo element.  Returns the number of the first
    570  *	pending signal, or zero.
    571  */
    572 int
    573 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
    574 {
    575 	sigset_t tset;
    576 	int count;
    577 
    578 	/* If there's no pending set, the signal is from the debugger. */
    579 	if (sp == NULL)
    580 		goto out;
    581 
    582 	/* Construct mask from signo, and 'mask'. */
    583 	if (signo == 0) {
    584 		if (mask != NULL) {
    585 			tset = *mask;
    586 			__sigandset(&sp->sp_set, &tset);
    587 		} else
    588 			tset = sp->sp_set;
    589 
    590 		/* If there are no signals pending - return. */
    591 		if ((signo = firstsig(&tset)) == 0)
    592 			goto out;
    593 	} else {
    594 		KASSERT(sigismember(&sp->sp_set, signo));
    595 	}
    596 
    597 	sigdelset(&sp->sp_set, signo);
    598 out:
    599 	count = siggetinfo(sp, out, signo);
    600 	if (count > 1)
    601 		sigaddset(&sp->sp_set, signo);
    602 	return signo;
    603 }
    604 
    605 /*
    606  * sigput:
    607  *
    608  *	Append a new ksiginfo element to the list of pending ksiginfo's.
    609  */
    610 static int
    611 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
    612 {
    613 	ksiginfo_t *kp;
    614 
    615 	KASSERT(mutex_owned(p->p_lock));
    616 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
    617 
    618 	sigaddset(&sp->sp_set, ksi->ksi_signo);
    619 
    620 	/*
    621 	 * If there is no siginfo, we are done.
    622 	 */
    623 	if (KSI_EMPTY_P(ksi))
    624 		return 0;
    625 
    626 	KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    627 
    628 	size_t count = 0;
    629 	TAILQ_FOREACH(kp, &sp->sp_info, ksi_list) {
    630 		count++;
    631 		if (ksi->ksi_signo >= SIGRTMIN && ksi->ksi_signo <= SIGRTMAX)
    632 			continue;
    633 		if (kp->ksi_signo == ksi->ksi_signo) {
    634 			KSI_COPY(ksi, kp);
    635 			kp->ksi_flags |= KSI_QUEUED;
    636 			return 0;
    637 		}
    638 	}
    639 
    640 	if (count >= SIGQUEUE_MAX) {
    641 #ifdef DIAGNOSTIC
    642 		printf("%s(%d): Signal queue is full signal=%d\n",
    643 		    p->p_comm, p->p_pid, ksi->ksi_signo);
    644 #endif
    645 		return EAGAIN;
    646 	}
    647 	ksi->ksi_flags |= KSI_QUEUED;
    648 	TAILQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
    649 
    650 	return 0;
    651 }
    652 
    653 /*
    654  * sigclear:
    655  *
    656  *	Clear all pending signals in the specified set.
    657  */
    658 void
    659 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
    660 {
    661 	ksiginfo_t *ksi, *next;
    662 
    663 	if (mask == NULL)
    664 		sigemptyset(&sp->sp_set);
    665 	else
    666 		sigminusset(mask, &sp->sp_set);
    667 
    668 	TAILQ_FOREACH_SAFE(ksi, &sp->sp_info, ksi_list, next) {
    669 		if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
    670 			TAILQ_REMOVE(&sp->sp_info, ksi, ksi_list);
    671 			KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
    672 			KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
    673 			TAILQ_INSERT_TAIL(kq, ksi, ksi_list);
    674 		}
    675 	}
    676 }
    677 
    678 /*
    679  * sigclearall:
    680  *
    681  *	Clear all pending signals in the specified set from a process and
    682  *	its LWPs.
    683  */
    684 void
    685 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
    686 {
    687 	struct lwp *l;
    688 
    689 	KASSERT(mutex_owned(p->p_lock));
    690 
    691 	sigclear(&p->p_sigpend, mask, kq);
    692 
    693 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    694 		sigclear(&l->l_sigpend, mask, kq);
    695 	}
    696 }
    697 
    698 /*
    699  * sigispending:
    700  *
    701  *	Return the first signal number if there are pending signals for the
    702  *	current LWP.  May be called unlocked provided that LW_PENDSIG is set,
    703  *	and that the signal has been posted to the appopriate queue before
    704  *	LW_PENDSIG is set.
    705  */
    706 int
    707 sigispending(struct lwp *l, int signo)
    708 {
    709 	struct proc *p = l->l_proc;
    710 	sigset_t tset;
    711 
    712 	membar_consumer();
    713 
    714 	tset = l->l_sigpend.sp_set;
    715 	sigplusset(&p->p_sigpend.sp_set, &tset);
    716 	sigminusset(&p->p_sigctx.ps_sigignore, &tset);
    717 	sigminusset(&l->l_sigmask, &tset);
    718 
    719 	if (signo == 0) {
    720 		return firstsig(&tset);
    721 	}
    722 	return sigismember(&tset, signo) ? signo : 0;
    723 }
    724 
    725 void
    726 getucontext(struct lwp *l, ucontext_t *ucp)
    727 {
    728 	struct proc *p = l->l_proc;
    729 
    730 	KASSERT(mutex_owned(p->p_lock));
    731 
    732 	ucp->uc_flags = 0;
    733 	ucp->uc_link = l->l_ctxlink;
    734 	ucp->uc_sigmask = l->l_sigmask;
    735 	ucp->uc_flags |= _UC_SIGMASK;
    736 
    737 	/*
    738 	 * The (unsupplied) definition of the `current execution stack'
    739 	 * in the System V Interface Definition appears to allow returning
    740 	 * the main context stack.
    741 	 */
    742 	if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
    743 		ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
    744 		ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
    745 		ucp->uc_stack.ss_flags = 0;	/* XXX, def. is Very Fishy */
    746 	} else {
    747 		/* Simply copy alternate signal execution stack. */
    748 		ucp->uc_stack = l->l_sigstk;
    749 	}
    750 	ucp->uc_flags |= _UC_STACK;
    751 	mutex_exit(p->p_lock);
    752 	cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
    753 	mutex_enter(p->p_lock);
    754 }
    755 
    756 int
    757 setucontext(struct lwp *l, const ucontext_t *ucp)
    758 {
    759 	struct proc *p = l->l_proc;
    760 	int error;
    761 
    762 	KASSERT(mutex_owned(p->p_lock));
    763 
    764 	if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
    765 		error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
    766 		if (error != 0)
    767 			return error;
    768 	}
    769 
    770 	mutex_exit(p->p_lock);
    771 	error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
    772 	mutex_enter(p->p_lock);
    773 	if (error != 0)
    774 		return (error);
    775 
    776 	l->l_ctxlink = ucp->uc_link;
    777 
    778 	/*
    779 	 * If there was stack information, update whether or not we are
    780 	 * still running on an alternate signal stack.
    781 	 */
    782 	if ((ucp->uc_flags & _UC_STACK) != 0) {
    783 		if (ucp->uc_stack.ss_flags & SS_ONSTACK)
    784 			l->l_sigstk.ss_flags |= SS_ONSTACK;
    785 		else
    786 			l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    787 	}
    788 
    789 	return 0;
    790 }
    791 
    792 /*
    793  * killpg1: common code for kill process group/broadcast kill.
    794  */
    795 int
    796 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
    797 {
    798 	struct proc	*p, *cp;
    799 	kauth_cred_t	pc;
    800 	struct pgrp	*pgrp;
    801 	int		nfound;
    802 	int		signo = ksi->ksi_signo;
    803 
    804 	cp = l->l_proc;
    805 	pc = l->l_cred;
    806 	nfound = 0;
    807 
    808 	mutex_enter(proc_lock);
    809 	if (all) {
    810 		/*
    811 		 * Broadcast.
    812 		 */
    813 		PROCLIST_FOREACH(p, &allproc) {
    814 			if (p->p_pid <= 1 || p == cp ||
    815 			    (p->p_flag & PK_SYSTEM) != 0)
    816 				continue;
    817 			mutex_enter(p->p_lock);
    818 			if (kauth_authorize_process(pc,
    819 			    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
    820 			    NULL) == 0) {
    821 				nfound++;
    822 				if (signo)
    823 					kpsignal2(p, ksi);
    824 			}
    825 			mutex_exit(p->p_lock);
    826 		}
    827 	} else {
    828 		if (pgid == 0)
    829 			/* Zero pgid means send to my process group. */
    830 			pgrp = cp->p_pgrp;
    831 		else {
    832 			pgrp = pgrp_find(pgid);
    833 			if (pgrp == NULL)
    834 				goto out;
    835 		}
    836 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
    837 			if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
    838 				continue;
    839 			mutex_enter(p->p_lock);
    840 			if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
    841 			    p, KAUTH_ARG(signo), NULL, NULL) == 0) {
    842 				nfound++;
    843 				if (signo && P_ZOMBIE(p) == 0)
    844 					kpsignal2(p, ksi);
    845 			}
    846 			mutex_exit(p->p_lock);
    847 		}
    848 	}
    849 out:
    850 	mutex_exit(proc_lock);
    851 	return nfound ? 0 : ESRCH;
    852 }
    853 
    854 /*
    855  * Send a signal to a process group.  If checktty is set, limit to members
    856  * which have a controlling terminal.
    857  */
    858 void
    859 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
    860 {
    861 	ksiginfo_t ksi;
    862 
    863 	KASSERT(!cpu_intr_p());
    864 	KASSERT(mutex_owned(proc_lock));
    865 
    866 	KSI_INIT_EMPTY(&ksi);
    867 	ksi.ksi_signo = sig;
    868 	kpgsignal(pgrp, &ksi, NULL, checkctty);
    869 }
    870 
    871 void
    872 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
    873 {
    874 	struct proc *p;
    875 
    876 	KASSERT(!cpu_intr_p());
    877 	KASSERT(mutex_owned(proc_lock));
    878 	KASSERT(pgrp != NULL);
    879 
    880 	LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
    881 		if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
    882 			kpsignal(p, ksi, data);
    883 }
    884 
    885 /*
    886  * Send a signal caused by a trap to the current LWP.  If it will be caught
    887  * immediately, deliver it with correct code.  Otherwise, post it normally.
    888  */
    889 void
    890 trapsignal(struct lwp *l, ksiginfo_t *ksi)
    891 {
    892 	struct proc	*p;
    893 	struct sigacts	*ps;
    894 	int signo = ksi->ksi_signo;
    895 	sigset_t *mask;
    896 
    897 	KASSERT(KSI_TRAP_P(ksi));
    898 
    899 	ksi->ksi_lid = l->l_lid;
    900 	p = l->l_proc;
    901 
    902 	KASSERT(!cpu_intr_p());
    903 	mutex_enter(proc_lock);
    904 	mutex_enter(p->p_lock);
    905 	mask = &l->l_sigmask;
    906 	ps = p->p_sigacts;
    907 
    908 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    909 	    sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
    910 	    !sigismember(mask, signo)) {
    911 		mutex_exit(proc_lock);
    912 		l->l_ru.ru_nsignals++;
    913 		kpsendsig(l, ksi, mask);
    914 		mutex_exit(p->p_lock);
    915 		if (ktrpoint(KTR_PSIG)) {
    916 			if (p->p_emul->e_ktrpsig)
    917 				p->p_emul->e_ktrpsig(signo,
    918 				    SIGACTION_PS(ps, signo).sa_handler,
    919 				    mask, ksi);
    920 			else
    921 				ktrpsig(signo,
    922 				    SIGACTION_PS(ps, signo).sa_handler,
    923 				    mask, ksi);
    924 		}
    925 	} else {
    926 		/* XXX for core dump/debugger */
    927 		p->p_sigctx.ps_lwp = l->l_lid;
    928 		p->p_sigctx.ps_signo = ksi->ksi_signo;
    929 		p->p_sigctx.ps_code = ksi->ksi_trap;
    930 		kpsignal2(p, ksi);
    931 		mutex_exit(p->p_lock);
    932 		mutex_exit(proc_lock);
    933 	}
    934 }
    935 
    936 /*
    937  * Fill in signal information and signal the parent for a child status change.
    938  */
    939 void
    940 child_psignal(struct proc *p, int mask)
    941 {
    942 	ksiginfo_t ksi;
    943 	struct proc *q;
    944 	int xsig;
    945 
    946 	KASSERT(mutex_owned(proc_lock));
    947 	KASSERT(mutex_owned(p->p_lock));
    948 
    949 	xsig = p->p_xsig;
    950 
    951 	KSI_INIT(&ksi);
    952 	ksi.ksi_signo = SIGCHLD;
    953 	ksi.ksi_code = (xsig == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
    954 	ksi.ksi_pid = p->p_pid;
    955 	ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
    956 	ksi.ksi_status = xsig;
    957 	ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
    958 	ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
    959 
    960 	q = p->p_pptr;
    961 
    962 	mutex_exit(p->p_lock);
    963 	mutex_enter(q->p_lock);
    964 
    965 	if ((q->p_sflag & mask) == 0)
    966 		kpsignal2(q, &ksi);
    967 
    968 	mutex_exit(q->p_lock);
    969 	mutex_enter(p->p_lock);
    970 }
    971 
    972 void
    973 psignal(struct proc *p, int signo)
    974 {
    975 	ksiginfo_t ksi;
    976 
    977 	KASSERT(!cpu_intr_p());
    978 	KASSERT(mutex_owned(proc_lock));
    979 
    980 	KSI_INIT_EMPTY(&ksi);
    981 	ksi.ksi_signo = signo;
    982 	mutex_enter(p->p_lock);
    983 	kpsignal2(p, &ksi);
    984 	mutex_exit(p->p_lock);
    985 }
    986 
    987 void
    988 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
    989 {
    990 	fdfile_t *ff;
    991 	file_t *fp;
    992 	fdtab_t *dt;
    993 
    994 	KASSERT(!cpu_intr_p());
    995 	KASSERT(mutex_owned(proc_lock));
    996 
    997 	if ((p->p_sflag & PS_WEXIT) == 0 && data) {
    998 		size_t fd;
    999 		filedesc_t *fdp = p->p_fd;
   1000 
   1001 		/* XXXSMP locking */
   1002 		ksi->ksi_fd = -1;
   1003 		dt = fdp->fd_dt;
   1004 		for (fd = 0; fd < dt->dt_nfiles; fd++) {
   1005 			if ((ff = dt->dt_ff[fd]) == NULL)
   1006 				continue;
   1007 			if ((fp = ff->ff_file) == NULL)
   1008 				continue;
   1009 			if (fp->f_data == data) {
   1010 				ksi->ksi_fd = fd;
   1011 				break;
   1012 			}
   1013 		}
   1014 	}
   1015 	mutex_enter(p->p_lock);
   1016 	kpsignal2(p, ksi);
   1017 	mutex_exit(p->p_lock);
   1018 }
   1019 
   1020 /*
   1021  * sigismasked:
   1022  *
   1023  *	Returns true if signal is ignored or masked for the specified LWP.
   1024  */
   1025 int
   1026 sigismasked(struct lwp *l, int sig)
   1027 {
   1028 	struct proc *p = l->l_proc;
   1029 
   1030 	return sigismember(&p->p_sigctx.ps_sigignore, sig) ||
   1031 	    sigismember(&l->l_sigmask, sig);
   1032 }
   1033 
   1034 /*
   1035  * sigpost:
   1036  *
   1037  *	Post a pending signal to an LWP.  Returns non-zero if the LWP may
   1038  *	be able to take the signal.
   1039  */
   1040 static int
   1041 sigpost(struct lwp *l, sig_t action, int prop, int sig)
   1042 {
   1043 	int rv, masked;
   1044 	struct proc *p = l->l_proc;
   1045 
   1046 	KASSERT(mutex_owned(p->p_lock));
   1047 
   1048 	/*
   1049 	 * If the LWP is on the way out, sigclear() will be busy draining all
   1050 	 * pending signals.  Don't give it more.
   1051 	 */
   1052 	if (l->l_refcnt == 0)
   1053 		return 0;
   1054 
   1055 	SDT_PROBE(proc, kernel, , signal__send, l, p, sig, 0, 0);
   1056 
   1057 	/*
   1058 	 * Have the LWP check for signals.  This ensures that even if no LWP
   1059 	 * is found to take the signal immediately, it should be taken soon.
   1060 	 */
   1061 	lwp_lock(l);
   1062 	l->l_flag |= LW_PENDSIG;
   1063 
   1064 	/*
   1065 	 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
   1066 	 * Note: SIGKILL and SIGSTOP cannot be masked.
   1067 	 */
   1068 	masked = sigismember(&l->l_sigmask, sig);
   1069 	if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
   1070 		lwp_unlock(l);
   1071 		return 0;
   1072 	}
   1073 
   1074 	/*
   1075 	 * If killing the process, make it run fast.
   1076 	 */
   1077 	if (__predict_false((prop & SA_KILL) != 0) &&
   1078 	    action == SIG_DFL && l->l_priority < MAXPRI_USER) {
   1079 		KASSERT(l->l_class == SCHED_OTHER);
   1080 		lwp_changepri(l, MAXPRI_USER);
   1081 	}
   1082 
   1083 	/*
   1084 	 * If the LWP is running or on a run queue, then we win.  If it's
   1085 	 * sleeping interruptably, wake it and make it take the signal.  If
   1086 	 * the sleep isn't interruptable, then the chances are it will get
   1087 	 * to see the signal soon anyhow.  If suspended, it can't take the
   1088 	 * signal right now.  If it's LWP private or for all LWPs, save it
   1089 	 * for later; otherwise punt.
   1090 	 */
   1091 	rv = 0;
   1092 
   1093 	switch (l->l_stat) {
   1094 	case LSRUN:
   1095 	case LSONPROC:
   1096 		lwp_need_userret(l);
   1097 		rv = 1;
   1098 		break;
   1099 
   1100 	case LSSLEEP:
   1101 		if ((l->l_flag & LW_SINTR) != 0) {
   1102 			/* setrunnable() will release the lock. */
   1103 			setrunnable(l);
   1104 			return 1;
   1105 		}
   1106 		break;
   1107 
   1108 	case LSSUSPENDED:
   1109 		if ((prop & SA_KILL) != 0 && (l->l_flag & LW_WCORE) != 0) {
   1110 			/* lwp_continue() will release the lock. */
   1111 			lwp_continue(l);
   1112 			return 1;
   1113 		}
   1114 		break;
   1115 
   1116 	case LSSTOP:
   1117 		if ((prop & SA_STOP) != 0)
   1118 			break;
   1119 
   1120 		/*
   1121 		 * If the LWP is stopped and we are sending a continue
   1122 		 * signal, then start it again.
   1123 		 */
   1124 		if ((prop & SA_CONT) != 0) {
   1125 			if (l->l_wchan != NULL) {
   1126 				l->l_stat = LSSLEEP;
   1127 				p->p_nrlwps++;
   1128 				rv = 1;
   1129 				break;
   1130 			}
   1131 			/* setrunnable() will release the lock. */
   1132 			setrunnable(l);
   1133 			return 1;
   1134 		} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
   1135 			/* setrunnable() will release the lock. */
   1136 			setrunnable(l);
   1137 			return 1;
   1138 		}
   1139 		break;
   1140 
   1141 	default:
   1142 		break;
   1143 	}
   1144 
   1145 	lwp_unlock(l);
   1146 	return rv;
   1147 }
   1148 
   1149 /*
   1150  * Notify an LWP that it has a pending signal.
   1151  */
   1152 void
   1153 signotify(struct lwp *l)
   1154 {
   1155 	KASSERT(lwp_locked(l, NULL));
   1156 
   1157 	l->l_flag |= LW_PENDSIG;
   1158 	lwp_need_userret(l);
   1159 }
   1160 
   1161 /*
   1162  * Find an LWP within process p that is waiting on signal ksi, and hand
   1163  * it on.
   1164  */
   1165 static int
   1166 sigunwait(struct proc *p, const ksiginfo_t *ksi)
   1167 {
   1168 	struct lwp *l;
   1169 	int signo;
   1170 
   1171 	KASSERT(mutex_owned(p->p_lock));
   1172 
   1173 	signo = ksi->ksi_signo;
   1174 
   1175 	if (ksi->ksi_lid != 0) {
   1176 		/*
   1177 		 * Signal came via _lwp_kill().  Find the LWP and see if
   1178 		 * it's interested.
   1179 		 */
   1180 		if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
   1181 			return 0;
   1182 		if (l->l_sigwaited == NULL ||
   1183 		    !sigismember(&l->l_sigwaitset, signo))
   1184 			return 0;
   1185 	} else {
   1186 		/*
   1187 		 * Look for any LWP that may be interested.
   1188 		 */
   1189 		LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
   1190 			KASSERT(l->l_sigwaited != NULL);
   1191 			if (sigismember(&l->l_sigwaitset, signo))
   1192 				break;
   1193 		}
   1194 	}
   1195 
   1196 	if (l != NULL) {
   1197 		l->l_sigwaited->ksi_info = ksi->ksi_info;
   1198 		l->l_sigwaited = NULL;
   1199 		LIST_REMOVE(l, l_sigwaiter);
   1200 		cv_signal(&l->l_sigcv);
   1201 		return 1;
   1202 	}
   1203 
   1204 	return 0;
   1205 }
   1206 
   1207 /*
   1208  * Send the signal to the process.  If the signal has an action, the action
   1209  * is usually performed by the target process rather than the caller; we add
   1210  * the signal to the set of pending signals for the process.
   1211  *
   1212  * Exceptions:
   1213  *   o When a stop signal is sent to a sleeping process that takes the
   1214  *     default action, the process is stopped without awakening it.
   1215  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
   1216  *     regardless of the signal action (eg, blocked or ignored).
   1217  *
   1218  * Other ignored signals are discarded immediately.
   1219  */
   1220 int
   1221 kpsignal2(struct proc *p, ksiginfo_t *ksi)
   1222 {
   1223 	int prop, signo = ksi->ksi_signo;
   1224 	struct sigacts *sa;
   1225 	struct lwp *l = NULL;
   1226 	ksiginfo_t *kp;
   1227 	lwpid_t lid;
   1228 	sig_t action;
   1229 	bool toall;
   1230 	int error = 0;
   1231 
   1232 	KASSERT(!cpu_intr_p());
   1233 	KASSERT(mutex_owned(proc_lock));
   1234 	KASSERT(mutex_owned(p->p_lock));
   1235 	KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
   1236 	KASSERT(signo > 0 && signo < NSIG);
   1237 
   1238 	/*
   1239 	 * If the process is being created by fork, is a zombie or is
   1240 	 * exiting, then just drop the signal here and bail out.
   1241 	 */
   1242 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
   1243 		return 0;
   1244 
   1245 	/*
   1246 	 * Notify any interested parties of the signal.
   1247 	 */
   1248 	KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
   1249 
   1250 	/*
   1251 	 * Some signals including SIGKILL must act on the entire process.
   1252 	 */
   1253 	kp = NULL;
   1254 	prop = sigprop[signo];
   1255 	toall = ((prop & SA_TOALL) != 0);
   1256 	lid = toall ? 0 : ksi->ksi_lid;
   1257 
   1258 	/*
   1259 	 * If proc is traced, always give parent a chance.
   1260 	 */
   1261 	if (p->p_slflag & PSL_TRACED) {
   1262 		action = SIG_DFL;
   1263 
   1264 		if (lid == 0) {
   1265 			/*
   1266 			 * If the process is being traced and the signal
   1267 			 * is being caught, make sure to save any ksiginfo.
   1268 			 */
   1269 			if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1270 				goto discard;
   1271 			if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1272 				goto out;
   1273 		}
   1274 	} else {
   1275 		/*
   1276 		 * If the signal was the result of a trap and is not being
   1277 		 * caught, then reset it to default action so that the
   1278 		 * process dumps core immediately.
   1279 		 */
   1280 		if (KSI_TRAP_P(ksi)) {
   1281 			sa = p->p_sigacts;
   1282 			mutex_enter(&sa->sa_mutex);
   1283 			if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
   1284 				sigdelset(&p->p_sigctx.ps_sigignore, signo);
   1285 				SIGACTION(p, signo).sa_handler = SIG_DFL;
   1286 			}
   1287 			mutex_exit(&sa->sa_mutex);
   1288 		}
   1289 
   1290 		/*
   1291 		 * If the signal is being ignored, then drop it.  Note: we
   1292 		 * don't set SIGCONT in ps_sigignore, and if it is set to
   1293 		 * SIG_IGN, action will be SIG_DFL here.
   1294 		 */
   1295 		if (sigismember(&p->p_sigctx.ps_sigignore, signo))
   1296 			goto discard;
   1297 
   1298 		else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
   1299 			action = SIG_CATCH;
   1300 		else {
   1301 			action = SIG_DFL;
   1302 
   1303 			/*
   1304 			 * If sending a tty stop signal to a member of an
   1305 			 * orphaned process group, discard the signal here if
   1306 			 * the action is default; don't stop the process below
   1307 			 * if sleeping, and don't clear any pending SIGCONT.
   1308 			 */
   1309 			if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
   1310 				goto discard;
   1311 
   1312 			if (prop & SA_KILL && p->p_nice > NZERO)
   1313 				p->p_nice = NZERO;
   1314 		}
   1315 	}
   1316 
   1317 	/*
   1318 	 * If stopping or continuing a process, discard any pending
   1319 	 * signals that would do the inverse.
   1320 	 */
   1321 	if ((prop & (SA_CONT | SA_STOP)) != 0) {
   1322 		ksiginfoq_t kq;
   1323 
   1324 		ksiginfo_queue_init(&kq);
   1325 		if ((prop & SA_CONT) != 0)
   1326 			sigclear(&p->p_sigpend, &stopsigmask, &kq);
   1327 		if ((prop & SA_STOP) != 0)
   1328 			sigclear(&p->p_sigpend, &contsigmask, &kq);
   1329 		ksiginfo_queue_drain(&kq);	/* XXXSMP */
   1330 	}
   1331 
   1332 	/*
   1333 	 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
   1334 	 * please!), check if any LWPs are waiting on it.  If yes, pass on
   1335 	 * the signal info.  The signal won't be processed further here.
   1336 	 */
   1337 	if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
   1338 	    p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
   1339 	    sigunwait(p, ksi))
   1340 		goto discard;
   1341 
   1342 	/*
   1343 	 * XXXSMP Should be allocated by the caller, we're holding locks
   1344 	 * here.
   1345 	 */
   1346 	if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
   1347 		goto discard;
   1348 
   1349 	/*
   1350 	 * LWP private signals are easy - just find the LWP and post
   1351 	 * the signal to it.
   1352 	 */
   1353 	if (lid != 0) {
   1354 		l = lwp_find(p, lid);
   1355 		if (l != NULL) {
   1356 			if ((error = sigput(&l->l_sigpend, p, kp)) != 0)
   1357 				goto out;
   1358 			membar_producer();
   1359 			(void)sigpost(l, action, prop, kp->ksi_signo);
   1360 		}
   1361 		goto out;
   1362 	}
   1363 
   1364 	/*
   1365 	 * Some signals go to all LWPs, even if posted with _lwp_kill()
   1366 	 * or for an SA process.
   1367 	 */
   1368 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1369 		if ((p->p_slflag & PSL_TRACED) != 0)
   1370 			goto deliver;
   1371 
   1372 		/*
   1373 		 * If SIGCONT is default (or ignored) and process is
   1374 		 * asleep, we are finished; the process should not
   1375 		 * be awakened.
   1376 		 */
   1377 		if ((prop & SA_CONT) != 0 && action == SIG_DFL)
   1378 			goto out;
   1379 	} else {
   1380 		/*
   1381 		 * Process is stopped or stopping.
   1382 		 * - If traced, then no action is needed, unless killing.
   1383 		 * - Run the process only if sending SIGCONT or SIGKILL.
   1384 		 */
   1385 		if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
   1386 			goto out;
   1387 		}
   1388 		if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
   1389 			/*
   1390 			 * Re-adjust p_nstopchild if the process was
   1391 			 * stopped but not yet collected by its parent.
   1392 			 */
   1393 			if (p->p_stat == SSTOP && !p->p_waited)
   1394 				p->p_pptr->p_nstopchild--;
   1395 			p->p_stat = SACTIVE;
   1396 			p->p_sflag &= ~PS_STOPPING;
   1397 			if (p->p_slflag & PSL_TRACED) {
   1398 				KASSERT(signo == SIGKILL);
   1399 				goto deliver;
   1400 			}
   1401 			/*
   1402 			 * Do not make signal pending if SIGCONT is default.
   1403 			 *
   1404 			 * If the process catches SIGCONT, let it handle the
   1405 			 * signal itself (if waiting on event - process runs,
   1406 			 * otherwise continues sleeping).
   1407 			 */
   1408 			if ((prop & SA_CONT) != 0) {
   1409 				p->p_xsig = SIGCONT;
   1410 				p->p_sflag |= PS_CONTINUED;
   1411 				child_psignal(p, 0);
   1412 				if (action == SIG_DFL) {
   1413 					KASSERT(signo != SIGKILL);
   1414 					goto deliver;
   1415 				}
   1416 			}
   1417 		} else if ((prop & SA_STOP) != 0) {
   1418 			/*
   1419 			 * Already stopped, don't need to stop again.
   1420 			 * (If we did the shell could get confused.)
   1421 			 */
   1422 			goto out;
   1423 		}
   1424 	}
   1425 	/*
   1426 	 * Make signal pending.
   1427 	 */
   1428 	KASSERT((p->p_slflag & PSL_TRACED) == 0);
   1429 	if ((error = sigput(&p->p_sigpend, p, kp)) != 0)
   1430 		goto out;
   1431 deliver:
   1432 	/*
   1433 	 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
   1434 	 * visible on the per process list (for sigispending()).  This
   1435 	 * is unlikely to be needed in practice, but...
   1436 	 */
   1437 	membar_producer();
   1438 
   1439 	/*
   1440 	 * Try to find an LWP that can take the signal.
   1441 	 */
   1442 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1443 		if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
   1444 			break;
   1445 	}
   1446 	signo = -1;
   1447 out:
   1448 	/*
   1449 	 * If the ksiginfo wasn't used, then bin it.  XXXSMP freeing memory
   1450 	 * with locks held.  The caller should take care of this.
   1451 	 */
   1452 	ksiginfo_free(kp);
   1453 	if (signo == -1)
   1454 		return error;
   1455 discard:
   1456 	SDT_PROBE(proc, kernel, , signal__discard, l, p, signo, 0, 0);
   1457 	return error;
   1458 }
   1459 
   1460 void
   1461 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
   1462 {
   1463 	struct proc *p = l->l_proc;
   1464 
   1465 	KASSERT(mutex_owned(p->p_lock));
   1466 	(*p->p_emul->e_sendsig)(ksi, mask);
   1467 }
   1468 
   1469 /*
   1470  * Stop any LWPs sleeping interruptably.
   1471  */
   1472 static void
   1473 proc_stop_lwps(struct proc *p)
   1474 {
   1475 	struct lwp *l;
   1476 
   1477 	KASSERT(mutex_owned(p->p_lock));
   1478 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1479 
   1480 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1481 		lwp_lock(l);
   1482 		if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
   1483 			l->l_stat = LSSTOP;
   1484 			p->p_nrlwps--;
   1485 		}
   1486 		lwp_unlock(l);
   1487 	}
   1488 }
   1489 
   1490 /*
   1491  * Finish stopping of a process.  Mark it stopped and notify the parent.
   1492  *
   1493  * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
   1494  */
   1495 static void
   1496 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
   1497 {
   1498 
   1499 	KASSERT(mutex_owned(proc_lock));
   1500 	KASSERT(mutex_owned(p->p_lock));
   1501 	KASSERT((p->p_sflag & PS_STOPPING) != 0);
   1502 	KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
   1503 
   1504 	p->p_sflag &= ~PS_STOPPING;
   1505 	p->p_stat = SSTOP;
   1506 	p->p_waited = 0;
   1507 	p->p_pptr->p_nstopchild++;
   1508 	if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   1509 		if (ppsig) {
   1510 			/* child_psignal drops p_lock briefly. */
   1511 			child_psignal(p, ppmask);
   1512 		}
   1513 		cv_broadcast(&p->p_pptr->p_waitcv);
   1514 	}
   1515 }
   1516 
   1517 /*
   1518  * Stop the current process and switch away when being stopped or traced.
   1519  */
   1520 static void
   1521 sigswitch(bool ppsig, int ppmask, int signo)
   1522 {
   1523 	struct lwp *l = curlwp;
   1524 	struct proc *p = l->l_proc;
   1525 	int biglocks;
   1526 
   1527 	KASSERT(mutex_owned(p->p_lock));
   1528 	KASSERT(l->l_stat == LSONPROC);
   1529 	KASSERT(p->p_nrlwps > 0);
   1530 
   1531 	/*
   1532 	 * On entry we know that the process needs to stop.  If it's
   1533 	 * the result of a 'sideways' stop signal that has been sourced
   1534 	 * through issignal(), then stop other LWPs in the process too.
   1535 	 */
   1536 	if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
   1537 		KASSERT(signo != 0);
   1538 		proc_stop(p, 1, signo);
   1539 		KASSERT(p->p_nrlwps > 0);
   1540 	}
   1541 
   1542 	/*
   1543 	 * If we are the last live LWP, and the stop was a result of
   1544 	 * a new signal, then signal the parent.
   1545 	 */
   1546 	if ((p->p_sflag & PS_STOPPING) != 0) {
   1547 		if (!mutex_tryenter(proc_lock)) {
   1548 			mutex_exit(p->p_lock);
   1549 			mutex_enter(proc_lock);
   1550 			mutex_enter(p->p_lock);
   1551 		}
   1552 
   1553 		if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
   1554 			/*
   1555 			 * Note that proc_stop_done() can drop
   1556 			 * p->p_lock briefly.
   1557 			 */
   1558 			proc_stop_done(p, ppsig, ppmask);
   1559 		}
   1560 
   1561 		mutex_exit(proc_lock);
   1562 	}
   1563 
   1564 	/*
   1565 	 * Unlock and switch away.
   1566 	 */
   1567 	KERNEL_UNLOCK_ALL(l, &biglocks);
   1568 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1569 		p->p_nrlwps--;
   1570 		lwp_lock(l);
   1571 		KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
   1572 		l->l_stat = LSSTOP;
   1573 		lwp_unlock(l);
   1574 	}
   1575 
   1576 	mutex_exit(p->p_lock);
   1577 	lwp_lock(l);
   1578 	mi_switch(l);
   1579 	KERNEL_LOCK(biglocks, l);
   1580 	mutex_enter(p->p_lock);
   1581 }
   1582 
   1583 /*
   1584  * Check for a signal from the debugger.
   1585  */
   1586 static int
   1587 sigchecktrace(void)
   1588 {
   1589 	struct lwp *l = curlwp;
   1590 	struct proc *p = l->l_proc;
   1591 	int signo;
   1592 
   1593 	KASSERT(mutex_owned(p->p_lock));
   1594 
   1595 	/* If there's a pending SIGKILL, process it immediately. */
   1596 	if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
   1597 		return 0;
   1598 
   1599 	/*
   1600 	 * If we are no longer being traced, or the parent didn't
   1601 	 * give us a signal, or we're stopping, look for more signals.
   1602 	 */
   1603 	if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xsig == 0 ||
   1604 	    (p->p_sflag & PS_STOPPING) != 0)
   1605 		return 0;
   1606 
   1607 	/*
   1608 	 * If the new signal is being masked, look for other signals.
   1609 	 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
   1610 	 */
   1611 	signo = p->p_xsig;
   1612 	p->p_xsig = 0;
   1613 	if (sigismember(&l->l_sigmask, signo)) {
   1614 		signo = 0;
   1615 	}
   1616 	return signo;
   1617 }
   1618 
   1619 /*
   1620  * If the current process has received a signal (should be caught or cause
   1621  * termination, should interrupt current syscall), return the signal number.
   1622  *
   1623  * Stop signals with default action are processed immediately, then cleared;
   1624  * they aren't returned.  This is checked after each entry to the system for
   1625  * a syscall or trap.
   1626  *
   1627  * We will also return -1 if the process is exiting and the current LWP must
   1628  * follow suit.
   1629  */
   1630 int
   1631 issignal(struct lwp *l)
   1632 {
   1633 	struct proc *p;
   1634 	int signo, prop;
   1635 	sigpend_t *sp;
   1636 	sigset_t ss;
   1637 
   1638 	p = l->l_proc;
   1639 	sp = NULL;
   1640 	signo = 0;
   1641 
   1642 	KASSERT(p == curproc);
   1643 	KASSERT(mutex_owned(p->p_lock));
   1644 
   1645 	for (;;) {
   1646 		/* Discard any signals that we have decided not to take. */
   1647 		if (signo != 0) {
   1648 			(void)sigget(sp, NULL, signo, NULL);
   1649 		}
   1650 
   1651 		/*
   1652 		 * If the process is stopped/stopping, then stop ourselves
   1653 		 * now that we're on the kernel/userspace boundary.  When
   1654 		 * we awaken, check for a signal from the debugger.
   1655 		 */
   1656 		if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1657 			sigswitch(true, PS_NOCLDSTOP, 0);
   1658 			signo = sigchecktrace();
   1659 		} else
   1660 			signo = 0;
   1661 
   1662 		/* Signals from the debugger are "out of band". */
   1663 		sp = NULL;
   1664 
   1665 		/*
   1666 		 * If the debugger didn't provide a signal, find a pending
   1667 		 * signal from our set.  Check per-LWP signals first, and
   1668 		 * then per-process.
   1669 		 */
   1670 		if (signo == 0) {
   1671 			sp = &l->l_sigpend;
   1672 			ss = sp->sp_set;
   1673 			if ((p->p_lflag & PL_PPWAIT) != 0)
   1674 				sigminusset(&stopsigmask, &ss);
   1675 			sigminusset(&l->l_sigmask, &ss);
   1676 
   1677 			if ((signo = firstsig(&ss)) == 0) {
   1678 				sp = &p->p_sigpend;
   1679 				ss = sp->sp_set;
   1680 				if ((p->p_lflag & PL_PPWAIT) != 0)
   1681 					sigminusset(&stopsigmask, &ss);
   1682 				sigminusset(&l->l_sigmask, &ss);
   1683 
   1684 				if ((signo = firstsig(&ss)) == 0) {
   1685 					/*
   1686 					 * No signal pending - clear the
   1687 					 * indicator and bail out.
   1688 					 */
   1689 					lwp_lock(l);
   1690 					l->l_flag &= ~LW_PENDSIG;
   1691 					lwp_unlock(l);
   1692 					sp = NULL;
   1693 					break;
   1694 				}
   1695 			}
   1696 		}
   1697 
   1698 		/*
   1699 		 * We should see pending but ignored signals only if
   1700 		 * we are being traced.
   1701 		 */
   1702 		if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
   1703 		    (p->p_slflag & PSL_TRACED) == 0) {
   1704 			/* Discard the signal. */
   1705 			continue;
   1706 		}
   1707 
   1708 		/*
   1709 		 * If traced, always stop, and stay stopped until released
   1710 		 * by the debugger.  If the our parent process is waiting
   1711 		 * for us, don't hang as we could deadlock.
   1712 		 */
   1713 		if ((p->p_slflag & PSL_TRACED) != 0 &&
   1714 		    (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
   1715 			/*
   1716 			 * Take the signal, but don't remove it from the
   1717 			 * siginfo queue, because the debugger can send
   1718 			 * it later.
   1719 			 */
   1720 			if (sp)
   1721 				sigdelset(&sp->sp_set, signo);
   1722 			p->p_xsig = signo;
   1723 
   1724 			/* Emulation-specific handling of signal trace */
   1725 			if (p->p_emul->e_tracesig == NULL ||
   1726 			    (*p->p_emul->e_tracesig)(p, signo) == 0)
   1727 				sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
   1728 				    signo);
   1729 
   1730 			/* Check for a signal from the debugger. */
   1731 			if ((signo = sigchecktrace()) == 0)
   1732 				continue;
   1733 
   1734 			/* Signals from the debugger are "out of band". */
   1735 			sp = NULL;
   1736 		}
   1737 
   1738 		prop = sigprop[signo];
   1739 
   1740 		/*
   1741 		 * Decide whether the signal should be returned.
   1742 		 */
   1743 		switch ((long)SIGACTION(p, signo).sa_handler) {
   1744 		case (long)SIG_DFL:
   1745 			/*
   1746 			 * Don't take default actions on system processes.
   1747 			 */
   1748 			if (p->p_pid <= 1) {
   1749 #ifdef DIAGNOSTIC
   1750 				/*
   1751 				 * Are you sure you want to ignore SIGSEGV
   1752 				 * in init? XXX
   1753 				 */
   1754 				printf_nolog("Process (pid %d) got sig %d\n",
   1755 				    p->p_pid, signo);
   1756 #endif
   1757 				continue;
   1758 			}
   1759 
   1760 			/*
   1761 			 * If there is a pending stop signal to process with
   1762 			 * default action, stop here, then clear the signal.
   1763 			 * However, if process is member of an orphaned
   1764 			 * process group, ignore tty stop signals.
   1765 			 */
   1766 			if (prop & SA_STOP) {
   1767 				/*
   1768 				 * XXX Don't hold proc_lock for p_lflag,
   1769 				 * but it's not a big deal.
   1770 				 */
   1771 				if (p->p_slflag & PSL_TRACED ||
   1772 				    ((p->p_lflag & PL_ORPHANPG) != 0 &&
   1773 				    prop & SA_TTYSTOP)) {
   1774 					/* Ignore the signal. */
   1775 					continue;
   1776 				}
   1777 				/* Take the signal. */
   1778 				(void)sigget(sp, NULL, signo, NULL);
   1779 				p->p_xsig = signo;
   1780 				p->p_sflag &= ~PS_CONTINUED;
   1781 				signo = 0;
   1782 				sigswitch(true, PS_NOCLDSTOP, p->p_xsig);
   1783 			} else if (prop & SA_IGNORE) {
   1784 				/*
   1785 				 * Except for SIGCONT, shouldn't get here.
   1786 				 * Default action is to ignore; drop it.
   1787 				 */
   1788 				continue;
   1789 			}
   1790 			break;
   1791 
   1792 		case (long)SIG_IGN:
   1793 #ifdef DEBUG_ISSIGNAL
   1794 			/*
   1795 			 * Masking above should prevent us ever trying
   1796 			 * to take action on an ignored signal other
   1797 			 * than SIGCONT, unless process is traced.
   1798 			 */
   1799 			if ((prop & SA_CONT) == 0 &&
   1800 			    (p->p_slflag & PSL_TRACED) == 0)
   1801 				printf_nolog("issignal\n");
   1802 #endif
   1803 			continue;
   1804 
   1805 		default:
   1806 			/*
   1807 			 * This signal has an action, let postsig() process
   1808 			 * it.
   1809 			 */
   1810 			break;
   1811 		}
   1812 
   1813 		break;
   1814 	}
   1815 
   1816 	l->l_sigpendset = sp;
   1817 	return signo;
   1818 }
   1819 
   1820 /*
   1821  * Take the action for the specified signal
   1822  * from the current set of pending signals.
   1823  */
   1824 void
   1825 postsig(int signo)
   1826 {
   1827 	struct lwp	*l;
   1828 	struct proc	*p;
   1829 	struct sigacts	*ps;
   1830 	sig_t		action;
   1831 	sigset_t	*returnmask;
   1832 	ksiginfo_t	ksi;
   1833 
   1834 	l = curlwp;
   1835 	p = l->l_proc;
   1836 	ps = p->p_sigacts;
   1837 
   1838 	KASSERT(mutex_owned(p->p_lock));
   1839 	KASSERT(signo > 0);
   1840 
   1841 	/*
   1842 	 * Set the new mask value and also defer further occurrences of this
   1843 	 * signal.
   1844 	 *
   1845 	 * Special case: user has done a sigsuspend.  Here the current mask is
   1846 	 * not of interest, but rather the mask from before the sigsuspend is
   1847 	 * what we want restored after the signal processing is completed.
   1848 	 */
   1849 	if (l->l_sigrestore) {
   1850 		returnmask = &l->l_sigoldmask;
   1851 		l->l_sigrestore = 0;
   1852 	} else
   1853 		returnmask = &l->l_sigmask;
   1854 
   1855 	/*
   1856 	 * Commit to taking the signal before releasing the mutex.
   1857 	 */
   1858 	action = SIGACTION_PS(ps, signo).sa_handler;
   1859 	l->l_ru.ru_nsignals++;
   1860 	if (l->l_sigpendset == NULL) {
   1861 		/* From the debugger */
   1862 		if (!siggetinfo(&l->l_sigpend, &ksi, signo))
   1863 			(void)siggetinfo(&p->p_sigpend, &ksi, signo);
   1864 	} else
   1865 		sigget(l->l_sigpendset, &ksi, signo, NULL);
   1866 
   1867 	if (ktrpoint(KTR_PSIG)) {
   1868 		mutex_exit(p->p_lock);
   1869 		if (p->p_emul->e_ktrpsig)
   1870 			p->p_emul->e_ktrpsig(signo, action,
   1871 			    returnmask, &ksi);
   1872 		else
   1873 			ktrpsig(signo, action, returnmask, &ksi);
   1874 		mutex_enter(p->p_lock);
   1875 	}
   1876 
   1877 	SDT_PROBE(proc, kernel, , signal__handle, signo, &ksi, action, 0, 0);
   1878 
   1879 	if (action == SIG_DFL) {
   1880 		/*
   1881 		 * Default action, where the default is to kill
   1882 		 * the process.  (Other cases were ignored above.)
   1883 		 */
   1884 		sigexit(l, signo);
   1885 		return;
   1886 	}
   1887 
   1888 	/*
   1889 	 * If we get here, the signal must be caught.
   1890 	 */
   1891 #ifdef DIAGNOSTIC
   1892 	if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
   1893 		panic("postsig action");
   1894 #endif
   1895 
   1896 	kpsendsig(l, &ksi, returnmask);
   1897 }
   1898 
   1899 /*
   1900  * sendsig:
   1901  *
   1902  *	Default signal delivery method for NetBSD.
   1903  */
   1904 void
   1905 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
   1906 {
   1907 	struct sigacts *sa;
   1908 	int sig;
   1909 
   1910 	sig = ksi->ksi_signo;
   1911 	sa = curproc->p_sigacts;
   1912 
   1913 	switch (sa->sa_sigdesc[sig].sd_vers)  {
   1914 	case 0:
   1915 	case 1:
   1916 		/* Compat for 1.6 and earlier. */
   1917 		if (sendsig_sigcontext_vec == NULL) {
   1918 			break;
   1919 		}
   1920 		(*sendsig_sigcontext_vec)(ksi, mask);
   1921 		return;
   1922 	case 2:
   1923 	case 3:
   1924 		sendsig_siginfo(ksi, mask);
   1925 		return;
   1926 	default:
   1927 		break;
   1928 	}
   1929 
   1930 	printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
   1931 	sigexit(curlwp, SIGILL);
   1932 }
   1933 
   1934 /*
   1935  * sendsig_reset:
   1936  *
   1937  *	Reset the signal action.  Called from emulation specific sendsig()
   1938  *	before unlocking to deliver the signal.
   1939  */
   1940 void
   1941 sendsig_reset(struct lwp *l, int signo)
   1942 {
   1943 	struct proc *p = l->l_proc;
   1944 	struct sigacts *ps = p->p_sigacts;
   1945 
   1946 	KASSERT(mutex_owned(p->p_lock));
   1947 
   1948 	p->p_sigctx.ps_lwp = 0;
   1949 	p->p_sigctx.ps_code = 0;
   1950 	p->p_sigctx.ps_signo = 0;
   1951 
   1952 	mutex_enter(&ps->sa_mutex);
   1953 	sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
   1954 	if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
   1955 		sigdelset(&p->p_sigctx.ps_sigcatch, signo);
   1956 		if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
   1957 			sigaddset(&p->p_sigctx.ps_sigignore, signo);
   1958 		SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
   1959 	}
   1960 	mutex_exit(&ps->sa_mutex);
   1961 }
   1962 
   1963 /*
   1964  * Kill the current process for stated reason.
   1965  */
   1966 void
   1967 killproc(struct proc *p, const char *why)
   1968 {
   1969 
   1970 	KASSERT(mutex_owned(proc_lock));
   1971 
   1972 	log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
   1973 	uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
   1974 	psignal(p, SIGKILL);
   1975 }
   1976 
   1977 /*
   1978  * Force the current process to exit with the specified signal, dumping core
   1979  * if appropriate.  We bypass the normal tests for masked and caught
   1980  * signals, allowing unrecoverable failures to terminate the process without
   1981  * changing signal state.  Mark the accounting record with the signal
   1982  * termination.  If dumping core, save the signal number for the debugger.
   1983  * Calls exit and does not return.
   1984  */
   1985 void
   1986 sigexit(struct lwp *l, int signo)
   1987 {
   1988 	int exitsig, error, docore;
   1989 	struct proc *p;
   1990 	struct lwp *t;
   1991 
   1992 	p = l->l_proc;
   1993 
   1994 	KASSERT(mutex_owned(p->p_lock));
   1995 	KERNEL_UNLOCK_ALL(l, NULL);
   1996 
   1997 	/*
   1998 	 * Don't permit coredump() multiple times in the same process.
   1999 	 * Call back into sigexit, where we will be suspended until
   2000 	 * the deed is done.  Note that this is a recursive call, but
   2001 	 * LW_WCORE will prevent us from coming back this way.
   2002 	 */
   2003 	if ((p->p_sflag & PS_WCORE) != 0) {
   2004 		lwp_lock(l);
   2005 		l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
   2006 		lwp_unlock(l);
   2007 		mutex_exit(p->p_lock);
   2008 		lwp_userret(l);
   2009 		panic("sigexit 1");
   2010 		/* NOTREACHED */
   2011 	}
   2012 
   2013 	/* If process is already on the way out, then bail now. */
   2014 	if ((p->p_sflag & PS_WEXIT) != 0) {
   2015 		mutex_exit(p->p_lock);
   2016 		lwp_exit(l);
   2017 		panic("sigexit 2");
   2018 		/* NOTREACHED */
   2019 	}
   2020 
   2021 	/*
   2022 	 * Prepare all other LWPs for exit.  If dumping core, suspend them
   2023 	 * so that their registers are available long enough to be dumped.
   2024  	 */
   2025 	if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
   2026 		p->p_sflag |= PS_WCORE;
   2027 		for (;;) {
   2028 			LIST_FOREACH(t, &p->p_lwps, l_sibling) {
   2029 				lwp_lock(t);
   2030 				if (t == l) {
   2031 					t->l_flag &= ~LW_WSUSPEND;
   2032 					lwp_unlock(t);
   2033 					continue;
   2034 				}
   2035 				t->l_flag |= (LW_WCORE | LW_WEXIT);
   2036 				lwp_suspend(l, t);
   2037 			}
   2038 
   2039 			if (p->p_nrlwps == 1)
   2040 				break;
   2041 
   2042 			/*
   2043 			 * Kick any LWPs sitting in lwp_wait1(), and wait
   2044 			 * for everyone else to stop before proceeding.
   2045 			 */
   2046 			p->p_nlwpwait++;
   2047 			cv_broadcast(&p->p_lwpcv);
   2048 			cv_wait(&p->p_lwpcv, p->p_lock);
   2049 			p->p_nlwpwait--;
   2050 		}
   2051 	}
   2052 
   2053 	exitsig = signo;
   2054 	p->p_acflag |= AXSIG;
   2055 	p->p_sigctx.ps_signo = signo;
   2056 
   2057 	if (docore) {
   2058 		mutex_exit(p->p_lock);
   2059 		error = (*coredump_vec)(l, NULL);
   2060 
   2061 		if (kern_logsigexit) {
   2062 			int uid = l->l_cred ?
   2063 			    (int)kauth_cred_geteuid(l->l_cred) : -1;
   2064 
   2065 			if (error)
   2066 				log(LOG_INFO, lognocoredump, p->p_pid,
   2067 				    p->p_comm, uid, signo, error);
   2068 			else
   2069 				log(LOG_INFO, logcoredump, p->p_pid,
   2070 				    p->p_comm, uid, signo);
   2071 		}
   2072 
   2073 #ifdef PAX_SEGVGUARD
   2074 		pax_segvguard(l, p->p_textvp, p->p_comm, true);
   2075 #endif /* PAX_SEGVGUARD */
   2076 		/* Acquire the sched state mutex.  exit1() will release it. */
   2077 		mutex_enter(p->p_lock);
   2078 		if (error == 0)
   2079 			p->p_sflag |= PS_COREDUMP;
   2080 	}
   2081 
   2082 	/* No longer dumping core. */
   2083 	p->p_sflag &= ~PS_WCORE;
   2084 
   2085 	exit1(l, 0, exitsig);
   2086 	/* NOTREACHED */
   2087 }
   2088 
   2089 /*
   2090  * Put process 'p' into the stopped state and optionally, notify the parent.
   2091  */
   2092 void
   2093 proc_stop(struct proc *p, int notify, int signo)
   2094 {
   2095 	struct lwp *l;
   2096 
   2097 	KASSERT(mutex_owned(p->p_lock));
   2098 
   2099 	/*
   2100 	 * First off, set the stopping indicator and bring all sleeping
   2101 	 * LWPs to a halt so they are included in p->p_nrlwps.  We musn't
   2102 	 * unlock between here and the p->p_nrlwps check below.
   2103 	 */
   2104 	p->p_sflag |= PS_STOPPING;
   2105 	if (notify)
   2106 		p->p_sflag |= PS_NOTIFYSTOP;
   2107 	else
   2108 		p->p_sflag &= ~PS_NOTIFYSTOP;
   2109 	membar_producer();
   2110 
   2111 	proc_stop_lwps(p);
   2112 
   2113 	/*
   2114 	 * If there are no LWPs available to take the signal, then we
   2115 	 * signal the parent process immediately.  Otherwise, the last
   2116 	 * LWP to stop will take care of it.
   2117 	 */
   2118 
   2119 	if (p->p_nrlwps == 0) {
   2120 		proc_stop_done(p, true, PS_NOCLDSTOP);
   2121 	} else {
   2122 		/*
   2123 		 * Have the remaining LWPs come to a halt, and trigger
   2124 		 * proc_stop_callout() to ensure that they do.
   2125 		 */
   2126 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2127 			sigpost(l, SIG_DFL, SA_STOP, signo);
   2128 		}
   2129 		callout_schedule(&proc_stop_ch, 1);
   2130 	}
   2131 }
   2132 
   2133 /*
   2134  * When stopping a process, we do not immediatly set sleeping LWPs stopped,
   2135  * but wait for them to come to a halt at the kernel-user boundary.  This is
   2136  * to allow LWPs to release any locks that they may hold before stopping.
   2137  *
   2138  * Non-interruptable sleeps can be long, and there is the potential for an
   2139  * LWP to begin sleeping interruptably soon after the process has been set
   2140  * stopping (PS_STOPPING).  These LWPs will not notice that the process is
   2141  * stopping, and so complete halt of the process and the return of status
   2142  * information to the parent could be delayed indefinitely.
   2143  *
   2144  * To handle this race, proc_stop_callout() runs once per tick while there
   2145  * are stopping processes in the system.  It sets LWPs that are sleeping
   2146  * interruptably into the LSSTOP state.
   2147  *
   2148  * Note that we are not concerned about keeping all LWPs stopped while the
   2149  * process is stopped: stopped LWPs can awaken briefly to handle signals.
   2150  * What we do need to ensure is that all LWPs in a stopping process have
   2151  * stopped at least once, so that notification can be sent to the parent
   2152  * process.
   2153  */
   2154 static void
   2155 proc_stop_callout(void *cookie)
   2156 {
   2157 	bool more, restart;
   2158 	struct proc *p;
   2159 
   2160 	(void)cookie;
   2161 
   2162 	do {
   2163 		restart = false;
   2164 		more = false;
   2165 
   2166 		mutex_enter(proc_lock);
   2167 		PROCLIST_FOREACH(p, &allproc) {
   2168 			mutex_enter(p->p_lock);
   2169 
   2170 			if ((p->p_sflag & PS_STOPPING) == 0) {
   2171 				mutex_exit(p->p_lock);
   2172 				continue;
   2173 			}
   2174 
   2175 			/* Stop any LWPs sleeping interruptably. */
   2176 			proc_stop_lwps(p);
   2177 			if (p->p_nrlwps == 0) {
   2178 				/*
   2179 				 * We brought the process to a halt.
   2180 				 * Mark it as stopped and notify the
   2181 				 * parent.
   2182 				 */
   2183 				if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
   2184 					/*
   2185 					 * Note that proc_stop_done() will
   2186 					 * drop p->p_lock briefly.
   2187 					 * Arrange to restart and check
   2188 					 * all processes again.
   2189 					 */
   2190 					restart = true;
   2191 				}
   2192 				proc_stop_done(p, true, PS_NOCLDSTOP);
   2193 			} else
   2194 				more = true;
   2195 
   2196 			mutex_exit(p->p_lock);
   2197 			if (restart)
   2198 				break;
   2199 		}
   2200 		mutex_exit(proc_lock);
   2201 	} while (restart);
   2202 
   2203 	/*
   2204 	 * If we noted processes that are stopping but still have
   2205 	 * running LWPs, then arrange to check again in 1 tick.
   2206 	 */
   2207 	if (more)
   2208 		callout_schedule(&proc_stop_ch, 1);
   2209 }
   2210 
   2211 /*
   2212  * Given a process in state SSTOP, set the state back to SACTIVE and
   2213  * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
   2214  */
   2215 void
   2216 proc_unstop(struct proc *p)
   2217 {
   2218 	struct lwp *l;
   2219 	int sig;
   2220 
   2221 	KASSERT(mutex_owned(proc_lock));
   2222 	KASSERT(mutex_owned(p->p_lock));
   2223 
   2224 	p->p_stat = SACTIVE;
   2225 	p->p_sflag &= ~PS_STOPPING;
   2226 	sig = p->p_xsig;
   2227 
   2228 	if (!p->p_waited)
   2229 		p->p_pptr->p_nstopchild--;
   2230 
   2231 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   2232 		lwp_lock(l);
   2233 		if (l->l_stat != LSSTOP) {
   2234 			lwp_unlock(l);
   2235 			continue;
   2236 		}
   2237 		if (l->l_wchan == NULL) {
   2238 			setrunnable(l);
   2239 			continue;
   2240 		}
   2241 		if (sig && (l->l_flag & LW_SINTR) != 0) {
   2242 			setrunnable(l);
   2243 			sig = 0;
   2244 		} else {
   2245 			l->l_stat = LSSLEEP;
   2246 			p->p_nrlwps++;
   2247 			lwp_unlock(l);
   2248 		}
   2249 	}
   2250 }
   2251 
   2252 static int
   2253 filt_sigattach(struct knote *kn)
   2254 {
   2255 	struct proc *p = curproc;
   2256 
   2257 	kn->kn_obj = p;
   2258 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
   2259 
   2260 	mutex_enter(p->p_lock);
   2261 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
   2262 	mutex_exit(p->p_lock);
   2263 
   2264 	return 0;
   2265 }
   2266 
   2267 static void
   2268 filt_sigdetach(struct knote *kn)
   2269 {
   2270 	struct proc *p = kn->kn_obj;
   2271 
   2272 	mutex_enter(p->p_lock);
   2273 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
   2274 	mutex_exit(p->p_lock);
   2275 }
   2276 
   2277 /*
   2278  * Signal knotes are shared with proc knotes, so we apply a mask to
   2279  * the hint in order to differentiate them from process hints.  This
   2280  * could be avoided by using a signal-specific knote list, but probably
   2281  * isn't worth the trouble.
   2282  */
   2283 static int
   2284 filt_signal(struct knote *kn, long hint)
   2285 {
   2286 
   2287 	if (hint & NOTE_SIGNAL) {
   2288 		hint &= ~NOTE_SIGNAL;
   2289 
   2290 		if (kn->kn_id == hint)
   2291 			kn->kn_data++;
   2292 	}
   2293 	return (kn->kn_data != 0);
   2294 }
   2295 
   2296 const struct filterops sig_filtops = {
   2297 	0, filt_sigattach, filt_sigdetach, filt_signal
   2298 };
   2299